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Abstract. It is known that the formal solution to an equation of non-Kowalevski

type is divergent in general. To this divergent solution it is important to evaluate the

rate of divergence or the Gevrey order, and such a result is often called a Maillet type

theorem. In this paper the Maillet type theorem is proved for divergent solutions to

singular partial di¨erential equations of non-Kowalevski type, and it is shown that the

Gevrey order is characterized by a Newton polygon associated with an equation. In

order to prove our results the majorant method is e¨ectively employed.

1. Introduction and main result.

The purpose of this paper is to characterize the formal Gevrey order of

divergent solutions to singular nonlinear partial di¨erential equations of non

Kowalevski type. Such characterization theorem is often called a Maillet type

theorem.

In 1903, Maillet [4] proved that if an algebraic ordinary di¨erential

equation has a formal power series solution then this formal power series

solution is in some formal Gevrey class. Later, by GeÂrard [1] and Malgrange

[5] the result was extended to general analytic ordinary di¨erential equations.

This result was generalized to partial di¨erential equations by GeÂrard-Tahara

[2], and they got a critical value of Gevrey order for singular nonlinear partial

di¨erential equations [3, Chapter 6]. Moreover, they studied many other

problems for singular nonlinear partial di¨erential equations which are found in

their book [3].

In linear partial di¨erential equations, various kinds of Maillet type theorems

were proved by Miyake [7], [8] and Miyake-Hashimoto [9].

In this paper we shall give a critical value of Gevrey order for more general

equations than theirs.

Let �t; x� � �t; x1; . . . ; xd� denote �1� d�-dimensional complex variables. In

this paper we use the following abbreviations. qt � q=qt; qx � �q=qx1; . . . ; q=qxd�
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and for a multi-index a � �a1; . . . ; ad� A N
d �N � f0; 1; 2; . . .g� we denote jaj �

a1 � � � � � ad and q
a

x � �q=qx1�
a1 � � � �q=qxd�

ad .

We denote by OR the set of holomorphic functions in x variables in a

neighborhood of the closed polydisk centered at the origin of radius R, by OR��t��

the ring of formal power series in t with coe½cients in OR, and we set O��t�� �

6
R>0

OR��t��. We denote by ORftg the subring of OR��t�� of convergent power

series in t near t � 0, and we set Oftg � 6
R>0

ORftg, which is the set of holo-

morphic functions in �t; x� variables in a neighborhood of the origin.

Let n;m;m0;N; k be ®xed nonnegative integers, which satisfy mam0aN.

Let D � f� j; a� A N �N
d
: 0a jam0; 0a j � jajaNg, and d be the cardi-

nal of D, i.e. d � ]D. We denote by X � �Xja�� j;a� AD A C
d the complex variables.

Let f �t; x;X � be a holomorphic function in a neighborhood of the origin of

C � C
n � C

d with Taylor expansion

f �t; x;X� �
X

�p;q� AN�N
d

fpq�x�t
pX q; X q �

Y

� j;a� AD

X
qja
ja ; �q � �qja� A N

d�:

We consider the following nonlinear partial di¨erential equation,

tnqm
t u�t; x� � a�x�tkÿm�n � f �t; x; fq j

t q
a

xu�t; x�g� j;a� AD�;

u�t; x� � O�tk�

(

�1:1�

where a�x� �a�x�2 0� is holomorphic in a neighborhood of the origin.

In the equation (1.1) we assume the following relation

m0 < k�1:2�

between the vanishing order k of u�t; x� and m0 in the set of multi-indices D.

Moreover we assume the following condition.

fpq�x�1 0; if V�p; q� :� p�
X

� j;a� AD

�k ÿ j�qjaa k ÿm� n:�1:3�

Now we introduce some notations.
. J � f�p; q� : jqjb 1; fpq�x�2 0g,
. N�p; q� � maxf j � jaj : qja 0 0g, for �p; q� A J.

We de®ne a non-negative constant s by

s � max
�p;q� A J

0;
N�p; q� ÿm

V�p; q� ÿ �k ÿm� n�

� �

:�1:4�

Then the main result in this paper is stated as follows.
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Theorem 1. Under the assumptions (1.2) and (1.3), the equation (1.1) has a

unique formal solution of the form

u�t; x� �
Xy

i�k

ui�x�t
i
A O��t��;

and it is in the formal Gevrey class G
�1�s�, which is de®ned below. Especially if

s � 0 then the above formal solution is convergent.

Definition 1 (s-Borel transformation and Gevrey order). Let sb 1. For a

formal power series u�t; x� �
P

ib0 ui�x�t
i
A O��t��, we de®ne

v�t; x� �
X

ib0

ui�x�

�i!�sÿ1
t i;

which is called the s-Borel transformation of u�t; x�.

If the s-Borel transformation v�t; x� of u�t; x� is in Oftg, then we say that

u�t; x� is in the formal Gevrey class G
�s�, and s is called the Gevrey order of

u�t; x�.

Remark 1. It is obvious that G
�1� � Oftg, and by the de®nition we have

G
�s�

HG
�s 0� if s 0b s.

Remark 2. Here we give some remarks on the assumptions imposed in

Theorem 1.

(i) The assumptions (1.2) and (1.3) in Theorem 1 are imposed to ensure

the existence and uniqueness of the formal solution of (1.1). (See Examples 1

and 2.)

(ii) In general, 1� s is the best constant for the Gevrey order of formal

solution of (1.1) as we shall see in Example 3.

(iii) If an equation is not given in the normal form as (1.1), then there exist

many formal solutions which belong to di¨erent Gevrey classes, in general, as we

shall see in Example 4.

In linear ordinary di¨erential equations it is convenient to draw a Newton

polygon associated with the operator to characterize the Gevrey order of formal

solutions. In fact, Ramis [12] characterized the Gevrey order by the Newton

polygon for irregular singular ordinary di¨erential operators, and Miyake [7], [8]

and Miyake-Hashimoto [9] de®ned the Newton polygon for partial di¨erential

operators, and they proved the Maillet type theorem.

In Section 5, we shall de®ne the Newton polygon for nonlinear partial

di¨erential equation of the form (1.1) to make it easy to understand our result.

For the de®nition of the Newton polygon for nonlinear equation, see also S.

OÅ uchi [11].
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2. Examples.

Example 1. Let us consider the following nonlinear ordinary di¨erential

equation,

u�t� � t� tu�t�
X

y

r�0

du

dt

� �r

; u�t� � O�t�:�2:1�

This corresponds to the case d � n � m � 0, m0 � k � 1 and
P

y

r�0 T
r is

holomorphic on jT j < 1. Therefore, (2.1) is a special case of (1.1) except

the assumption (1.2). Let u�t� �
P

ib1 uit
i be a formal series, we substitute this

series into (2.1), then we have u1 � 1 and u2 � �y. This shows that (2.1) does

not have a formal power series solution.

Example 2. Let us consider the following ordinary di¨erential equation,

which does not satisfy the assumption (1.3).

tu�t� � ÿt
4 � t

5 � u�t�
d 2u

dt2
�t�; u�t� � O�t3�:�2:2�

Then by an easy calculation we see that (2.2) has two formal solutions of the

form

u�t� �
1

2
t
3 � � � � ; and u�t� � ÿ

1

3
t
3 � � � � :

Example 3. Let us consider the following nonlinear partial di¨erential

equation,

qtu�t; x� �
2

1ÿ x
t� �q2

x
u�2;

u�t; x� � O�t2�:

8

<

:

�2:3�

Our main theorem asserts that u�t; x� A G
�4=3�, which is the best class to which the

formal solution u�t; x� belongs as is proved as follows.

Let

u�t; x� �
X

y

n�1

u3nÿ1�x�t
3nÿ1

be an expansion of u�t; x�. Then we have the following reccurence formula.

u2�x� �
1

1ÿ x
;

u3nÿ1�x� �
1

3nÿ 1

X

k�l�3nÿ2

q
2
x
uk�x�q

2
x
ul�x� for nb 2:

8

>

>

>

<

>

>

>

:

�2:4�
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By this formula we have

u3nÿ1�x� �
1

�3nÿ 1��3nÿ 4� � � � 5
q
2�nÿ1�
x u2�x��q

2
xu2�x��

nÿ1 � � � �

�
1

�3nÿ 1��3nÿ 4� � � � 5
�
�2nÿ 2�!

�1ÿ x�2nÿ1
�

2nÿ1

�1ÿ x�3�nÿ1�
� � � � :

By restricting at x � 0 in this formula, we have

u3nÿ1�0�bC n 2
n�2n�!

3nn!

by some positive constant C independent of n, because ``� � �'' part is a linear sum

of terms f�1ÿ x�ÿpg with positive coe½cients. This implies immediately that

u�t; x� just belongs to G
�4=3�.

Example 4. Let us consider the following equation

fu�t; x� ÿ �1ÿ x�tg
qu

qt
� t2;�2:5�

where �t; x� A C � C .

Let
P

nb1 un�x�t
n
A O��t�� be a formal solution. Then we have the following

relation for u1�x�,

�u1�x� ÿ �1ÿ x��u1�x� � 0;

which implies u1�x�1 0 or u1�x� � 1ÿ x.
. Case of u1�x�1 0. The equation (2.5) is rewritten

t
qu

qt
�

ÿt2

1ÿ x
�

1

1ÿ x
� u �

qu

qt
;

u�t; x� � O�t2�:

8

>

<

>

:

�2:6�

In this case, a formal solution of (2.6) is holomorphic in the neighborhood of the

origin of C � C by Theorem 1, because s � �1ÿ 1�=�3ÿ 2� � 0.
. Case of u1�x� � 1ÿ x. We introduce a new unknown function v�t; x� as

follows.

v�t; x� � u�t; x� ÿ �1ÿ x�t:

Then v�t; x� satis®es the following equation,

v�t; x� �
t2

1ÿ x
ÿ

1

1ÿ x
� v �

qv

qt
;

v�t; x� � O�t2�:

8

>

<

>

:

�2:7�
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In this case, a formal solution of (2.7) is in G
�2� by Theorem 1, because s �

�1ÿ 0�=�3ÿ 2� � 1. Here the Gevrey class G
�2� is the best possible class for

v�t; x� as can be shown by the same way as Example 3.

3. Reformulation of Theorem 1.

We shall reformulate our theorem for the sake of convenience to prove the

theorem.

We decompose D into three disjoint subsets as follows:
. D1 � f� j; a� A D : 0a jamÿ 1; 0a j � jajamg,
. D2 � f� j; a� A D : 0a jamÿ 1;m� 1a j � jajaNg,
. D3 � f� j; a� A D : ma jam0;ma j � jajaNg.

Under this notation, f �t; x;X � is rewritten as follows:

f �t; x; x; h; z�

�
X

V�p;b; g; d�bkÿm�n�1

fpbgd�x�t
p

Y

� j;a� AD1

x
bja
ja

Y

� j;a� AD2

h
gja
ja

Y

� j;a� AD3

z
dja
ja ;

where X � �x; h; z�, q � �b; g; d� and b; g; d are multi-indices and

V�p; b; g; d��3:1�

� p�
X

� j;a� AD1

�k ÿ j�bja �
X

� j;a� AD2

�k ÿ j�gja �
X

� j;a� AD3

�k ÿ j�dja:

Now the equation (1.1) is rewritten in the following form:

tnqm
t u�t; x� � a�x�tkÿm�n

� f �t; x; fq j
t q

a
xu�t; x�gD1

; fq j
t q

a
xu�t; x�gD2

; fq j
t q

a
xu�t; x�gD3

�;

u�t; x� � O�tk�;

8

>

<

>

:

�3:2�

where f� � �gDi
denotes f� � �g� j;a� ADi

for simplicity.

If D2 � q and D3 � q, then it is trivial that s � 0. We are not interested

in this case so much. Indeed, in this case the proof of convergence of the formal

solution is proved more easily (see Remark 3 in Section 4). Therefore in the

following we assume

D2 0q or D3 0q:�3:3�

The de®nition of J, N�p; q� and s can be rewritten as follows.

J � f�p; b; g; d� : jgj � jdjb 1; fpbgd�x�2 0g;�3:4�

N�p; b; g; d��3:5�

� maxf j � jaj : gja 0 0 or dja 0 0g; for �p; b; g; d� A J;
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s � max
�p;b; g; d� A J

N�p; b; g; d� ÿm

V�p; b; g; d� ÿ �k ÿm� n�

� �

:�3:6�

By the assumption (3.3) we have s > 0. Then theorem 1 is reduced to the fol-

lowing theorem.

Theorem 1 0. Under the assumptions (1.2), (1.3) and (3.3), the equation (3.2)

has a unique formal solution of the form

u�t; x� �
X

y

i�k

ui�x�t
i
A O��t��;

and it is in the formal Gevrey class G
�1�s�.

4. Proof of Theorem 1
0
.

We shall give the proof of Theorem 1 0 by the following four steps:
. Step 1: Construction of formal solution
. Step 2: Construction of majorant equation
. Step 3: Majorant estimate for integro-di¨erential operator
. Step 4: Convergence of �s� 1�-Borel transformation

Now we begin the proof of Theorem 1 0.

Step 1: Construction of formal solution.

In this step, we prove the following lemma.

Lemma 1. The equation (3.2) has a unique formal solution of the form

u�t; x� �
X

y

i�k

ui�x�t
i
A O��t��:

Proof. We de®ne an ideal O��t��k of O��t�� by O��t��k � f
P

ibk ui�x�t
i
;

ui�x� A Og. Denote P � tnqm
t . We can easily see that the mapping

P : O��t��k ÿ!O��t��kÿm�n

is invertible, and the inverse operator is given by Pÿ1 � qÿm
t tÿn, where qÿ1

t

denotes integration in t variable from 0 to t. Let us introduce a new unknown

function U�t; x� � Pu�t; x�, that is, u�t; x� � Pÿ1U�t; x�. Then the equation for

U�t; x� is given by

U�t; x� � a�x�tr � f �t; x; fq jÿm
t qa

x�t
ÿnU�t; x��gD1

;�4:1�

fq jÿm
t qa

x�t
ÿnU�t; x��gD2

; fq jÿm
t qa

x�t
ÿnU�t; x��gD3

�;
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where we put r � k ÿm� n for simplicity. Under this notation, (3.1) is rewritten

V�p; b; g; d� � p�
X

� j;a� AD1

�r�mÿ nÿ j�bja

�
X

� j;a� AD2

�r�mÿ nÿ j�gja �
X

� j;a� AD3

�r�mÿ nÿ j�dja:

It is trivial that if (4.1) has a unique formal solution then (3.2) has a unique

formal solution.

Now we substitute the formal power series U�t; x� �
P

y

i�r Ui�x�t
i into (4.1).

Then we have the following recurrence formula to determine the coe½cients

fUi�x�g:

Ur�x� � a�x�;

Ui�x� �
X

V�p;b; g; d�br�1

fpbgd�x�
X

���

Y

D1; l

qa
xUnjal �x�

Qmÿj
s�1 �njal ÿ n� s�

�
Y

D2; l

qa
xUmjal

�x�
Qmÿj

s�1 �mjal ÿ n� s�

Y

D3; l

Y

jÿmÿ1

s�0

�kjal ÿ nÿ s�

 !

qa
xUkjal �x�:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�4:2�

Here we used the following notations and abbreviations. The summation
P

��� is

taken over �p; fnjalg; fmjalg; fkjalg� such that

i � p�
X

D1; l

�njal ÿ n�mÿ j��4:3�

�
X

D2; l

�mjal ÿ n�mÿ j� �
X

D3; l

�kjal ÿ n�mÿ j�;

and

Y

D1; l

�
Y

� j;a� AD1

Y

bja

l�1

;

Y

D2; l

�
Y

� j;a� AD2

Y

gja

l�1

;

Y

D3; l

�
Y

� j;a� AD3

Y

dja

l�1

X

D1; l

�
X

� j;a� AD1

X

bja

l�1

;

X

D2; l

�
X

� j;a� AD2

X

gja

l�1

;

X

D3; l

�
X

� j;a� AD3

X

dja

l�1

:

The existence and uniqueness of the formal solution is proved as follows.

Since all njal , mjal , kjalb r, we have
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i � p�
X

D1; l

�njal ÿ n�mÿ j� �
X

D2; l

�mjal ÿ n�mÿ j� �
X

D3; l

�kjal ÿ n�mÿ j�

b p�
X

� j;a� AD1

�r�mÿ nÿ j�bja

�
X

� j;a� AD2

�r�mÿ nÿ j�gja �
X

� j;a� AD3

�r�mÿ nÿ j�dja � njal ÿ r

� V�p; b; g; d� � njal ÿ r

b njal � 1:

Therefore, njala i ÿ 1 holds. Moreover, it is trivial that this relation does hold

by replacing njal by mjal or kjal . Hence the right hand side of the reccurence

formula of Ui�x� is de®ned only by fUr�x�;Ur�1�x�; . . . ;Uiÿ1�x�g and their

derivatives. This shows that the coe½cients Ui�x� �ib r� are uniquely deter-

mined by induction on i.

Thus, Lemma 1 is proved. r

Step 2: Construction of majorant equation.

We shall de®ne a majorant function of U�t; x� obtained in Step 1.

When two formal power series f �x� �
P

y

jaj�0 fax
a and g�x� �

P
y

jaj�0 gax
a

are given, a majorant relation

f �x�f g�x�

is de®ned by

j faja ga; for all a A N
n
:

Moreover, when two formal power series f �t; x� �
P

y

i�0 fi�x�t
i and g�t; x� �P

y

i�0 gi�x�t
i A O��t�� are given, a majorant relation

f �t; x�f g�t; x�

is de®ned by

fi�x�f gi�x�; for all i � 0; 1; . . . :

In the equation (1.1), functions a�x� and f �t; x;X � are assumed to be

holomorphic in a neighborhood of the origin respectively. Therefore, we can

take majorant functions for a�x� and f �t; x; x; h; z� as follows:

a�x�f
A

�Rÿ jxj�r
;

F �t; jxj; x; h; z� :�
X

V�p;b; g; d�br�1

Fpbgd

�Rÿ jxj�p�jbj�jgj�jdj
tpxbhgzd g f �t; x; x; h; z�

by taking some positive constants A, R and Fpbgd, where jxj � x1 � � � � � xd .
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Let us consider the following equation for W�t; jxj�,

W�t; jxj� �
A

�Rÿ jxj� r
tr � F �t; jxj; fq jÿm

t qa
x�t

ÿnW�t; jxj��gD1
;�4:4�

fq jÿm
t qa

x�t
ÿnW�t; jxj��gD2

; fq jÿm
t qa

x�t
ÿnW�t; jxj��gD3

�

with W�t; jxj� � O�tr�.

We can prove the following lemma.

Lemma 2. The formal solution of (4.4) is a majorant power series of the

formal solution of (4.1), that is, U�t; x�fW�t; jxj�.

Proof. We substitute the formal series W�t; jxj� �
P

y

i�r Wi�jxj�t
i into (4.4).

Then we have

Wr�jxj� �
A

�Rÿ jxj� r

and for ib r� 1

Wi�jxj� �
X

V� p;b; g; d�br�1

Fpbgd

�Rÿ jxj�p�jbj�jgj�jdj

X

���

Y

D1; l

qa
xWnjal �jxj�

Qmÿj
s�1 �njal ÿ n� s�

�4:5�

�
Y

D2; l

qa
xWmjal

�jxj�
Qmÿj

s�1 �mjal ÿ n� s�

Y

D3; l

Y

jÿmÿ1

s�0

�kjal ÿ nÿ s�

 !

qa
xWkjal �jxj�;

where the summation
P

��� is the same as (4.3). Since the recurrence formula

(4.5) is similar to (4.2), we can easily show Ui�x�fWi�jxj� for i � r; r� 1; . . . by

induction on i, that is,

U�t; x�fW�t; jxj�:�4:6� r

Step 3: Majorant estimate for integro-di¨erential operator.

Lemma 3. The coe½cients Wi�jxj� �ib r� can be written in the following

form:

Wi�jxj� �
X

Miÿ�Mÿ1�r

h�maxfr;Big

Chi

�Rÿ jxj�h
; ib r;�4:7�

where Chi are non-negative constants and M and B are positive constants given by

M � max
�N ÿm� n� 1��r� 1�

k ÿm0

� �

� 2;
r�N ÿ 1

k ÿm� 1

� �

� 1

� �

;
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B �
1 �nbm�,
1

mÿ n
�n < m�.

8

<

:

Here �x� denotes the integral part of x A R.

Proof. We estimate the power of 1=�Rÿ jxj�. The upper bound estima-

tion is calculated as follows:

ha p� jbj � jgj � jdj �
X

D1; l

�Mnjal ÿ �M ÿ 1�r� jaj�

�
X

D2; l

�Mmjal ÿ �M ÿ 1�r� jaj� �
X

D3; l

�Mkjal ÿ �M ÿ 1�r� jaj�

� Mi ÿ �M ÿ 1�p� jbj � jgj � jdj

ÿM
X

D1

�ÿn�mÿ j�bja ÿM
X

D2

�ÿn�mÿ j�gja

ÿM
X

D3

�ÿn�mÿ j�dja ÿ �M ÿ 1�
X

D1

rbja �
X

D2

rgja �
X

D3

rdja

 !

�
X

D1

jajbja �
X

D2

jajgja �
X

D3

jajdja

� Mi ÿ �M ÿ 1�V�p; b; g; d� �
X

D1

�1� jaj ÿm� j � n�bja

�
X

D2

�1� jaj ÿm� j � n�gja �
X

D3

�1� jaj ÿm� j � n�dja

aMi ÿ �M ÿ 1�V�p; b; g; d�

� �N ÿm� n� 1�
X

D1

bja �
X

D2

gja �
X

D3

dja

 !

aMi ÿ �M ÿ 1�V�p; b; g; d� �
N ÿm� n� 1

k ÿm0

V�p; b; g; d�

aMi ÿ M ÿ 1ÿ
N ÿm� n� 1

k ÿm0

� �

�r� 1�

aMi ÿ �M ÿ 1�r:

Next, the lower bound estimation is calculated by the de®nition of B as

follows:
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hb p� jbj � jgj � jdj �
X

D1; l

�Bnjal � jaj� �
X

D2; l

�Bmjal � jaj� �
X

D3; l

�Bkjal � jaj�

� Bi ÿ �Bÿ 1�p�
X

D1

�1� jaj � Bnÿ Bm� Bj�bja

�
X

D2

�1� jaj � Bnÿ Bm� Bj�gja �
X

D3

�1� jaj � Bnÿ Bm� Bj�dja

bBi ÿ �Bÿ 1�p�
X

D1

�1� jaj � Bnÿ Bm� Bj�bja

bBi:

Thus, Lemma 3 is proved. r

The next lemma, which gives majorant relations between operators, plays a

crucial role to construct a majorant equation for W�t; jxj�.

Lemma 4. Let W�t; jxj� be a formal solution of (4.4). Then we have the

following majorant relations:

(i) If � j; a� A D1, then we have

q jÿm
t qa

x�t
ÿnW�t; jxj��f

M

Rÿ jxj

� �jaj

tmÿjÿnW�t; jxj�:�4:8�

(ii) If � j; a� A Dj � j � 2; 3�, then we have

q jÿm
t qa

x�t
ÿnW�t; jxj���4:9�

f
M

Rÿ jxj

� �jaj

tmÿjÿ1�tqt�
jajÿm�j

tÿn�1W�t; jxj�:

Proof. Let � j; a� A D1. Since jajamÿ j, and by Lemma 3, we have

q jÿm
t qa

x�t
ÿnW�t; jxj��

�
X

y

i�r

X

Miÿ�Mÿ1�r

h�maxfr;Big

Y

jaj

s�1

�h� sÿ 1�

Y

mÿj

s�1

�i ÿ n� s�

Chi

�Rÿ jxj�h�jaj
t iÿn�mÿj

f

X

y

i�r

X

Miÿ�Mÿ1�r

h�maxfr;Big

M jaj Chi

�Rÿ jxj�h�jaj
t iÿn�mÿj

�
M

Rÿ jxj

� �jaj

tmÿjÿnW�t; jxj�:
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Let � j; a� A D2, that is, m� 1a j � jajaN. Then we have

q
jÿm
t q

a

x�t
ÿnW�t; jxj��

�
X

y

i�r

X

Miÿ�Mÿ1�r

h�maxfr;Big

Y

jaj

s�1

�h� sÿ 1�

Y

mÿj

s�1

�i ÿ n� s�

Chi

�Rÿ jxj�h�jaj
t iÿn�mÿj

f
X

y

i�r

X

Miÿ�Mÿ1�r

h�maxfr;Big

M jaj�i ÿ n� 1�jajÿm�j Chi

�Rÿ jxj�h�jaj
t iÿn�mÿj

�
M

Rÿ jxj

� �jaj

tmÿjÿ1�tqt�
jajÿm�j�tÿn�1W�t; jxj��:

Next, let � j; a� A D3. Then we have

q
jÿm
t q

a

x�t
ÿnW�t; jxj��

�
X

y

i�r

X

Miÿ�Mÿ1�r

h�maxfr;Big

Y

jaj

s�1

�h� sÿ 1�
Y

jÿm

s�1

�i ÿ nÿ s� 1�
Chi

�Rÿ jxj�h�jaj
t iÿn�mÿj

f

X

y

i�r

X

Miÿ�Mÿ1�r

h�maxfr;Big

M jaj�i ÿ n� 1�jajÿm�j Chi

�Rÿ jxj�h�jaj
t iÿn�mÿj

�
M

Rÿ jxj

� �jaj

tmÿjÿ1�tqt�
jajÿm�j�tÿn�1W�t; jxj��: r

Step 4: Convergence of �s� 1�-Borel transformation.

We consider the following equation for V�t; jxj�.

V�t; jxj� �
A

�Rÿ jxj� r
tr

� F�t; x; fG1� j; a�Vg
D1
; fG2� j; a�Vg

D2
; fG2� j; a�Vg

D3
�;

V�t; jxj� � O�tr�;

8

>

>

>

<

>

>

>

:

�4:10�

where G1� j; a� and G2� j; a� are the operators appeared in the right hand sides of

(4.8) and (4.9), that is,

G1� j; a� �
M

Rÿ jxj

� �jaj

tmÿjÿn
;

G2� j; a� �
M

Rÿ jxj

� �jaj

tmÿjÿ1�tqt�
jajÿm�j

tÿn�1
:

8

>

>

>

<

>

>

>

:
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We put the formal solution V�t; jxj� �
Py

i�r Vi�jxj�t
i. Then we have

Vr�jxj� �
A

�Rÿ jxj� r

and for ib r� 1

Vi�jxj� �
X

V�p;b; g; d�br�1

Fpbgd

�Rÿ jxj�p�jbj�jgj�jdj
�
X

���

Y

D1; l

M

Rÿ jxj

� �jaj

Vnjal �jxj��4:11�

�
Y

D2; l

�mjal ÿ n� 1�jajÿm�j M

Rÿ jxj

� �jaj

Vmjal
�jxj�

�
Y

D3; l

�kjal ÿ n� 1�jajÿm�j M

Rÿ jxj

� �jaj

Vkjal �jxj�;

where the summation
P

��� is the same as in (4.3). By the same argument as in

the proof of Lemma 2 and from Lemma 4, we can easily show Wi�jxj�fVi�jxj�

by induction on i, that is,

U�t; x�fW�t; jxj�fV�t; jxj�:�4:12�

If we can prove

V�t; jxj� A G
�1�s�

;�4:13�

then we obtain the consequence of Theorem 1 0. Therefore, we will prove (4.13)

in the remaining of this section.

Remark 3. If D2 � q and D3 � q, then the equation for V�t; jxj� is a

functional equation. Therefore, we apply the implicit function theorem for this

equation, we have a unique holomorphic solution V�t; jxj�, which is a majorant

function of U�t; x�.

Now we put

Xi�jxj� �
Vi�jxj�

�i!�s
:

Then by dividing the formula (4.11) by �i!�s, we have

Xi�jxj� �
X

V�p;b; g; d�br�1

Fpbgd

�Rÿ jxj�p�jbj�jgj�jdj

X

���

G�p; b; g; d��4:14�

�
Y

D1; l

M

Rÿ jxj

� �jaj

Xnjal �jxj�

�
Y

D2; l

M

Rÿ jxj

� �jaj

Xmja1
�jxj�

Y

D3; l

M

Rÿ jxj

� �jaj

Xkjal �jxj�:
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Here

G�p; b; g; d� �
Y

D2; l

�mjal ÿ n� 1�jajÿm�j
Y

D3; l

�kjal ÿ n� 1�jajÿm�j�4:15�

�

Y

D1; l

�njal !�
s
Y

D2; l

�mjal !�
s
Y

D3; l

�kjal !�
s

�i!�s
:

Now we prove the following

Lemma 5. There exists a positive constant C independent of �p; b; g; d� such

that

G�p; b; g; d�aCjbj�jgj�jdj
:�4:16�

The most important tool in proving Lemma 5 is the following lemma.

Lemma 6. Let L and mj be nonnegative integers such that mjbL for all

j � 1; . . . ; n. Then we have

m1! � � �mn!a �L!�nÿ1�m1 � � � � �mn ÿ �nÿ 1�L�!:�4:17�

Proof of Lemma 6. Lemma 6 is proved by induction on n. The case n � 1

is obvious. Assume that (4.17) is true up to nÿ 1. For the case n, we have

m1! � � �mn!

�L!�nÿ1�m1 � � � � �mn ÿ �nÿ 1�L�!

a
�L!�nÿ2�m1 � � � � �mnÿ1 ÿ �nÿ 2�L�!mn!

�L!�nÿ1�m1 � � � � �mn ÿ �nÿ 1�L�!

�
mn!

L!�m1 � � � � �mnÿ1 ÿ �nÿ 2�L� 1� � � � �m1 � � � � �mn ÿ �nÿ 1�L�

a
mn!

L!��nÿ 1�Lÿ �nÿ 2�L� 1� � � � ��nÿ 1�L�mn ÿ �nÿ 1�L�

�
mn!

L!�L� 1� � � �mn

� 1:

Thus, Lemma 6 is proved. r

Proof of Lemma 5. For an arbitrary positive integer L, we have the

following estimate by using Lemma 6.
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G�p; b; g; d�

a

Y

D2; l

�mjal ÿ n� 1�jajÿm�jÿLs
Y

D3; l

�kjal ÿ n� 1�jajÿm�jÿLs

�

Y

D1; l

�njal � L�!
Y

D2; l

�mjal � L�!
Y

D3; l

�kjal � L�!

 !s

�i!�s

a

Y

D2; l

�mjal ÿ n� 1�jajÿm�jÿLs

�
Y

D3; l

�kjal ÿ n� 1�jajÿm�jÿLs�r� L�!�jbj�jgj�jdjÿ1�s

�

0

B

B

B

B

B

B

@

X

D1; l

njal �
X

D2; l

mjal �
X

D3; l

kjal ÿ r�jbj � jgj � jdj� � r� L

 !

!

i!

1

C

C

C

C

C

C

A

s

:

Now we decompose the set J into W1 and W2:

W1 � �p; b; g; d� A J :
N�p; b; g; d� ÿm

V�p; b; g; d� ÿ r
� s

� �

;

W2 � �p; b; g; d� A J :
N�p; b; g; d� ÿm

V�p; b; g; d� ÿ r
< s

� �

:

When �p; b; g; d� is in W1, we put L � V�p; b; g; d� ÿ r � �N�p; b; g; d� ÿm�=s

A N . Recall i is given by (4.3). Then by an easy calculation we have

X

D1; l

njal �
X

D2; l

mjal �
X

D3; l

kjal ÿ r�jbj � jgj � jdj� � r� L

 !

!

i!

� 1:

Moreover we get
Y

D2; l

�mjal ÿ n� 1�jajÿm�jÿLs
Y

D3; l

�kjal ÿ n� 1�jajÿm�jÿLs
a 1;

since jaj ÿm� j ÿ Lsa 0 for the exponents by the de®nition of N�p; b; g; d�

and L (see (3.5)). Therefore, we have the following estimate in the case of

�p; b; g; d� A W1:
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G�p; b; g; d�aC
jbj�jgj�jdjÿ1

1 ;�4:18�

where C1 � G r�
N ÿm

s
� 1

� �� �s

�b��r� L�!�s�.

Next when �p; b; g; d� is in W2, we put

L �
N�p; b; g; d� ÿm

s

� �

� 1 A N ;

where �x� denotes the integral part of x. By the de®nition of this symbol, it

holds that

N�p; b; g; d� ÿm

s
< La

N�p; b; g; d� ÿm

s
� 1;

and

N�p; b; g; d� ÿm

s
< V�p; b; g; d� ÿ r

holds since �p; b; g; d� A W2. These imply

La
N�p; b; g; d� ÿm

s
� 1 < V�p; b; g; d� ÿ r� 1:

Since L and V�p; b; g; d� ÿ r� 1 are positive integers, we have

LaV�p; b; g; d� ÿ r:

Now we can easily check

X

D1; l

njal �
X

D2; l

mjal �
X

D3; l

kjal ÿ r�jbj � jgj � jdj� � r� L

 !

!

 !s

�i!�s
a 1;

and

Y

D2; l

�mjal ÿ n� 1�jajÿm�jÿLs
Y

D3; l

�kjal ÿ n� 1�jajÿm�jÿLs
a 1

does hold since the exponents jaj ÿm� j ÿ Ls are negative in this case.

Therefore, we have the following estimate in the case of �p; b; g; d� A W2:

G�p; b; g; d�aC
jbj�jgj�jdjÿ1
2 ;�4:19�

where C2 � G r�
N ÿm

s
� 2

� �� �s

�b��r� L�!�s�.
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Since C1 < C2 and 1aC2, by (4.18) and (4.19) we have for all �p; b; g; d� A J

G�p; b; g; d�aCjbj�jgj�jdj
;�4:20�

by C � C2 � G r�
N ÿm

s
� 2

� �� �s

�b��r� L�!�s�.

Thus, Lemma 5 is proved. r

By (4.14) and the above inequality (4.20), we have the following majorant

relation for Xi�jxj�.

Xi�jxj��4:21�

f

X

V�p;b; g; d�br�1

Fpbgd

�Rÿ jxj�p�jbj�jgj�jdj

�
X

���

Y

D1; l

C
M

Rÿ jxj

� �jaj

Xnjal �jxj�

�
Y

D2; l

C
M

Rÿ jxj

� �jaj

Xmjal
�jxj�

Y

D3; l

C
M

Rÿ jxj

� �jaj

Xkjal �jxj�:

Now we consider the following analytic functional equation for Y�t; jxj�:

Y�t; jxj� �
Atr

�r!�s�Rÿ jxj�r
�4:22�

� F�t; jxj; fH� j; a�YgD1
; fH� j; a�YgD2

; fH� j; a�YgD3
�

with Y�t; jxj� � O�tr�, where

H� j; a�Y :� C
M

Rÿ jxj

� �jaj

tmÿjÿnY�t; jxj�:

Then by the implicit function theorem we see that (4.22) has a unique

solution

Y�t; jxj� �
X

y

i�r

Yi�jxj�t
i

holomorphic in a neighborhood of the origin. We can easily examine that the

coe½cient Yi�jxj� is just obtained by the same formula as the right hand side of

(4.21). This proves that

Y�t; jxj�g
X

y

i�r

Xi�jxj�t
i �

X

y

i�r

Vi�jxj�

�i!�s
t i g

X

y

i�r

Ui�x�

�i!�s
t i;

which we want to prove.
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5. Newton polygon.

In this section, we de®ne the Newton polygon for nonlinear partial dif-

ferential equation.

First, let us consider the following linear ordinary di¨erential operator,

P �
X

finite

j;k�0

ajkt
j d

dt

� �k

; ajk A C :�5:1�

For an operator ajkt
j�d=dt�k (ajk 0 0) we associate a sector S� j; k� such that

S� j; k� :� f�x; y� A R
2
; xa k; yb j ÿ kg:

Then the Newton polygon N�P� for the operator P is de®ned by

N�P� :� ChfS� j; k�; � j; k� with ajk 0 0g;

where Chf� � �g denotes the convex hull of fS� j; k�gj;k.

Let r0; r1; . . . ; rt be the slopes of sides of the Newton polygon N�P� with

t-vertexes such that 0 � r0 < r1 < � � � < rt � �y. Then Ramis proved the fol-

lowing Maillet type theorem.

Theorem 2 (Ramis [11]). The formal power series solution of the following

equation

Pu�t� � f �t�; f �t� A O

belongs to G
�1�s� with s � 1=r1.
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Miyake [7], [8] and Miyake-Hashimoto [9] showed that such an observation

of Maillet type theorem from the Newton polygon is possible for generel singular

partial di¨erential equations, but for linear equations.

Here we shall introduce the Newton polygon for nonlinear partial di¨er-

ential equations and explain Theorem 1 by using the Newton polygon as Ramis'

theorem.

Let us consider again the nonlinear partial di¨erential equation considered in

Theorem 1:

tnqm
t u�t; x� � a�x�tkÿm�n � f �t; x; fq j

t q
a

xu�t; x�gD�;

u�t; x� � O�tk�;

�

�5:2�

where

f �t; x;X� �
X

V�p;q�bkÿm�n�1

fpq�x�t
p

Y

� j;a� AD

X
qja
ja ;

V�p; q� � p�
X

� j;a� AD

�k ÿ j�qja:�5:3�

We introduced
. J � f�p; q� : jqjb 1; fpq�x�2 0g,
. N�p; q� � maxf j � jaj : qja 0 0g, for �p; q� A J.

By Theorem 1, we have already known that the formal solution in O��t�� of (5.2)

is in G
�1�s� with

s � max
�p;q� A J

0;
N�p; q� ÿm

V�p; q� ÿ �k ÿm� n�

� �

:

Now the Newton polygon for nonlinear partial di¨erential equation (5.2) is

de®ned as follows. For each term

fpq�x�t
p

Y

� j;a� AD

�q j
t q

a

xu�
qja

we associate a point �N�p; q�;V�p; q�� on �x; y�-plane, which means that the ®rst

component is the highest order of di¨erentiations in the term, and the second

component is the order of zeros of the term in t variable. For example,

tnqm
t u�t; x� , �m; k ÿm� n�;

tp�qq
t q

a

xu�
K�qr

t u�
L , �maxfq� jaj; rg; p� K�k ÿ q� � L�k ÿ r��:

Next we introduce a sector S�p; q� for each point �N�p; q�;V�p; q�� by

S�p; q� :� f�x; y� A R
2
; xaN�p; q�; ybV�p; q�g:
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Then the Newton polygon N of the equation (5.2) is de®ned by

N :� ChfS�p; q�; �p; q� A Jg:

Let g0; g1; . . . ; gt be the slopes of sides of the Newton polygon N with

t-vertexes such that 0 � g0 < g1 < � � � < gt � �y.

Then Theorem 1 can be read as follows.

Theorem 3. Under the assumptions (1.2) and (1.3), the formal solution of

(5.2) is in G
�1�s� with s � 1=g1 which is the inverse of the least positive slope of the

Newton polygon.

Example 5. Let us consider the following equation

u�t; x� � t3 � �q2t u��qxu� � t2�qtu��qtq
2
xu� � t2q2t u;

u�t; x� � O�t3�:

�

�5:4�

The points corresponding to each terms are:

u�t; x� , �0; 3�; �q2t u��qxu� , �2; 4�

t2�qtu��qtq
2
xu� , �3; 6�; t4q2t u , �2; 5�

Therefore the Newton polygon of (5.4) is drawn as below.

Now Theorem 3 asserts that the formal solution of (5.4) is in G
�3�.

Explanation of Theorem 3. Why is the Gevrey order taken from the least

positive slope of Newton polygon? The answer to this question is as follows.
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By Theorem 1, the Gevrey order is given by the maximal value of

N�p; q� ÿm

V�p; q� ÿ �k ÿm� n�

for �p; q� A J.

Now the point associated with tnqm
t u�u�t; x� � O�tk�� is given by �m; kÿm�n�,

and other points are given by �N�p; q�;V�p; q��. Moreover, since V�p; q� > kÿ

m� n, the point �m; k ÿm� n� is the coordinate of the vertex on the horizontal

side of the Newton polygon. Therefore, the minimal slope of segment from

�m; k ÿm� n� to �N�p; q�;V�p; q�� is just the least positive slope of Newton

polygon, that is,

0 < g1 � min
�p;q� A J

V�p; q� ÿ �k ÿm� n�

N�p; q� ÿm

� �

a�y:

By Theorem 1, we obtain a consequence of Theorem 3.

Remark 4. We remark that for linear equations, the Newton polygon is

de®ned for the operator and does not depend on individual solutions. In fact,

even if we de®ne the Newton polygon by taking care of the order of zeros of the

formal solution as is being done in nonlinear equations, the Newton polygons so

obtained will only be vertical shifts of the Newton polygon in the linear case, and

the slopes of sides are still the same.

Example 6. In Example 4, we considered the following equation

fu�t; x� ÿ �1ÿ x�tg
qu

qt
� t2:�5:5�

As in Example 4, in the case of u1�x�1 0, the equation (5.5) is rewritten into the

form (2.6) and the Newton polygon of (2.6) is drawn as Figure 1; in the case of

u1�x� � 1ÿ x, the equation is reduced to (2.7) and the Newton polygon of (2.7) is

drawn as Figure 2.

Figure 1 Figure 2
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This shows that the order of zeros of formal solution changes the form of the

Newton polygon for nonlinear partial di¨erential equation.
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