Non-linearizability of n-subhyperbolic polynomials at irrationally indifferent fixed points

By Yûsuke Okuyama

(Received May 12, 2000)

Abstract

We study the non-linearlizability conjecture (NLC) for polynomials at non-Brjuno irrationally indifferent fixed points. A polynomial is n-subhyperbolic if it has exactly n recurrent critical points corresponding to irrationally indifferent cycles, other ones in the Julia set are preperiodic and no critical orbit in the Fatou set accumulates to the Julia set. In this article, we show that NLC and, more generally, the cycle-version of NLC are true in a subclass of n-subhyperbolic polynomials. As a corollary, we prove the cycle-version of the Yoccoz Theorem for quadratic polynomials.

We also study several specific examples of n-subhyperbolic polynomials. Here we also show the scaling invariance of the Brjuno condition: if an irrational number α satisfies the Brjuno condition, then so do $m \alpha$ for every positive integer m.

1. Introduction.

In this paper, we always assume $\lambda=e^{2 \pi i \alpha}(\alpha \in \boldsymbol{R} \backslash \boldsymbol{Q})$. We consider a holomorphic germ f at $z_{0} \in \boldsymbol{C}$ fixing z_{0} with multiplier $f^{\prime}\left(z_{0}\right)=\lambda$. Then z_{0} is called an irrationally indifferent fixed point of f and α is called the rotation number of f at z_{0}. This name is derived from a rigorous relationship between holomorphic dynamics near an irrationally indifferent fixed point and that of analytic circle homeomorphisms. For example, rotation numbers of holomorphic germs are topologically invariant. For more details, see [21].

We say f to be linearizable at z_{0} if there exists a neighborhood D of z_{0} and a conformal map $w=h(z)$ from D to the unit disk \boldsymbol{D} with $h\left(z_{0}\right)=0$ such that $h \circ f \circ h^{-1}$ is a rotation $w \mapsto \lambda w$ on \boldsymbol{D}.

Brjuno showed in [2] that if α satisfies the Brjuno condition, then such f is always linearizable at z_{0}. The Brjuno condition is defined in terms of the continued fraction expansion. For the rigorous definition, see [23] or [16].

In fact the Brjuno condition is the best possible. Yoccoz proved in [23] that if a quadratic polynomial is linearizable at an irrationally indifferent fixed point

[^0]whose multiplier is λ, then α satisfies the Brjuno condition. It is not known whether we can extend this result for polynomials of degree more than two.

The non-linearizability conjecture is the following (cf. [5] and [19]).
NLC. If a polynomial of degree $d \geq 2$ is linearizable at an irrationally indifferent fixed point whose multiplier is λ, then α satisfies the Brjuno condition.

It follows from the Yoccoz theorem that NLC is true in the class of quadratic polynomials. In this paper, we shall prove NLC in the class of piecewise 1 -subhyperbolic polynomials, which is a subclass of n-subhyperbolic polynomials defined below.

Let P be a polynomial of degree $d \geq 2$. For details and proofs of the basic results of complex dynamics, see [16] and [17].

Notation. The Fatou set $F(P)$ is the largest open set such that the iterates $\left\{P^{n} \mid F ; n \in \boldsymbol{N}\right\}$ form a normal family. The Julia set $J(P)$ is the complement of the Fatou set. The filled-in Julia set $K(P)$ consists of those $z \in \boldsymbol{C}$ such that its orbit $\left\{P^{n}(z)\right\}_{n \geq 0}$ is bounded.

The Julia set $J(P)$ is equal to the boundary of $K(P)$.
Notation. For a point $z \in \boldsymbol{C}$, we call $\left\{P^{n}(z)\right\}_{n \geq 0}$ the orbit. z is periodic and $\left\{P^{i}(z)\right\}_{i=0}^{m-1}$ is a cycle if $z, P(z), \ldots, P^{m-1}(z)$ are distinct and $P^{m}(z)=z$ for some $m \in N$.

Let $\mathscr{Z}=\left\{z_{v}\right\}_{v=1}^{m}$ be a cycle. The multiplier of \mathscr{Z} is defined by $\left(P^{m}\right)^{\prime}\left(z_{v}\right)$, and \mathscr{Z} is irrationally indifferent if each z_{v} is an irrationally indifferent fixed point of P^{m}. Moreover, if P^{m} is linearizable at each z_{v}, or equivalently if $\mathscr{Z} \subset F(P)$, then \mathscr{Z} is called a Siegel cycle and the Fatou component containing z_{v} is called the Siegel disk of P at z_{v}. Otherwise \mathscr{Z} is called a Cremer cycle. We call each point of a Siegel cycle a Siegel (periodic) point, and call each one of a Cremer cycle a Cremer (periodic) point.

Definition. For an irrationally indifferent cycle $\mathscr{Z}=\left\{z_{v}\right\}_{v=1}^{m}$ of P, the singular set $\mathscr{S}=\mathscr{S}(\mathscr{Z})$ is defined by $\bigcup_{v=1}^{m} \bar{S}_{v}\left(S_{v}\right.$ is the Siegel disk at $\left.z_{v}\right)$ if \mathscr{Z} is a Siegel cycle, and by \mathscr{Z} itself if \mathscr{Z} is a Cremer cycle.

Theorem 1.1 (Mañé [12]). For each singular set \mathscr{S} of P, there exists a recurrent critical point c such that $\omega(c) \supset \partial \mathscr{S}$.

Here $\omega(c)=\left\{z \in \boldsymbol{C}\right.$; there exists $n_{k} \rightarrow \infty$ such that $\left.z=\lim P^{n_{k}}(c)\right\}$ is the omega limit set of c, and c is recurrent if $c \in \omega(c)$.

Definition. A recurrent critical point corresponds to an irrationally indifferent cycle \mathscr{Z} if $\omega(c) \supset \partial \mathscr{S}(\mathscr{Z})$.

In this paper, we always count the number of critical points with multiplicity.

Definition (n-subhyperbolicity). For a non-negative integer n, a polynomial P is n-subhyperbolic if
(a) there exist exactly n recurrent critical points corresponding to irrationally indifferent cycles,
(b) every critical point in $J(P)$ other than the ones in (a) is preperiodic, and
(c) no critical orbit in $F(P)$ accumulates to $J(P)$.

An n-subhyperbolic polynomial is n-hyperbolic if there is no preperiodic critical point in $J(P)$.

By definition, a quadratic polynomial with an irrationally indifferent cycle is 1-hyperbolic. A 0-subhyperbolic polynomial is subhyperbolic in a classical sense. For $n \geq 1$, an n-subhyperbolic polynomial is obtained by "blowing-up" preperiodic critical points of a 0 -subhyperbolic polynomial in its Julia set.

We shall precisely state Main Theorem of this paper in Section 6, which says that NLC is true in the class of piecewise 1-subhyperbolic polynomials. For simplicity, we first treat the class of 1-hyperbolic and 1-subhyperbolic polynomials.

Theorem 1 (NLC). If a 1-subhyperbolic polynomial is linearizable at an irrationally indifferent fixed point whose multiplier is λ, then α satisfies the Brjuno condition.

In particular, we also have the following earlier result.
Corollary 1 ([18]). Suppose that a cubic polynomial P is linearizable at an irrationally indifferent fixed point and let its rotation number be α. If there exists a critical point of P iterated into a cyclic Fatou component which is a superattractive or attractive basin or a Siegel disk, then α satisfies the Brjuno condition.

More generally, we also have a positive answer for the cycle-version of NLC.
Theorem 2 (Cycle version of NLC). If a 1-subhyperbolic polynomial has a Siegel cycle whose multiplier is λ, then α satisfies the Brjuno condition.

As a corollary, we have the cycle-version of the Yoccoz Theorem.
Corollary 2. If a quadratic polynomial has a Siegel cycle whose multiplier is λ, then α satisfies the Brjuno condition.

By studying specific examples of n-subhyperbolic polynomials, we also have:
Theorem 3 (Scaling invariance of the Brjuno condition). If α satisfies the Brjuno condition, then $m \alpha(m \in \boldsymbol{N})$ also satisfies the Brjuno condition.

In the rest of this paper, we shall prove Main Theorem. We first prove Theorem 1 in 1-hyperbolic case. In Section 2, we consider the linearizability-
preserving perturbations for an arbitrary polynomial P. Preserving the linearizability of P at every irrationally indifferent periodic point, this perturbation increases the number of the foliated equivalence classes of acyclic critical points in $F(P)$.

In Section 3, we shall survey the structure theorem of Teichmüller spaces of polynomials and their uniformization in parameter spaces, and consider a local lifting of this uniformization into the representation space of polynomials.

In Section 4, we shall apply linearizability-preserving perturbations to a 1hyperbolic polynomial in order to increase the dimension of its Teichmüller spaces. We shall complete the proof of Theorem 1 in 1-hyperbolic case.

In Section 5, we shall define weak renormalizations of polynomials by strong separation and show that they are in fact strongly renormalizable under a certain condition.

In Section 6, we shall define a subclass of n-subhyperbolic polynomials, that is, piecewise 1 -subhyperbolic polynomials in terms of strong separation, and state Main Theorem in this paper. Applying strong renormalizations to piecewise 1-subhyperbolic polynomials, we complete the proof of Main Theorem and Theorem 2.

In Section 7, we conclude with several examples of n-subhyperbolic polynomials. We shall prove Theorem 3 here.

Acknowledgement. The author would like to express his gratitude to Prof. Masahiko Taniguchi and Prof. Toshiyuki Sugawa for many valuable discussions and advices, and also to Prof. Anthony Manning, Prof. Oleg Kozlovski and Prof. Sebastian van Strien for helpful comments. He would like to also thank Prof. Caroline Series for inviting him as a long term visitor to Warwick university and the referee for reading the draft carefully and giving him many useful comments.

2. Linearizability-preserving perturbation.

Definition. Let P be a polynomial. A point is said to be acyclic if it is neither periodic nor preperiodic point of P.

The grand orbit of $x \in \boldsymbol{C}$ is

$$
\mathrm{GO}(x, P):=\left\{y \in \boldsymbol{C} ; P^{n}(x)=P^{m}(y) \text { for some } n, m \geq 0\right\} .
$$

Two points $x, y \in \boldsymbol{C}$ are in the foliated equivalence class of P if $\overline{\mathrm{GO}(x, P)}=$ $\overline{\mathrm{GO}(y, P)}$.
$N_{A C}$ is the number of the foliated equivalence classes of acyclic critical points of P in $F(P)$.

Main result in this section is the following:

Theorem 2.1. Let P be an n-hyperbolic polynomial of degree $d \geq 2$. Then there exists an n-hyperbolic polynomial \hat{P} with the same degree as P such that
(i) If P is linearizable at an irrationally indifferent fixed point whose multiplier is λ, then \hat{P} is also so, and
(ii) $\quad N_{A C}(\hat{P})=d-n-1$.

Notation. For $r>0$ and $x \in \boldsymbol{C}$, we put $\boldsymbol{D}(x, r):=\{z \in \boldsymbol{C} ;|z-x|<r\}$ and $\boldsymbol{D}_{r}:=\boldsymbol{D}(0, r)$. For $C \in \boldsymbol{C}$ and $U \subset \boldsymbol{C}$, we set $C \cdot U:=\{C z ; z \in U\}$.

For a C^{1}-function f, we set $\mu[f]:=\bar{\partial} f / \partial f$. For an open set $V \subset C$, we identify a Beltrami coefficient on V with a function $\mu \in L^{\infty}(V)$ such that $\|\mu\|_{\infty}$ <1, and for a C^{1}-function $f: V \rightarrow W$ and a Beltrami coefficient μ on W, we define the pullback $f^{*} \mu$ of μ on V by

$$
\left(f^{*} \mu\right)(z)=\frac{\overline{\partial f(z)} \mu(f(z))+\bar{\partial} f(z)}{\overline{\overline{\partial f}(z)} \mu(f(z))+\partial f(z)}
$$

Theorem 2.1 follows from the three Lemmas below. We fix a polynomial P of degree $d \geq 2$ arbitrarily.

Lemma 2.1. Let c be a non-periodic critical point in $F(P)$ with multiplicity $k \geq 2$. Then there exist an analytic Jordan neighborhood U of c in $F(P)$, a quasiconformal automorphism Φ of \boldsymbol{C} and a polynomial \hat{P} with the same degree as P such that

- \bar{U} contains neither critical point other than c nor periodic point,
- \hat{P} has exactly k distinct critical points in $\Phi(U)$, which are simple, and
- $P=\Phi^{-1} \circ \hat{P} \circ \Phi$ on $\boldsymbol{C} \backslash U$.

Proof. Let Ω be the component of $F(P)$ containing c. Then it is not a Siegel disk of P. By assumption, c is not a superattracting periodic point. There exists an analytic Jordan neighborhood U of c in Ω such that

- \bar{U} contains neither critical point other than c nor periodic point of P,
- for all $n \in N, P^{n}(U) \cap U=\varnothing$, and
- $P \mid U$ is a proper map onto a Jordan domain V.

We choose a quasiregular extension $Q: U \rightarrow V$ of $P \mid \partial U: \partial U \rightarrow \partial V$ so that

- $Q|\partial U=P| \partial U$, and
- Q has exactly k distinct branch points in U, which are simple. We set a quasiregular endomorphism of \boldsymbol{C} :

$$
\tilde{P}:= \begin{cases}P & (\text { on } C \backslash U) \\ Q & (\text { on } U)\end{cases}
$$

In the above, we have chosen the neighborhood U so that

$$
\mu(z):= \begin{cases}\left(P^{*}\right)^{i} \mu[Q](z) & \text { if } P^{i}(z) \in U \text { for some } i \in N \cup\{0\}, \\ 0 & \text { otherwise },\end{cases}
$$

becomes a \tilde{P}-invariant Beltrami differential on \boldsymbol{C}.
Let Φ be a quasiconformal automorphism of C with $\mu[\Phi]=\mu$. Then we have $\mu[\Phi \circ \tilde{P}]=\mu[\Phi]$, so $\hat{P}:=\Phi \circ \tilde{P} \circ \Phi^{-1}$ is holomorphic. By construction, we have $\operatorname{deg} \hat{P}=\operatorname{deg} P$.

The first and second lemma says that we can decompose a critical point c with multiplicity k in $F(P)$ to k distinct simple and non-periodic critical points near c.

Lemma 2.2. Let c be a periodic critical point in $F(P)$ (so it is a superattracting periodic point) with multiplicity $k \geq 1$. Then there exist an analytic Jordan neighborhood U of c in $F(P)$, a quasiconformal automorphism Φ of C and a polynomial \hat{P} with the same degree as P such that

- \bar{U} contains no critical point other than c,
- \hat{P} has exactly k distinct critical points in $\Phi(U)$, which are simple,
- $\Phi(c)$ is not a critical point of \hat{P}, and
- $P=\Phi^{-1} \circ \hat{P} \circ \Phi$ on $(\boldsymbol{C} \backslash U) \cup\{c\}$.

The inverse of this perturbation is well-known (cf. [3] VI. 5). For readers' convenience, we write the proof.

Proof. Let p be the period of c and Ω the component of $F(P)$ containing c. Then Ω is the superattractive fixed basin of P^{p}. There exists an analytic Jordan neighborhood U of c in Ω such that

- \bar{U} contains no critical point other than c,
- $P^{p}(U) \Subset U$, and
- $P \mid U$ is a proper map onto a Jordan domain V.

We choose a quasiregular extension $Q: U \rightarrow V$ of $P \mid \partial U: \partial U \rightarrow \partial V$ so that

- $Q=P$ on $\partial U \cup\{c\}$,
- Q is holomorphic on $\overline{P^{p}(U)}$,
- Q has exactly distinct k critical points, which are simple, in $P^{p}(U) \backslash\{c\}$, and
- c is not a critical point of Q.

By the same way as that in the previous proof, we have such a polynomial \hat{P} in this Lemma.

The third lemma says that we can move slightly each critical orbit of P in $F(P)$.

Lemma 2.3. Let c be a non-periodic and simple critical point in $F(P)$. Then there exist an analytic Jordan neighborhood U of c in $F(P)$, a quasiconformal automorphism Φ of C and a polynomial \hat{P} with the same degree as P such that

- \bar{U} contains neither critical point other than c nor periodic point,
- \hat{P} has one and only one critical point $\Phi(c)$ in $\Phi(U)$, which is simple,
- $P=\Phi^{-1} \circ \hat{P} \circ \Phi$ on $\boldsymbol{C} \backslash U$, and
- $\Phi(c)$ is an acyclic critical point of \hat{P} and not foliated orbit equivalent to any other critical point of \hat{P}.

Proof. Let Ω be the component of $F(P)$ containing c. By assumption, c is not a superattracting periodic point of P and Ω is not a Siegel disk of P. Thus there exists an analytic Jordan neighborhood U of c in Ω such that

- \bar{U} contains no critical point other than c,
- for all $n \in N, P^{n}(U) \cap U=\varnothing$, and
- $P \mid U$ is a proper map onto a Jordan domain V.

There exists a small neighborhood V_{0} of the critical value $P(c)$ such that for every $v \in V_{0}$, there exists a quasiregular extension $Q: U \rightarrow V$ of $P \mid \partial U: \partial U \rightarrow \partial V$ satisfying:

- $Q|\partial U=P| \partial U$,
- c is one and only one branch point of Q in U, which is simple, and
- $Q(c)=v$.

Let \hat{P} be a polynomial obtained by the same way as that in the proof of Lemma 2.1. We choose $v \in V_{0} \backslash\{P(c)\}$ so that for $\hat{P}, \Phi(c)$ is acyclic and not foliated orbit equivalent to any other critical point.

Remark. In constructing the quasiregular extensions Q of $P \mid \partial U$ appearing in the above proofs, we can use, for example, the following lemma:

Lemma $2.4([9])$. Let $\Sigma_{k}(k \geq 1)$ be the quotient of \boldsymbol{D}^{k} by the action of the symmetric group S_{k} and we put the set of normalized Blaschke products (or proper holomorphic maps of \boldsymbol{D} onto itself fixing 0,1) of degree $k+1$:

$$
\mathscr{B}_{k}:=\left\{z \prod_{j=1}^{k}\left(\frac{1-\bar{a}_{j}}{1-a_{j}}\right)\left(\frac{z-a_{j}}{1-\bar{a}_{j} z}\right) ;\left|a_{j}\right|<1 \text { for } 1 \leq j \leq k\right\} .
$$

The map $\Sigma_{k} \rightarrow \Sigma_{k}$ which maps the set of zeros of $B \in \mathscr{B}_{d}$ to the critical set of B is a homeomorphism.

Proof of Theorem 2.1. Let P be an n-hyperbolic polynomial. We recall that there exists $d-n-1$ critical points in $F(P)$.

The perturbations in the above Lemmas preserve the n-hyperbolicity. Thus by applying Lemma 2.1 and 2.2 to every critical point in $F(P)$ either periodic or with multiplicity $k \geq 2$ and using Lemma 2.3 for simple critical points in $F(P)$
finite times, we have a polynomial \hat{P} with the same degree as P, a quasiconformal automorphism Φ of \boldsymbol{C} and an open set $U \subset C$ which is relatively compact in $(F(P) \backslash($ Siegel disks of $P))$ such that

- $P=\Phi^{-1} \circ \hat{P} \circ \Phi$ on $C \backslash U$, and
- \hat{P} is n-hyperbolic and $N_{A C}(\hat{P})=d-n-1$.

Consequently, \hat{P} has desired properties.

3. Teichmüller spaces of polynomials.

Let P be a polynomial of degree $d \geq 2$ and have an irrationally indifferent fixed point z_{0} whose multiplier is λ. Then there exists an affine transformation A with $A\left(z_{0}\right)=0$ such that $A \circ P \circ A^{-1}=: P_{A}$ is a monic polynomial of degree d. If P is 1 -subhyperbolic and linearizable at z_{0}, P_{A} is also 1 -subhyperbolic and linearizable at the origin. Thus we assume that $P \in \mathscr{P}_{d}$ and $z_{0}=0$ without any loss of generality. Here for $d \geq 2$, we set

$$
\begin{aligned}
& \mathscr{P}_{d}:=\left\{P(z)=\lambda z+a_{2} z^{2}+\cdots+a_{d-1} z^{d-1}+z^{d}\right\} \cong \boldsymbol{C}^{d-2}, \quad \text { and } \\
& \tilde{\mathscr{P}}_{d}:=\left\{P(z)=\lambda z+a_{2} z^{2}+\cdots+a_{d-1} z^{d-1}+a_{d} z^{d}\left(a_{d} \neq 0\right)\right\} \cong \boldsymbol{C}^{d-2} \times \boldsymbol{C}^{*}
\end{aligned}
$$

We fix $P \in \mathscr{P}_{d}$ arbitrarily.
Definition. The deformation space of P rel the origin is

$$
\operatorname{Def}(\boldsymbol{C}, 0, P):=\left\{\phi \left\lvert\, \begin{array}{l}
\phi \text { is a quasiconformal automorphism of } \boldsymbol{C} \\
\text { fixing } 0 \text { and } \phi \circ P \circ \phi^{-1}=: P_{\phi} \text { is a polynomial. }
\end{array}\right.\right\} / \sim
$$

where $\phi_{1} \sim \phi_{2}$ if there exists an affine transformation $h_{c}(z):=c z$ such that $h_{c} \circ \phi_{1}=\phi_{2}$. The equivalence class of ϕ is also written by ϕ so long as the discussion is independent of the choice of representative.

We set $\mathscr{H}:=\left\{h_{c} ; c \in \boldsymbol{C}^{*}\right\}$. Since rotation numbers of holomorphic germs are topologically invariant, as we have stated in Introduction, we have $P_{\phi} \in \tilde{\mathscr{P}}_{d}$ for $\phi \in \operatorname{Def}(\boldsymbol{C}, 0, P)$.

By the Ahlfors-Bers measurable Riemann mapping theorem [1], the map from $\operatorname{Def}(\boldsymbol{C}, 0, P)$ to the set $M_{1}(\boldsymbol{C}, P)$ of P-invariant Beltrami differentials on \boldsymbol{C} :

$$
\operatorname{Def}(\boldsymbol{C}, 0, P) \ni \phi \mapsto \mu[\phi] \in M_{1}(\boldsymbol{C}, P)
$$

is bijective. Hence we identify $\operatorname{Def}(\boldsymbol{C}, 0, P)$ with $M_{1}(\boldsymbol{C}, P)$, which has a structure of a complex manifold.

Definition. The quasiconformal automorphism group of P rel the origin is

$$
\mathrm{QC}(\boldsymbol{C}, 0, P):=\left\{\omega \left\lvert\, \begin{array}{l}
\omega \text { is a quasiconformal automorphism of } \boldsymbol{C} \\
\text { fixing } 0 \text { and } P_{\omega}=P .
\end{array}\right.\right\}
$$

It acts on $\operatorname{Def}(\boldsymbol{C}, 0, P)$ by $\omega(\phi)=\phi \circ \omega^{-1}$.
We set a normal subgroup of it:
$\mathrm{QC}_{0}(\boldsymbol{C}, 0, P):=\left\{\begin{array}{l|l}\omega \in \mathrm{QC}(\boldsymbol{C}, 0, P) & \begin{array}{l}\text { There exists a uniformly quasiconformal } \\ \text { isotopy }\left\{\omega_{t} \in \mathrm{QC}(\boldsymbol{C}, 0, P) ; 0 \leq t \leq 1\right\} \\ \text { with } \omega_{0}=\omega \text { and } \omega_{1}=\mathrm{id}\end{array}\end{array}\right\}$.
Now we define the Teichmüller space, and state its structure theorem and the discreteness of its modular group. For the full account and proof, see [15].

Defintion. The Teichmüller space is

$$
\operatorname{Teich}(\boldsymbol{C}, P):=\operatorname{Def}(\boldsymbol{C}, 0, P) / \mathrm{QC}_{0}(\boldsymbol{C}, 0, P) .
$$

The equivalence class of ϕ is written by $[\phi]$.
In McMullen-Sullivan [15], we define the deformation space and so on without "rel the origin" and write them by $\operatorname{Def}(\boldsymbol{C}, P), \mathrm{QC}(\boldsymbol{C}, P)$ and $\mathrm{QC}_{0}(\boldsymbol{C}, P)$. By definition, we have

$$
\begin{gathered}
\operatorname{Def}(\boldsymbol{C}, 0, P) \cong \operatorname{Def}(\boldsymbol{C}, P)\left(\cong M_{1}(\boldsymbol{C}, P)\right) \text { and } \\
\mathrm{QC}_{0}(\boldsymbol{C}, 0, P)=\mathrm{QC}_{0}(\boldsymbol{C}, P),
\end{gathered}
$$

so this Teich (\boldsymbol{C}, P) agrees with the Teichmüller space of P defined by the usual way. In particular,

$$
\operatorname{Teich}(\boldsymbol{C}, P)=\operatorname{Def}(\boldsymbol{C}, 0, P) / \mathrm{QC}_{0}(\boldsymbol{C}, P) .
$$

Theorem 3.1 (The structure theorem [15]). Teich (\boldsymbol{C}, P) is a finite dimensional connected and simply connected complex manifold whose complex dimension is equal to

$$
N_{A C}+N_{L F}-N_{P},
$$

where

- $N_{A C}$ is the number of the foliated equivalence classes of acyclic critical points in $F(P)$,
- $N_{L F}$ is the number of invariant line fields on the Julia set of P, and
- N_{P} is the number of parabolic cycles.

Moreover, the canonical projection $\pi: \operatorname{Def}(\boldsymbol{C}, 0, P) \rightarrow \operatorname{Teich}(\boldsymbol{C}, P)$ is a holomorphic submersion.

In Teich (\boldsymbol{C}, P), the Teichmüller metric d is defined by

$$
d\left(\left[\phi_{1}\right],\left[\phi_{2}\right]\right):=\frac{1}{2} \inf \left\{\log \frac{1+\left\|\mu\left[\phi^{\prime} \circ \phi^{\prime \prime-1}\right]\right\|_{\infty}}{1-\left\|\mu\left[\phi^{\prime} \circ \phi^{\prime \prime-1}\right]\right\|_{\infty}} ; \phi^{\prime} \sim \phi_{1} \text { and } \phi^{\prime \prime} \sim \phi_{2}\right\} .
$$

Theorem 3.2 (Discreteness of modular group [15]). The modular group rel the origin $\operatorname{Mod}(\boldsymbol{C}, 0, P):=\mathrm{QC}(\boldsymbol{C}, 0, P) / \mathrm{QC}_{0}(\boldsymbol{C}, P)$, which is a subgroup of the Teichmüller modular group $\operatorname{Mod}(\boldsymbol{C}, P):=\mathrm{QC}(\boldsymbol{C}, P) / \mathrm{QC}_{0}(\boldsymbol{C}, P)$, acts on (Teich $(\boldsymbol{C}, P), d)$ isometrically, biholomorphically and properly discontinuously.

We put $\mathscr{M}:=\tilde{\mathscr{P}}_{d} /(\mathscr{H}$-conjugation $)$. By Theorem 3.2, we have:
Theorem 3.3 (Uniformization in the parameter space). The map

$$
\eta: \operatorname{Teich}(\boldsymbol{C}, P) \ni[\phi] \mapsto\left[P_{\phi}\right] \in \mathscr{M},
$$

is holomorphic, and every fiber $\eta^{-1}\left(\left[P_{\phi}\right]\right)$ is discrete for $\left[P_{\phi}\right] \in \eta(\operatorname{Teich}(\boldsymbol{C}, P))$. Here $[P] \in \mathscr{M}$ is the equivalence class of $P \in \tilde{\mathscr{P}}_{d}$.

Proof. $\operatorname{Mod}(\boldsymbol{C}, 0, P)$ is a covering transformation group of $\eta: \operatorname{Teich}(\boldsymbol{C}, P)$ $\rightarrow \eta(\operatorname{Teich}(\boldsymbol{C}, P))$ and its action on Teich (\boldsymbol{C}, P) is properly discontinuous.

In the rest of this section, we prepare a lemma needed later. Let p : $\tilde{\mathscr{P}}_{d} \rightarrow \mathscr{M}$ be the canonical projection.

Lemma 3.1. If $P(z)=\lambda z+a_{2} z^{2}+\cdots+a_{d-1} z^{d-1}+z^{d} \in \mathscr{P}_{d}(d \geq 3)$ satisfies that:
(*) for any $c \in C \backslash\{1\}$ with $c^{d-1}=1$, there exists $j \in\{2,3, \ldots, d-1\}$ such that $a_{j} \neq 0$ and $c^{j-1} \neq 1$,
then there exists a local holomorphic section s of p from a neighborhood of $[P]$ into \mathscr{P}_{d} which maps $[P]$ to P.

Proof. We fix $P \in \mathscr{P}_{d}$ satisfying (*). We write the j-th coefficient of $P_{1} \in \mathscr{P}_{d}$ as $a_{j}\left(P_{1}\right)(j=2,3, \ldots, d-1)$. For each $c \in \boldsymbol{C} \backslash\{1\}$ with $c^{d-1}=1$, we fix such $j=j_{c} \in\{2,3, \ldots, d-1\}$ that $a_{j}(P) \neq 0$ and $c^{j-1} \neq 1$ and choose such a neighborhood V_{j} of $a_{j}(P)$ in C^{*} that $V_{j} \cap\left(c^{j-1} \cdot V_{j}\right)=\varnothing$.

For $c \in \boldsymbol{C} \backslash\{1\}$ with $c^{d-1}=1$, we set $V(c):=\left\{P_{1} \in \mathscr{P}_{d} ; a_{j_{c}}\left(P_{1}\right) \in V_{j_{c}}\right\} \subset \mathscr{P}_{d}$ and set $V:=\bigcap_{c^{d-1}=1, c \neq 1} V(c)$. If two distinct elements P_{1} and P_{2} of V satisfy $p\left(P_{1}\right)=p\left(P_{2}\right)$, or equivalently $P_{1}(z)=P_{2}(c z) / c$ for some $c \in \boldsymbol{C} \backslash\{0,1\}$, then this c satisfies that $c^{d-1}=1$ and $a_{j}\left(P_{1}\right)=a_{j}\left(P_{2}\right) c^{j-1}$ for all $j=2, \ldots, d-2$. Thus we have $a_{j_{c}}\left(P_{2}\right) c^{j_{c}-1} \in\left(c^{j_{c}-1} \cdot V_{j_{c}}\right) \cap V_{j_{c}}$ but it contradicts the definition of $V_{j_{c}}$. Therefore p is injective on V. We choose $s:=(p \mid V)^{-1}$.

4. Proof of Theorem 1 in 1-hyperbolic case.

Lemma 4.1. If a 1-hyperbolic polynomial $P \in \mathscr{P}_{d}(d \geq 2)$ satisfies $N_{A C}=$ $d-2$, then we have $\operatorname{dim} \operatorname{Teich}(\boldsymbol{C}, P)=\operatorname{dim} \mathscr{M}=d-2$.

Proof. Since no critical point in $F(P)$ accumulates to $J(P), P$ has no parabolic periodic point. Thus we have $N_{P}=0$ and $\operatorname{dim} \operatorname{Teich}(\boldsymbol{C}, P)=N_{I L}+d-2$.

By Theorem 3.3, we have $\operatorname{dim} \operatorname{Teich}(\boldsymbol{C}, P) \leq \operatorname{dim} \mathscr{M}=d-2$. Therefore we have $\operatorname{dim} \operatorname{Teich}(\boldsymbol{C}, P)=d-2$ and $N_{I L}=0$.

Lemma 4.2. If $P \in \mathscr{P}_{d}(d \geq 3)$ satisfies the condition $(*)$ and $\operatorname{dim} \operatorname{Teich}(\boldsymbol{C}, P)$ $=d-2$, then P is quasiconformally stable in \mathscr{P}_{d}, i.e., there exists a neighborhood $U \subset \mathscr{P}_{d}$ of P such that every element of U is quasiconformally conjugate to P.

Proof. By Lemma 3.1, we have a local section s of p from a neighborhood $V \subset \mathscr{M}$ of $[P]$ into \mathscr{P}_{d} which maps $[P]$ to P. From $\operatorname{dim} \operatorname{Teich}(\boldsymbol{C}, P)=\operatorname{dim} \mathscr{M}$, it follows that $\eta(\operatorname{Teich}(\boldsymbol{C}, P))$ is an open neighborhood of $[P]$. We set $U:=$ $s(\eta($ Teich $(\boldsymbol{C}, P)) \cap V)$. It is an open neighborhood of P in \mathscr{P}_{d}, and every element of U is quasiconformally conjugate to P by definition of the Teichmüller space.

Lemma 4.3. $\quad P \in \mathscr{P}_{d}(d \geq 3)$ not satisfying $(*)$ is not 1-hyperbolic.
Proof. From the assumption, it follows that $P(c z) / c=P(z)$ for some $c \in$ $C \backslash\{0,1\}$, and so $P^{\prime}(c z)=P^{\prime}(z)$. Thus if z_{0} is a critical point of P, then z_{0} / c $\left(\neq z_{0}\right)$ is another one. Furthermore, if z_{0} is contained in $J(P)$, then z_{0} / c is also so.

Suppose that P is 1-hyperbolic. Then P has one and only one critical point in $J(P)$. It is a contradiction.

Combining the above lemmas and Theorem 4.1, we prove Theorem 1 in the case where $N_{A C}=d-2$.

Theorem 4.1 ([20], Théorème IV.2.1). If a quasiconformally stable element of $\mathscr{P}_{d}(d \geq 2)$ is linearizable at the origin, then the rotation number α satisfies the Brjuno condition.

For readers' convenience, we give a proof of Theorem 4.1 a little simpler than Pérez-Marco's original one. In this proof, we only use the J-stability of quasiconformally stable elements of \mathscr{P}_{d}.

Proof. In the case $d=2$, it trivially follows from the Yoccoz theorem. We set $d \geq 3$. We fix a quasiconformally stable element $P \in \mathscr{P}_{d}$. Then Julia set depends continuously at P in the Hausdorff topology (cf. [13]).

We assume that P is linearizable at the origin. Then $0 \notin J(P)$. By the continuity of Julia sets, we choose $r>0$ and a neighborhood V of P in \mathscr{P}_{d} so that every element of V has a Siegel disk at the origin including \boldsymbol{D}_{r}. Thus there exists $B>0$ such that $P[b](z):=P(z)+z^{2} / b \in V$ for $|b|>B$. We put, for $b \in \boldsymbol{C}$,

$$
Q_{b}(z):=\frac{1}{b} P[b](b z)=\lambda z+z^{2}+O\left(b z^{2}\right) \quad \text { as } z \rightarrow 0 \quad\left(Q_{0}(z)=\lambda z+z^{2}\right)
$$

Figure 1. The Reinhardt domain where H is holomorphic.
Any element of $\left\{Q_{b} ; B<|b|<2 B\right\}$ has a Siegel disk at the origin which includes $\boldsymbol{D}_{r_{1}}\left(r_{1}:=r / 2 B\right)$.

Suppose that $J\left(Q_{0}\right)$ intersects $\boldsymbol{D}_{r_{1} 1}$. Then there exists $z_{1} \in \boldsymbol{D}_{r_{1}}^{*}$ and $q>0$ such that $Q_{0}^{q}\left(z_{1}\right)=z_{1}$ since $J\left(Q_{0}\right)$ is the closure of the set of all repelling periodic points of Q_{0}. We set:

$$
H(b, z):=\frac{z}{Q_{b}^{q}(z)-z} \quad\left(b \in \boldsymbol{D}_{2 B}, z \in \boldsymbol{D}_{r_{1}}\right),
$$

which meromorphically depends on each variables and is uniformly continuous on $\left(\overline{\boldsymbol{D}_{2 B}} \times \overline{\boldsymbol{D}_{r_{1}}}\right) \backslash($ a small neighborhood of poles).

Since $\boldsymbol{D}_{r_{1}}$ is included in the Siegel disk of Q_{b} at 0 for $B<|b|<2 B, Q_{b}$ has no periodic point in $\boldsymbol{D}_{r_{1}}$ for $B<|b|<2 B$. Thus $H(b, z)$ is holomorphic on $\{b ; B<|b|<2 B\} \times \boldsymbol{D}_{r_{1}}$. On the other hand, since $H(b, 0)=1 /\left(\lambda^{q}-1\right)$ is a bounded constant for every $b \in \overline{\boldsymbol{D}_{2 B}}$, there exists $0<r_{2}<r_{1}$ such that $H(b, z)$ is also holomorphic on $\boldsymbol{D}_{2 B} \times \boldsymbol{D}_{r_{2}}$. See Figure 1 .

By the Hartogs continuation theorem, $H(b, z)$ is actually holomorphic on $\boldsymbol{D}_{2 B} \times \boldsymbol{D}_{r_{1}}$. It contradicts the assumption $Q_{0}^{q}\left(z_{1}\right)=z_{1}$ and $z_{1} \in \boldsymbol{D}_{r_{1}}^{*}$.

Thus $Q_{0}(z)=\lambda z+z^{2}$ also has the Siegel disk at 0 including $\boldsymbol{D}_{r_{1}}$. From the Yoccoz theorem, it follows that α satisfies the Brjuno condition.

Let us complete the proof of Theorem 1 in 1-hyperbolic case.
Let P be a 1-hyperbolic polynomial of degree $d \geq 2$ and have an irrationally indifferent fixed point z_{0} whose multiplier is λ.

Suppose that P is linearizable at z_{0}. Let \hat{P} be the polynomial in Theorem 2.1 derived from P. By considering an affine conjugation of \hat{P}, we assume that $\hat{P} \in \mathscr{P}_{d}$ and \hat{P} is linearizable at the origin. By applying Lemma 4.1-4.3 and Theorem 4.1 to \hat{P}, we conclude that α satisfies the Brjuno condition since $N_{A C}(\hat{P})=d-2$.

5. Renormalization of polynomials.

Throughout this section, we will assume the following.
Standing Hypothesis. $\quad P$ is a monic polynomial of degree $d \geq 2$ and its filled-in Julia set $K(P)$ is connected.

Then there exists the unique conformal map $\phi: \boldsymbol{C} \backslash \overline{\boldsymbol{D}} \rightarrow \boldsymbol{C} \backslash K(P)$ such that $\phi(z) / z \rightarrow 1$ as $z \rightarrow \infty$. We have $\phi\left(z^{d}\right)=P(\phi(z))$ for $z \in \boldsymbol{C} \backslash \overline{\boldsymbol{D}}$, and set $G:=\log \left|\phi^{-1}\right|$ which is a Green function of $C \backslash K(P)$ with the pole ∞.

For an angle $t \in \boldsymbol{R}$, an external ray R_{t} is defined by

$$
R_{t}:=\{\phi(\exp (r+2 \pi i t)) ; 0<r<\infty\} \subset \boldsymbol{C} .
$$

An external ray R_{t} lands at a point $x \in \partial K(P)=J(P)$ if

$$
\lim _{r \rightarrow+0} \phi(\exp (r+2 \pi i t))=x
$$

We call x the landing point of R_{t} and t an external angle at x.
For any external ray R_{t}, its image $P\left(R_{t}\right)=R_{d t}$ is again an external ray. An external ray is periodic if $P^{n}\left(R_{t}\right)=R_{t}$, or equivalently $d^{n} t \equiv t \bmod \boldsymbol{Z}$ for some $n \in N$. Such n is the period of R_{t} and the least such n is the fundamental period.

The following result is assembled from contributions of Douady, Hubbard, Sullivan and Yoccoz. For the proof, see, for example, [16].

LANDING THEOREM. Every periodic external ray lands on a repelling or parabolic periodic point of P. Conversely, let x be a repelling or parabolic periodic point of P. Then x is a landing point, and every ray landing at x is periodic with the same fundamental period.

An external ray is preperiodic if $P^{k}\left(R_{t}\right)$ is periodic for some $k \in N$. Any external ray with rational angle is preperiodic. An external ray R_{t} lands at a point x if and only if $P\left(R_{t}\right)=R_{d t}$ lands at $P(x)$. By these facts, we have:

Corollary 5.1. Every external ray with rational angle lands on such a point as is eventually mapped to either repelling or parabolic periodic point by P.

For $n \in \boldsymbol{N}$ and $k \in \boldsymbol{N} \cup\{0\}$, the regular (n, k)-partition $\mathscr{R}_{n}^{(k)}$ is defined by

$$
\mathscr{R}_{n}^{(k)}=\bigcup_{t=0}^{d^{k}\left(d^{n}-1\right)-1} \bar{R}_{t /\left(d^{k}\left(d^{n}-1\right)\right)} .
$$

Definition (Strong separation). Let \mathscr{C} be a closed subset of $\boldsymbol{C} \backslash$ int $K(P)$. Then $\boldsymbol{C} \backslash \mathscr{C}$ is a strong separation (of $(P, K(P))$) if
(i) $P(\mathscr{C}) \subset \mathscr{C}$,
(ii) Each component of $\boldsymbol{C} \backslash \mathscr{C}$ contains at most one cyclic Fatou component or Cremer periodic point,
(iii) Each component of $\boldsymbol{C} \backslash \mathscr{C}$ contains no preperiodic critical point eventually mapped to a repelling or parabolic periodic point,
(iv) Let C be a cyclic Fatou component or Cremer periodic point and c be a critical point. If C and c are contained in a same component of $\boldsymbol{C} \backslash \mathscr{C}$, then for every $n \in \boldsymbol{N}, P^{n}(C)$ and $P^{n}(c)$ are also contained in a same component of $C \backslash \mathscr{C}$, and
(v) Let p be the period of the above C and U_{i} be the component of $C \backslash \mathscr{C}$ containing $P^{i}(C)$ for $i=1,2, \ldots, p$. Then the union $\bigcup_{i=1}^{p} U_{i}$ contains at least one critical point.
Let $n_{0}(P)<+\infty$ be the least common multiple of periods of:

- cyclic Fatou components,
- Cremer points, and
- repelling periodic points to which critical points are eventually mapped.

Lemma 5.1 (Kiwi-Geyer). Suppose that $n=n_{0}(P)$. There exists a positive integer \mathscr{K} such that for every $k \geq \mathscr{K}, \mathscr{R}_{n}^{(k)}$ gives a strong separation.

We fix such a \mathscr{K} as in Lemma 5.1. An integer k is said to be admissible if $k \geq \mathscr{K}$.

Proof. We follow Kiwi's argument in [10] and Geyer's one in [7].
Let \mathscr{S} be the set of all cyclic Fatou components of P and Cremer periodic points of P. We note that $\mathscr{R}_{n}^{(0)}$ is the union of the closures of the fixed rays of P^{n}, and that all elements of \mathscr{S} are P^{n}-invariant. Therefore from GoldbergMilnor theorem ([8], Theorem 3.3), it follows that every component of $\boldsymbol{C} \backslash \mathscr{R}_{n}^{(0)}$ contains at most one element of \mathscr{S}.

Let $U_{k}(z)$ be the component of $\boldsymbol{C} \backslash \mathscr{R}_{n}^{(k)}$ containing $z\left(k \in \boldsymbol{N} \cup\{0\}, z \in \boldsymbol{C} \backslash \mathscr{R}_{n}^{(k)}\right)$. Since $P\left(\mathscr{R}_{n}^{(0)}\right)=\mathscr{R}_{n}^{(0)}$ and $\mathscr{R}_{n}^{(k)}=P^{-k}\left(\mathscr{R}_{n}^{(0)}\right)$, we have: for $k \in N \cup\{0\}$,
(a) $\mathscr{R}_{n}^{(k)} \subset \mathscr{R}_{n}^{(k+1)}$,
(b) $\quad P\left(\mathscr{R}_{n}^{(k)}\right) \subset \mathscr{R}_{n}^{(k)}$,
(c) $U_{k+1}(z) \subset U_{k}(z)\left(z \in \boldsymbol{C} \backslash \mathscr{R}_{n}^{(k+1)}\right)$, and
(d) $P^{i}\left(U_{k+i}(z)\right)=U_{k}\left(P^{i}(z)\right)\left(i \in N \cup\{0\}, z \in \boldsymbol{C} \backslash \mathscr{R}_{n}^{(k+i)}\right)$.

Claim. For a critical point c and an element of $C \in \mathscr{S}$, there exists $k(c, C) \in$ $N \cup\{0\}$ such that for every $l \geq k(c, C)$,
(*) $\quad U_{l}(c)=U_{l}(C) \Rightarrow U_{l}\left(P^{i}(c)\right)=U_{l}\left(P^{i}(C)\right)(i \in N)$.
Proof. If $\left({ }^{*}\right)$ holds for every $l \geq 0$, then we set $k(c, C)=0$.
Suppose that for some $l_{0} \geq 0,\left(^{*}\right)$ does not hold. Then there exists $i \geq 1$ such that $U_{l_{0}}\left(P^{i}(c)\right) \neq U_{l_{0}}\left(P^{i}(C)\right)$, so we have $U_{l_{0}+i}(c) \neq U_{l_{0}+i}(C)$ by (d). Thus for every $l \geq l_{0}+i$, we have $U_{l}(c) \neq U_{l}(C)$ by (c), and set $k(c, C)=l_{0}+i$. Then (*) trivially holds for every $l \geq k(c, C)$.

We take a critical point c arbitrarily. If c satisfies that $P^{k}(c)$ is a repelling or parabolic periodic point for some $k \in N$, we write the least such k by $k(c)$. Otherwise, we put $k(c)=0$.

We set

$$
\mathscr{K}:=\max \{k(c), k(c, C) ; C \in \mathscr{S} \text { and } c \text { is a critical point. }\}<+\infty .
$$

For $k \geq \mathscr{K}, \mathscr{R}_{n}^{(k)}$ satisfies (i) and (ii) by (b) and (a) respectively, and (iv) by Claim. By definition of $n=n_{0}, \mathscr{R}_{n}^{(0)}$ contains every repelling or parabolic periodic point to which a critical point is eventually mapped. Thus by definition of $\mathscr{K}, \mathscr{R}_{n}^{(k)}$ satisfies (iii) for $k \geq \mathscr{K}$.

We fix $C \in \mathscr{S}$ and $k \geq \mathscr{K}$ arbitrarily. If C is neither Siegel disk nor Cremer point, then (v) follows from the well-known facts.

Suppose that C is a Siegel disk or Cremer point. Let p be the period of it and z_{0} be the Siegel point in C if C is a Siegel disk, and C itself otherwise. If $\bigcup_{i=0}^{p-1} U_{k}\left(P^{i}(C)\right)$ contains no critical point, $P^{p} \mid U_{k+p}(C): U_{k+p}(C) \rightarrow U_{k}(C)$ is a conformal isomorphism between simply connected domains fixing z_{0}. Since $U_{k+p}(C) \subset U_{k}(C)$ and $\left|\left(P^{p}\right)^{\prime}\left(z_{0}\right)\right|=1$, it follows that $U_{k+p}(C)=U_{k}(C)$. However it contradicts $U_{k}(C) \not \subset K(P)$.

Consequently, (v) holds in every case.
For an angle $t \in \boldsymbol{R}$ and an opening $\Theta \geq 0$, an external sector $S_{t, \Theta}$ is defined by

$$
S_{t, \Theta}:=\{\phi(\exp (r+2 \pi i(t+\theta r))) ; 0<r<\infty,|\theta| \leq \Theta\} \subset \boldsymbol{C}
$$

Let E be a bounded subset of C. Then we call $l(E):=\max _{z \in \partial E} G(z)$ the level of E, and call a point $z_{0} \in \partial E$ with $G\left(z_{0}\right)=l(E)$ a top of E.

It is easy to check the following (see Figure 2):

- $l\left(\boldsymbol{C} \backslash S_{t, \Theta}\right)=1 /(2 \Theta)$ and the top of $\boldsymbol{C} \backslash S_{t, \Theta}$ is $\phi(-\exp (1 /(2 \Theta)+2 \pi i t))$,
- $\overline{S_{t, \Theta}} \backslash S_{t, \Theta}=\overline{R_{t}} \backslash R_{t}$. In particular, for a rational angle, $\overline{S_{t, \Theta}} \backslash S_{t, \Theta}$ agrees with the landing point of R_{t}. It is called the landing point of $S_{t, \Theta}$, and
- $P\left(S_{t, \Theta}\right)=S_{d t, \Theta}$.

Figure 2. External sector $S_{t, \Theta}$ (t : rational)

An external sector $S_{t, \Theta}$ is periodic if $d^{n} t \equiv t \bmod \boldsymbol{Z}$ for some $n \in \boldsymbol{N}$. Such n is the period of it and the least such n is the fundamental period.

For $n \in \boldsymbol{N}$ and $k \in \boldsymbol{N} \cup\{0\}$, the regular wedge (n, k)-partition $\mathscr{S}_{n}^{(k)}(\Theta)$ is defined by

$$
\mathscr{S}_{n}^{(k)}(\boldsymbol{\Theta})=\bigcup_{t=0}^{d^{k}\left(d^{n}-1\right)-1} \bar{S}_{t /\left(d^{k}\left(d^{n}-1\right)\right), \Theta}
$$

Definition. A component of $\boldsymbol{C} \backslash \mathscr{S}_{n}^{(k)}(\Theta)$ is called a puzzle piece of $\mathscr{S}_{n}^{(k)}(\Theta)$.
It is easy to check the following:

- $\quad P\left(\mathscr{L}_{n}^{(k)}(\Theta)\right) \subset \mathscr{S}_{n}^{(k)}(\Theta)$, and
- Let V be a puzzle piece of $\mathscr{S}_{n}^{(k)}(\Theta)$. Then $P^{-1}(V)$ is a finite union $\left\{U_{i}\right\}_{i=1}^{m}$ of puzzle pieces of $\mathscr{S}_{n}^{(k+1)}(\Theta)$ and $P \mid U_{i}: U_{i} \rightarrow V$ is proper for $i=1, \ldots, m$.

Definition. Let U be a puzzle piece. A point $x \in \partial U$ is a vertex of U if $x \in J(P)$ or ∂U is not analytic at x. Such x is said landing if $x \in J(P)$, and said crossing otherwise. Each component of $\partial U \backslash\{$ vertices $\}$ is called an edge of U.

For an angle $t \in \boldsymbol{R}$ and a curvature $\theta \in \boldsymbol{R}$, an external θ-logarithmic spiral $R_{t, \theta}$ is defined by

$$
R_{t, \theta}:=\{\phi(\exp (r+2 \pi i(t+\theta r))) ; 0<r<+\infty\} \subset \boldsymbol{C}
$$

It follows that $P\left(R_{t, \theta}\right)=R_{d t, \theta}$.
By construction of $\mathscr{S}_{n}^{(k)}(\Theta)$, we have (see Figure 3):
Lemma 5.2 (Structure of puzzle pieces). Let U be a puzzle piece of $\mathscr{S}_{n}^{(k)}(\Theta)$ $(\Theta>0)$. Then
(i) U is simply connected or equivalently, $\boldsymbol{C} \backslash U$ is connected,
(ii) $\sharp\{$ crossing vertices $\}=\sharp\{$ landing vertices $\} \geq 1$,
(iii) U has an angle $2 \arctan (2 \pi \Theta) \in(0, \pi)$ at each crossing vertex,

Figure 3. A puzzle piece U of a regular wedge (n, k)-partition $\mathscr{S}_{n}^{(k)}(\Theta)$
(iv) $l(U)=1 /\left(2 \Theta d^{k}\left(d^{n}-1\right)\right)$, and a point on ∂U is a top of U if and only if it is a crossing vertex of U, and
(v) every edge of U is a subarc of an external θ-logarithmic spiral $(\theta=\Theta$ or $-\Theta)$ between a landing vertex and a crossing vertex.

We also have:
Lemma 5.3 (Separation is independent of its opening.). Let U be a puzzle piece of $\mathscr{I}_{n}^{(k)}(\Theta)$ and U^{\prime} that of $\mathscr{I}_{n}^{(k)}\left(\Theta^{\prime}\right)$. If $0 \leq \Theta<\Theta^{\prime}$, then one and only one of the following holds:

- $U \cap U^{\prime}=\varnothing$, and
- $U^{\prime} \subsetneq U$ and $U \cap K(P)=U^{\prime} \cap K(P)$.

Corollary 5.2. Suppose that $n=n_{0}(P)$. If k is admissible, then for all $\Theta \geq 0, \mathscr{S}_{n}^{(k)}(\Theta)$ gives a strong separation.

From now on, we always assume that $n=n_{0}(P)$. This regular wedge partition induces a weak renormalization around each periodic point which is neither repelling nor parabolic:

Definition. Let x be a periodic point of P which is neither repelling nor parabolic and p the period of x. Suppose that k is admissible and $\Theta>0$. Then $\left(P^{p} \mid U, U, V\right)$ is a weak renormalization around x (induced by $\left.\mathscr{S}_{n}^{(k)}(\Theta)\right)$ if U is the puzzle piece of $\mathscr{S}_{n}^{(k+p)}(\Theta)$ containing x and if V is that of $\mathscr{S}_{n}^{(k)}(\Theta)$ containing x.

Proposition 5.1. A weak renormalization $\left(P^{p} \mid U, U, V\right)$ around x satisfies:
(i) x is the only non-repelling periodic point in U,
(ii) U contains no preperiodic critical point eventually mapped to a repelling or parabolic cycle,
(iii) $U \subset V$ and $P^{p} \mid U: U \rightarrow V$ is proper, and
(iv) The degree of $P^{p} \mid U$ is more than one.

Proof. Suppose that this weak renormalization is induced by $\mathscr{S}_{n}^{(k)}(\Theta)$. Noting that $\mathscr{S}_{n}^{(k+p)}(\Theta)$ also gives a strong separation, we have easily (i), (ii) and (iv). Since $\mathscr{L}_{n}^{(k+p)}(\Theta)=P^{-p}\left(\mathscr{S}_{n}^{(k)}(\Theta)\right)$, we have (iii).

A weak renormalization $\left(P^{p} \mid U, U, V\right)$ around x is renormalizable if it is topologically conjugate to a polynomial on \bar{U}. If $U \Subset V$, then $\left(P^{p} \mid U, U, V\right)$ is renormalizable (cf. [6]). In general, we have:

Theorem 5.1 (Strong renormalization). Let $\left(P^{p} \mid U, U, V\right)$ be a weak renormalization around x. If every landing vertex of V is eventually mapped to a repelling periodic point, then it is strongly renormalizable:

There exists a polynomial P_{0} without preperiodic critical point eventually mapped to a repelling or parabolic cycle in $J\left(P_{0}\right)$ such that $\left(P^{p} \mid U, U, V\right)$ is hybrid
quasiconformally conjugate to P_{0}, i.e., there exists a quasiconformal automorphism Φ of \boldsymbol{C} satisfying:

- $P^{p}=\Phi^{-1} \circ P_{0} \circ \Phi$ on \bar{U},
- $\mu[\Phi] \equiv 0$ on the filled-in Julia set of $\left(P^{p} \mid U, U, V\right)$, which is defined by $K\left(P^{p} \mid U, U, V\right):=\bigcap_{n \in N}\left(P^{p}\right)^{-n}(\bar{U})$, and
- $\Phi\left(K\left(P^{p} \mid U, U, V\right)\right)=K\left(P_{0}\right)$.

Therefore P_{0} has the unique non-repelling periodic point $\Phi(x)$ (thus it is a fixed point of P_{0}).
P_{0} is called a strong renormalization of $\left(P^{p} \mid U, U, V\right)$.
L. Geyer pointed out this theorem in his thesis [7], but at present, it has not been published and his proof seems to have several gaps. For readers' convenience, we will give a proof.

Proof of Theorem 5.1. We prove the following lemma to consider the quasiconformal opening of P^{p} near landing points which are critical points of P^{p} later.

Lemma 5.4. Let U be a puzzle piece of $\mathscr{S}_{n}^{(k)}(\Theta)(\Theta>0)$. If every landing vertex of U is eventually mapped to a repelling periodic point, then U is a quasidisk.

Proof. We put $L:=\left\{t_{j}:=\exp \left(2 \pi i \cdot j /\left(d^{k}\left(d^{n}-1\right)\right)\right) ; j=0,1, \ldots, d^{k}\left(d^{n}-1\right)\right.$ $-1\}$. Let ψ be a continuous function on $W:=\phi^{-1}\left(\partial \mathscr{S}_{n}^{(k)}(\Theta) \backslash\{\right.$ landing points \}) $\cup L \cong S^{1}$:

$$
\psi(x):= \begin{cases}\phi(x) & \text { if } x \in W \backslash L \\ \text { landing point of } R_{\arg t_{j} / 2 \pi} & \text { if } x=t_{j} \in L\end{cases}
$$

Since ψ induces a continuous and injective map from S^{1} onto $\partial U, \partial U$ is a Jordan curve.

Let $\left\{v_{i}\right\}_{i=1}^{n}$ be the set of all landing vertices of U. By Lemma 5.2 (ii), we have $n \geq 1$.

For $\{x, y\} \subset \partial U, C(\{x, y\})$ is the component of $\partial U \backslash\{x, y\}$ with smaller diameter. We put $\tilde{C}(\{x, y\}):=\partial U \backslash \overline{C(\{x, y\})}$.

A set $\left\{\gamma_{i}\right\}_{i=1}^{n}$ of open subarcs of ∂U is admissible if

- $\gamma_{i} \cap\left\{v_{i}\right\}_{i=1}^{n}=v_{i}$ and $\operatorname{diam} \gamma_{i}<\operatorname{diam}\left(\partial U \backslash \gamma_{i}\right)$ for $i=1, \ldots, n$, and
- all elements of $\left\{\gamma_{i}\right\}_{i=1}^{n}$ are mutually disjoint.

For an admissible $\left\{\gamma_{i}\right\}_{i=1}^{n}$, it follows that $C(\{x, y\}) \subset \gamma_{i}$ for every $\{x, y\} \subset \gamma_{i}$.
Since ∂U is Jordan and $\partial U \backslash\left\{v_{i}\right\}_{i=1}^{n}$ is a finite union of quasiarcs (piecewise analytic arcs without cusp), it follows that:

Lemma 5.5. If there exists an admissible $\left\{\gamma_{i}\right\}_{i=1}^{n}$ and a positive constant $M>0$ such that

$$
\operatorname{diam} C(\{x, y\}) \leq M|x-y|
$$

for every $\{x, y\} \subset \gamma_{i}$ for some $i \in\{1, \ldots, n\}$, then ∂U is a quasicircle.

Proof. For each $\delta>0$, there exists $M_{1}, M_{2}>0$ such that
(a.1) if $|x-y| \geq \delta$, then $\operatorname{diam} \tilde{C}(\{x, y\}) \leq M_{1}|x-y|$, and
(a.2) if either C or \tilde{C} is disjoint from $\left\{v_{i}\right\}_{i=1}^{n}$, then $\operatorname{diam} C(\{x, y\}) \leq$ $M_{2}|x-y|$.
For a moment, we only consider such an $\{x, y\} \subset \partial U$ that $C(\{x, y\}) \cap\left\{v_{i}\right\}_{i=1}^{n} \neq$ \varnothing but $C(\{x, y\}) \not \subset \gamma_{i}$ for all $i=1, \ldots, n$. Such $\{x, y\}$ belongs to either A_{1} or A_{2}, where

$$
A_{1}:=\left\{\{x, y\} ; \tilde{C} \cap\left\{v_{i}\right\}_{i=1}^{n} \neq \varnothing\right\},
$$

and

$$
A_{2}:=\left\{\{x, y\} ; \tilde{C} \cap\left\{v_{i}\right\}_{i=1}^{n}=\varnothing\right\} .
$$

If $A_{1} \neq \varnothing$, we put $\delta_{1}:=\inf \left\{|x-y| ;\{x, y\} \in A_{1}\right\}>0$ and set $\delta=\delta_{1}$. Otherwise we fix $\delta>0$ arbitrarily. From (a.1) and (a.2), it follows that

$$
\operatorname{diam} C(\{x, y\}) \leq \begin{cases}M_{1}|x-y| & \text { if }\{x, y\} \in A_{1} \\ M_{2}|x-y| & \text { if }\{x, y\} \in A_{2}\end{cases}
$$

for such an $\{x, y\} \subset \partial U$ that $C(\{x, y\}) \cap\left\{v_{i}\right\}_{i=1}^{n} \neq \varnothing$ but $C(\{x, y\}) \not \subset \gamma_{i}$ for all $i=1, \ldots, n$. Therefore under the assumption, we have

$$
\operatorname{diam} C(\{x, y\}) \leq \max \left\{M_{1}, M_{2}, M\right\}|x-y|
$$

for every $\{x, y\} \subset \partial U$. Thus ∂U is a quasicircle (cf. [22] or [11]).
We will find below an admissible $\left\{\gamma_{i}\right\}_{i=1}^{n}$ satisfying the assumption of Lemma 5.5.

Case 1. Let v_{i} be a landing vertex of U and a repelling periodic point of P. Without any loss of generality, we assume that every external ray landing at v_{i} is fixed by P. We write $v=v_{i}$ and put $\rho:=P^{\prime}(v) \in \boldsymbol{C} \backslash \overline{\boldsymbol{D}}$.

We choose a linearizing chart (D, h) at v, i.e., $h: D \rightarrow \boldsymbol{D}$ is conformal, $h(v)=0$ and $h(P(z))=\rho h(z)(z \in D)$, such that v is the only vertex contained in \bar{D}.

Since D is a linearizing coordinate neighborhood of v, we have:
$\left(^{*}\right)$ for any $k \in N$, a branch of P^{-k} fixing v is defined and univalent on D and $\left(P^{-k}\right)^{\prime}(v)=\rho^{-k}$.
We write this branch as P^{-k} in below since we focus on a local dynamics of P around v.

Choose $r>0$ so that $\boldsymbol{D}(v, 3 r) \subset D$. Let $\gamma^{(0)}$ be a component of $\partial U \cap \boldsymbol{D}(v, r)$ containing v and put $\gamma^{(k)}:=P^{-k}\left(\gamma^{(0)}\right)$ for $k \in N$. By taking $r>0$ small enough, we assume that $\operatorname{diam} \gamma^{(0)}<\operatorname{diam}\left(\partial U \backslash \gamma^{(0)}\right)$.

Proposition 5.2. For any $k \in N, \gamma^{(k)}$ is an open subarc of ∂U containing v, and $\gamma^{(k)} \subsetneq \gamma^{(k-1)}$. Moreover, $\operatorname{diam} \gamma^{(k)} \rightarrow 0$ as $k \rightarrow \infty$.

Proof. $\gamma^{(0)}$ is the union of v and two subarcs of external $\pm \Theta$-logarithmic spirals landing at v. By assumption, these spirals are also fixed by P. On the other hand, we have $h\left(\gamma^{(k)}\right)=\rho^{-k} \cdot h\left(\gamma^{(0)}\right)(k \in \boldsymbol{N})$. Combining P^{-1}-invariance and P^{-1}-contractiveness of $\gamma^{(0)}$, we have $\gamma^{(k)} \subsetneq \gamma^{(k-1)}$.

Since $\operatorname{diam} h\left(\gamma^{(k)}\right) \rightarrow 0$ as $k \rightarrow \infty$, we have $\operatorname{diam} \gamma^{(k)} \rightarrow 0$ as $k \rightarrow \infty$.
Now we fix an $\{x, y\} \subset \gamma^{(1)}$ arbitrarily. Choose the least $k \in \boldsymbol{N}$ such that $C(\{x, y\}) \not \not \not \gamma^{(k+1)}$. Setting $X:=P^{k}(x)$ and $Y:=P^{k}(y)$, we have:

- $P^{k}(C(\{x, y\})) \subset \gamma^{(0)}$, and
- $P^{k}(C(\{x, y\}))=C(\{X, Y\}) \not \subset \gamma^{(1)}$.

Since P^{-k} is conformal on $\boldsymbol{D}(v, 3 r)$, we have:

Claim.

$$
\begin{equation*}
\frac{\operatorname{diam} C(\{x, y\})}{|x-y|} \leq M \frac{\operatorname{diam} C(\{X, Y\})}{|X-Y|} \quad(M=64) . \tag{1}
\end{equation*}
$$

Proof. By applying the Koebe distortion theorem to $P^{-k}(v+3 r w)$ on $w \in \boldsymbol{D}$, we have

$$
\left|P^{-k}(z)-v\right| \leq 3 r \rho^{-k} \frac{|w|}{(1-|w|)^{2}} \quad(z=v+3 r w) .
$$

Putting $z \in C(\{X, Y\})\left(\subset \gamma^{(0)}\right) \subset \boldsymbol{D}(v, r)$, we have $|w| \leq \operatorname{diam} C(\{X, Y\}) /(3 r)$ and so $C(\{x, y\}) \subset \boldsymbol{D}\left(v,(9 / 4) \rho^{-k} \operatorname{diam} C(\{X, Y\})\right)$. Thus

$$
\begin{equation*}
\operatorname{diam} C(\{x, y\}) \leq \frac{9}{2} \rho^{-k} \operatorname{diam} C(\{X, Y\}) . \tag{2}
\end{equation*}
$$

Next, since $X, Y \in \boldsymbol{D}(v, r), \boldsymbol{D}(X,|X-Y|) \subset \boldsymbol{D}(X, 2 r) \subset \boldsymbol{D}(v, 3 r)$. By applying the Koebe distortion theorem to $P^{-k}(X+2 r w)$ on $w \in \boldsymbol{D}$, we have

$$
2 r\left|\left(P^{-k}\right)^{\prime}(X)\right| \frac{|w|}{(1+|w|)^{2}} \leq\left|P^{-k}(z)-x\right| \quad(z=X+2 r w) .
$$

Putting $z=Y$, we have

$$
\begin{equation*}
\frac{1}{4}\left|\left(P^{-k}\right)^{\prime}(X)\right||X-Y| \leq|x-y| . \tag{3}
\end{equation*}
$$

Finally, by applying Koebe distortion theorem to $P^{-k}(v+3 r w)$ on $w \in \boldsymbol{D}$, we have

$$
3 r \rho^{-k} \frac{1-|w|}{(1+|w|)^{3}} \leq\left|\frac{d}{d w}\left(P^{-k}(z)\right)\right| \quad(z=v+3 r w) .
$$

Putting $w=(X-v) / 3 r$, we have

$$
\begin{equation*}
9 \rho^{-k} / 2^{5} \leq\left|\left(P^{-k}\right)^{\prime}(X)\right| . \tag{4}
\end{equation*}
$$

Summing up (2), (3) and (4), we have the claimed inequality (1). We put $\gamma_{v}:=\gamma^{(1)}$ in this case.

Case 2. Let v_{i} be a landing vertex of U and not periodic. From the assumption, there exists $k \in N$ such that $P^{k}\left(v_{i}\right)$ is a repelling periodic point. Let k_{0} be the least such k. Without loss of generality, we assume that every external ray landing at $P^{k_{0}}\left(v_{i}\right)$ is fixed by P. We write $v=v_{i}$ and put $v_{0}:=$ $P^{k_{0}}\left(v_{i}\right)$.

Choose two simply connected domains $D \ni v$ and $D_{0} \ni v_{0}$ such that $P^{k_{0}} \mid D$: $D \rightarrow D_{0}$ is proper and $D \backslash\{v\}$ contains no critical point of $P^{k_{0}}$. By the same way as that in Case 1 , we can choose D_{0} so that it is a linearizing coordinate neighborhood of v_{0} for P containing no other vertex than v_{0} in $\overline{D_{0}}$.

Let $Q: D \rightarrow D$ be a lift of the branch of $\left(P \mid D_{0}\right)^{-1}$ fixing v_{0}, which is univalent, by $P^{k_{0}} \mid D$. We have:
$(* *)$ for any $k \in N, Q^{k}$ is defined and univalent on D with $Q^{k}(v)=v$ and $\left(Q^{k}\right)^{\prime}(v)=\tilde{\rho}^{k}$, where $Q^{\prime}(v)=: \tilde{\rho} \in \boldsymbol{D}^{*}$ (by the Schwarz lemma).
Choose $r>0$ so that $\boldsymbol{D}(v, 3 r) \subset D$ and let $\gamma^{(0)}$ be a component of $\partial U \cap$ $\boldsymbol{D}(v, r)$ containing v. We can use Q as a substitute for P^{-1} in Case 1 by choosing Q such that $Q\left(\gamma^{(0)}\right) \subset \gamma^{(0)}$. Put $\gamma^{(k)}=Q^{k}\left(\gamma^{(0)}\right)$ for $k \in N$ and assume that diam $\gamma^{(0)}$ $<\operatorname{diam}\left(\partial U \backslash \gamma^{(0)}\right)$ by taking $r>0$ small enough.

By the argument similar to that in Case 1, it follows that for any $k \in \boldsymbol{N}, \gamma^{(k)}$ is an open subarc of ∂U containing $v, \gamma^{(k)} \subsetneq \gamma^{(k-1)}$ and $\operatorname{diam} \gamma^{(k)} \rightarrow 0$ as $k \rightarrow \infty$. We set $X:=Q^{-k}(x)$ and $Y:=Q^{-k}(y)$ for $\{x, y\} \subset \gamma_{1}$ by the least $k \in N$ with $C(\{x, y\}) \not \subset \gamma^{(k+1)}$. Then $C(\{X, Y\}) \not \subset \gamma^{(1)}$ and Claim in Case 1 also holds in this case.

We put $\gamma_{v}:=\gamma^{(1)}$ in this case, too.
We have now defined the open subarc γ_{v} for each $v \in\left\{v_{i}\right\}_{i=1}^{n}$. We write $\gamma_{i}:=\gamma_{v_{i}}$. If every γ_{i} is small enough, this $\left\{\gamma_{i}\right\}_{i=1}^{n}$ is admissible. From the proof of Lemma 5.5, the $\{X, Y\}$ in Case 1 and 2 satisfies that

$$
\frac{\operatorname{diam} C(\{X, Y\})}{|X-Y|} \leq \max \left\{M_{1}, M_{2}\right\}
$$

Therefore from Claim, it follows that $\left\{\gamma_{i}\right\}_{i=1}^{m}$ satisfies the assumption in Lemma 5.5.
Now the proof of Lemma 5.4 is completed.
Let $\left(P^{p} \mid U, U, V\right)$ be a weak renormalization around x such that every landing vertex of V is eventually mapped to a repelling cycle. Since $P^{p} \mid U: U \rightarrow V$ is
a proper map and every landing vertex of U is mapped to that of V, every one of U is also eventually mapped to a repelling cycle. Thus U and V are quasidiscs by Lemma 5.4 so have quasiconformal reflections λ_{U} of ∂U and λ_{V} of ∂V respectively.

If $\partial U \cap \partial V=\varnothing$, then $\left(P^{p} \mid U, U, V\right)$ is a polynomial-like map of degree more than one and $K\left(P^{p} \mid U, U, V\right) \subset U$. Since U contains no preperiodic critical point eventually mapped to a repelling or parabolic periodic point, Theorem 5.1 trivially holds. Thus from now on, we assume that $\partial U \cap \partial V \neq \varnothing$.

For each landing vertex v of U (resp. V), let $\mathscr{V}_{v}(U)$ (resp. $\left.\mathscr{V}_{v}(V)\right)$ be the union of v and two edges of U (resp. V) from v. Then it follows that $P^{p}\left(\mathscr{V}_{v}(U)\right)=\mathscr{V}_{P^{p}(v)}(V)$.

By Lemma 5.2 (iv), we choose a set $\left\{N_{v} ; v\right.$ is a landing vertex of $\left.U\right\}$, where each N_{v} is a neighborhood of

$$
\mathscr{V}_{v}(U) \cap G^{-1}\left(\left[0, \frac{l(U)}{d^{p}}\right]\right)
$$

in $\boldsymbol{C} \backslash U$ such that all elements of $\left\{N_{v}\right\}$ are mutually disjoint.
We fix such $\left\{N_{v}\right\}$. We consider the quasiconformal opening of P around such landing vertices of U as are critical points of P^{p} : We put

$$
f_{0}:= \begin{cases}P^{p} & \text { on } U, \\ \lambda_{V} \circ P^{p} \circ \lambda_{U} & \text { on } N_{v} \text { if } v \text { is a critical point of } P^{p} \\ P^{p} & \text { on } N_{v} \text { if } v \text { is not so. }\end{cases}
$$

Then every vertex of U is not a branch point of f_{0} which is a quasiregular map on $U \cup\left(\bigcup N_{v}\right)$, and $f_{0}\left(N_{v}\right)$ is a neighborhood of $\mathscr{V}_{P^{p}(v)}(U) \cap G^{-1}([0, \ell(U)])$ in $\boldsymbol{C} \backslash V$.

The number of components of $\partial U \cap \partial V$ is finite, and we write the set of them as $\left\{W_{i}\right\}_{i=1}^{m}$. Each W_{i} contains one and only one landing vertex v_{i} of U and is written as $W_{i}=\mathscr{V}_{v_{i}}(U)$, and all elements of $\left\{\overline{W_{i}}\right\}_{i=1}^{m}$ are mutually disjoint.

Proposition 5.3 (Straightening of opened polynomials). There exist $\left\{U_{i}\right\}_{i=1}^{m}$ and $\left\{V_{i}\right\}_{i=1}^{m}$ such that
(i) $\quad U_{i} \subset \bigcup N_{v}(\subset \boldsymbol{C} \backslash U), V_{i} \subset f_{0}\left(\bigcup N_{v}\right)(\subset \boldsymbol{C} \backslash V), U_{i} \Subset V_{i}(i=1, \ldots, m)$, and all elements of $\left\{V_{i}\right\}_{i=1}^{m}$ are mutually disjoint,
(ii) $\quad U_{0}:=U \cup\left(\bigcup_{i=1}^{m} U_{i}\right) \cup\left(\bigcup_{i=1}^{m}\left(f_{0}\right)^{-1}\left(V_{i}\right)\right) \quad$ and $\quad V_{0}:=V \cup\left(\bigcup_{i=1}^{m} V_{i}\right) \cup$ $\left(\bigcup_{i=1}^{m} f_{0}\left(U_{i}\right)\right)$ are simply connected domains and $U_{0} \Subset V_{0}$, and
(iii) $\quad f_{0} \mid U_{0}: U_{0} \rightarrow V_{0}$ satisfies
(a) f_{0} is a proper map and has the same degree as $\left(P^{p} \mid U, U, V\right)$,
(b) the filled-in Julia set $K\left(f_{0} \mid U_{0}, U_{0}, V_{0}\right):=\bigcap_{n \geq 0}\left(f_{0}\right)^{-n}\left(\overline{U_{0}}\right)$ agrees with $K\left(P^{p} \mid U, U, V\right)$, and
(c) $\left(f_{0} \mid U_{0}, U_{0}, V_{0}\right)$ is renormalizable, and more strongly, hybrid quasiconformally conjugate to a polynomial P_{0}.

Proof. First we find $\left\{U_{i}\right\}$ and $\left\{V_{i}\right\}$ satisfying (i), (ii) and (iii)-(a).
CASE 1. Suppose that all elements of $\left\{v_{i}\right\}_{i=1}^{m}$ are periodic points of P^{p}. By assumption, they are repelling periodic points. Put $f:=P^{p}$. Without any loss of generality, we assume that $f\left(v_{i-1}\right)=v_{i}(i=1, \ldots, m+1)$, where $v_{0}:=v_{m}$ and $v_{m+1}:=v_{1}$. Then every v_{i} is a repelling fixed point of f^{m} so not a critical point of it. Thus we do not need the quasiconformal opening of P around $\left\{v_{i}\right\}_{i=1}^{m}$.

Lemma 5.6. It follows that:
$(* * *)$ for $i=1,2, \ldots, m+1, f\left(W_{i-1}\right) \supset \overline{W_{i}}$, where $W_{0}:=W_{m}$ and $W_{m+1}:=$ W_{1}.

Proof. It follows from $f\left(W_{i-1}\right)=P^{p}\left(\mathscr{V}_{v_{i-1}}(U)\right)=\mathscr{V}_{v_{i}}(V) \supseteq \mathscr{V}_{v_{i}}(U)=W_{i}$.
Since v_{i} is a repelling fixed point of f^{m} and $l\left(\left(f^{m}\right)^{-n}\left(\overline{W_{i}}\right)\right)=d^{-p m n} \cdot l\left(\overline{W_{i}}\right)$ $(i=1,2, \ldots, m+1)$, we have:

Corollary 5.3. There exists a neighborhood V_{m} of $\overline{W_{m}}$ in $C \backslash V$ and the branch \tilde{G} of $\left(f^{m}\right)^{-1}$ on V_{m} fixing v_{m} such that $\tilde{G}\left(V_{m}\right) \Subset V_{m}$ and $\bigcap_{n \geq 0} \tilde{G}^{n}\left(V_{m}\right)=$ $\left\{v_{m}\right\}$.

If $m=1$, we put $U_{1}:=\tilde{G}\left(V_{1}\right) \Subset V_{1}$. Taking V_{1} small enough, we have $U_{0}=U \cup\left(f_{0}\right)^{-1}\left(V_{1}\right) \Subset V_{0}=V \cup V_{1}$ since $\left(f_{0}\right)^{-1}\left(V_{1}\right) \backslash U_{1} \Subset V$.

If $m>1$, we choose $U_{i} \subset \boldsymbol{C} \backslash U$ and $V_{i} \subset \boldsymbol{C} \backslash V(i=1, \ldots, m-1)$ by (${ }^{* * *}$) so that

- $U_{i}:=G_{i+1}\left(V_{i+1}\right)$, where G_{i+1} is the branch of f^{-1} on V_{i+1} mapping v_{i+1} to v_{i},
- V_{i} is a neighborhood of $\overline{W_{i}}$ in $C \backslash V$, and $U_{i} \Subset V_{i}$, and
- $G_{1}\left(V_{1}\right) \Subset V_{m}$, where G_{1} is the branch of f^{-1} on V_{1} mapping v_{1} to v_{m}.

We put $U_{m}:=G_{1}\left(V_{1}\right)$. If V_{1}, \ldots, V_{m} are small enough, we have $U_{0}=$ $U \cup\left(\bigcup_{i=1}^{m}\left(f_{0}\right)^{-1}\left(V_{i}\right)\right) \Subset V_{0}=V \cup\left(\bigcup_{i=1}^{m} V_{i}\right)$ since $\left(f_{0}\right)^{-1}\left(V_{i}\right) \backslash U_{i-1} \Subset V$ for all i.

Case 2. Suppose that some element of $\left\{v_{i}\right\}_{i=1}^{m}$ is not a periodic point of P^{p}. We put $f:=P^{p}$. We write " $v_{i} \rightarrow v_{j}$ " if $f\left(W_{i}\right) \cap W_{j} \neq \varnothing$. We have the fact similar to $\left({ }^{* * *}\right)$ in Case 1 :
$(* * * *)$ If $v_{i} \rightarrow v_{j}$, then $f\left(W_{i}\right) \supset \overline{W_{j}}$.
We recall that $f_{0} \equiv f$ on ∂U.
For every cycle $C \subset\left\{v_{i}\right\}_{i=1}^{m}$ of f, we first define U_{j} and V_{j} for each $v_{j} \in C$ applying the argument in Case 1.

We fix v_{i} which is not a periodic point of f.
If $v_{i} \rightarrow \varnothing$, or equivalently $f\left(W_{i}\right) \cap W_{j}=\varnothing$ for all $j=1, \ldots, m$, then $v_{i} \notin$ $K(f \mid U, U, V)$. We take a neighborhood V_{i} of $\overline{W_{i}}$ in $C \backslash V$ arbitrarily and set $U_{i}=\varnothing$.

If $v_{i} \rightarrow v_{j}$ and v_{j} has already had U_{j} and V_{j}, we define U_{i} by the component of $f_{0}^{-1}\left(V_{j}\right)$ intersecting W_{i}, and V_{i} by a neighborhood of $\overline{W_{i}}$ in $\boldsymbol{C} \backslash V$ satisfying $U_{i} \Subset V_{i}$.

Now every v_{i} of $\left\{v_{i}\right\}_{i=1}^{m}$ has U_{i} and V_{i}. If every V_{i} is small enough, $\left\{U_{i}\right\}_{i=1}^{m}$ and $\left\{V_{i}\right\}_{i=1}^{m}$ satisfy (i) and (ii). By definition of f_{0}, U_{0} and V_{0}, we have (iii)-(a).

We put $f:=P^{p}$.
Lemma 5.7. $K\left(f_{0} \mid U_{0}, U_{0}, V_{0}\right)=K(f \mid U, U, V)$.
Proof. Suppose that $K\left(f_{0} \mid U_{0}, U_{0}, V_{0}\right) \backslash K(f \mid U, U, V) \neq \varnothing$ and take an element x of it. Then there exists $k_{1} \in N$ such that $f_{0}^{k_{1}}(x) \in U_{0} \backslash \bar{U}$ since $x \notin$ $K(f \mid U, U, V)$, and there exists $k_{2} \geq k_{1}$ such that $f_{0}^{k_{2}}(x)$ is contained in such an int U_{i} that v_{i} is a repelling periodic point of f. Let p_{i} be the period of v_{i}. Then $f_{0}^{k_{2}}(x) \in \bigcap_{n \geq 0}\left(\left(f_{0}\right)^{p_{i}}\right)^{-n}$ (int $\left.U_{i}\right)$. On the other hand, by Corollary 5.3, we have $\bigcap_{n \geq 0}\left(\left(f_{0}\right)^{p_{i}}\right)^{-n}\left(\operatorname{int} U_{i}\right)=\varnothing$. It is a contradiction.

By the above lemma, we have (iii)-(b).
Let \tilde{U}_{0} be the subset of $U_{0} \backslash U$ where f_{0} is not conformal. If v_{i} is a repelling periodic point, then f_{0} is conformal on U_{i}. Therefore we have $f_{0}^{-n}\left(\tilde{U}_{0}\right) \subset \bar{U}$ for some $n \in N$. Thus $\left(f_{0} \mid U_{0}, U_{0}, V_{0}\right)$ is hybrid quasiconformally conjugate to a polynomial P_{0}.

By the following facts:

- x is the only non-repelling periodic point in U,
- $K\left(P^{p} \mid U, U, V\right)=K\left(f_{0} \mid U_{0}, U_{0}, V_{0}\right) \subset U_{0}$, and
- every branch point of $f_{0} \mid U_{0}$ is contained in U,
P_{0} has desired properties in Theorem 5.1. Now we have completed the proof of Theorem 5.1.

6. Main theorem and proofs.

Let P be an n-subhyperbolic polynomial of degree $d \geq 2$ whose Julia set is connected and have an irrationally indifferent cycle $\mathscr{Z}=\left\{z_{v}\right\}_{v=1}^{m}$.

By using the conformal map $\phi=\phi_{P}: \boldsymbol{C} \backslash \overline{\boldsymbol{D}} \rightarrow \boldsymbol{C} \backslash K(P)$ with $\phi(z) / z \rightarrow a_{d}^{1 /(d-1)}$, where a_{d} is the d-th coefficient of P, we obtain the same results as those in the case where P is monic.

We set $n_{0}=n_{0}(P)$. For an admissible k and $\Theta \geq 0$, we write the puzzle piece of $S_{n_{0}}^{(k)}(\Theta)$ containing z_{v} as $U_{v}^{(k)}$, and set $U^{(k)}(\mathscr{Z}):=\bigcup_{v=1}^{m} U_{v}^{(k)}$ and $K^{(k)}(\mathscr{Z})$ $:=K(P) \cap \overline{U^{(k)}(\mathscr{Z})}$. We note that $K^{(k)}(\mathscr{Z})$ is independent of the opening Θ by Lemma 5.3.

Lemma 6.1. For every admissible $k, K^{(k)}(\mathscr{Z})$ contains at least one recurrent critical point corresponding to \mathscr{Z}.

This lemma follows from Claim in the proof of Main Theorem.
Definition. Suppose that P is an n-subhyperbolic polynomial with connected Julia set and has an irrationally indifferent cycle \mathscr{Z}. Then P is piecewise 1-subhyperbolic for \mathscr{Z} if there exists an admissible k such that $K^{(k)}(\mathscr{Z})$ contains only one recurrent critical point corresponding to \mathscr{Z}.

Now we state Main Theorem in this paper.
Main Theorem (Cycle-version of NLC). If an n-subhyperbolic polynomial with connected Julia set has a Siegel cycle whose multiplier is λ and for which it is piecewise 1-subhyperbolic, then α satisfies the Brjuno condition.

Proof. Suppose that P satisfies the assumption. Let $\mathscr{Z}=\left\{z_{v}\right\}_{v=1}^{m}$ be a Siegel cycle whose multiplier is λ and for which P is piecewise 1 -subhyperbolic, and let c be the only recurrent critical point corresponding to \mathscr{Z} which is contained in $K^{(k)}(\mathscr{Z})$.

We fix $\Theta>0$. Without loss of generality, we assume that $c \in U_{1}^{(k)}$. By definition, $\left(P^{m} \mid U_{1}^{(k+m)}, U_{1}^{(k+m)}, U_{1}^{(k)}\right)$ is a weak renormalization around z_{1}. Since P is n-subhyperbolic, no critical point in $F(P)$ accumulates to $J(P)$ so P has no parabolic cycle. Therefore every vertex of $U_{1}^{(k)}$ is eventually mapped to a repelling cycle.

By applying Theorem 5.1 to $\left(P^{m} \mid U_{1}^{(k+m)}, U_{1}^{(k+m)}, U_{1}^{(k)}\right)$, we have a strong renormalization P_{0} of it. Let Φ be a quasiconformal automorphism of C giving the hybrid quasiconformal conjugacy between them in Theorem 5.1.

Claim. $\overline{U_{1}^{(k+m)}}$ contains a recurrent critical point of P corresponding to \mathscr{Z}.
Proof. By the Mañé Theorem, P_{0} has a recurrent critical point c_{0} corresponding to the irrationally indifferent fixed point $\Phi\left(z_{1}\right)$. Therefore $\Phi^{-1}\left(c_{0}\right)$ is a recurrent critical point of P^{m} corresponding to the irrationally indifferent fixed point z_{1} of P^{m} in $\partial K\left(P^{m} \mid U_{1}^{(k+m)}, U_{1}^{(k+m)}, U_{1}^{(k)}\right) \subset \overline{U_{1}^{(k+m)}}$. Thus $\left\{P^{i}\left(\Phi^{-1}\left(c_{0}\right)\right)\right\}_{i=0}^{m-1}$ contains a recurrent critical point of P corresponding to \mathscr{Z}. From the uniqueness of c, it follows that $\Phi^{-1}\left(c_{0}\right)=c$.

Let us continue to prove Main Theorem. Thus $\Phi(c)$ is only one recurrent critical point of P_{0} corresponding to $\Phi\left(z_{1}\right)$. Thus P_{0} is a 1-subhyperbolic polynomial without critical point eventually mapped to a repelling or parabolic cycle. Furthermore, since P_{0} is linearizable at $\Phi\left(z_{1}\right), P_{0}$ has no Cremer cycle. Thus P_{0} has no preperiodic critical point in $J\left(P_{0}\right)$.

Consequently, P_{0} is a 1-hyperbolic polynomial and linearizable at the ir-
rationally indifferent fixed point $\Phi\left(z_{1}\right)$ whose multiplier is λ. From the result in Section 4 (Theorem 11 in 1-hyperbolic case), it follows that α satisfies the Brjuno condition.

Proof of Theorem 2. Let P be a 1 -subhyperbolic polynomial and have an irrationally indifferent cycle $\mathscr{Z}=\left\{z_{v}\right\}_{v=1}^{m}$ whose multiplier is λ.

Suppose that $K(P)$ is disconnected. Let K_{1} be the component of $K(P)$ containing z_{1} and $k \in N$ be the least such one that $P^{k}\left(K_{1}\right) \cap K_{1} \neq \varnothing$. Then $\mathscr{Z}^{1}:=\left\{\left(P^{k}\right)^{j}\left(z_{1}\right)\right\}_{j=0}^{m / k-1}$ is an irrationally indifferent cycle of P^{k} whose multiplier is λ. Let G be a Green function of $C \backslash K(P)$ with its pole ∞ and U_{r} be the component of $C \backslash G^{-1}(r)$ containing z_{1} for $r>0$. It is known that for sufficiently small $r,\left(P^{k} \mid U_{r}, U_{r}, P^{k}\left(U_{r}\right)\right)$ is a polynomial-like map of degree more than two whose filled-in Julia set agrees with K_{1}.

Let P_{0} be a polynomial which is hybrid quasiconformal conjugate to $\left(P^{k} \mid U_{r}, U_{r}, P^{k}\left(U_{r}\right)\right) . \quad P_{0}$ is a polynomial whose Julia set is connected, and have an irrationally indifferent cycle $\Phi\left(\mathscr{Z}^{1}\right)$ whose multiplier is λ, where Φ is a quasiconformal automorphism of \boldsymbol{C} giving the hybrid conjugacy $P^{k}=\Phi^{-1} \circ P_{0} \circ \Phi$ on $\overline{U_{r}}$.

By the Mañe theorem, there exists a recurrent critical point c_{0} of P_{0} corresponding to $\Phi\left(\mathscr{Z}^{1}\right)$. Then $c:=\Phi^{-1}\left(c_{0}\right)$ is a recurrent critical point of P^{k} corresponding to \mathscr{Z}^{1}. Thus $\left\{P^{i}(c)\right\}_{i=0}^{k-1}$ contains a recurrent critical point of P corresponding to \mathscr{Z}. Since P is 1-subhyperbolic, we assume, without loss of generality, that c is the only recurrent critical point of P that corresponds to an irrationally indifferent cycle of P. Then P_{0} is a 1 -subhyperbolic polynomial with connected Julia set.

If \mathscr{Z} is a Siegel cycle of P, then $\Phi\left(\mathscr{Z}^{1}\right)$ is a Siegel cycle of P_{0}. Clearly P_{0} is piecewise 1-subhyperbolic for $\Phi\left(\mathscr{Z}^{1}\right)$. Therefore from Main Theorem, it follows that α satisfies the Brjuno condition.

7. Examples and case studies.

We conclude with several examples of n-subhyperbolic polynomials.
Example 1. $\quad P(z)=\lambda z+z^{2}$ is a typical example of 1-hyperbolic polynomials. The only critical point of it corresponds to the origin.

Example 2. $P(z)=\lambda z(1+z)^{d-1}(d \geq 3)$ has $d-2$ critical points eventually mapped to the origin which is a fixed point and another one corresponds to the origin. Thus it is 1 -hyperbolic.

Example 3. $\quad P_{t}(z)=\lambda z\left(1-(t+1) /(2 t) z+1 /(3 t) z^{2}\right)$ is a 1-hyperbolic polynomial if $|t|$ is sufficiently large (cf. [4] §18.2). We note that two critical points are 1 and t and that t is contained in the superattractive basin of ∞ at that time.

Example 4. The family $\mathscr{F}=\left\{P_{t} ; t \in \boldsymbol{C}\right\}$ of such polynomials as the above is an algebraic family over $t \in \boldsymbol{C}$ with bifurcations.

Let $M_{d}(d \geq 2)$ be the connectedness locus of $\left\{z^{d}+c ; c \in \boldsymbol{C}\right\}$.
Theorem 7.1 ([14], Theorem 1.3). Let f_{t} be a holomorphic family of rational maps with bifurcations. Then there is a $d \geq 2$ such that for any $c \in M_{d}$ and $m>0$, the family contains a polynomial-like map $f_{t}^{n}: U \rightarrow V$ hybrid conjugate to $z^{d}+c$ with $\bmod (V \backslash U)>m$.

By the above, \mathscr{F} contains actually 1 -subhyperbolic polynomial which is not 1-hyperbolic. Furthermore, for every small $\varepsilon>0$, there exists such a 1subhyperbolic polynomial of \mathscr{F} that the Hausdorff dimension of its Julia set is more than $2-\varepsilon$.

Example 5. By applying Theorem 7.1 to $\mathscr{P}_{d}(d \geq 3)$, we obtain completely general examples of n-subhyperbolic polynomials with irrationally indifferent fixed points.

Example 6. $\quad P(z)=\lambda z+z^{d} \quad(d \geq 3)$ satisfies $P(c z) / c=P(z)$, where c is a prime $(d-1)$-th root of unity, so it is $(d-1)$-hyperbolic. However P is semiconjugate to $Q(w)=\lambda^{d-1} w(1+w)^{d-1}$ by $w=z^{d-1} / \lambda$. Thus P is linearizable at the origin if and only if so is Q. From Example $2(d \geq 3)$ and the Yoccoz theorem $(d=2)$, we have:

Theorem 7.2. If $P(z)=\lambda z+z^{d} \quad(d \geq 2)$ is linearizable at the origin, then $(d-1) \alpha$ satisfies the Brjuno condition.

Theorem 3 directly follows from the Brjuno theorem and Theorem 7.2.

References

[1] L. V. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math., 72 (1960), 385-404.
[2] A. D. Brjuno, Analytical form of differential equations, Trans. Moscow Math. Soc., 25 (1971), 199-239.
[3] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer-Verlag (1993).
[4] R. L. Devaney, A first course in chaotic dynamical systems, Addison-Wesley Publishing Company (1992).
[5] A. Douady, Disques de Siegel et anneaux de Herman, Sém. Bourbaki, 39 (1986-87), 151-172.
[6] A. Douady and J. H. Hubbard, On the dynamics of polynomial like mappings, Ann. Sc. E.N.S., 4ème série, 18 (1985), 287-343.
[7] L. Geyer, Linearization of analytic maps at irrationally indifferent fixed points, Thesis (1998).
[8] L. Goldberg and J. Milnor, Fixed points of polynomial maps. II. Fixed point portraits., Ann. Sc. E.N.S., 4ème série, 26 (1993), 51-98.
[9] M. Heins, On a class of conformal metrics, Nagoya Math. J., 21 (1962), 1-50.
[10] J. Kiwi, Non-accessible Critical Points of Cremer Polynomials, Stony Brook IMS Preprint 1995/2 (1995).
[11] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag (1987).
[12] R. Mañé, On the theorem of Fatou, Bol. Soc. Bras. Mat., 24 (1993), 1-11.
[13] R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sc. E.N.S., 4ème série, 16 (1983), 193-217.
[14] C. McMullen, The Mandelbrot set is universal, In Tan Lei, editor, The Mandelbrot Set, Theme and Variations, London Mathematical Society Lecture Note Series, 274 (2000), 1-18.
[15] C. McMullen and D. Sullivan, Quasiconformal Homeomorphisms and Dynamics III: The Teichmüller space of a holomorphic dynamical system, Adv. Math., 135 (1998), 351-395.
[16] J. Milnor, Dynamics in one complex variable, Vieweg (1999).
[17] S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambredge studies in advanced mathematics, 66 (1999).
[18] Y. Okuyama, On the non-linearizability of analytic germs and polynomials at irrationally indifferent fixed points, Proceedings of the second ISAAC Congress, Kluwer (2000).
[19] Y. Okuyama, Non-Linearizability of Polynomials at Irrationally Indifferent Fixed Points, Kodai Math. J., 22 (1999), 56-65.
[20] R. Pérez-Marco, Sur les dynamique holomorphes non linéarisables et une conjecture de V. I. Arnold, Ann. Sc. E.N.S., 4^{e} série, 26 (1993), 565-644.
[21] R. Pérez-Marco, Fixed points and circle maps, Acta Math., 179 (1997), 243-294.
[22] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag (1992).
[23] J. C. Yoccoz, Théorèm de Siegel, nombres de Bruno et polynômes quadratiques, Astérisque, 231 (1996), 3-88.

Yûsuke Okuyama
Department of Mathematics
Graduate School of Science
Kyoto University
Kyoto 606-8502, Japan
E-mail: okuyama@kusm.kyoto-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 37F50; Secondary 37F10, 37F25, 37F30, 30D05.

 Key Words and Phrases. n-subhyperbolic polynomial, quadratic polynomial, irrationally indifferent cycle, Brjuno condition, non-linearizability, renormalization, Teichmüller space.

 Partially supported by JSPS Research Fellowships for Young Scientists and British Council Grants for JSPS Fellows.

