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Abstract. The existence of time local C*-solutions is shown for Cauchy problem
of the porous medium equations. Our arguments rely on the “L*-energy method”
developed in our previous paper and a new method based on the theory of evolution
equations in the L>-framework which enables us to handle with perturbations which can
be decomposed into monotone parts and small parts in Sobolev spaces of higher order.

1. Introduction.

In this paper, we are concerned with Cauchy problem for the following
nonlinear parabolic equations:

u = (uy) ., (x,t) e R x [0, 00),
(P){u(x,O) =up(x), xeR. (L1)

This equation is widely known as the porous medium equations, which describes
the isentropic flow of an ideal gas through a homogeneous porous medium and
other physical phenomena such as in gas dynamics and plasma physics, (see
Aronson [1]). It is well known that (P) possesses self-similar special solutions
constructed by Barenblatt [5], and that (P) admits a unique (time) global weak
solution, which is proved by Oleinik-Kalashnikov-Chzhou [15]. After these
pioneering works, enormous number of studies in various aspects were devoted to
this equation.

As for the regularity of weak solution u, Holder continuity with respect to x
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and 7 is established, (see Aronson [2], Kruzhkov [12], Gilding [10], and Caffarelli-
Friedman [7]).

Furthermore, higher regularity is known for the so-called pressure of gas
given by v = ((/+1)//)u’. In fact, v enjoys Lipschitz continuity in x and ¢,
(see Aronson [2], DiBenedetto [9], Bénilan [6], and Aronson-Caffarelli [3] and
Caffarelli-Vazquez-Wolanski [8]), and if the space dimension is one, then v
becomes C* on each side of the (moving) interface after the “waiting time”, (see
Aronson-Vazquez [4]).

However, as to the derivative estimates of solution u itself, little is inves-
tigated except in our previous result [16], where a time local solution is con-
structed in W1 (RY). Our main concern here is the existence of smooth (say
C™) solution of (P). In studying this kind of problem, it should be recalled that
by the result of Kalashnikov [11], we can not expect the global existence of
classical solution for (P). So we are led to the very natural and basic problem
whether (P) admits a time local C*-solution or not. Our goal in this paper is to
give an affirmative answer to this important open problem left unsolved for a
long time. The precise statement of our main result is given in the next section.
To achieve our aim, we first introduce approximate equations for (P). In order
to construct global C*-solutions of approximate equations, we introduce a new
method based on the theory of evolution equations in the L>-framework which
enables us to handle with perturbations which can be decomposed into monotone
parts and small parts in Sobolev spaces of higher order. Furthermore, to es-
tablish a priori bounds for solutions of approximate equations, we expand the
“L*-energy method”, which is developed in [16]. We shall carry out these
procedures in §4 and §5. For this purpose, some lemmas are prepared in §3, and
the proof of main theorem is given in the last section.

2. Main Theorem.

Our basic assumptions imposed on the parameter / and the initial data
are the following (A.1) and (A.2).

(A.1) ¢ is an even natural number.
(A.2) up(x) e ﬂrfzo H™(R).
Then our main result is stated as follows.

THEOREM. Let (A.1) and (A.2) be satisfied, then there exists a positive
number Ty depending on ||ug|| gy and |[uox|| gy such that Cauchy problem (P)
has a unique solution ue C* ([0, To] X R) such that

sup lu(, )l 2= g) < lluoll = (r)- (2.1)

0<t<Ty



Energy estimates in L* and porous medium equations 747

Moreover Ty can be chosen as a monotone decreasing function of ||uy|| Lo (R) such
that Ty tends to 0 as |[uox||;-g) tends to +co.

As an immediate consequence of this theorem, we can derive the following
observation.

COROLLARY 2.1. A solution ue C*([0,T) x R) of (P) can be continued as a
C*-solution to the right of t = T, if and only if |Jux(-,t)|| . g is bounded on [0, T).
Furthermore, if u can not be continued as a C*-solution to the right of t =T, then
it holds that

£1Tr7n||”x('al)||m(1e) = +0. (2.2)

REMARK 2.2. Since («/uy), = (1/(/ 4 1))(u’*").. and the function r— [r|'r
(/ > 0) belongs to C*(R) if and only if / is an even integer, it seems rather
plausible to assume (A.l) for the argument in the C*-category.

3. Some Lemmas.

In this section, we shall prepare several lemmas which will be often used in
the next section, the main parts of our arguments. We first fix some notations
which will appear frequently in what follows.

We use the simplified notations:

NOTATIONS

(1) D=2d/ox, D" = (8/ox)", D° = I,.

2 L"=LR), |-l =1z, (I <r=<wc0).
B) M-l =W Moy (rE N) AL Mo = 1+ M2y
(4) (u0) = (W, 0) s Ml = Jlu] 2

Let A = —D? and put H;, = H**(R). We define the inner product of H; by
(5) (u,0)y, = (u,v)yx = (u,0) + (A*u, A*v), ke N.
We first note the following property.
LemmA 3.1. It holds that
ID7ull > < lully,  for all ue Hy, 0 <j <2k, keN. (3.1)

Proor. From the definition of the topology of Hj, the cases j =0 and
j = 2k are obvious. In order to verify the other cases 1 <j <2k — 1, it suffices
to derive the following inequalities.

ID7ul| < ||ID"u|)?™ - ||ul|"#" for all ue H", ne N, 1<j<n—1.  (32)
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Indeed, (3.2) with n =2k yields (3.1), since [|D%ul|”/* - |[u]l "7/ < |lull,.

We are going to prove (3.2) by induction.

Since || Dul|* = (Du, Du) = (—D%u,u) < ||D?ul|||u|, (3.2) holds true with
n=>2.

Assume that (3.2) hold true with n=m —1 for all 1 <j<m -2, (m>3).
Then, by using (3.2) with n=m —1, and j=m —2, we get

1Dl = —J D"uD™ dx < || D"ul] - | D"
R

< |[D™ul| - | D™ RO O
whence follows
[ e R (3.3)

which implies that (3.2) holds with n=m, j=m — 1.
For any 1 <j<m—2, (3.2) with n=m—1 and assure

D7l < i Y
e e Y R PR N

This completes the proof. [
The following two lemmas are standard results from embedding theorems.

Lemma 3.2, The following inequalities hold.
ol < V20l sl Sor all we H'(R), (34)

|Dul| . < V2|ullp,

Jor all we Hy with k >1 and 0 <j <2k —1. (3.5)

Proor. By the density argument, we have only to show (3.4) for u € C;°(R).
Since (1/2)(d/dx)(u(x))* = u(x) - uy(x), integrating this identity on (—o0,x), we
have

u(x)® = J u(x)u(x) do < 2ul] 2 ||| 2,

which gives (3.4).
Then, applying (3.4) for u = D/u and [Cemma 3.1, we get

i i 1/2 i 1/2
ID7ull,. < V2I[D7ull}y - D7 ull}y < V2|ully, O
LemMma 3.3. It holds that
Jullfe < 2\\ull;> - |us]l,> for all ue H'(R). (3.6)
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ProoF. By using Holder inequality and (3.4), we obtain
3/2 2 1/2
lallge < oall o - Nall 7o - el o < V21l 357 ol 2 - Nl 2,
whence follows (3.6). [

The following lemmas play an important role in establishing the L*-
estimates of solutions.

LemMA 3.4. Let Q be a domain in R and suppose that there exist ry > 1
and C, >0 with lim,_,., C, = C,, < +0o0 such that

ull Lry < G Sfor all 1€ [ro, ). (3.7)
Then u belongs to L*(Q) and satisfies
Jall () < Cr (38

Proor. Let Q= QN{xeRY;|x| <k} and let u,(x) = |uy(x)|- signu(x)
with |u,(x )| = min(n, [u(x)[). Noting that u, € L*(2) and [[uy||,q,) < C;, we
L@ = lltnll L= (g,) < Cw for all n and k, (see Theorem 1 of
Yosida [18] p34 Since u,(x) — u(x) a.e. x in Q; as n — oo and |u,(x)| < Cu,
we get ||u|| 1=y < Cwo for all k. Therefore, for any ¢ > 0, there exist null sets
e = Q such that lu(x)] < Cy +¢ for all xe Qr\ex and k. Hence |u(x)| <
C, +e¢ for all xeQ\e, e=),_ e, which assures ue L*(Q) and Jull 2 () <
Co. ]

LemmA 3.5. Let Q be a domain in RY. Suppose that we L'(0,T;L"(Q))
for all r € [ry, 0], v(0) = vy € L*(Q) and ve WH1(0, T; L"(Q)) for all r € [ry, o).
If it holds that

d
o)

Then we have

o) < [[w(?) for all relry,0) and ae.tel0,T). (3.9)

10l 1o 0,7 2 (2)) < Vol e (@) + Wl 10, 7, 12(02))- (3.10)

Proor. Integrating (3.9) on [0,#] and using Young’s inequality, we get
[0 @) < llvoll ey + Wi, 7,070

woll i) + juw()n””' J(s) 7

r— ro/r

ro/l dS

IA

ool

r—ro ro
<— ||vo||Loc<g)+7Hvo||uo<g)

r—ry
+

0
Wl 10, 7. 120 T Wl 10,7 70 (02))-

Hence, by letting r — oo and applying [Lemma 3.4, we obtain [3.10]. (]
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In the next section, we shall establish a priori estimates for higher derivatives

of solutions. To carry out this, we need the following lemmas.

LEMMA 3.6. For any ue H"(R), it holds that
D"W'D*u)=I'+I?+ I’ + R + R? for n>2,
where
I' =u/' D"y,

I? = ,Ci/u ' DuD"u,

3 = {,Cot (0 = D' 2(Du)” + (,Co + D)/ D2y D™, (n > 3),

L= /L/’I(Dzu)z,
n—1 ' '

R,i = Z ZCiD (WD for n>4 and R; = R31 =0,
i=3

n—1
R? = Z w1 CD (41~ D" 'uD?u.

n
i=1

Furthermore we have

sup (|[DRy]| . + [[DRZ| ) <2(£ + 1)"™ (M,,..)"™,
2<r<ow
IDRY||;2 + | DR[| ;2 < 2(4 + V)™ (My_1.00)' M, for n >3,
where

Mm,oo = sup{||DJu|

132 <r<ow,0<j<m},
My, = sup{ | Du] 1230 < j < m}.

PrOOF. By Leibniz’s formula, we get
D" D*u) =) E, E=,CD'W) D" u.
i=0

It is clear that I! = Ey, I> = E; and R! = Y/ E, (n>4).
Since

E, = D" (¢~ Du)D*u = (u/~'D"uD*u + R2,

(3.11)

(3.12)

(3.13)
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we find
E, = (' (D*u)? + £(¢ — D)/ 2(Du)*D*u, (n=2),
Ey+E, =1+ R, (n > 3).

Hence (3.11) is derived.
In order to establish the L*-estimate for D'(u’), we first note that the
number of ways of distributing D' to u/, denoted by 4;,, is given by

Ai,/ = /ia
since the number of ways for operating D to #/ =y -u---u is /. Then we obtain
——
/
ID' (W) < 47 M. (3.14)

Hence, by (3.14),

1D )2 = D™ (4w’ Du)|
. i_l . . .
<1467 Dull o+ ¢ Y iaGIID (=)D 12
j=1
y i_l .
<IMUIM+0) i Gi(d - 1) M M
j=1

i—1
</M;M{7! (1 +> G - 1)f>
=1

J
i—1
= /MMy Gl = 1)
=0

</'M!T M, (3.15)

i—1,00

Therefore

n—1
IDR| . < Y wCAID™ @)l - 1D 2]l e 4+ 1D ()| o - 1D ] 1}
i=3

<

< nCi(/H—l _|_/l) . M/-H

n,00

=

i=0
=+ )M Gl
i=0

_ (f‘l‘ I)I’H—l . M/+1

n,00
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and

-1
||DR2||L,_Z CUD™ (™) D"t - |

+ D (D) - N0 ull o | D20l e A 1Dl (1Dt 3)

n—1

< Gl =) o -0 My
i=0
n—1 ]
<OMEY G = 1)
i=0

_ pntl /+1
=ML

Thus (3.12) is verified.
Similarly, by virtue of (3.14) and (3.15), we find

n—1
IDR, ||, < Z WCAIDT W) o - 11D 2ul| e + | DF )| o - 1D ]| 2}
=3
n—1 .
= Z"Ci(/lﬂ"'/) M, Lo~ M
=0
=+ )" MM,
n—1 . .
IDR; ||, < Z w1 Ci([ D ()| o - 1D ul| e - | D]
i=1

+ /(/ 1) M/ 1(A]Mn—H—leZ,oo + Mn—i,ooM3))'

1,00
Therefore for n > 3,

n—1
IDRI2 < D waCMuM;_y L, ((0 = 1) (2 = 1))

i=1

/n+1 M/

n—1,00

M,.

whence follows (3.12) and (3.13).
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LemMA 3.7. For any ue H"'(R), it holds that

D"t (Du)*) =J + 7>+ S' + S+ 83+ 8% for n>3,

where

JV = 20u""'DuD"u,

~
)
Il

2 —{2n+ V(¢ — D' 2(Du)?* + 2n/u’ ' D*u} D"y,

—_—

n—

2
I

ZCiD (/"D ((Du)?),

Il
)

n—2

n
i=2

n—2
S} =2nt(¢ — l)u/_zDuZ w2 C:D ™ uD™ iy,
i=1
n—1 _ .
St=/(t-1)Y . CD (7AD" u(Du)?.

n
i=1

Furthermore, we have

4
sup > _|IS]

2<r<ow ]:1

L <2+ 1) (M),

4
D ISl < 2002 4+ 1)" (Mo o) Moo,
j=1

S2 = 2/1,/_1 Z n_]Cl'DH—lan_H—lu fOr n=> 4 and SS = 07

753

(3.16)

(3.17)

(3.18)

where n* = max(3,n —2) and M, ., My, are the constants defined in Lemma 3.5.

Proor. Leibniz’s formula gives

D" (/i (Du)?) = ZF F; = ,C;:D'(/u’ =" D" " ((Du)?).

i=0

Obviously

Furthermore,
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Fy = (u’~' - 2D" 1 (DuD?u)

n—1
=20u’! {DuD"“u + Z 2 1C: D™y pritly

i=1
= J! +ontu’~" - D"uD*u + S2,
Fi =n/(/ — D)o/ 2Du - 2D""*(DuD?u)
= 2n/(( — 1)’ 2(Du)*D"u + S,
F, = D" ' (/(¢ — 1)u'">Du)(Du)*
= /(¢ = 1)/ ~2D"u(Du)* + S*.

Thus (3.16) is derived.
Moreover, by virtue of (3.14), we get

n—1
i [ — n—i 2
IS3llz < > aCllD (2" e - 1D ((Du)?)
i=2
n—1 ) .
<Oy WG (0-D)'M 2 My
i=2
<Oy LCi(e =12 My
i=0
=+ )" M
n—2
IS7llz < 200ullzz -y aaCiM,
i=2
<2 Mt
s n—2
ISyl < 200 (¢ = Dl | Dull e - D w2CiMy-
i=1
<20 -1)- M7,
n—1 )
ISpllpr < 4(2=1)- ) waCil4 =2)" - My,

i=1

=/((-1)" M/

n—1,00"

Hence, these estimates assure [(3.17). Moreover, we have

}

o0
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i /— n—i 2
ISyll2 < Y wGHID (2| - | D" (D) 2

Comt | D" (™) 2| D((Du)) | .-

n—2
Il R
i=2

+nt(0=1)"" M3 My 2My o Mo
n—2

<O LCi(e=1) 2" ML, My +2n4(0 = 1) ML) My o M,

n—2,00
i=2
n—1 ) 4
</Y WG/ =1)-2""M;. M,
i=2

</(/+1)"M/.M,_,

n-3
IS20 > < 240l i GHID™ ] o [ D" |2
i=2

+ 2/|ull i a1 Coa | D" ] 2| D]

w

.
< 2l Gy Moy + 20— D M5 oM,

i

o
)

n—

<2UMGL) Y a1 CiMy 1My

I
)

<2". M,f*mMn_l,

n-3
1S3l 2 < 200 (¢ = Dull 21Dl e Y~ waCAID™ ul| o |D™ ]| 2
i=1

+ 204 (¢ = V)l 227 Dt | D" 2| D2t

n—3
<20 = 1) My Y naCiMy_y +2n0(6 = 1)MZ) My o M,y
i=1

=2ml({ — 1)M]. M, lzn 2

=2n/(/ — )M, M, 2"
=2""nt(¢ = )M} M,
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n-2

i, [/— n—i 2
ISl 2 < 42 = 1)) " waGllD (2| 1o |1 D"t 2| (D)
i=1

+ (¢ = DD W) 2l (Dw) o
n—2
SOC=1) Y Gl = 2) MM M,
i=1

+(C - 1) =2)" M3 M MY

—2,00

—2

<= 1)M)_y M,y - Z n1Ci(f = 2)!
i=1

+/(/—1)M,fzoc (0 =2)"
=/(¢=1)"-M_, M.

Therefore,
4
Z IS[l,» < £(0+1)" M. Myt +2"¢ - M. M,

+ 2"t (¢ = )My My + (0= 1)" - My, My

n—2,00

<UD +2" + 2"l (0= 1) + (0= 1) M. M,

(
/(4 +

</((
</((
=20+ 1)"+2"n)M},. M,

D" +2" 2" n(/ = 1)+ (£ = 1)")M;y. M,
41"+ 2"+ (4= DR+ (0= 1) )M Moy
(+1)"+2"n)(0 = 1+ )M}, M,
</ +1)"M. M,y

Hence, these estimates assure (3.18). O

4. Approximate Equations.

In order to approximate the original problem (P), we have introduced the
following equations:

(P)s{ = (1 + &)uee + (/N ue)?, (x,1) € R x (0, 0),
u(x,0) = uo(x), x€R.

The purpose of this section is to show the existence of global smooth solutions for
(P), which reads
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ProposiTION 4.1.  Let (A.1) and (A.2) be satisfied. Then, for every T >0
and ¢ >0, (P)* has a unique solution u, belonging to C*([0,T] X R).

By the standard argument, it is easy to see that |Proposition 4.1 can be derived
from the following fact.

PrOPOSITION 4.2. Let (A.1) and (A.2) be satisfied. Then, for every T > 0,
keN (k>2) and ¢>0, (P)° has a unique solution u, belonging to A% .=
{ve C((0, T]; H¥**'(R)); vxy, v € L*((0, T); H*(R))}.

The proof of |Proposition 4.2 is divided into three steps in the following
subsections 4.1, 4.2 and 4.3.

4.1. Approximation for leading term.
As the first step, we consider the partial approximation which consists only
of leading terms.

e[ u =W +eue +f(x,0), (x,0)eRx(0,00),
(P)O{ u(x,0) = up(x), X€R.

Our aim here is to show the following fact.

LemMmA 4.3, For given f e L*(0,T; H*(R)) and uy € H**'(R), (P); has a
unique solution u belonging to 93]}, the same class of solutions given in Proposition
4.2.

By putting A = —(3/0x)* and Hy = H*(R), we rewrite (P), as evolution
equations in Hj:

o (d/dt)yu(t) + eAu(t) + WAu(t) = f(1), 0<t<T,
(P)O{ u(0) = uy.

At a glance, it is easily seen that u/Au can be regarded as a monotone
perturbation for e4u in L?>(R). However, the chief difficulty of this equation lies
in the facts that u’Au does not behave as a monotone perturbation anymore in
higher order spaces H; (k > 1), and that u’4u is not a small perturbation for eAu
even in Hy = L*(R).

In order to get over the first difficulty, we shall show that w/Au can be
decomposed into the sum of monotone perturbations and small perturbations.

To avoid the second difficulty, we introduce the following auxiliary equations
with two parameters ¢ >0 and 1€ [0,1].

(P)“{ (d/dt)u(t) + eAu(t) + JlAu(t) = h(t) + f(1), 0<t<T,
u(0) = uy. in Hy.

For any f fixed in L?(0,T;H;) and given he L*(0,T; Hy), denote by u” the
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unique solution of (P)M belonging to 9% For any # > 0, we can define an
operator 7" by

9’7 chi uh = —p(uh) - Aul.

To prove [Lemma 4.3, it suffices to establish the following fact on 9{7*.

LeEMMA 4.4.  There exist a positive number R and a (sufficiently small) posi-
tive number 1, depending on ||ug|| -1, €, R and T but not on A such that for every
ne0,n and 7. €10,1], Z ”” becomes a contraction from K} = {ve L*(0, T; Hy);

[0l 120, 7. 1) < R} into ltself provided that (P)*" admits a unique solution in gé’k

In fact, the following argument shows that is a direct conse-
quence of Lemma 4.4.

ProoF oF LeEmMmA 4.3. We first choose me N and 7, € (0,7,] such that
mn; = 1. Since ¢4 becomes a self-adjoint operator in Hy with D(A) = Hyy) =
H?>* 1) (R), the standard result of the theory of evolution equations says that for
every he KI, (P)® * with 2 =0 admits a unique solution u” in A% (see Tanabe
[17]). Then Lemma 4.4 assures that 7 0 has a fixed point /e K}, in other
words, u™ satisfies

u (1) + eAu™ () = ho(f) + £ (1)
= 7, (ho) + /(1)

= () A + (1),

dt

Hence u’(7) gives a unique solution of (P)** with A=#, and h=0. This
observation implies that (P)“"" admits a unique solution in %’k Therefore, ap-
plying Lemma 4.4 again with 2 =7, we find that 7 has a ﬁxed point /1; € KL
Then, by the same argument as above, it is easily seen that u (¢) gives a unique
solution of (P)** with A =25, and h=0. Thus we can repeat this procedure for
A =kn,, up to k =m, and find that (P)** with 2 =mny, =1 and h = 0, nothing
but (P);, admits a unique solution in Z%. ]

In order to derive Lemma 4.4, we need to establish a series of a priori
estimates for solutions of (P)™*.

LEMMA 4.5. Let u be a solution of (P)** belonging to BY.  Then there exist

numbers { M, }2X o {My. }2X° such that

My, <My <My, 0<m<2k—1, (4.1)
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sup [\ D"u(?)] 2 < My, 0 <m <2k, (4.1),,
0<t<T
sup ||[D"u(t)||;r < Mmoo, 0<m<2k—1. 4.1),, .
0<t<T ’
2<r<w

Here M, and M,, ., do not depend on ¢ but on uy, f,h and other parameters, more
precisely,

Mo = Mo(|luoll 2, [|.f + Al 1o, 7. 22)):
My = M(|[D"t]| 2, | D" (f + W)l 10, 712y 1 6 M), 1 < m < 2k,

My, :Mo,oo( sup ||uol,-, sup ”f‘i'hHLl(o,T;Lr))a

2<r<ow 2<r<w

Mm,w :Mm7oo< sup ||Dm“0|Lr7 sup ||Dm(f+h)”Ll(O,T;L")ﬂm’/vMm—1700>
2<r<w 2<r<w

m#2,
My =V2M,)* - M),

Furthermore, the following estimate holds.

T 1/2
sw|wmwm+(4gWﬂwmgm) < M3, ). (42),

0<t<T
where M28k+1 = M2£k+1(M2k7M270078’ k,Z, HDuOHHk’ Hf"‘hHLZ(O,T;Hk))-

Proor. We are going to verify (4.1), in several steps, ie., the cases m =
0,1,2 and m > 3. For the sake of simplicity, throughout the present paper, we
denote by C,, positive numbers depending only on 7 and m. We also denote by
M,, (or M,, ) positive numbers depending only on /,m and M,, (or M,, ).
These numbers C,, and M,, will in general have different values in different
places.

(The case m = 0)
Multiply (P)g’/1 by |u|"_2u and integrate over R, then the integration by parts
gives

L d a .
Hw;*gﬂwu+ww—nJW|%Dw%u+zw+r—ijw‘ﬁbm%h

=ju+mw“%w

r—1
L -

<|f+h

vl



760 M. Otant and Y. SUGIYAMA

Hence, we deduce (4.1), and (4.1), . with

0,00

Moy = [Juol| > + |If + h”Ll(O,T;LZ)’

Moo = sup {|luollpr + 11/ +ll Lo, 7.0m 1}

2<r<w

we obtain (4.1), and (4.1), ., with m =0.

1,00

(The case m = 1)
Multiplication of (P)** by —D(|Du|""*Du) = —(r — 1)|Du|"*(Du)* gives

d
r—1
a5 1D

o He(r=1) J |Du|" 2 (D%u)? dx + A(r — 1) Ju/|Du|r2(D2u)2 dx

_ J D(f + h)D(|Du|""2Du) dx

< ID(f + 1)l - 1Dull7 ",
whence follows (4.1), (4.1); and (4.1)

with

1,00

My = max(Mo,oo, || Duo|| 2 + 1D + D)l 110, 7, 12))5

M o :max(Mom, sup {||Dug

2<r<w

LAwDu+mmman-

(The case m = 2)

The argument similar to those above does not work well for the case
m=2. So we here try to derive (4.1), , via the L*-estimates for D*u and D’u.
Multiplication of D2(P)** by D2u gives

1d
30 |D*u(0)[172 + el D*u() |72 = A(D*( D*u), D*u) 2
= (D*(f +h),D’u),.
1 1
< SI1D*(f + )z +3 | D*u(0)]]72- (4.3)
Here, applying the integration by parts, we get

—(D*(u’ D*u), D*u),» = JI/(D3U)2 dx +17¢ J u’ ' DuD*uD’u dx,

and

[S—

/2
—/ J u' " 'DuD*uDudx < - J ' (D3u)* dx + - J ' 2(Du)*(D*u)* dx

<

N = b

Juf(p3u)2 di+ M, || D%l
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Substituting these relations in [4.3)], we obtain
d b 2 2
7 D%l < My + DID (@) + [1D*(f + )20, 7,12

Then Gronwall’s inequality yields

2 2 \1/2 ;
sup | D%u(t)| 2 < Ma = (Ilf + hllzao, 7y + luollz,)' 2 - MDD (4.4)

0<t<T
Next, we calculate (D3(P)**, D3u) to get

1 d
5 Z D)7 + & Du(0)|7: = (D D), D)

< ID(f + 1)l 2 - 1D u(@)|] 2. (4.5)
Here, by with n =2, we have

—(D*(' D*u), D*u),, = JD2(u/D2u)D4u dx

= JL/(D“M)2 dx+ I} + I, + R3, (4.6)
where

I} = 2/Ju/_1DuD3uD4u dx,
L= /Jufl (D*u)*D*udx,

RI=/(/—-1) Juf_z(Du)zDzuD“u dx.
On the other hand, we obtain

1
17| < ZJL/(D“M)2 dx + 4/* JL/_Q(DM)Z(D3L1)2 dx

|
< ZJu/(D4u)2dx—l—M1’OO||D3u||i2, (4.7)

and by Lemma 3.3 and (4.4),

1
15| < ZJu/(D“u)zdx+fzju/_2(D2u)4dx
1
< Zjuf(z)“u)deMlmM; D3l (4.8)

Furthermore, the integration by parts for R3 gives
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Ri=—/(/—-1) “(/ — 2)u’3(Du)’ D*uD’u dx

+2 J W/ “2Du(D*u)* D3udx + JL/_Z(DM)Z(D3u)2 dx|.
Then, by virtue of and (4.4),

|R2| <M, ooMan%tan + My M3 D235 + My || D7 (4.9)
Thus, from [4.5) to [4.9] we derive
d 3y 3 3/21n3,,111/2 3 3
EHD u(t)|p2 < My ([[D7ul| 2 + My ||D7ul| 5™ + M5 + Ma) + | D7 (f + 1) 12
<My oo ||D%ull s + My oo (M5 + M) + | D> (f + h)| o
Then (4.1); holds with
My = max2Ms, (D% 2 + 1D°(f + W)l
+ M, (M5 + M) x exp{M; ,, T}]. (4.10)

Furthermore, we define M, ,, by M, = ﬁle/zM;/z, then 2M> < M» o, < M3
holds and by (3.4) in [Lemma 3.2, we find

sup || D*u()| ;. < \/EM;/ZM;/Z =M, .

0<t<Ty

Since

r2r 2/r
ull, < sup (1Dl {22 ||D2u )

2<r<owo 2<r<w

< sup (Mgo—oz)/r_Mz/;) < M.,

2<r<w

and (4.1),, , hold with m = 2.

(The case 3<m <2k -1)
Multiply D"~'(P)** by —D(|D"u|""2D"u), then by with n=m — 1,
we get

2D+ el 1) 120 ax

= ey +ID"(f + 1)l - D"l (4.11)

Im—l — _ JDm—l(u/DZM) . D(|Dmu‘r72Dmu) dx

=J(In£1+1,il+l L+ R+ R2 ) - (=D(D™u|" D™ u)) dx.
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We are going to estimate these 5 terms.

m—1 = m—1"

I le (—D(|D™ "2 D" ) dx
— - Juﬂbmuv‘—z(pm“u)z dx < 0, (4.12)

I lel (=D(|D"u|""2D"u)) dx

m—1— m

~1
=== 1) [ Du- DD
DO v 20 - [l

< Mz’oo”Dmqur‘ (413)

For the case m >4, we get
By = [ B (DUD™ Dm0
= J{m_lsz(/ — D’ 2(Du)? + (1 Co + 1) "' D2uy D™ - | D"u|* D™ u dx

+ JD(,,HCZZ(/ — D/ 2(Du)*)D" " u - |D™u| 2D u dx

+ JD((mICZ + 1)’ D*u) D™ - | D™ u| " DM u dx.
Then it is easy to obtain

I | <My || D"u| L (m=4). (4.14),

1+ My oo || D"

As for the case m = 3, it holds
E=I  +R,
= J{M—l (D*u)* + ¢(¢ — V)’ 72(Du)>D?u} - {—=D(|D*u|">D3u)} dx
= J{ML/_]Dzu + /(¢ — D’ 2(Du)*}Du| D3| DPu dx
+ J{/(/ — D’ 2Du(D*u)* + £(¢ = 1)(¢ = 2)u 3 (Du)* D*u

+2/(£ — D)/ ~2Du(D*u)?} - |D3u)" > D3udx.
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Hence, (4.11), (4.12) and (4.13) yield
d 3 3 3 h
1P ull < Moo ([ID7ul| - + 1) + D7 + )l

Then (4.3),_; holds with

M3,:>o — maX(M37 M?),OO)?

M; ., = [Mz,oo + sup {||D%up|, + ”D3(f+h)\|u(o,nu)} M T

2<r<oo

Furthermore, for the case m >4, we note that (3.12) implies

U (Ry_y + R._)) - (=D(|D™u|">D™u)) dx| < 2(¢ + 1)" - ML, - |[D™ul}.".
(4.15)

Thus, in view of (4.11), (4.12), (4.13), (4.14),, and (4.15), we obtain

d
1P Ul < CoMooo [ D™ull e+ Mig.co + [D™(f + )l

Therefore (4.1),, and (4.1),, ., are valid with

,00

Mm - maX(Mmfl,ooa Mm,Q), Mm,oo = max (Mml,om sup Mm,r);

2<r<w
Mm,r = [Mm—Loo + ”DmHOHLr T HDm(f‘i‘ h)”Ll(O,T;Lr)] ,eCmMzmT'

Now we are going to verify (4.2),. To do this, we take the inner product of
Hy between (P)*” and Au to get

ld

37 1Dull g, + el Aullzy, = —A(u'Au, Au) y, + (f + b, Au) g, (4.16)

where

—/I(Z/Au,Au)Hk = —J(u'Au, Au) > — (A" (WlAu), A% ),
—_) J o (Au)* dx + I (2).
with n = 2k gives

Bil2) = (1) [ D D) DP P

<) j o (D¥*2u) dx + I3,(2) + I3, (2) + RL(2) + RA(2).
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Here we obtain
5,02 =- J wC1u ' DuD*  uD* 2y dx
< 2k MY || Dul | Aul
& 2 1 2
< 1 ulli, + - GMueo || Dully,,
5,(2) = - J(szzf(/ — D’ 2(Du)* + (kCy + 1)’ "' D*u) - D*uD*+2y dx
< 2312 Mj, Mo dul
€ 1
ZHAuHH +- CkMZocMzka
and by (3.13)
Rék(z) + R%k(2> == J(Rzlk + R%k) - D**udx
<2/ 4+ D" My D |
< Mo+ || Du

Then, by substituting these estimates in (4.16), we have

1 d & 2
3 Dl + 4wl

1 1 1
< <E CM, o, + 1) | Dul 7, Moo Moi + Moy +— || + 41 i

Thus Gronwall’s inequality assures (4.2),. O

In showing that 9'7 becomes a contraction, we need to investigate how the
solution u of (P)** depends on h. In fact, we get the following estimates.

Lemma 4.6. Let f € LZ(O, T, Hk) and hy,hy € KI{ = {U S Lz(O, T; Hk);
0l 120, 7.,) < R} Let uy and up be solutions of (P)** belonging to BE with h
replaced by hy and h, respectively. Then there exist constants Gy and G, de-
pending only on R k,/ and 1/e such that

sup_(|[un (1) —ux(1)llp, + 1D (1) = wa(0)) 1 ,)

0<t<T

< Gie®"||hy = hal| 20,711, (4.17)

T
SL 140 — w13, di < Gie® Ty — ol 2o gy (k= 1), (4.18)
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PrOOF. As in the proof of [Lemma 4.5, we adopt the expedient notations
Cn,M,, and M,, . to mean positive numbers with the dependence C,(/,m),
M, (¢, m, M,,) and My, . (£,m, My,...).

Since uy,uy € %?, we note by that u; and u, satisfy estimates
(4.1),, and (4.1), . and (4.2),. It is easy to see that w=u; —uy satisfies

Wi+ eAw + Al Aw + Awdy Auy = Oh, (4.19)
where
d, = uf‘l + u{‘zuz +oe ulué_z + ug_l, oh =hy — hy. (4.20)
Then, by taking the inner product of Hj between and w, we have

%%”wniﬂ e\ Dwlly, + 0T + 0D + 01 + 14 < ~ i}, +%||5h||§,k, (4.21)
Ol = A(u[Aw,w), b = A(A*(u[Aw), A*w),
0L = AwdsAuy,w), 61y = J(AX(wd, Auy), A*w).
Here it is easy to get
O8] < [[u | o [1D?w 2 [l 2 < Mo 9]l (4.22)
013 < [[wll 2 lld/l] = | Aua [ o (|l 2

< Mo [wl,. (4.23)

Furthermore by virtue of (3.1), (3.5), (3.14) and and the argument similar
to that in the proof of [Lemma 3.6, we obtain

oh| < J|D2k(ufD2W) - D**w| dx

< J ! D* 2w - D*w|dx + C; J |t~ Duy D* 1w - ¥ dx
%=1, ‘
+Ce Y J]D‘(uf)Dzk‘l”w - D¥w|dx + J |D%*(uy)’ D*w - D¥w| dx
i=2
< Mooo || W] g, - (W]l 7, + CeMi oo [ DWl g, - W,

2 kA ql—
+ Mot o Wil 7y, + ML Mol D2 ],

< Mo (4wl g, + 11Dl g + (Wl )W g, (4.24)
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r

014 < | |D*(wd,D*u>) - D*w]| dx

IA

\wd, D**2u, - D*w|dx + Cy J |D(wd,)D**uy - D*w| dx

2k
+ Ck Z J |D(wd,)D**~ "2y, . D*w| dx.
i=2
< Moo [ 4 | 2 Wl 1D ] 2
+ CelllDwl o el o+ 1wl 1Dy || o ) D* a2 | D 0]
%k _
+ G Y 1D (wdy)| 2 | D* a1 | D*w] 12
i=3
+ CellD*(wdy) || - | D* a2 [ DH ]
2 2
< Moo [ A" | [l 7, + CeMu oo M3 1wl 7,
2%
+ Ci Yy D" (wer)|| 2 Mok Wil g, + Cil| D (wely) | e Mokl
i=3
By the same verification for (3.14) and 3.15), we find that
IDdy||,. < (¢ =1 My for 0<j<2k—1,
ID7dy )2 < (0 = 1) My 2y Mo
< /(0= 1) My" for 0 <j<2k.

Hence, by (3.1),

1D (wdy)||,> = ) iCiD'd, - D™ w

J=0

L2

< Gt =1 My vy,
j=0

<My wlly, (0<i<2k-1), (4.25),
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2k
Z 2kC Djd/ Dy

ID* (wdy)| > =

\..
O

L2

[\
=

-1
< D uGl (= 1My g, + 1D ol -
J

-1
( wCit (¢ = 1)) +V2£(¢ _1)2k>M2/kl|W|Hk

\ I
<)

IA

< V22 Myl (4.25)

l
Z D'd, - Dy
j=0

||D (wdy) ||Lﬂ =

L®
i

G = 1M D

A

J=0
= \/EfiHMz/l;ll HW”Hk' (4'25)1‘,00

Then
2%k

Z | D (wdy)|| > + ||D2(Wd/)||Lw
i=3

i=3

2k
< (ﬁzw + \@2“) MLl

< 2V2k/ M W, - (4.26)
Therefore,

01| < Moo A" a2 Wil g, + CeM oo Mgy 1w, + Mkl
Consequently, in view of (4.21)-(4.26), we deduce

1d

5 o Wl +llDwl,

¢ 2 1 2 1 2
< llAwlz, + 310wl + 5 Ioh,

1
1 ( My + My + My, + M, + M5, + MMHAZ"“quLz) wl3,

(4.27)

Now we are going to establish the same type of estimate for Dw in H;. To do
this, we take the inner product of Hj between and Aw to get
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d e 2
EIIDWH% +el|Aw|f, + 0I5 + 61 + 0L + 0I5 < §||Aw||§,k +E||5h||§,k, (4.28)

Do —

Ols = A(ufAw, Aw), Ol = A(AX(uAw), A¥w),
0l; = AMwds Auy, Aw), Iy = A(A*(wds Auy), A*w).
Then it is easy to see that
015 > 0, 1017| < My |0l ol Awll 2 < Mo w3 (4.29)
Furthermore, by much the same arguments as for and (4.25), we can derive
—0lg = — ) J u (A W) dx + ACy J/uf_lDulDZk“w - ARy dx

2k-1

+Cr Y JDi(uf)DZk_”zw A wdx + JDzk(“{)Dzw A hwdx
i=2
2k—1
< GMy [ D w2 | A Wl 4+ G Y MY (1wl - 145wl
i=2

D)2 - 1Dl - 4F+ vl
< CeMyc [ Dl g, - 1AW+ M1 [l [ 4w,
VMG Mo, v
< CaMy o [ Dl [ AW, -+ Mot | Al (4.30)

01g] < J|wd/D2k+2u2 - Ay dx 4 G, J \D(wd;)D*luy - A% | dx

2k
+ Cy Z J |D'(wd,) D=2y, - A¥ | dx
i=2

< MO,ooHWHm ||Ak+lu2||L2||Ak+1W||L2 + Ck[”DWHLw ||d/||L°° + ||W||Lw||D(d/)||Lw]

2k
X [[D¥F iy o A Wl 2 Cic D 1D (wely )| 2 | D 2| o | A ] 12
i=3

+ CellD?(wd)| - [ D | o 4™ ] 2

< Moo [ A o] Wl AW 1, + CeMu e My Wl [| 4w,

+ Moy ||w

a AW g+ Moo |l w]l g, Mok || Aw|| 5,

< (Mool 4" a2l 2+ CoeMi oo M3y + M (Mg + 1))l 14| - (4.31)
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Thus, in view of (4.28)—(4.31), we get

1 d

2 2
5 S IDwl, + el v,

€ 2 2 2
< gl!AWIIHk +g||5h||Hk
+ (Moo | A" ol 2 + CeM o My + M) W] g, 1AW g,

2
+ GMy o[ Dw|[ [ AWl g, + Mo o[ W[y,
3¢ 2 2 2 1 2
< vl + [6h], +- Mo D3,

1
(1 )M s (013 ) M Dl (432
Therefore, combining (4.27) with (4.32), we find that there exists a constant K
depending only on 1/e,k,/,Ma ., My, M3, such that

1 d

2 2 € 2
5 2 (vl + 1Dwllz,) + 5 4wl

2 1
2 2 2 2
< Ky (3, + 1Dwl) (145 ]2+ 1) + (; +5) Ioh,.

Hence, since ||Ak+1u2||iz belong to L'(0,T) by (4.2),, Gronwall’s inequality
yields (4.17) and (4.18). O
Now we are ready to prove [Lemma 4.4.
PrOOF OF LEMMA 4.4. We choose a positive number such that
R? = |[uol 7201 + 11/ 1 20, 73y + 1 (4.33)

Let he Kg = {ve L*(0, T; Hy); vl 120,715,y < R} and let u be a unique solution
of (P)** belonging to #%. Then, assures that there exist numbers
My, = MZk(k, Z, R) and M§k+1 = Mz‘p'k+1(k, /, R, My, 8) such that

sup  [|[D"u(t)||;- + sup |[|1D"u(t)|| . < My, (4.34)
0<t<T 0<t<T
2<r<owo 2<m<2k
0<m<2k—1
[sup_ 1Du()l| g, + Vel D u(t) 120, 7.1y < My i1 (4.35)
<t<

We are going to show below that 9'77)' maps K/ into itself for a sufficiently small
n. We first note that

||9’;7}'(h)||L2(07T;Hk) = ’7(||Z/Au||L2(O,T;L2) + ”Ak(u/Au)”LZ(QT;L?))a

||u/Au||L2(0,T;L2) = szljl T.
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Moreover, by using (4.34), (4.35), [Lemma 3.6, (3.14) and (3.15), we get
||Ak(“/A“)||L2(0,T;L2)

2%+2 /—1 2he+1
< ||“/D N ”||L2 0,7;22) T ||2kC1/”/ DuD>" ”||L2(0,T;L2)

+ Z 2% Cil| D (u/) D*~ l+2“||L2 0,7:12) T 1D (u /)DZUHL2(O7T;L2)

| 21
My M3, | + \/—(2kC1/Mzk ka1 + Z wCit "My + ﬂka/f)

J =2

1 &

\/—M wMap iy + (4 + I)Zkszk(Mzk + M2k+1)ﬁ~
Thus we find

12 )l 20, 7.1y < PL(R),

Pi(R) = My'VT + (%

Here 9*77}“ maps K into itself for all # such that n < R/(Pi(R)).
Next, we are going to show that 9;7 becomes a contraction, let /1,4, € KX
and let u; and u, be the solutions of (P)** with & replaced by &, and h, re-

spectively, then we get

My Mg+ (7 + 1) My (Mo + M§k+l)\/_f)'

15 () = 7 (o)l g, < n(lg A = wo)l| g, + 116 — ) Awallg,).— (4.36)

Using the same notations w = u; — up, d, and the same argument as in the proof

of Lemma 4.6, we obtain
e Awll g, = [l Aw| 2 + || A% (] AW)]| 12
My || Aw] - + (HM/AkHWHLz + [|12k/ui ™ Duy D¥H w2

2k—1
D IRCILITL +||DZ"<u1>D2w||Lz)

Mol Awl, + 2k¢ My || Dwl]
2%-1

+ Y w Gl My |[wll g, + V20 M| wll

M (14w ] g, + 2k 1D, + V2(2 + 1) w1, (4.37)
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(7 — u5) Aua |
= ||wd, Auz ||,
= ||lwd, Aus|| ;> + || A% (wdy Aur) || -
< My Wl ol Aual| 2 + [wds A" g | 2 + 126D (wd ) D a2

2k—1
+ ) wGlID (wd)D* || 2 + | D* (wed) D | .
i=2

< VUMY Wl g, + V2 M A ]l + 292k M Ml

2%-1
+V2 Z 2kCi/l+1M§k_1||WHHkM2k + \/§/Zk+1Mz2/f_l”WHHkM2k
i=2

2%-1
< ||W||Hk {szk (\/5/ + \@(Z S Cit T+ /2k+1>>

i=2
+ V2 My A )l + 2ﬁk/2M§klM§k+1]

< Wil Ma V2L (14 (4 + D) Moge + | A | 2+ 2Kk M) (438)

Then, by substituting estimates (4.17) and (4.18) in (4.37) and (4.38), we find that
there exists a number P>(R) > 0 depending only on R k,/,¢ and T such that

17 (h) = Z ()| 20,7
< ﬂersz(R)th - h2||L2(0, T:Hy)"

Therefore, for every 5 e (0,7,) with 5, = min(R/(Pi(R)),1/(2P>(R)e%T)), 9;'7;“
becomes a contraction from KRT into itself. ]

4.2. Approximate equations: local existence.
In this subsection, we are going to show that approximate equations (P)°
admit local solutions.

LemMA 4.7. Let uge H*'(R), ke N (k> 2), then there exists a positive
number Ty depending only on & k,/ and ||uol|| o such that (P)° has a unique
solution u belonging to %1}0.

To prove this lemma, we shall apply the arguments similar to those in the
proof of [Lemma 4.3. We introduce the following auxiliary equations.
P): (d/dt)u(t) + eAu(t) + u'Au(t) = h(t), 0<t<T,
"\ u(0) = .
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assures that for any /e L*(0, T; Hy) and uy € H**1(R), (P); has a
unique solution u belonging to e%’l} So we can define an operator . by
S heues L) ()

Therefore, to prove [Lemma 4.7, it suffices to show that ¥ becomes a con-
traction from K' := {v e L(0, Ty; Hy); 10l 120, 7 1,y < R} 1nto itself for suitable
R and Ty.

Proor oF LEMMA 4.7. We choose R > 0 such that
R = [lug] s + 1.

Let he KRT0 with 0 < 7) < T, and let u be a unique solution of (P), belonging to
93’}0. Then, says that there exist numbers My, = My (k,/,R) and
M5 = Mj,  (k,/,R, My,¢) such that (4.34) and (4.35) hold true. We easily
note that

| )Ly, = 6" (Du)|| 2 + I D (0™ (Du)?) | .,

146 (D)2 < (2Nl | Dull7e) < £ Mz
Moreover, by [Lemma 3.7, we get
4
_ 2 i
1D (2u =" (D)) g2 < Wil + 15l + D 1S5l 2,
=1

1310l 2 = 11246~ DuD>*ul| 1, < 2/Mé/kMigk+1a
132 = (4K + 1A/ = D (D) + dktu' ' D2u) Dl .
< (4k + V)2 Mo,

4
> 1SSl < 4kt (4 + 1) My
j=1

Hence, we obtain
1L 20, 710 < V T0Q1(R), (4.39)
Q1 (R) = M§LR2M3, | + (4k + 2)/ +4k/ (£ 4 1)) My).

Let hy,hp e K RTO and let u; and u, be the unique solutions of (P), with & replaced
by h; and h, respectively. Then, by using the notations w = u; — up and

di_ = u{’z + u{’3u2 + 4 u1u§’3 + ug’z,
we have

F(h)— S (h) = /u{‘lD(ul + uy)Dw + /dg_l(Duz)zw.
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Hence
1 () = S (h2) |y, < 146" D(ur + u2) Dw|[ 2 + [[D*(£uy ™" D(utr +12) D) .2
+ |41 (Duz)*wl| 2 + [ID* (¢ 1 (Duz) *w) | 2.
It is easy to see
|44 D(ur + u2) Dw 2 + |1 (Do) w2 < 20 M |l gy, + (4 = )My |,
</(/+ I)Mik‘|w|‘Hk' (4.40)
Furthermore we obtain, by (3.14)

||D2k(/uf*1D(u1 + u2) Dw)|| ;2

%2
< |4u7 D(uy + ) D) 2 + Z wCil| D (467 D(uy 4 1)) D* w1
i=1

+ |k Cor 1 D> (Zuy ™' D(ur +12)) Dl 2 + | D (41,7 Dy + u2)) Dw|| .2

2k—2 i
<2 My |ID* w2+ 4 uG Z 1D @ DD )| e W],
i=1 j=0
2k—1 . .
+ 2kt Y a1 GID (| 1D (it + o)l 2 1 DPw e
i=0
2k—1 . .
£ % CID gl 1Dy + )|l D
i=0

+ 2| D (i) | I D (s + )| o [|DW]|
2k—2 i
<MY D wll o+ £ wCi Y G4 — 1) MG 2 Mo wll
i=1 j=0

2k—1
+2k0 ) " w1 Gl — 1) My 2My V2wl
i=0

2%
+ /Z wkCi(f — 1) ML 2( Moy, + M28k+1)\/§||w||ﬂk
i=0

< 2/M2/k”DW||Hk

2k-2

+20M5 Wl [(Z wCit' + 2\/§k/2k1> Moy + V20 (Mo + M3, )
i=1

< 20 M| Dw g+ 2V20 MYy (Mo + Mg )(2 + 1) |[wll .. (4.41)
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Here, by the same argument as in the proof of Lemma 4.6, we find

1D (dy—1(Du)?)|| .«

< |(D'dy1)(Dws)|| e + Y iGil12D7 ™ (Dua D*uz) D' (1) | .
=1

<= =)' My My + ) G227 M (0= 1)( - 2) T My
j=1
<((-1)0'MYy, (0<i<2k-2).
Similarly we get
1D (1 (Duz)?) 12 < (£ = 1) My,
| D (dr1(Du2)?) |2 < (4 = ) My (Mo + M5 ).

Therefore,

|D* (£dy -1 (Duy)*)wl| .2

2k=2

< > wGl|D (d/1(Duz)*) D* w1
i=0

+ 25k Cote—1 | DN (dy -1 (Dua)*) DW|| 12 + || D* (1 (D) w1
k-2

</(/-1) ( > uCit My |wll g, + 2> My | D?w])
i=0

+ fszsz_l (Mo + Mzgkﬂ)”WL%)

< V20 = 1)(¢ + DML (Mo + M) Wl g - (4.42)

Thus, by substituting (4.17) in [(4.40)—{(4.42), we find that there exists a number
0>(R) depending only on R,k,/ and ¢ such that

1 () = S () 120, 7 1) < V Toe T Qa(R) Iy = hall 120, 7, 11, (4.43)

In view of and (4.43), we set

e gl Gt )
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then % becomes a contraction from K,° into itself. Therefore there exists a
fixed point /g of & in K1° and it is clear that the solution of (P); with / replaced
by hy gives the unique solution of (P)°. O

4.3. Approximate equations: global existence.

In this subsection, we are going to show that the local solutions of (P)
constructed in the previous subsection can be continued globally. As we ob-
served in the Proof of [Lemma 4.7, the solution u(#) on [0,7) can be continued
to the right of t = Ty if ||u(?)|| g2+ 1s bounded on [0, 7). Therefore, in order to
prove the existence of global solutions of (P)°, we have only to establish the a
priori bound for the H**!-norm of solutions. In fact, our main results in this
subsection are as follows.

LemMa 4.8. Let ug € H**(R) with ke N (k > 2), then (P)® has a unique
global solution u such that ue%’]; for all T > 0.

This lemma is a direct consequence of [Lemma 4.7 and the following [CLemmal
4.9.

LEMMA 4.9. Let u be a solution of (P)° belonging to %%. Then there exist
numbers {Lm}Zk_Jrl {Lmyoo},znllo such that

m=0 »
Ly, <Ly <Ly, 0<m<2k, (4.44)
sup [|[D"u(t)||;» < Ly, 0<m<2k+1, (4.45),,
0<t<T
sup ||[D"u(t)||;r < Lo, 0<m<2k. (445),, .,
i |

Here L, and L, ., do not depend on ¢ explicitly except L ., more precisely,

L() = LO(HMOHL2)7 L07oo = L(Loo ( sup Lr),
2<r<w

Li=L,= Ll,oo< sup ||[Duol|; .7, Loyw,g),
2<r<w
Ly = Ly(||D%uoll 2,4, Ly o),
Ly = Lsy(| D*uo| 12,4, Li s La),
Ly = V2L LY,

Lm - Lm(HDmuO“LZa /, mel,oo)a

Ly = Lm,oc( sup ||Dmuo||L,,f,Lm_1,oc>, (m>3).

2<r<w
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Proor. We repeat the same type of arguments as in the proof of [Lemmal
4.5. We here denote by L,, (or L,, ) positive numbers depending only on /,m
and L,, (or L, ), which will have different values in different places.

(The case m = 0)
Multiplication of (P)* by |u|" *u gives

Ju

d
Gl et = 1) [l 20w 4= 1) [l 0w
- 4 u|” "2 (Du)? dx,
whence follows

d
-1
lull " Nl < 0.

Then we get

sup ||u
0<t<T

1 < |luol|,» for all re 2, 0], (4.46)

which yields (4.45),

n

and (4.45), , with m=0.

0

(The case m = 1)

The direct energy method as in the proof of does not work for this
case. However, we can apply the argument of Oleinik and Kruzhkov based
on the change of variables and the maximum principle to get a priori bound of
|Dul|;... For example, Theorem 11.16 of Lieberman assures that there
exists a constant Cj ., depending only on |Dug||;-,Z, Lo and & such that

sup |[Du(t)],» < Cioe. (4.47)

0<t<T

On the other hand, multiplication of (P)* by —D?u and the integration by parts
yield

N —

%HDuHiz + J(g +u ) (D*u) dx = /(- 1) Juf—z(Du)“ dx

< Lo C},|1Dul}..

Hence, by Gronwall’s inequality and the inequality |jul,, < ||u||i/2r||u||(Lr§ 2fr

deduce (4.45) and (4.45) with m = 1.

m, o0

wgE

5

m
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(The case m = 2)
Multiplication of D?(P)® by D?u with the integration by parts gives

% di[” D*u;» +&l|D*ul . = (D*(u' D*u), D*u) . + (D*(¢u' " (Du)*), D*u) .
= — JL/(D%{)2 dx — 3/Ju/_lDuD2uD3u dx
—(((—-1) Ju/_z(Du)3D3udx.
Here we get

3
-3/ J u " 'DuD*uDudx < = J W (D*u)? dx + 342 JL/Z(DM)Z(DZM)Z dx

<

AW &

Ju/(D3u)2dx—|-LLOOHDzuHiz
and by
—/({—1) JL/Z(Du)3D3udx =/(/ 1) JD(L/Z(Du)3)D2udx
2,112
< Lio - [[D7ul|1-.

Hence it holds that

d 2

1D ull e < Liool|D7ul| 2.
Therefore, by Gronwall’s inequality, (4.45),, with m =2 is assured with L, =

maX(LLOO,exp(leT)HDzuoHLz).
Next, we calculate (D3(P)?, D3u) to get

1 d
2 di
By exactly the same arguments as for [4.6}{4.9), we can obtain

ID*ullz> + el D*ull s = (D* (' D*u), D*u) 2 + (D (¢~ (Du)?), D*u) .

|
(D% D), D), < 5 [ (D' v+ La(D%uls + D). (448)
On the other hand, with n =3 yields

(D*(tu/ N (Du)?),D3u),, =T} + T2 +8, S=8+S5+35;,
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where

J3 = | 2¢v""'DuD*uD*u dx,
T2 = |{74(¢ = D)/ 2(Du)? + 6/u’ "' D*u} (D3u)* dx,
Sy = [92(¢ = 1)(¢ = 2)u’ 3 (Du)* D*uD’u dx,

Sy = | 12/(¢ = 1)/ "> Du(D*u)*D3u dx,

Sy = |44 = 1)(¢=2)(¢ = 3)u'*(Du)’ D*udnx.
Here we have

Jy < JL/(D“M)Z dx + Ly || D*ul 7,

B —

J} <Ly, |D%|;. + 3/Juf—1D3uD((Dzu)2) dx,
and by (3.6),

1 =
3/Juf—lp3u1)((1)2u)2) dx = —3/Juf—1(02u)21)4u dx =S

1 1 -
< ZJuK(D“u)de—I—9/2Ju/_2(D2u)4dx—ZSZ
1 1 -
< ZJuK(D4u)2dx—I—L2||D3u||L2 —ZSZ.

Furthermore, by (3.4),
S1+ 82 < Lio Lo||Dul| 12 (1 4+ Ly + || Duf| 2,

S5 < Lo || D] 2.

Consequently, we deduce
1
(D3 (4~ (Du)?), D), < Ejufw“u)zdx+Lz||D3u||Lz<||D3u||Lz £1). (449)
Thus, in view of (4.48) and (4.49), we obtain

d
T ID%ull 2 < La(IID*u]| 2 + 1)
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Then (4.45),, with m =3 holds with
Ly = max(2L,, (|| D3upl| ;> + L) exp(L,T)).

Now we can apply the same verification for (4.1), , with m=2 to derive
(4.45),, . with m = 2.

w
(The case 3 <m < 2k)
We multiply D"'(P)* by —D(|D™u|""2D"u) to get
m, 1r—1 d m m, |F—2/ ym+1_ 2 .
D"l 10"l + = 1) [ 1Dl D ) o = s 4
Ly = — JD”"I (' D*u) - D(|D"u)" > D"u) dx,
I = JDm(/uf—l(Du)2)|Dmu|"szu dx.

We first note that exactly the same arguments as for [4.12)—(4.15) give

L1 <—(r—1) juﬂmuv—z(m“u)zdx

D"l (L | D"l A L), (4.50)
Making use of [Lemma 3.7 with n =m, we get
. pa— 4 —_
In = ;11 + nzq + Z AY
i=1
Ji = JJ,;|Dmu|’—2Dmudx (i=1,2), (4.51)
Si = JS;\D"’uy"QDmudx (i=1,2,3,4).

It is easy to see
Ty < Lo |[D™ull},, (4.52)

and by (3.17)

s (4.53)
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Moreover, by Schwarz’s inequality, we have

J = 2/Ju/1DuD’”+1u|Dmu|r_2Dmu dx

<3 . (4.54)

1 _
< _Juﬂpmuv 2(D" 1) dx + Lo, | D™
Hence we deduce

d
D"l < Lo D]+ L

Now it is clear that there exist numbers L, and L, ., satisfying (4.45), and
(4.45),, , for all 3 <m < 2k.

(The case m =2k + 1)
Multiplying 4%(P)® by A**u, we get

3 DSl A5 s = D (455)
where
by = — JDzk(u/Dzu)Dzk”u dx,
J2k+1 _ JDzkH(uf_l(Du)z)DZkHudx.
Then with n = 2k gives
Ly = — JL/(Dz"”u)2 dx + I3 + I3, + Ry, + Ry,

I3, = | %Ci/u’ ' DuD*  uD* 2y dx,

I = [{aGot (¢ = D' 2(Du)” + (o + 1)~ D*uy D*uD* u dx,

By the integration by parts and (3.13), we easily find

I < Lo [ID* ] 7 + L[| D] 2| D*+ | 2,

Ry + B3, < Lok||D* .
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Moreover, by Schwarz’s inequality,

D2k+1u||i2.

- 1
I3 < 1 J u (D*2u) dx + Ly
On the other hand, by with n =2k + 1, we get

J2k+1 _ JDZkJrl (/u/fl (Du)Z)D2k+lu dx
< J2/u/_1DuD2k+2uD2k+ludx
+ J((4k + 30— Dl 2 (Du)* + 22k + 1)~ D) (D¥H u)? dx

4
+J SékHDzkHudx
=

1
< ZJUZ(D2k+2u)2 dx + ||D2k+1u||L2 (L27oo ||D2k+lu||L2 + L2k—1,OOL2k)~

Thus we deduce

d
7 ID**ull 2 < Looo | Dt 2 + L,

whence follows (4.25) ~with m =2k + 1. O

m

5. Proof of Theorem.

In this section, we give a proof of our main theorem. To do this, it suffices
to observe that the following theorem holds true.

THEOREM 5.1, Let ug € H**1(R) with k e N (k > 2), then there exists a posi-
tive number Ty depending only on ¢, ||uy||,, and |(uo).||,, such that (P) has a uni-
que solution u belonging to 6%, := {ve C([0, To]; H*(R)); ve L*(0, To; H**'(R)),
v; € L0, To; H**(R)), v’ D*>v e L?(0, To; H*(R))}, such that

sup | 0l 1oy < w0l r)- (5.1)

0<t<T,

Moreover Ty can be chosen as a monotone decreasing function of ||(uo) .||, such
that Ty tends to 0 as ||(u),||;~ tends to oo.

As an immediate consequence of this theorem, the following corollary holds.

COROLLARY 5.2. A solution u of (P) in [0,T) belonging to % I;O for all
Ty €[0,T) can be continued as a solution of (P) belonging to (6% for some Ty > T,
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if and only if |lux(-,t)|| L= (g) is bounded on [0,T). Furthermore, if u can not be
continued as a solution of (P) belonging to € ]}1 for some Ty > T, then it holds that

ltlTT}1||“x('al)||Lw<R) = +0. (5.2)

To prove Theorem 3.1, we prepare the following lemma.

LemMMA 5.3. Let ug e H**'(R) with ke N (k >2) and let u be the unique
global solution of (P)* belonging to A% for all T > 0 (whose existence is assured by
Lemma 4.8). Then there exists a positive number T, depending only on ¢, ||uy||,
and ||(uo) .|, not on & such that (4.44), (4.45),, (4.45), . hold true with T
replaced by Ty and constants L, (0 <m <2k+1) and L, (0 <m <2k) are
independent of e.

Furthermore it holds that

Ty
o[ UD e < L, (53)
0
Ty
J Ju/(Dzk”u(t))z dxdt < Loy, (5.4)
0
Ty 5
|l de < Lo (55)
0

Here Ty can be chosen as a monotone decreasing function of ||(uo),| ;. such that
Ty tends to 0 as ||(up),||;~ tends to oo.

Proor. Recalling the proof of [Lemma 4.9, we find that if we establish the a
priori bound for sup,., | Du(t)||;. for some Ty > 0, then (4.44), (4.45), and
(4.45)m’oo hold true with 7' = T, and constants L,, and L,, ,, do not depend on e.

Furthermore, in view of the arguments for the case m = 2k + 1 in the proof of
[Lemma 4.9, we easily see that holds true. Hence is also derived form

(4.55). Moreover, since

k
el g, = Nl 2+ D oue] .

< |D(u Du) + eD?ul|;> + | D*F1 (o Du) + eD*F2ul|,

1/2
< (4 1)L{ Ly +elr + (J(L/Dy‘”u)2 dx) + Ve|VeD* 2|,

2k+1 . '
3 waGllD W )DH
i=1

it is easy to obtain [3.3).
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Now we are going to derive the a priori bound of ||Du(?)||;... Multiplying
(P) by —D(|Du|"*Du) = —(r — 1)|Du|""2D?u, we get, by (4.46),

| Du

o % |1Dul|,, + (r—1) Ju/]Du|r_2(D2u)2dx

=—(r—1) J/u/_l (Du)?|Du)" > D*u dx

—1 .
= —F—J/uKID(|Du|'Du) dx
r+1

_r—l
S+l

J/(/ — 1)/ 2| Du|"? dx

/-2 2
< (¢ = Dlluolls=2| Dul2. | Du

v (5.6)

Hence

t
/-2 2
[1Du(®)]| L < | Duollr + £(7 = D)ljuo]| L [Du(s)|| - || Du(s) |l .- ds.
Noting that |[Dul|,, < ||Du||(Lr;2)/r||Du||i/2r and letting r tends to oo, we find by

lemma 3.4 that
t
1Du(t)|| - < 1Dugl - + £ (£ = 1) Juol|7 JO 1Du(s)||;.. ds. (5.7)

Here we define T by

1
Ty = — : (5.8)
£(¢ = Dluoll (| Duo - +2)°
Then the following estimate holds
| Du(t)|| ~ < ||Dug||;~ +2=: Ko for all te ][0, Tp). (5.9)

Indeed, suppose that (5.9) does not hold, then there exists a number ¢; € [0, T}
such that || Du(t)||;.. > Ko. Since ||[Duyl|;.. < Ko and ||Du(?)||;. is a continuous
function, there exists 7y € (0, #;] such that || Du(t)||;. = Ko and ||Du(t)| < Ky for
all 1€[0,7). Hence by (5.7) and the definition of T, we obtain

/=2
Ko = |[Du(ty)|| o < || Dugl| o + £ (¢ = 1)l|uol|7" K5 To
< [[Duoll . + 1,

which leads to a contradiction. Thus the a priori bound for || Du(t)||;. on [0, Ty
is derived. [l
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ProoOF OF THEOREM 5.1. Let u, be the global solution of (P)* belonging to
%]; Then, by Lemma 5.3, we know that {w.},, is bounded in L*(0, Tp;
H*+Y(R)) and [5.3)-{5.5) hold good with u =u, for all ¢>0. Now we are
going to show below that {u,},., forms a Cauchy sequence in C([0, Ty); H*(R)).
For any ¢ >0, & > 0, we denote u; =u,,, up =u,, and w=u; —u;. Then w
satisfies

w; — 81D2u1 + 82D2u2
1
=——D*(d 5.10
Fr1D ) (5.10)

= u!D>w + d;D*uyw + (1t "' D(uy + uz) Dw + £ (Duy)*dy_yw, (5.11)

where d; = /™" + 0wy + -+ w2 w7
Multiplication of by w gives
1d
2 dt

1
Iwlize < (et D%uill 2 + e2| Duall o) il +/—+Ide+1wD2wdx

< (e +e2) Lallwll o + LT Wl | D*w] o (5.12)

We differentiate (5.11) once and multiply it by —D3w, then we have

1 d ,
3 EHDszLz

< (&1 D*uy IrE +82||D4u2||L2)||D2w||L2 — Juf(D3w)2 dx — J/u{‘lDulDzwD3wdx
+ JDz(d/Dzuzw)Dzw dx — J/ule(ul + uy) D*wD3w dx
+ JD(/(/ — 1), 2 Duy D(uy + upy) Dw) D*w dx
+ JD(/ulez(ul + 1) Dw)D*w dx + JD(/(Dzuz)zd/_lw)Dzw dx
< (e1 + &) La|| D] 2 — Juf(D3w)2 dx +%Ju{(D3w)2 dx
[ 2 D)D)+ D D) || D%+ [ (D)2
+ J/zu{_z(D(ul + 1)) (D*w)? dx

+ /(¢ = DD Dur D(uy + u2) Dw) | 2 [ D*w]]
+Z|ID(ui ™ D (ur + ) Dw)| | D*w]| .
+£|[D(D*uz)*dy—yw)| 2 | D*w] 2.
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Then it is easy to see that there exists a constant C, depending only on / such
that

l1d
27 ID*wl|z2 < (o1 + e2) La| D*wl| 2 + CLY | D?w] 2. (5.13)

Hence, by (5.12), (5.13) and Gronwall’s inequality, we obtain
Iwll ;2 < 2(e1 + &2) Lael &V Ve e [0, T

Thus {u.},., forms a Cauchy sequence in C([0, Ty]; H*(R)).

Here we note that u/D?u, and /(u’ “1(Du,)* are also bounded in
L?(0, Ty; H**(R)) since u, is bounded in L*(0, To; H**!'(R)) and satisfies [5.4).
Therefore, in view of [5.3]-{5.5), we find that there exists a sequence &, — 0 such
that {u,} = {u, } satisfies

Uy — U strongly in C([0, To); H*(R)),
Uy — U weakly in L(0, To; H*"(R)),

and weakly star in L*(0, To; H*T'(R)),

(tn), — 1y weakly in L*(0, To; H*(R)),
' D*u, — g weakly in L*(0, To; H*(R)),
(" (Duy)* — x - weakly in L*(0, To; H*(R)),
enD*, — 0 strongly in L?(0, To; H*(R)).

On the other hand, since the convergence of u, to u in C([0, Ty]; H*(R)) implies
that u, converges to u in L*(0,Ty; L™ (R)), it is clear that

u’ D*u, — v’ D*u strongly in L*(0, Ty; L*(R)),
/ui_l(Dun)2 — /7N (Du)*  strongly in L*(0, Ty; L*(R)),

whence follow ¢ =u/D?u and y = /u’~'(D*u). Consequently u belongs to
Wh2(0, To; H*(R)), which implies that u € C([0, To]; H*(R)). Then u turns out
to be the desired solution in Theorem 5.1. O

Now we are ready to prove our main theorem.

ProOF OF THEOREM. Since ug € ()_  H"(R), says that solu-
tion u belongs to ‘61}0 for all k. Therefore u, € L*(0, Ty; H"(R)) for all m e N.
Noting that u,, = D*(u’u,), we know u, € L*(0, To; H™(R)) for all m e N, which
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implies u, € C([0, To]; H™(R)) for all me N. Repeating this procedure, we easily
find that D/u e C([0, Ty]; H"(R)) for all j,me N. Then the standard argument
assures that ue C*([0, Ty] x R). O

CONCLUDING REMARKS.

(0) Our arguments can cover also porous medium equations with external
forces. For example, for any wuge H**!'(R) and f e L*(0,T;H*(R)), the
assertion of holds true also for the equation: u; = (u/ + &)uy, +
(u " (ue)® + f(x,1); u(x,0) = ug(x). Therefore, under additional assumption

e}
(A3) fe () L*0,T;H"(R))NC*([0,T] x R),
m=0
the non-autonomous equations: u, = (uuy) + f(x,1); u(x,0) = up(x), admit
unique local C*-solutions.
(1) Consider the following parabolic equation governed by the leading term
with the external force f:

u = t'uy +£(x,0), (x,1)e R x[0,00),
(P)O{ u(x,0) = up(x), xeR.

Then assures that for every f e L>(0, T; H**(R)) and uy € H**1(R),
the approximate equation (P); of (P), admits a unique solution u belonging to
A%. Moreover, in parallel with (4.46) and [[5.6), ie., multiplying (P); by [u|"*u
and —D(|Du|""*Du), we now have

g+ ol = 1) [ 20w e ¢ = 1) [l D)

r—1
< Al lluell e
4 d _ _
||Du||2r1E|lDu i U 1)J(8+L/)|Du|r (D) dx < || Df || || Dull
Hence, we obtain the a priori estimate:
sup {[|u(2)|[ - + ([ Du(r)] . }
0<t<T
T
< [luoll» + [ Duoll - + JO SNl + 1D 1] ) dis. (5.14)

Thus, by the same arguments as in the proofs of [Lemma 4.3 and [Theorem 5.1,
we conclude that for every f e L*(0,T; H*(R)) and uy € H*(R), (P), has a
unique (global) solution u belonging to (6’; Furthermore, if /€ C* ([0, T] x R)
N(\:_, L*0,T; H"(R)), then the solution u of (P), belongs to C*([0,T] x R).
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(2) It is also possible to treat the initial boundary value problems in our
framework. For example, for homogeneous Dirichlet problem denoted by (P)p,
and homogeneous Neumann problem denoted by (P)y, in some interval / R,
the same arguments as above with obvious modifications show that (P), and
(P)y have the (time) local C*-solutions, provided that uy € (),_, H™(I) satisfies
the following compatibility conditions (C)y and (C)y respectively:

(C)p DY %u|,; =0 for all jeN,
(C)y D¥ 'uly; =0 for all jeN.

(3) Our framework can work also for the multi-dimension cases with some
modifications which contain much more heavy calculations than those in the one-
dimensional case. However, for the higher dimensional cases, the existence time
To depends on up to the second derivatives of the initial data, 1e., Ty =

To(l[uol 2 )-
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