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Abstract. In 1985, P. C. Roberts [14] proved the vanishing theorem of intersection

multiplicities for a local ring that satis®es tA=S��A�� � �SpecA�dimA, where tA=S is the

Riemann-Roch map for SpecA with regular base scheme SpecS. We refer such rings

as Roberts rings. For rings of positive characteristic, we can characterize Roberts rings

by the Frobenius maps. For rings with ®eld of fractions of characteristic 0, we can

characterize Roberts rings by some Galois extensions. We shall give basic properties

and examples of Roberts rings in the paper.

1. Introduction.

In 1985, P. C. Roberts [16] proved the vanishing theorem of intersection

multiplicities for a local ring that satis®es tA=S��A�� � �SpecA�dimA, which we refer

as a Roberts ring in the paper. Let k be a perfect ®eld of characteristic p > 0,

and put A � k��x1; . . . ; xn��=� f1; . . . ; fs�. Furthermore put fA � k��x1; . . . ; xn��=

� f p
1 ; . . . ; f

p
s �. We de®ne a ring homomorphism f : A ! fA by f �y� � yp for

each y A A. Then, the condition tA=S��A�� � �SpecA�dimA is equivalent to that

the cycle � fA� corresponding to the A-module fA coincides with pdimA�A� in

K0�A�Q which is the Grothendieck group of ®nitely generated A-modules with

rational coe½cient. If A is a regular local ring, then fA is a free A-module of

rank pdimA and, therefore, A satis®es � fA� � pdimA�A� in K0�A�Q. If the equality

� fA� � pdimA�A� in K0�A�Q is satis®ed, then Dutta multiplicity for a complex

coincides with the alternating sum of lengths of homology modules (Application

3.2), and Szpiro's conjectures are true for A (Application 3.4).

Put

tA=S��A�� � td � tdÿ1 � � � � � t0 �ti A Ai�A�Q�;

where d � dimA. Then, A is a Roberts ring if and only if ti � 0 for i < d.

Such ti's inherit homological properties from A. For example, for a normal

local ring A, tdÿ1 � 0 if and only if the canonical class is torsion in the

divisor class group Cl�A� (Lemma 3.5 in [5]). If A is a complete intersection,
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then ti � 0 for i < d, that is, A is a Roberts ring (see Roberts [16]). If A is

Gorenstein, then tdÿj � 0 for each odd integer j (e.g., see the proof of Lemma 3.5

in [5]).

In the paper, we shall study Roberts rings.

In Section 2, we shall give the de®nition of Roberts rings. Roberts rings are

characterized by using the Frobenius maps in the case of positive characteristic as

in Remark 2.3. Furthermore, we show that Roberts rings are characterized in

terms of Adams operations (Gillet-SouleÂ [3], SouleÂ [21]) in Proposition 2.2. By

the following theorem that will be proved in Section 2, Roberts rings are

characterized in terms of some Galois extensions.

Theorem 1.1. Let A be a d-dimensional Nagata local domain. Assume that

A has a Noether normalization S (i.e., S is a regular local subring of A such that A

is a ®nitely generated S-module) such that the extension R�A�=R�S� is separable,

where R� � denotes the ®eld of fractions.

Then, the following conditions are equivalent:

(1) tA=S��A�� A Ad�A�Q.

(2) For some ®nite-dimensional ®eld extension L of R�A� such that L is

Galois over R�S�, the following is satis®ed:

± Let B be the integral closure of A in L. (B is a ®nite A-module since

A is a Nagata ring. However, B may not be a local ring.) Then,

�B� � rankA B � �A� in K0�A�Q is satis®ed.

(3) For any ®nite-dimensional ®eld extension L of R�A� such that L is Galois

over R�S�, the following is satis®ed:

± Let B be the integral closure of A in L. Then, �B� � rankA B � �A� in

K0�A�Q is satis®ed.

In Section 3, we give some applications of the theory of Roberts rings. The

author is most interested in Application 3.2. That is to say, Dutta multiplicity of

a complex coincides with the alternating sum of lengths of homology modules

of the complex over a Roberts ring. Furthermore, the positivity conjecture of

Dutta multiplicities is reduced to the case where the given ring is a Roberts ring.

Let A be a local ring of ®nite type over a regular ring S. Then the

construction of the Riemann-Roch map tA=S : K0�A�Q ! A��A�Q depends not

only on A but also on S. However, in Section 4, we prove that tA=S is in-

dependent of the choice of S in many important cases as follows:

Proposition 1.2. Let A be a local ring of ®nite type over a regular (not

necessarily local ) ring S, that is, A is ®nitely generated over S as a ring. If one of

the following two conditions is satis®ed, then the Riemann-Roch map tA=S is

independent of the choice of S:
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. A is an excellent henselian local ring.

. A is essentially of ®nite type over a ®eld or Z.

In Section 5, we shall state basic properties of Roberts rings, that is, we

prove the following theorem:

Theorem 1.3. Let �A;m� be a d-dimensional local ring that is a homo-

morphic image of a regular local ring S.

(1) If A is a complete intersection, then A is a Roberts ring. There are

examples of Gorenstein non-Roberts rings.

(2) If A is a normal Roberts ring, then the isomorphism class cl�KA�

containing the canonical module KA of A is torsion in the divisor class

group Cl�A�.

(3) If dimAU 1, then A is a Roberts ring.

(4) If A is a Roberts ring, then A is equi-dimensional.

(5) Let S ! T be a ¯at extension of regular local rings that may not be a

local homomorphism. Let I be an ideal of S. If S=I is a Roberts ring,

then so is T=IT .

In particular, if A is a Roberts ring, then so are its completion Â, its

henselization hA and its localization AP for any prime ideal P of A.

(6) Let T be a ®nite-dimensional regular (not necessarily local ) ring and

R � T=I be a homomorphic image of T. Then, the set

fP A SpecT jPK I and tRP=TP
��RP�� A AdimRP

�RP�Qg

is open in SpecR.

(7) Assume that A is an excellent henselian local ring. If its completion Â

is a Roberts ring, then so is A.

(8) Let x be a non-zero-divisor of A. If A is a Roberts ring, then so is

A=xA.

(9) Let I be an ideal of A contained in the 0-th local cohomology group

H 0
m�A� with respect to the maximal ideal m of A. Then, A is a Roberts

ring if and only if so is A=I .

(10) Let x1; . . . ; xs be a ®lter regular sequence of A. If A is a Roberts ring,

then so is A=�x1; . . . ; xs�.

(11) Assume that there exists a regular local ring T containing A such that

the inclusion i : A ! T is ®nite. Then, A is a Roberts ring.

In particular, an invariant subring of a regular local ring with respect to

a ®nite group is a Roberts ring.

In Section 6, we give some examples.

We refer the reader to Fulton [2], Matsumura [10] and Roberts [18] for

unexplained terminologies.
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For a Noetherian ring R, K0�R� denotes the Grothendieck group of ®nitely

generated R-modules. For an R-module M, �M� denotes the element in K0�R�

corresponding to M. If a ring homomorphism f : R ! S is ®nite, we have the

induced homomorphism f �
: K0�S� ! K0�R� of additive groups de®ned by

f ���M�� � � fM� for an S-module M, where fM � M is an R-module whose R-

module structure is given through f.

For a Noetherian ring R, A��R� is the Chow group of the scheme SpecR.

For a prime ideal p of R of dimR=p � i, �SpecR=p� denotes the cycle in Ai�R�

corresponding to the closed subscheme SpecR=p. If a ring homomorphism

f : R ! S is ®nite, we have the induced homomorphism f �
: A��S� ! A��R� of

additive groups de®ned as in 1.4 in Fulton [2]. ( f � is the push-forward of cycles

for the proper morphism SpecS ! SpecR.)

For an additive group N, NQ denotes NnZ Q.

2. De®nition and some characterizations of Roberts rings.

In this section we give de®nition and some characterizations of Roberts

rings.

First we de®ne the notion of Roberts rings.

Definition 2.1. Let A be a d-dimensional Noetherian local ring. We say

that A is a Roberts ring if there exists a regular local ring S that satis®es the

following two conditions;

1. A is of ®nite type over S, that is, A is ®nitely generated over S as a ring,

2. tA=S��A�� A Ad�A�Q.

Here, tA=S : K0�A�Q ! A��A�Q is an isomorphism of Q-vector spaces de®ned

in Chapter 18 in Fulton [2]. We refer to tA=S as a Riemann-Roch map. As in

Chapter 20 of Fulton [2], it is assumed that all schemes are of ®nite type over a

®xed regular scheme in the singular Riemann-Roch theory. In fact, the

construction of the isomorphism tA=S : K0�A�Q ! A��A�Q of Q-vector spaces

depends not only on A but also on the ®xed regular ring S. However, tA=S

is independent of the choice of S in many important cases as we shall see in

Section 4.

Let A be a local ring, and F : be a bounded complex of free A-modules. If

F : has homology of ®nite length, we de®ne the Euler characteristic wF : : K0�A� !

Z (or wF : : K0�A�Q ! Q) to be

wF :��M�� �
X

t

�ÿ1� tlA�Ht�F :nA M��;

where Ht�F :nA M� is the t-th homology module of the complex F :nA M and

lA�Ht�F :nA M�� denotes its length.
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Let X be a scheme of ®nite type over a regular scheme. A bounded

complex of locally free OX -modules of ®nite rank is called a perfect complex.

For a perfect OX -complex F :, we de®ne the support of F: by

Supp�F :� � 6
t

Supp�Ht�F :��:

The support of F : is a closed set of X consisting of those points at which F : is not

exact. Let F : be a perfect OX -complex with support in Y. We denote the

localized Chern character with respect to the perfect complex F : by

chX
Y �F :� � 0

iV0

chi�F :�:

If no confusion is possible, we denote it simply by ch�F :�. We refer the reader

to Fulton [2] or Roberts [18] for the de®nition and basic properties of localized

Chern characters. We recall that localized Chern characters are de®ned as

operators on the Chow group, and that if h is a cycle of dimension j in Aj�X �Q,

then chi�F :�V h is an element of Ajÿi�Y �Q.

Let F : be a perfect OX -complex with support in Y. We de®ne wF : : K0�X�

! K0�Y � by wF :��F�� �
P

i�ÿ1� i�Hi�F :nOX
F�� for a coherent OX -module F as

in Example 18.3.12 in Fulton [2].

We can describe Roberts rings in terms of Adams operations on complexes

(Gillet-SouleÂ [3], SouleÂ [21]) as follows:

Proposition 2.2. Let A be a d-dimensional Noetherian local ring that is a

homomorphic image of a regular local ring S. Put k � dimS ÿ dimA. Then the

following conditions are equivalent:

1. tA=S��A�� A Ad�A�Q.

2. Letting F : be a ®nite S-free resolution of A, c t��F :�� � tk�F :� is satis®ed in

KSpecA
0 �SpecS�Q for some tV 2.

3. With notation as above, c t��F :�� � tk�F :� is satis®ed in KSpecA
0 �SpecS�Q

for any tV 1.

Here, KSpecA
0 �SpecS�Q is the Grothendieck group of perfect S-complexes with

support in SpecA and c t denotes the t-th Adams operation (see Gillet-SouleÂ [3],

SouleÂ [21]).

Proof. Let F: be a ®nite S-free resolution of A. Then, by the de®nition of

tA=S (Chapter 18 in Fulton [2]), we have

tA=S��A�� � ch�F :�V �SpecS � �
X

iVk

chi�F :�V �Spec S �;

where chi�F :�V �SpecS � A Ad�kÿi�A�Q. Therefore, tA=S��A�� A Ad�A�Q if and

only if chi�F :�V �SpecS � � 0 for i > k.

Let t be an integer bigger than 1. By Theorem 3.1 in [9],
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chi�c
t�F :�� � t ichi�F :�

is satis®ed for any i and t. Then, we have

ch�c t�F :��V �SpecS � �
X

iVk

t ichi�F :�V �SpecS �:

Therefore, we know that A is a Roberts ring if and only if

ch�c t�F :��V �SpecS � � tk ch�F :�V �SpecS �

is satis®ed. Then, by Example 18.3.12 in Fulton [2], the map wc t�F :� : K0�S�Q !

K0�A�Q coincides with tkwF : � w
F :lt k in the case. Remark that, by Lemma 1.9 in

Gillet-SouleÂ [3], the map KSpecA
0 �SpecS�Q ! K0�A�Q induced by �G:� 7! wG:��S ��

is an isomorphism. Therefore, tA=S��A�� A Ad�A�Q if and only if c t��F :�� � tk�F :�

in KSpecA
0 �SpecS�Q.

It is easy to see that c t��F :�� � tk�F :� is satis®ed for any tV 1 if tA=S��A�� A

Ad�A�Q. r

Remark 2.3. Arguments here are found in Section 2 in [7].

Let A be a d-dimensional complete equal-characteristic local ring with

perfect residue class ®eld of characteristic p > 0. Then, it is easy to see that the

Frobenius map f : A ! A is ®nite. The map f induces f �
: K0�A�Q ! K0�A�Q.

Put

LiK0�A�Q � fc A K0�A�Q j f ��c� � p icg

for i � 0; 1; . . . ; d, i.e., LiK0�A�Q is the eigenspace of f � with eigenvalue p i.

Then we can easily prove

K0�A�Q � 0
d

i�0

LiK0�A�Q:

Hence we have a unique representation

�A� � qd � qdÿ1 � � � � � q0; �qi A LiK0�A�Q�:

On the other hand, tA=S�LiK0�A�Q� � Ai�A�Q is satis®ed for any i and,

therefore, we have tA=S�qi� A Ai�A�Q for each i, where S is a formal power series

ring over a ®eld such that A is a homomorphic image of S. Thus, we know that

the following statements are equivalent:

(1) A is a Roberts ring.

(2) tA=S��A�� A Ad�A�Q.

(3) qi � 0 for i � 0; 1; . . . ; d ÿ 1.

(4) � fA� � pd �A� in K0�A�Q.

(5) For any eV 1, � f eA� � pde�A� in K0�A�Q.
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As in Proposition 1.2 that will be proved in Section 4, the map tA=S��A�� is

independent of the choice of S if A is a complete local ring. Therefore, (1) is

equivalent to (2).

In the case where A is a complete local domain with ®eld of fractions R�A�

of characteristic 0, we can characterize Roberts rings by some Galois extension as

in Theorem 1.1.

Proof of Theorem 1.1. Let L be a ®nite Galois extension of R�S� con-

taining R�A�, and G be the Galois group of the ®eld extension L=R�S�. Let B

denote the integral closure of A in L.

For each g A G, the S-automorphism g : B ! B induces g�
: K0�B� ! K0�B�

and g�
: A��B� ! A��B�. Therefore, the Galois group G acts on A��B�Q. By

Example 1.7.6 in Fulton [2], the composite map of

�At�B�Q�
G ,! At�B�Q !

i �

At�S�Q

is an isomorphism for each t, where i : S ! B is the inclusion. Since S is a

regular local ring, it is easy to see that K0�S�FZ. Since tS=S : K0�S�Q !

A��S�Q is an isomorphism, we have Ad�S�QFQ and At�S�QF 0 if t < d.

Therefore we know �Ad�B�Q�
G
FQ and �At�B�Q�

G
F 0 if t < d.

On the other hand, since g : B ! B is an S-automorphism, the diagram

K0�B�Q ���!
tB=S

A��B�Q

g �

?
?
?
y

g �

?
?
?
y

K0�B�Q ���!
tB=S

A��B�Q

is commutative by Theorem 18.3 (1) in Fulton [2]. Since g���B�� � �gB� � �B�,

tB=S��B�� is a G-invariant. Therefore tB=S��B�� is contained in �A��B�Q�
G �

�Ad�B�Q�
G � Ad�B�Q. By Theorem 18.3 (5) in Fulton [2], we have tB=S��B�� �

�SpecB�.

Let j : A ! B be the inclusion. Then, by Theorem 18.3 (1) in Fulton [2], j

induces the following commutative diagram:

K0�B�Q ���!
tB=S

A��B�Q

j �

?
?
?
y

j �

?
?
?
y

K0�A�Q ���!
tA=S

A��A�Q

By de®nition, we have j ���SpecB�� � rankA B � �SpecA� A Ad�A�Q. By the

commutativity of the diagram above, tA=S��B�� � rankA B � �SpecA� is satis®ed.
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By Theorem 18.3 (5) in Fulton [2], the condition (1) is satis®ed if and only if

tA=S��A�� � �SpecA� holds. Since tA=S is an isomorphism, the condition (1) holds

if and only if �B� � rankA B � �A� in K0�A�Q. r

It is very di½cult to know whether a local ring A has a Noether nor-

malization or not (even if A is essentially of ®nite type over a ®eld [4]).

The following corollary is an immediate consequence of Theorem 1.1.

Corollary 2.4. Let A be a Noetherian local normal domain such that A has

a Noether normalization S with R�A�=R�S� being Galois. Then, A is a Roberts

ring.

Corollary 2.4 implies that, if a Noetherian local normal ring A is not a

Roberts ring, then A never have a Noether normalization S with R�A�=R�S�

being Galois.

The fact in the next remark was suggested by P. Roberts.

Remark 2.5. Let S be a formal power series ring with d variables over a

perfect ®eld k of characteristic p > 0. Let L be a ®nite-dimensional normal

extension of R�S�, and A be the integral closure of S in L. Then, A is a Roberts

ring. Here, we give an outline of a proof. Let M be the intermediate ®eld of

the extension L=R�S� such that M=R�S� (resp. L=M) is purely inseparable (resp.

Galois). Put S � k��x1; . . . ; xd ��. Let B be the integral closure of S in M.

Then it is easy to see that there exists a positive integer e such that

SJBJS pÿe

� k��xpÿe

1 ; . . . ; xpÿe

d ��:

Let i be the second inclusion as above. The map i induces i� : A��S
pÿe

�Q !

A��B�Q. By the lying-over theorem, i� is a surjection. Since S pÿe

is a regular

local ring, A��S
pÿe

�Q is a Q-vector space of dimension 1 as in the proof of

Theorem 1.1. Since Ad�B�Q � Q � �SpecB�0 0, we conclude that Ad�B�Q �

Q � �SpecB�FQ and At�B�Q � 0 if t < d. Using the fact, we can prove

tA=S��A�� A Ad�A�Q in the same way as in the proof of Theorem 1.1.

As we shall see in Example 6.1, there exists a Noetherian local normal ring

A that is not a Roberts ring such that A has a subring S satisfying the following

three conditions; (1) S is a normal Roberts ring, (2) the inclusion S ! A is ®nite,

and (3) the extension R�A�=R�S� is normal.

3. Motivation and application.

In the section, we give three applications of the theory of Roberts rings.

The main motivation is in Application 3.2 below.

Application 3.1. In 1985, P. C. Roberts ([14], [16]) proved the vanishing

theorem of intersection multiplicities for Roberts rings as follows:
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Let A be a Roberts ring. Suppose that ®nitely generated A-modules M and N

satisfy following three conditions:

1. pdA M < y, pdA N < y.

2. lA�MnA N� < y.

3. dimM � dimN < dimA.

Then,
P

i�ÿ1� ilA�Tor
A
i �M;N�� � 0 is satis®ed.

It is open to ask whether the above statement is still true without the assumption

that A is a Roberts ring.

Application 3.2. Let �A;m� be a d-dimensional Noetherian local ring that

is a homomorphic image of a regular local ring, and F : be a perfect A-complex

with support in fmg. Then the characteristic free Dutta multiplicity ([5], [6], [7],

[8], [18]) is de®ned by

wy�F :� � ch�F :�V �SpecA�d ;

where �SpecA�d denotes the element of the Chow group of A in dimension d

de®ned by taking the sum of lAp
�Ap��SpecA=p�, where the sum is taken over all

prime ideals of A with dimA=p � d.

If A is a Roberts ring, then we have

wy�F :� � ch�F :�V �SpecA�d

� ch�F :�V tA=S��A��

� w�F :�

�
X

iV0

�ÿ1� ilA�Hi�F :��

by Example 18.3.12 in Fulton [2].

It is conjectured that, if F : is not exact and of length d, then wy�F :� is

positive (Conjecture 3.1 in [8]). We refer the conjecture as the positivity con-

jecture of Dutta multiplicities. In [8], it is proved that the conjecture is equivalent

to the following conjecture:

Conjecture 3.3. Let �A;m� be a d-dimensional complete normal domain

and assume that A has a Noether normalization S with R�A�=R�S� being Galois.

Let

F : : 0 ! Fd ! � � � ! F0 ! 0

be a perfect A-complex with Supp�F :� � fmg. Then
P

i�ÿ1� ilA�Hi�F :�� > 0.

That is to say, by virtue of Corollary 2.4, we have only to discuss the positivity

conjecture of Dutta multiplicities in the case where A is a Roberts ring.

Furthermore, as we have already seen, if A is a Roberts ring,
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wy�F :� � w�F :� �
X

iV0

�ÿ1� ilA�Hi�F :��

is satis®ed. It is the reason why the author is interested in Roberts rings.

As in [8], the small Cohen-Macaulay modules conjecture implies the pos-

itivity of Dutta multiplicities. Furthermore, if the positivity of Dutta multi-

plicities is true, so is Serre's positivity conjecture of intersection multiplicities in

the case where one of two modules is Cohen-Macaulay.

Application 3.4. Szpiro gave the following two conjectures (Conjecture C2

in [22]):

(1) Let �A;m� be a d-dimensional Noetherian local ring and F : be a perfect

A-complex with support in fmg. Put F :4 � HomA�F :;A�, where F4
i is

regarded as the �ÿi�-th part of the complex F :4. Then,

w�F :� � �ÿ1�dw�F :4�

is satis®ed.

(2) Let �A;m� be a Noetherian local ring of characteristic p > 0. For a

perfect A-complex F : with support in fmg, F e�F :� denotes the complex

de®ned by matrices whose entries are the pe-th power of those of the

complex F :. Then,

w�F e�F :�� � pde
w�F :�

is satis®ed for any e.

Nowadays, unfortunately, it is known that both two conjectures as above are

not true (see 13.3 in Roberts [18]).

Here, we prove that both two conjectures are true for Roberts rings.

First of all, remark that both compleces F :4 and F e�F :� as above are perfect

A-compleces with support in fmg.

Let A be a Roberts ring. Assume that A is of ®nite type over a regular

local ring S and tA=S��A�� A Ad�A�Q is satis®ed. By Example 18.1.2, 18.3.12 and

Theorem 18.3 (3) in Fulton [2], we have

w�F :4� � ch�F :4�V tA=S��A��

� chd�F :
4�V �SpecA�d

� �ÿ1�d chd�F :�V �SpecA�d

� �ÿ1�d ch�F :�V tA=S��A��

� �ÿ1�dw�F :�:

The ®rst statement has been proved.
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Now, we start to prove the second one. We may assume that �A;m� is a

complete local ring with residue class ®eld that is algebraically closed. (Our

assumption that A is a Roberts ring is preserved by Theorem 1.3 (5).) Let

f : A ! A be the Frobenius map. Then, it is easy to see

w�F e�F :�� � wF :�� f eA��:

Since A is a Roberts ring, we have � f eA� � pde�A� in K0�A�Q as in Remark 2.3.

Then, we immediately obtain w�F e�F :�� � pdew�F :�.

4. Does the Riemann-Roch map tA=S depend on the choice of S?

Let A be a local ring of ®nite type over a regular (not necessarily local) ring

S. Then, the Riemann-Roch map tA=S is de®ned as in Chapter 18, 20 in Fulton

[2]. The construction of tA=S depends not only on A but also on the regular base

ring S. In the section, we shall prove that tA=S is independent of the choice of S

in many important cases as in Proposition 1.2. It was pointed out (without a

proof ) by Roberts (p270 in [18]) in the case where A is complete or essentially of

®nite type over a ®eld. The author does not know any example that the map

tA=S actually depends on the choice of S.

Now, we start to prove Proposition 1.2.

Proof. Since SpecA is connected, A is of ®nite type over a connected

component S 0 of S. Here, note that SpecS 0 is an open subscheme of

SpecS. Then, we have tA=S � tA=S 0 by the de®nition of the Riemann-Roch map

in Fulton [2]. (By the same argument as above, even if the regular base scheme

is not a½ne, we can replace it with SpecS, where S is a regular domain.)

Assume that A is of ®nite type over a regular domain S. Let S 00 be a

polynomial ring over S with some variables such that there is a surjective S-

algebra homomorphism g : S 00 ! A. Since WS 00=S is an S 00-free module, we have

tS 00=S��S
00�� � �SpecS 00� by the de®nition of the Riemann-Roch map. Let F : be a

®nite S 00-free resolution of an A-module M. Then, we have

tA=S��M�� � ch�F :�V �SpecS 00� � tA=S 00��M��

by Example 18.3.12 in Fulton [2]. Therefore, we may assume that A is a

homomorphic image of a regular domain S.

Here, we need to de®ne ¯at pull-backs of Chow groups for ¯at morphisms

that are not necessarily of ®nite type, and show the compatibility of localized

Chern characters with such ¯at-pull backs as follows. (In [2], all schemes are

assumed to be of ®nite type over a ®xed regular scheme.)

Lemma 4.1. Let h : S ! T be a ¯at homomorphism of regular (not neces-

sarily local ) domains. Let I be an ideal of S. Put A � S=I and B � T=IT . Let

h 0
: A ! B be the ¯at ring homomorphism induced by h.
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(a) As in 1.7 in Fulton [2], h 0 induces the ¯at pull-back of Chow groups

h 0
� : A��A� ! A��B� de®ned by

h 0
���SpecA=P�� � �SpecB=PB� �

X

q AMinB�B=PB�

lBq
�Bq=PBq��SpecB=q�;

where P is a prime ideal of A, and MinB�B=PB� denotes the set of

minimal prime ideals of a B-module B=PB.

(b) Let J be an ideal of A. Let F : be a perfect A-complex with support in

SpecA=J. (Then F :nA B is a perfect B-complex with support in

SpecB=JB.) Let h 00
: A=J ! B=JB be the ¯at ring homomorphism in-

duced by h. Then, for any iV 0, the following diagram is commutative:

A��A�Q ������!
chi�F :�

A��A=J�Q

h 0
�

?
?
?
?
y

h 00
�

?
?
?
?
y

A��B�Q ������!
chi�F :nA B�

A��B=JB�Q:

(c) We de®ne h 0
� : K0�A�Q ! K0�B�Q by h 0

���M�� � �MnA B� for each

®nitely generated A-module M. Then, the following diagram is com-

mutative:

K0�A�Q ���!
tA=S

A��A�Q

h 0
�

?
?
?
y

h 0
�

?
?
?
y

K0�B�Q ���!
tB=T

A��B�Q:

We omit a proof of the above lemma, because proofs in Fulton [2] (Theorem

1.7, De®nition 18.1 and the de®nition of t) are also valid in the case we are

considering.

Now, we go back to the proof of Proposition 1.2. Let A be a homomorphic

image of a regular domain S. We denote by P the prime ideal of S that is the

inverse image of the maximal ideal of A. Applying Lemma 4.1 (c) to the ¯at

homomorphism S ! SP, we have tA=S � tA=SP
.

Therefore, we know that tA=S � tA=T is satis®ed for some regular local ring

T such that A is a homomorphic image of T. Suppose that A is also a ho-

momorphic image of another regular local ring R. We have only to prove

tA=T � tA=R.

First, assume that A is a complete local domain. Then, by Lemma 4.1 (c),

we have tA=T � tA=T̂ and tA=R � tA=R̂. Therefore, we may assume that both T

and R are complete regular local rings. We denote by f1 (resp. f2) the surjective

ring homomorphism T ! A (resp. R ! A). Here, put
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B � f�t; r� A T � R j f1�t� � f2�r�g:

Then the diagram

B ���! R
?
?
?
y

f2

?
?
?
y

T ���!
f1

A

is commutative. Note that all ring homomorphisms in the diagram are sur-

jective. Furthermore, it is easy to see that B is a complete Noetherian local

ring. Therefore, B is a homomorphic image of a regular local ring C, and we

have the following commutative diagram:

C ���! R
?
?
?
y

f2

?
?
?
y

T ���!
f1

A

Note that all ring homomorphisms in the diagram as above are surjective. Then,

we shall obtain tA=T � tA=C � tA=R by the following claim:

Claim 4.2. Let C and T be regular local rings, and A be a Noetherian local

ring. Suppose that there exist surjective ring homomorphisms C ! T and T ! A.

Then, tA=C � tA=T is satis®ed.

Proof. Let F : (resp. G :) be a ®nite C-free resolution (resp. a ®nite T-free

resolution) of an A-module M. Then, by the de®nition of the Riemann-Roch

map (Chapter 18 in [2]), we have

tA=C��M�� � ch�F :�V �SpecC�

tA=T��M�� � ch�G :�V �SpecT �:

Since T is a regular local ring, we have A��T�Q � Q � �SpecT �. Then, tT=C��T ��

� �SpecT � is satis®ed by Theorem 18.3 (5) in Fulton [2]. Then, by Example

18.3.12 in [2],

tA=C��M�� � tA=C�wG:��T ���

� ch�G :�V tT=C��T ��

� ch�G :�V �SpecT �

is satis®ed. r

Let T and R be regular local rings and suppose that A is a homomorphic

image of both of them. Let h : A ! Â be the natural map, where Â is the
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completion of A. Since the diagrams

K0�A�Q ���!
tA=T

A��A�Q

h�

?
?
?
y

h�

?
?
?
y

K0�Â�Q ���!
t
Â=T̂

A��Â�Q

K0�A�Q ���!
tA=R

A��A�Q

h�

?
?
?
y

h�

?
?
?
y

K0�Â�Q ���!
t
Â=R̂

A��Â�Q

are commutative, we have

h�tA=T��M�� � tÂ=T̂h���M�� � tÂ=R̂h���M�� � h�tA=R��M��

for any ®nitely generated A-module M because of tÂ=T̂ � tÂ=R̂. Therefore, if

h� : A��A�Q ! A��Â�Q is injective, then we have tA=T � tA=R.

We shall obtain tA=T � tA=R in the case where A is an excellent henselian

local ring by the following claim:

Claim 4.3. Let A be an excellent henselian local ring that is a homomorphic

image of a regular local ring. Then, the map h� : A��A�Q ! A��Â�Q is injective.

Proof. Note that if h� : K0�A� ! K0�Â� is injective, then so is h� : A��A�Q
! A��Â�Q. We shall show that h� : K0�A� ! K0�Â� is injective.

Let I be an ideal of a regular local ring T, and suppose A � T=I . Let T 0 be

the I-adic completion of T. Then, T 0 is also a regular local ring that is IT 0-

adically complete and T 0=IT 0 � A is satis®ed.

Therefore, we may assume that T is I-adically complete. Since A � T=I is

excellent henselian, so is T (Theorem 3 in Rotthaus [19]).

Then, applying Popescu-Ogoma's approximation theorem ([13], [12]) to T,

we can prove the claim in much the same way as in the proof of Lemma 3.10

in [6]. r

We have proved Proposition 1.2 in the case where A is excellent henselian.

Before proving Proposition 1.2 in the other case, we prove the following

claim that is a little stronger than Claim 4.2.

Claim 4.4. Let C and T be regular local rings, and A be a Noetherian local

ring. Suppose that there exist ring homomorphisms h : C ! T and f : T ! A

such that both f and fh are surjections. Then, tA=C � tA=T is satis®ed.

Proof. Put g � fh. We denote by mC , mT and mA the maximal ideals of

C, T and A, respectively. Dividing T by part of a regular system of parameters

for T contained in the kernel of f (Claim 4.2), we may assume that the dimension

of T is equal to the embedding dimension of A, that is, dimT � dim A=mA
mA=m

2
A.

Let I (resp. J ) be the kernel of f (resp. g), respectively.
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Let T 0 be the I-adic completion of T. Then, T 0 is a regular local ring which

is ¯at over T, and A � T 0=IT 0 is satis®ed. Then, by Lemma 4.1 (c), we have

tA=T � tA=T 0 . Here, note that T 0 is IT 0-adically complete.

Therefore we may assume that T is I-adically complete.

Since h�J�J I , h is factored as C ! C 0 ! T , where C 0 is the J-adic

completion of C. Since tA=C � tA=C 0 is satis®ed as in the case of T, we may

assume that C is J-adically complete.

Since h is a local homomorphism, the diagram

C

h g
�
�
�
�
!

T ���!
f

A

�1�

�

�

�

�

�

�
�!

induces the commutative diagram of A=mA-vector spaces as follows:

mC=m
2
C

h 0
g 0

�
�
�
�
!

mT=m
2
T ���!

f 0

mA=m
2
A

�
�
�
�
�
�
�
��!

Since g 0 is surjective and f 0 is an isomorphism, h 0 is surjective. Therefore, we

have

mT � h�mC� �m2
T JmCT �m2

T :

Then, mT � mCT is satis®ed by Nakayama's lemma.

On the other hand, by tensoring rings in Diagram (1) with C=J, we obtain

the following diagram:

C=J

h g

�
�
�
�
!

T=JT ���!
f

A

�
�
�
�
�
�
�
�!

Remark that g is an isomorphism. Put T 00 � T=JT . We have Ker� f � � I=JT

� IT 00. As a C=J-module, we have

T 00 � h�C=J�lKer� f � � Al IT 00:

The maximal ideal of T 00 coincides with mAl IT 00. Since mT � mCT ,

mT=JT � mCT
00 � mA�Al IT 00� � mAlmAIT

00
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is satis®ed. Therefore, we obtain IT 00 � mAIT
00. Hence, IT 00 � mT 00IT 00 is

satis®ed. Then, by Nakayama's lemma, we have IT 00 � 0. Therefore, I � JT

holds and f is an isomorphism. Since C is J-adically complete, we know that T

is generated by 1 as a C-module, that is, h is a surjection. Then, tA=T � tA=C

follows from Claim 4.2. r

We go back to the proof of Proposition 1.2.

First, assume that A is essentially of ®nite type over a ®eld K of charac-

teristic 0. Let S be a local ring of a polynomial ring over K with some variables

such that A is a homomorphic image of S. Let T be another regular local ring

such that A is also a homomorphic image of T. We shall prove tA=S � tA=T .

Remark that T contains the ®eld of rationals Q. Let I be the kernel of the

map T ! A. As in the proof of Claim 4.4, we may assume that T is I-adically

complete. Consider the following commutative diagram:

K ���! A
x
?
?
?

x
?
?
?

Q ���! T

Here, the map K ! A in the diagram is the composition of K ! S ! A. Since

the extension Q ! K is separable, K is smooth over Q (see Matsumura

[10]). Then, since T is I-adically complete, we obtain a ring homomorphism

K ! T which makes the above diagram commutative. Then, we obtain the

following commutative diagram:

S ����! A
x
?
?
?

T

�
�
�
�
��!

Then, by Claim 4.4, we have tA=S � tA=T .

Next, assume that A is essentially of ®nite type over a ®eld K of char-

acteristic p > 0. �W ; pW� denotes the Witt ring of K, that is, W is the complete

discrete valuation ring with W=pW � K . Let S be a local ring of a polynomial

ring over W with some variables such that A is a homomorphic image of S. Let

T be another regular local ring such that A is also a homomorphic image of

T. We shall prove tA=S � tA=T . Let I be the kernel of the map T ! A. We

may assume that T is I-adically complete.

Let Z�p� be the localization of Z with respect to �p�. Consider the fol-

lowing commutative diagram:
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W ���! A
x
?
?
?

x
?
?
?

Z�p� ���! T

Here, the map W ! A in the diagram is the composition of W ! S ! A.

Remark that the morphism Z�p� ! W is formally smooth in pW-adic topology

([10]) since it is ¯at and the extension K=Fp of their residue class ®elds is

separable. Since A is of characteristic p and T is I-adically complete, we obtain

a ring homomorphism W ! T which makes the above diagram commutative.

Then, we obtain the following commutative diagram:

S ����! A
x
?
?
?

T

�
�
�
�
��!

Then, by Claim 4.4, we have tA=S � tA=T .

Next, assume that A is essentially of ®nite type over Z. Let S be a local

ring of a polynomial ring over Z with some variables such that A is a ho-

momorphic image of S. Let T be another regular local ring such that A is also a

homomorphic image of T. Consider the following commutative diagram:

S ���! A
x
?
?
?

x
?
?
?

Z ���! T

Then, it is easy to see that there exists a ring homomorphism S ! T which

makes the diagram commutative. Then, by Claim 4.4, we have tA=S � tA=T .

We have completed the proof of Proposition 1.2.

5. Basic properties on Roberts rings.

The aim of the section is to prove Theorem 1.3. Before proving it, we make

some comments.

Remark 5.1. Using (2) or (4) in Theorem 1.3, it is easy to see that rings of

dimension 2 are not necessarily Roberts rings.

The author does not know whether (7) is true without the assumption that A

is an excellent henselian local ring.

The converse of (8) is not true. It is easy to ®nd a counterexample by using

(1) and (3).
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If we assume that T is not regular but a Roberts ring, then (11) is not

true. See Example 6.1.

Now, we start to prove Theorem 1.3.

Proof of (1). If A is a complete intersection, then we have tA=S�A� A

Ad�A�Q by Corollary 18.1.2 in Fulton [2]. (It was pointed out by Roberts [16].)

There are examples of Gorenstein non-Roberts rings as in Example 6.2.

Proof of (2). Put

tA=S�A� � td � tdÿ1 � � � � � t0;

where ti A Ai�A�Q. Then, by Lemma 3.5 in [5], we have tdÿ1 � cl�KA�=2 in

Adÿ1�A�Q � Cl�A�Q, where cl�KA� denotes the isomorphism class containing the

canonical module KA.

Proof of (3). If dimA � 0, then we have A��A�Q � A0�A�Q. Therefore,

tA=S��A�� A A0�A�Q is satis®ed.

Suppose that the dimension of A is positive. Then it is easy to see that

�SpecA=m� � 0 in A��A�Q. Hence, A0�A�Q � 0. Therefore, if dimA � 1, then

tA=S��A�� A A1�A�Q is satis®ed.

Proof of (4). Let P be a minimal prime ideal of A. Then, the coe½cient

of �SpecA=P� in tA=S��A�� is equal to lAP
�AP� by Theorem 18.3 (5) in [2]. If

there exists a minimal prime ideal P such that dimA=P < d � dimA, then

tA=S��A�� B Ad�A�Q.

Proof of (5). It immediately follows from Lemma 4.1 (c).

Proof of (6). We may assume that SpecT is connected. Therefore, as-

sume that T is a ®nite-dimensional regular domain.

We denote by RobT�R� the set de®ned in (6). In order to prove (6), we

have only to verify two conditions in (22.B) Lemma 2 in Matsumura [10], i.e.,
. RobT�R� is stable under generalization, and
. if q A RobT�R�, then RobT �R� contains a non-empty open set of the

irreducible closed set V�q�.

The ®rst one immediately follows from (5).

Suppose that q is contained in RobT�R�. We shall prove that V�q�V

RobT�R� contains a non-empty open subset of V�q�. Since Rq � Tq=ITq is equi-

dimensional by (4), there exists a A T n q such that all minimal prime ideals of

IT �aÿ1� have the same height. Replacing T with T �aÿ1�, we may assume that all

minimal prime ideals of I have the same height. Put

tR=T��R�� � ts � tsÿ1 � � � � � t0; �ti A Ai�R�Q�;
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where s � dimR. Since tRq=Tq
��Rq�� A AdimRq

�Rq�Q, we have ti � 0 in A��Rq�Q
for i < s. Then, it is easy to see that there exists an element bi A T n q such that

ti � 0 in A��RnT T �bÿ1
i ��Q for i < s. Put b � b0 � � � bsÿ1. Then, we have ti � 0

in A��RnT T �bÿ1��Q for i < s. By Lemma 4.1 (c), we have tRP=TP
��RP�� A

AdimRP
�RP�Q if P is a prime ideal of T such that qJP 6C b.

Proof of (7). It is an immediate consequence of Lemma 4.1 (c) and Claim

4.3.

Proof of (8). We put

F : : 0 ! A !
x
A ! 0:

Then, by Example 18.3.12 in Fulton [2], we have tA 0=S��A
0�� � ch�F :�V tA=S��A��,

where A 0 � A=xA. Since A is a Roberts ring, we have tA=S��A�� � �SpecA�. By

Lemma 1.7.2 and Corollary 18.1.2 in [2], we have

ch�F:�V �SpecA� � �SpecA 0�:

Proof of (9). Put A 0 � A=I . Then, we have the following commutative

diagram:

K0�A
0�Q ���!

tA 0=S

A��A
0�Q

p �

?
?
?
y

p �

?
?
?
y

K0�A�Q ���!
tA=S

A��A�Q

Here, p : A ! A=I is the projection. Since I is an ideal consisting of nilpotent

elements, the vertical maps in the diagram are isomorphisms (see Example 1.3.1

and 15.1.7 in [2]).

If dimA � 0, then both A and A 0 are Roberts rings by (3). Assume that

d � dimA > 0. Then, we have �A� � �A 0� in K0�A�Q since �I � � lA�I� � �A=m� � 0

in K0�A�Q. Therefore, tA=S��A�� A Ad�A�Q if and only if tA 0=S��A
0�� A Ad�A

0�Q.

Proof of (10). It follows from (8) and (9).

Proof of (11). By the lying-over theorem, i� : At�T�Q ! At�A� is a sur-

jection for each t. Since T is a regular local ring, we know Ad�T�Q FQ

and At�T�Q F 0 if t < d. Therefore, we have Ad�A�Q FQ and At�A�Q F 0 if

t < d. Hence, we have tA=S��A�� A Ad�A�Q.

6. Examples.

We shall give some examples of Roberts (or non-Roberts) rings in the

section.
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Example 6.1. We say that a ring A is a Galois (resp. purely inseparable)

extension over a ring B if the following conditions are satis®ed;
. both A and B are normal domains,
. B is a subring of A such that the inclusion B ! A is ®nite, and
. the extension R�A�=R�B� of their ®elds of fractions is Galois (resp. purely

inseparable).

The ring Cn de®ned in p294 in Roberts [18] is a Galois extension

over A � k�x; y; z;w�=�xwÿ yz�. Let A 0 be the localization A�x;y; z;w�. Then,

Cn nA A 0 is also a Galois extension over A 0. Then, A 0 is a Roberts ring by

Theorem 1.3 (1), but Cn nA A 0 is not so since Cn nA A 0 does not satisfy Szpiro's

conjecture (see Application 3.4) as in p295 in [18].

The ring R de®ned by Miller-Singh [11] is a purely inseparable extension

over a hypersurface A. The ring A is a Roberts ring, but R is not so since R

does not satisfy Szpiro's conjecture.

The ring A in Remark 5.4 in [8] is not a Roberts ring since A does not

satisfy Szpiro's conjecture. If the characteristic of k is not 2, then A is a Galois

extension over a hypersurface B. If the characteristic of k is 2, then A is a

purely inseparable extension over a hypersurface B.

We have already seen that an invariant subring of a regular local ring with

respect to a ®nite group is a Roberts ring (Theorem 1.3 (11)). It is not true if we

remove the assumption that T is regular as follows: Let A be a complete local

non-Roberts domain containing Q. For example, put

A � Q��x1; . . . ; x6��=I2
x1 x2 x3

x4 x5 x6

� �

;

where I2� � denotes the ideal generated by all 2 by 2 minors of the given

matrix. Remark that A is a 4-dimensional normal non-Roberts ring since the

canonical class is not torsion in the divisor class group (Theorem 1.3 (2)). Let

B � Q��y1; . . . ; y4�� be a Noether normalization of A. Let L be a ®nite Galois

extension of R�B� that contains R�A�. Let C be the integral closure of A in

L. Then, by Corollary 2.4, C is a Roberts ring. By the construction, C is a

Galois extension of a non-Roberts ring A.

By the next example, we know when determinantal rings are Roberts rings.

Example 6.2. By a theorem in [7] as follows, we have a criterion for certain

rings to be Roberts rings:

Let R � 0
nV0

Rn � R0�R1� be a Noetherian graded ring over a ®eld

R0. Assume that X � Proj�R� is smooth over R0. Then, the local ring A � R�R1�

is a Roberts ring if and only if
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td�W4

X �1 1 mod c1�OX �1�� � CH
��X �Q:

In particular, if X is an abelian variety, then A � R�R1� is a Roberts ring.

Here, CH��X� denotes the Chow ring of the smooth projective variety X, c1� � is

the ®rst Chern class, W4

X is the tangent sheaf of X, and td�W4

X � is its Todd class

(see [2]).

Let t, m, n be integers such that 1U tUmU n. Let R be the polynomial

ring k�xij j 1U iUm; 1U jU n� over a ®eld k divided by the ideal It�xij� gen-

erated by all t by t minors of the m by n matrix �xij�.

Using the criterion as above, we conclude that, for t � 2, A � R�R1� is a

Roberts ring if and only if R is a complete intersection as in Section 3 in [7].

Since any localization of a Roberts ring is a Roberts ring again (Theorem

1.3 (5)), we know that, for any t, A � R�R1� is a Roberts ring if and only if A is a

complete intersection. (S. Goto taught me the reduction.)

Therefore, R is a Roberts ring if and only if t � 1 or m � n � t.

Hence, if 1 < t < m � n, then A is a Gorenstein non-Roberts ring.

The ring R de®ned in Miller-Singh [11] is also a Gorenstein non-Roberts

ring.

Example 6.3. The localization of a simplicial semi-group ring at the

homogeneous maximal ideal is a Roberts ring as follows.

Let N0 be the set of non-negative integers. Let d be a positive integer. Let

H be a submonoid of the additive monoid N d
0 . Here assume that there exists an

integer t > 0 such that t �N d
0 JH. Let k be a ®eld. We de®ne the simplicial

semi-group ring k�H� with respect to H to be the subring of k�t1; . . . ; td � generated

by

fta11 ta22 � � � tadd j �a1; a2; . . . ; ad� A Hg

over k.

Let A be the localization of k�H� at the homogeneous maximal ideal. Put

B � k�t1; . . . ; td ��t1;...; td �. Then, the inclusion A ! B is ®nite. Therefore, by

Theorem 1.3 (11), A is a Roberts ring.

Let X be the d by d generic symmetric matrix, that is, X � �xij� where xij �

xji. Then, the ring

R � k�xij j 1U iU jU d�=I2�X �

is isomorphic to the second Veronesean subring

k�titj j 1U iU jU d�

of the polynomial ring k�t1; . . . ; td �. Since it is a simplicial semi-group ring, the

localization of R at the homogeneous maximal ideal is a Roberts ring.
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Example 6.4. Put R � k�x1; . . . ; xd ��x1;...;xd �, where x1; . . . ; xd are variables

over a ®eld k. Let I be an ideal of R and put t � htR I . Assume that R=I is a

�d ÿ t�-dimensional Cohen-Macaulay ring. Let �T ;mT� be a regular local ring

and f : R ! T be a local ring homomorphism. Here, we shall prove that, if

R=I is a Roberts ring and htT f �I�T V t, then T=f �I�T is also a Roberts ring.

When this is the case, htT f �I�T � t is satis®ed.

Put T 0 � T �x1; . . . ; xd ��mT ;x1;...;xd �
. We de®ne g : R ! T 0 by g�xi� � xi for

each i. Then, we have

T � T 0=�x1 ÿ f �x1�; . . . ; xd ÿ f �xd��T
0:

By Theorem 1.3 (5), we know that T 0=g�I�T 0 is a Roberts ring since g is

¯at. Note that, T 0=g�I�T 0 is Cohen-Macaulay and htT 0 g�I�T 0 � t. It is easy to

see that

T 0=fg�I�T 0 � �x1 ÿ f �x1�; . . . ; xd ÿ f �xd��T
0g � T=f �I�T :

Then, calculating dimensions of both rings, we know that x1 ÿ f �x1�; . . . ;

xd ÿ f �xd� is a T 0=g�I�T 0-regular sequence and htT f �I�T � t. Then, by The-

orem 1.3 (8), we know that T=f �I�T is a Roberts ring. We have completed the

proof.

Let �T ;mT� be a regular local ring containing a ®eld k and

faij j 1U iU jU dg be a subset of mT . Putting aji � aij for i < j, �aij� is a d by d

symmetric matrix. We have already seen in Example 6.3 that

�k�xij j 1U iU jU d�=I2�xij���xij j1UiUjUd�

is a Roberts ring with ht I2�xij� � d�d ÿ 1�=2, where we put xji � xij for i < j, and

�xij� is the generic d by d symmetric matrix. Then, if htT I2�aij�V d�d ÿ 1�=2,

then we know that ht I2�aij� � d�d ÿ 1�=2 and T=I2�aij� is a Roberts ring.
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