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Abstract. Let f be a homogeneous polynomial in two variables such that on its
graph Gy, the origin o = (0,0,0) of R? is an isolated umbilical point. In this paper, the
behavior of the principal distributions around o is studied in relation to the existence of
other umbilical points than o and the behavior of the gradient vector field of f.

1. Introduction.

Let S be a smooth surface in the 3-dimensional Euclidean space R and
Umb(S) the set of the umbilical points of S. If S\Umb(S) # ¢, then there
exists a principal distribution Ds on S, which is a one-dimensional continuous
distribution on S$\Umb(S) such that Dg(p) is one of the principal directions at
p e S\Umb(S). If Ds has an isolated singularity py, i.e., if py is an isolated
umbilical point, then as a quantity in relation to the behavior of the principal
distributions around py, the index ind,(S) of po is defined (2, p. 137]).

Let P* be the set of the homogeneous polynomials of degree k = 3 such that
on their graphs, the origin o = (0,0,0) of R? is an isolated umbilical point, and f
an element of P and f the function on R defined by f(0) = f(cos6,sinf). A
real number at which df /d0 =0 is called a root of f and the set of the roots of f
is represented by Ry. Each root 0y € Ry determines a straight line

L(0y) := {(x,y) € R*;xsinfy — ycos Oy = 0}

on R? through o. The straight line determined by a root is called a root line of f.
The natural coordinates (x,y) on the xy-plane may be considered as coordinates
on the graph Gy of . Then a root line is considered not only as a subset of R?
but also as a subset of Gy. The set of the root lines of f is represented by
Ry. Let r be a positive number such that on 0 < x? + y? <72, there exists no
umbilical point, and ry the supremum of such numbers as r. A continuous
function ¢, 4 4 1s called the argument function on x? 4 y% = r? with initial values
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(0o, ¢9) if @, g, 4, satisties @, 4 4 (6o) = ¢, and if for any O e R, cos¢, g 4 (0)-
(0/0x) +sing, g, 4 (0)(0/dy) is in the principal directions at (rcos@,rsinf). For
re (0,r) and for 0 € Ry, there exists the argument function ¢, 4 4 (see [1]). It
is said that the sign of 0y € Ry is positive (resp. negative) if there exists a positive
number ¢ > 0 such that for any r € (0,ry) and for any 0 € (0y —¢,00 + ¢)\{0o},

{0 —0,.0,,0,(0)}(0 — o) >0 (resp. <0).

A root 0y € Ry is said to be related (resp. non-related) to the origin if the sign of
0y is either positive or negative (resp. neither positive nor negative). Let N,
(resp. N_) be the number of the root lines determined by the positive (resp.
negative) roots. Then the index of o is represented as

: N, —N_

ind,(Gr) =1 — %,

and moreover the following holds ([1}):
N, —N_e{k -2}

where [k/2] is the Gauss’ symbol for k/2.

One of the purposes of this paper is to describe the relation between the sign
of a root 0y related to the origin and the set Umb(Gy; L(0y)) of the umbilical
points on L(0p)\{o}. If df/d0 =0, then any 6 € R is a root non-related to the
origin. Suppose that df /d0 #0. Then for any 0, € Ry, there exists a positive
integer m such that (d”*'f/d0™)(6y) # 0. The minimum of such integers as m
is called the multiplicity of 6y and denoted by u(6y). The multiplicity u(6y) is
odd (resp. even) if and only if 6y is related (resp. non-related) to the origin (see

1)

ProrosiTiON 1.1. If 6y is a root of f non-related to the origin, then the
following holds:

Umb(Gy; L(0o)) # -

Suppose that 0y € Ry is related to the origin. It is said that the critical sign
of Oy is positive (resp. negative) if f(0o)(d"+1f /do* D1 (6) <0 (resp. > 0).
The sign and the critical sign of 6, are represented by sign(6y) and c-sign(6),
respectively. Let K/(0y) be the Gaussian curvature of Gy at (cos@p,sin@p). If
K (0y) # 0, then the sign of K/(0p) is represented by sign[K;(6p)]. Let {+,—} be
the set of symbols 4, —. In the natural way, sign(6p), c-sign(6) and sign[Ky ()]
may be considered as elements of the set {+,—}. Let-be the law of composi-
tion of the set {+,—} such that

+ot=——=+, + —=—-4=-

Then one of the main results in this paper is stated as follows.
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THEOREM 1.2. Let 0y be a root of f.
(1) If Ky(00) =0, then Oy is related to the origin, and the following hold:

(Sign(00)7c'5ign(00)) = (+7 +)a
Umb(Gy; L(0o)) = ;
(2) If Oy is related to the origin and satisfies K/ (0p) # 0, then

sign(0) - c-sign(0) - sign[Ky(0)] = — (resp. = +)
if and only if
Umb(G; L(00)) = & (resp. # ).

The other of the purposes of this paper is to describe the relation between
the sign of a root 0, related to the origin and the behavior of the gradient vector
field of f'near a root line L(6y). A number 6y is called a gradient root of f if for
any p € R, the gradient
0 : 0 0 : 0
%(pcos@o,psmﬁo)a—|—a—§(pcoseo,psm00)5
of f at (pcosby,psinby) is in the principal directions. The set of the gradient
roots of f is represented by RfG.

ProrosITION 1.3. A number 0y is an element of RfG if and only if 0y is an
element of Ry or satisfies Ky(0y) = 0.

There exists a continuous function  such that for any 6 € R, the gradient at
(cosd,sind) € Gy is represented by a tangent vector cosy(0)(d/0x) + siny(0)-
(0/0dy) with constant multiplication. Such a function  is called an argument
function of the gradient. 1t is said that the gradient sign of 0, € RfG is positive
(resp. megative) if there exists a positive number ¢ > 0 such that for any r € (0,r)
and for any 0 € (0y —¢,00 + &)\{0o},

{900,000 (0) —¥(0)}(0 — 6p) > O (resp. < 0).

An element 0, € RfG is said to be related (resp. non-related) to the gradient if the
gradient sign of 6 is positive or negative (resp. neither positive nor negative). If
0y € RfG 1s related to the gradient, then the gradient sign of 0, is represented by
g-sign(0o).

It is said that the curvature sign of 0, € RfG is positive (resp. negative) if there
exists a positive number ¢ > 0 such that for any 0 € (6y —¢, 0y +¢)\{0},

Ky (0) > 0 (resp. < 0).
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An element 6, € RfG is said to be related (resp. non-related) to the curvature if the
curvature sign of 6, is neither positive nor negative (resp. either positive or
negative). If Oy e RfG 1s non-re1~ated to the curvature, then the curvature sign of
0y is also represented by sign[Ky(0p)].

ProposITION 1.4. Let 0y be an element of RfG\Rf. Then 0y is related or
non-related to both of the gradient and the curvature.

ProprosITION 1.5. Let 0y be an element of Ry. Then exactly one of the
following happens:

(1) 4 root Oy is non-related to just one of the origin, the gradient and the
curvature;

(2) A root Oy is non-related to each of the origin, the gradient and the
curvature.

The other of the main results in this paper is the following.

THEOREM 1.6.  Suppose that Oy € Ry is related to the origin and the gradient.
(1) If f(6y) =0, then the following holds:

(sign(0p), g-sign(fo), sign[Ky (60)]) = (+, —, —);
(2) If f(0o) # 0, then the following holds:
sign(6y) - g-sign(6o) - sign[Ky(6o)] = —.

If 0y € Ry satisfies £(6) =0, then it is seen that K;(0p) = 0. Therefore from
Theorem 1.2] and from [Theorem 1.6, the following is obtained.

TueoreM 1.7. Suppose that Oy € Ry satisfies (1) in Proposition 1.5 and
K/ (0p) #0. Then c-sign(0p) - g-sign(6y) = + (resp. = —) if and only if

Umb(Gy: L(th)) = & (resp. # ).

RemARK 1.8. A condition K (6) # 0 in Theorem 1.7 may not be omitted.
For example, we give an element f(x,y) = x* +y* e P*. We see that

(1) 0 is a root of f related to the origin and the gradient;

(2) sign(0) = c-sign(0) = sign[K;(0)] = +;

(3) gign(0) = ~
However we also see that Umb(Gy; L(0y)) = J, because of Ky(0) = 0.

This paper is organized as follows. In Section 2, notations and fundamental
results are prepared. In Section 3, the set of the umbilical points on each root
line of f e P¥ is studied. Particularly, [Proposition 1.1 and [Theorem 1.2 are
proved. In Section 4, the behavior of a principal distribution is compared with
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the behavior of the gradient vector field near a point (rcosy,rsinfy) where
0o eR/,-G. Particularly, |Proposition 1.3, [Proposition 1.4, [Proposition 1.3 and
are proved.

The author is grateful to Professor T. Ochiai for helpful advices and for
constant encouragement.

2. Preliminaries.

Let f(x,y) be a homogeneous polynomial in two real variables x,y of degree
k =3 and Gy the graph of f. We set

S A O i A A |
pf'_ﬁx’ qf'_ﬁy’ ST o f'_ﬁxﬁy’ f'_ayz'

Moreover we set
Pr(0) == pr(cos,sinb), q,(0) := qr(cosb,sinb),
7r(0) :==rp(cos0,sin ), 5r(0) := sp(cosO,sin0),
tr(0) := tr(cos d,sin ),

and

d; (0, §) == §7(0) cos” § + {i;(0) — 7(0)} cos g sin § — 5;(0) sin’ ¢,
nr(0,9) = {5r(0)5,(0)” — B, (0)G(0)F(0)} cos® ¢
+{ir(0)p;(0)* = F7(0)3(0)*} cos g sin ¢
+ {B(0)q,(0)if(0) — 5(0)q(0)*} sin” ¢.
Then (r,0p,¢,) satisfies the equation
(2.1) r*2d; (00, #o) + 1 *ns (0, ¢9) = 0

if and only if a tangent vector cos @, (0/0x) + sin ¢,(0/0dy) at (rcos by, rsinby) is in
the principal directions. We set

_(#0) o (5O 5(0)
sy 0= (g ) ey = (o) L)

We denote by (,) the scalar product in R?, and for a vector v e R?, we set

ol == +/<v,0).
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LemmA 2.1.  For real numbers 0y, ¢, the following hold:

()
it =335 500 (g )
=0 (o) (o))
2)
(O ) = ”g,iaffl(@(’)”z)zKf<00><gradf(eo>, (S ) sint — oo
ProOF. We immediately obtain (1). We rewrite n(0y, dy) by
22) (k1) grady () = Hess 0)( )
as follows.
(O, ) = ——— (15 (00) (5 (00) cos y + 5¢(0) sin )

(k= 1)°
— ff(@o)(ff(@o) COoS (9() + §f(00) sin 00)

x (57(00) cos Oy + 7r(0o) sin 0y )] cos ¢,
+ [F(00) (77 (6o) cos Oy + 37 (0o) sin 6g)
— 77(00) (5(00) cos O + 77 (o) sin g )*] cos ¢y sin
+ [=37(60) (37 (00) cos b + iy (6o) sin 6o)*
+ 17(00) (Fr (o) cos By + 57(6o) sin )
x (57(0) cos O + ir(0o) sin 0y)] sin* g, }
= {—[F(60) cos Oy + 57 (00) sin O] sin O cos* ¢,
+ [77(00) cos® Oy — i (0p) sin® O] cos ¢, sin ¢,
+ [57(00) cos 0 + ir(0) sin O] cos O sin* ¢y }

. Tr(00)iy (6) — 5(00)°
(k—1)*
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= {—p;(0o) sin Oy cos’ bo
+ [P7(00) cos Oy — G, (o) sin Og] cos ¢ sin ¢,

7 (00)17(00) — 57(00)°

~ )
+ G (0o) cos O sin” ¢ } 1
F(00)77(00) — 57(60)* cos ¢ .
_ i O)f(k(? : (%) <gradf(t90), (Sin¢§>>sm(¢o — 0p).
Gaussian curvature Ky(x,y) of Gy at (x,y) is represented as
2
re(X,¥)tr(X,y) — se(X,p
(23) Kf(x,y): f( )f( 2) f( 2)2.
{1+pr(x,0)" +qr(x,9)7}
Therefore we obtain (2) of [Lemma 2.1. H

PROPOSITION 2.2. For a number 0y, the following are mutually equivalent:

(1) A number 0y is a root of f;

(2) Two vectors (cosby,sinty) and (—sinby,cosby) are eigenvectors of
Hessy (00):

(3) A4 vector grad,(0o) is represented as

grad,(0y) = kf (6o) <COs o ) ;

sin Oy

(4) A tangent vector cos0y(0/0x) + sin0y(d/0y) is in the principal directions
at (rcosfy,rsinb).

Proor. We set

dr(0) = dr(0,0), s (0) := ns(0,0).
From (2) of Lemma 2.1, we obtain /iy = 0. By (2.2) and by (1) of [Lemma 2.1,

we obtain

(24) i0) = (k1) P 0)

for any 0 € R. Therefore it is seen that (1) and (4) are equivalent. By

25) 1710) = (exad 00, (5 ) ),

sin 0

we see that (1) and (3) are equivalent. By (2.2) and by [2.5), we see that (2) and
(3) are equivalent. O
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COROLLARY 2.3.  If (rcos by, rsinly) is an umbilical point of Gy, then Oy is an
element of Ry.

From now on, suppose that /' € P¥, and let r be a positive constant such that
on 0 < x? 4+ y? < r?, there exists no umbilical point, and ry the supremum of such
numbers as r. The argument function ¢, 5 , on x*+y* = r? with initial values
(0o, @) is characterized as the function satisfying ¢, 4, , (0o) = ¢ and

(2.6) r*=2d (0, Dr.0y,4,(0)) + g (0, r.00.4,(0)) =0

for any 6 € R. For any re (0,r9) and for (6y,¢,) satisfying [2.1}, the argument
function ¢, 5 , is smooth ([1]). For an integer ne {0,1,...,u(0)}, the fol-

lowing holds ([1]):

d"|d
. a d[e’{] (0o)
( . ) d@l’l( - ¢r,90,00) 60, - a(df 4+ rzkiznf)
0p (0,4)=(00,00)

Therefore by and by [2.7), we see that for a root 6 related to the origin,
sign(6y) = + (resp. = —) if and only if

(*0)
40 %)

(0= ¢:.0,.0,) >0 (resp. < 0).

0=0,

3. The set of the umbilical points on a root line.

Let f be an element of Pok with k = 3 and 0y an element of Ry. Let /léi) be

the eigenvalue of Hesss(0y) corresponding to an eigenvector (cos0y,sinty), and
72

g, the other eigenvalue of Hesss(6o).
ProPOSITION 3.1.  There exists an umbilical point on L(0y)\{o} if and only if
(1) )y 1(1)y2,(2)
(3.1) (Ag, — 49 )2y, ) Ay, > 0.
In addition, if (3.1) holds, then the following holds:
(3.2) Umb(Gy; L(0y)) = {£ (rg, cos by, 1y, sinby)},

where

1/(2k—2)

oo ()

0o 1\2,(2 )
(7))
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Proor. For any ¢, € R, the following hold:

(3.3) (COS ¢0> — cos(dy — 0) <C°S 00) +sin(dg — 60) ( —sinby >

sin ¢, sin Oy cos Oy
—sin ¢, . B cos Oy B —sin 6
(3.4) ( cos dy ) = —sin(d, 00)(sin H()) + cos(¢, HO)< cos 01 >

Applying (3.3) and to (1) of Lemma 2.1, we obtain
dy (00, §o) = (2, — 4y,) cos(hy — o) sin(gy — o).

Applying (2.2) to (2) of [Lemma 2.1, we obtain

7132,(2)
(49, )" 44, .
nr (0o, dy) = — 2 cos(¢y — bo) sin(gy — bo).

(k- 1)
Therefore noticing [2.1), we see that Umb(Gy; L(0))) # & holds if and only if
holds. We immediately obtain [3.2). ]

If 6y € Ry, then from (2.2) and from [2.5), we obtain
(1) _ ;
(3.5 I = k(e = 1) (00).
Then by [Proposition 2.2, we obtain
4,

(3. Jarad, (60)] = 2

Applying (3.6) to [(2.3), we may represent Gaussian curvature Ky at a point
(rcosfy,rsint)) as

iél)/{f}i)r2k—4

Ky (rcosfy,rsinty) = 3

5.
1+ —/1((9})) p2k=2
k—1

1) ,(2
A0

232
(A
o1

Particularly the following holds:

(3.7) Ky (00) =

We shall prove
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PROPOSITION 3.2. Let 0y be a number such that K (0y) =0. Then
(1) just one of /1((,})) and /1((,? is equal to 0;
(2) The following holds:

Umb(Gy; L(6o)) = &
Proor. Since Ky(6) =0, it follows from that /1((,? =0 or /lé? =0.

However from f € PX, we see that just one of /léy and /1(9? is nonzero. If
0o € Ry, then from [Proposition 3.1, we see that Umb(Gy; L(0p)) = &. If Oy ¢ Ry,
then from |Corollary 2.3, we see that Umb(Gy; L(0h)) = . O

CorOLLARY 3.3.  For any 0 € Ry, either £(60) or (d*f/d0*)(0y) is not equal
to 0.

ProOF. By (2.2), we obtain

d*f 1 cos 0 cos 6
(3:8) ﬁ(go) B _m<<sin00 )’Hessf(eo)(sin 00>>
—sin 0 —sin 6

* <Hessf(00)( cos by )’ < cos by >>
Therefore we obtain

d*f L .oy 0
(3.9) 1 (00) =~ =32 + 2y,
Therefore from [3.5), and from (1) of [Proposition 3.2, we obtain
3.3. ]

We want to construct a map D.Q, from Ry to R:=RU{w}. Suppose that
0o is a root of f'at which f(0y) = 0. Then we set D.Q/(6h) := oo. Suppose that
Oy is a root of f at which f(6y) #0. Then we set

D.Q,(6h) == %(%)/f(@o)-

The value D.Q(0o) is called the determinant quotient at 0y. By and by
(3.9), we obtain

& .
(3.10) ﬁ(O)/k(k— 1)/ (6y) it

From (3.10), we obtain
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LEMMA 3.4. Let 0y be a root at which f(0y) #0. Then the following holds:

e 1 {1 +D.Q,-(eo)}
D k-1 k '
A9,
For any a e R, we define the subset [a, o] (resp. [c0,a]) of R by
{xeR;a=<x (resp. x <a)}U{o0}.
Similarly we define the subsets
la, ©0), (a, 0], (a, ©0), (0, a, [0, a), (0, a)

of R.
Noticing |3.7) and [Lemma 3.4, we obtain

PropoOSITION 3.5. Let Oy be a root. Then

(1) Kr(6o) =0 if and only if D.Qs(0h) = —k or o;
(2) Kr(60) > 0 if and only if D.Q/(6) € (~k, =)
(3) Kr(0o) <0 if and only if D.Q(0o) € (00, —k).

In this section, an element of Ry related to the origin is merely called a
related root.

PropoSITION 3.6. If 6y is a root such that Kf(ﬁo) =0, then 0y is a related
root with c-sign(ty) = +.

Proor. We see from [Proposition 3.§ that D.Q,(0y) = —k or oo. If
D.Q/(6y) = —k, then we see that u(h) =1 and that 0 is a related root with
csign(p) = +. If D.Q,(0) = oo, then it follows that f(6y) =0. Then from
Corollary 3.3, we obtain (d?f/d0)(0y) #0. Therefore we see that u(f) =1,
which implies that 6y is a related root. Since f()) =0, it follows that
c-sign(fy) = +. ]

From [Proposition 3.1 and from [Lemma 3.4, we see that Umb(Gy; L(6)) #
@ if and only if

Q0
ﬁ{l L D%) Qli( 0)} e (0,1).

Therefore we obtain

ProposITION 3.7. Let Oy be a root and L(0y) the root line determined by
Oo. Then Umb(Gy; L(0y)) # & if and only if the determinant quotient D.Q/(0y)
satisfies

(3.11) D.Q,(60) € (—k, k(k — 2)).
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In addition, if (3.11) holds, then the following holds:

$Umb(Gy; L(0)) = 2.

CoROLLARY 3.8. Let Oy be a root such that u(6y) = 2. Then the following
holds:

$Umb(Gy: L(00)) = 2

Particularly [Corollary 3.8 implies [Proposition 1.1I.

PROPOSITION 3.9.  Let f be a homogeneous polynomial of degree k =3
satisfying f # 0 and df /d0 = 0, and Gy the graph of f. Then the set Umb(Gy) of
the umbilical points on Gy is represented as follows:

(3.12) Umb(Gr) = {0} U{x* +y? = ¢},
where ¢y is a nonzero number.

Proor. For a homogeneous polynomial f satisfying f # 0 and df /d0 =0, it
is obvious that D.Q,(6)y) = 0 for any 0y € R. Therefore if the degree k of f'is not
less than 3, then we see from [Proposition 3.7 that fUmb(Gy; L) =2 for any
straight line L on R? through 0. From [Cemma 3.4, we obtain

2w
0o

for any 6y € R. By [Proposition 3.1, (3.5) and by [3.13), we see that for any
0o € R, the set of the umbilical points on L(6) is represented as

L 1/2(k—1)
0, + —— 5 (cos b, sin 6y)
k2f (6o)

Since / is a constant function, we see that the set Umb(Gy) is represented as

where ¢ is a nonzero number. Hence we have proved |Proposition 3.9. ]

REMARK 3.10. If / satisfies df /d0 = 0, then k is even and fis represented by
(x2 + y»)*/? with constant multiplication ([T]).

From now on, we suppose that df /d6 £ 0.
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PrOPOSITION 3.11. Let f be an element of P* with k = 3. Then the fol-
lowing holds:
fUmb(Gy) € {2i + 1},

Proor. If we set

Dy(x,y) = X*sp(x,p) + xp{ty(x, ) — rp(x,0)} = ys57(x, ),

then we see that Dr(x,y) is a homogeneous polynomial of degree k and that
c~lf(9) = Dy(cos0,sin ). Therefore we see that the number #R; is less than or
equal to k. Noticing [Corollary 2.3 and [Proposition 3.7, we obtain {Umb(Gy) €
(2i + 1}, 0

ProposiTION 3.12 ([1]). Let Oy be a related root with c-sign(6y) = +. Then
sign(6y) = + holds.

Proor. We shall show

ody
¢
From and from [3.14), we obtain sign(fy) = +.

/)

By (1) of [Cemma 2.1, we obtain

ﬂ(90)+1f
(3.14) LR

(0o, 0o) (60) > 0.

ad,
(3.15) - ¢f (00, 00) = ) — 2.
Therefore by and by [3.15), we obtain
dzf _ddy k-2

If f(0y) =0, then from we obtain (d*f/d0%)(0y) = (dy/0¢)(00,00). By
[Corollary 3.3, we obtain [3.14) “ Suppose that f(6) #0. Then we see from
and from (3.16) that

/l

1 dds
(3.17) D.Qs(0) = (0o, 00) + k(k - 2).
T ) 09
Since c-sign(fy) = +, we obtain
1 ody

(3.18)

700) %% (00, 00) = —k(k —2).

Therefore we see that
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ody dﬂ(90)+1f 1 ody . dﬂ(90)+1f
%(Qo,eo)w(eo) = L;(@O) a¢(90,90)] [f(eo)do(%)]-

By c-sign(6y) = + and by (3.18), we obtain (3.14). O

RemMARK 3.13. We obtain (1) of [Theorem 1.2, from |Proposition 3.2,
IProposition 3.6 and from [Proposition 3.12,

We want to study the number §Umb(Gy; L(0y)) determined by a related root
0o with c-sign(6y) = +.

PROPOSITION 3.14.  Let 0y be a related root with c-sign(6y) = + and L(0y) the
root line determined by 0y. Then §Umb(Gyr; L(0y)) =0 (resp. = 2) if and only if
Ki(00) £0 (resp. > 0).

Proor. Since c-sign(f) = +, we see that D.Q; () € [c0,0]. Therefore by
IProposition 3.§ and by |Proposition 3.7, we obtain [Proposition 3.14, O

We want to study the number §Umb(Gy; L(6)) determined by a related root
0o with c-sign(0h) = —. It is seen that D.Q;(0) € [0,00). Therefore from
IProposition 3.5, we obtain

ProposiTiON 3.15. Let 6y be a related root with c-sign(6y) = —. Then
Ky (0o) is a positive number.

Next, we shall prove

LemMaA 3.16.  Let Oy be a related root satisfying (0dy/0¢)(0o,00) =0. Then
the following holds:

(c-sign(bh), sign(o)) = (-, +).

Proor. Noticing (3.14), we see that c-sign(fp) = —, and by (3.15) we
obtain /Ié(l)) :/lé?. By (2) of and by [Proposition 3.15, we
obtain /léi)(anf/w)(ﬁo,ﬁo) > 0. Since c-sign(fp) = —, we see from that
sign(0p) = +. O

ProposiTION 3.17. Let 0y be a related root with c-sign(6y) = —. Then
sign(ty) = + (resp. = —) if and only if $Umb(Gy; L(0y)) =0 (resp. = 2).

Proor. If sign(6y) = +, then by we obtain (1/f(0))(0ds/0¢) (0o, 0p) =
0. By [3.17), we see that D.Q(6y) € [k(k —2),0). Therefore it follows from
[Proposition 3.7 that $Umb(Gy; L(6))) = 0.

Conversely, if {Umb(Gr; L(60y)) = 0, then from [Proposition 3.3, [Proposition|
3.7 and from [Proposition 3.15, we see that D.Qy(0y) € [k(k —2),0). If
D.Q/(6h) € (k(k —2),00), then it is seen that sign(fy) =+. If D.Q.(0h) =
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k(k —2), ie., if (dds/d¢)(0o,00) =0, then it follows from that
sign(0p) = +.
Therefore considering [Proposition 3.7, we obtain [Proposition 3.17. ]

From [Proposition 3.12, we see that the critical sign of a negative root is
negative. Therefore noticing [Proposition 3.17, we obtain

CoROLLARY 3.18. Let 0y be a related root with sign(6y) = —. Then the
following holds:

$Umb(G: L(00)) = 2.

Noticing [Corollary 3.8 and [Proposition 3.17, we obtain

COROLLARY 3.19. Let 6y be a related root such that (sign(6y),c-sign(6y)) =
(+,—). Then u(6p) =1 holds.

Proor ofF THEOREM 1.2. Noticing Remark 3.13, suppose that 6, is a related
root satisfying K;(0p) #0. Then from [Proposition 3.12, [Proposition 3.14
[Proposition 3.13 and from [Proposition 3.17, we obtain Theorem 1.2 O

4. The behaviors of the principal distributions and of the gradient vector
field.

PROPOSITION 4.1.  Let f be an element of PX.  Then for a real number Oy, the
following are mutually equivalent:

(1) 4 real number 0y is an element of RfG; i

(2) A4 real number 0Oy is an element of Ry or satisfies K;(0y) = 0;

(3) Let  be an argument function of the gradient. Then a vector

(cosy(y),sinyy(6y))

is an eigenvector of Hesss(0y) corresponding to a nonzero eigenvalue;
(4) Let ¢y be a number such that for a nonzero number r, cos@y(d/0x) +
sin ¢y (0/0y) is in the principal directions at (rcos Oy, rsinby). Then for any p € R,

o . 0 : 0 0
cos¢0a+sm¢0@, —smqﬁoa—i—cos%@
are in the principal directions at (pcosy,psinty), and

(cos g, singy),  (—sin gy, cos ).

are eigenvectors of Hesss(0y).

To prove [Proposition 4.1, we need the following.
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LemMA 4.2. A number 0y is an element of Ry satisfying £(60) =0 if and only
if 0y satisfies grad,(6y) = (0,0). In addition, if grad,(6y) = (0,0), then the fol-
lowing hold.:

(1) &y (00) = 0

(2) There exists an integer n such that

lﬂ(@o) =0y + 7Z/2 + nm;

(3) A vector (cosy(0y),sin(6y)) is an eigenvector of Hesss(0y) corresponding
to a nonzero eigenvalue.

Proor. By IProposition 2.2, we see that a number 0y is an element of Ry
satisfying f(6y) = 0 if and only if 0 satisfies grad,(6) = (0,0).

Suppose that grad,(6p) = (0,0). Then by |3.5), and by f(0) =0, we
obtain K;(fp) =0. A homogeneous polynomial f(x,y) is represented as

(4.1) S (x,) = {~(sinfp)x + (cos ) y}*g(x, 7).

where ¢g(x,y) is a homogeneous polynomial such that g(6y) # 0. Then we see
that

—2sin 9()

(4.2) grad,(0) = sin(0 — Ho){ ( )g(@) + sin(0 — 6)) gradg(ﬁ)}.

2cos b
Therefore we see that there exists an integer n satisfying (2) of [Lemma 4.2
From (2.2), we see that (cosfp,siny) is an eigenvector of Hess,(0y) corre-
sponding to an eigenvalue 0. Therefore we see from [Proposition 3.2/ and from
(2) of that (cosy(6p),siny(6)) is an eigenvector of Hess;(6p)
corresponding to the nonzero eigenvalue. ]

We shall prove [Proposition 4.1l.

PROOF OF (4) FrROM (2). If Op is a root of f, then we see from
2.2 that a vector cosfy(0/0x)+ sinfy(d/dy) is in the principal directions at

(pcosty, psinfy) and that two vectors (cosby,sinfy) and (—sin6by,cosfy) are
eigenvectors of Hess;(0y). By and by [Proposition 2.2, we see that
—sin 0y (0/0x) 4+ cos 0y(0/0y) is in the principal directions at (pcosby, psinby).

If a number 6, satisfies Igf-(@o) =0, then from (2) of [Lemma 2.1, we see that
ne(0o,¢) =0 for any ¢ e R. Let cos@y(0/0x) + singy(d/0y) be in the principal
directions at (rcos0p,rsiny). Then from ns(0y,¢,) =0, we obtain d(0y, ¢,) =
0. Then we also obtain d(6y, ¢, + n/2) =0. Therefore we see that

o . 0 : 0 0
cos¢0$+sm¢oa—y, —smgboa-kcosqﬁoa
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are in the principal directions at (pcosty, psinty), and that (cosd,,sin¢g,) and
(—sin ¢y, cos @) are eigenvectors of Hesss(0y). Hence we have proved (4)
from (2).

PrOOF OF (2) FrROM (4). If (4) in [Proposition 4.1 holds, then we obtain
ns(0o,¢) = 0. Noticing Lemma 4.2, we suppose that grad,(6) # (0,0). Then
we may suppose that ¢, satisfies

<gradf(00), <Z?§§§>> # 0.

Therefore by (2) of and by [Proposition 2.2, we see that 0y € Ry or
that K;(6p) = 0. Hence we have proved (2) from (4).

PROOF OF (3) FROM (2). Let 0 be an element of Ry with f(f) # 0. Then
by (2.2) and by [Proposition 2.2, we see that (cosy/(6y),siny(6y)) is an eigen-
vector of Hesss(0y) corresponding to a nonzero eigenvalue.

By (2.2), we see that for ¢, € R, the following holds:

(4.3)  (k—1)grad(0)

= Hessf(Ho){cos(Ho — ) (ans;/:‘)) + sin(0y — ¢;) ( —sin (150) }

0 Ccos ¢,

We choose as ¢, a number such that (cos¢y,sing,) is an eigenvector of
Hess;(0y). 1If 0p ¢ Ry, then it follows that K;(0p) =0. Then just one of the
eigenvalues of Hess/(0p) is zero. By [Lemma 4.2, we see that grad,(0) # (0,0).
Therefore we see from (4.3) that a vector (cosy(6y),siny(6y)) is an eigenvector
of Hesss(6p) corresponding to the nonzero eigenvalue. Hence we have proved
(3) from (2).

PrOOF OF (2) FrROM (3). We suppose that a vector (cosi(6y),siny(6p)) is an
eigenvector of Hess;(0)). Moreover noticing [Lemma 4.2, we suppose that
grad,(0p) # (0,0). Then by [Proposition 2.2 and by (4.3), we see that 0y € Ry or
that just one of the eigenvalues of Hess;(0y) is zero. Hence we have proved (2)
from (3).

00)(0/dy) is in

ProoF OF (3) FroM (1). We suppose that p,(6p)(d/0x) + g, (
(0,0). Then we

the principal directions at (cosfy,sintp), and that grad,(6p) #
may suppose that

1

(44 Terad, (@)

grad, (0y) = (COW(@O)).

sin(6h)

A number Y(6,) satisfies the equation
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dy (00, (00)) + p*ny (0o, ¥(00)) = 0
By direct computations, we obtain
(4.) ny (00, ¥(00)) = llgrad, (60) 1 dy (6. (60)).
Therefore we obtain
{1+ p* || grad, (60)|1* Yy (60, ¥/(69)) = 0,

which implies that dy (0o, (60y)) = 0. Therefore noticing (1) of Lemma 2.1 and
(4.3), we obtain (3) from (1).

Proor oF (1) FrROM (3). Suppose that (3) in |[Proposition 4.1 holds. Then
the number V/(0p) satisfies dy (0o, (0)) = 0. We may suppose that grad,(6p) # 0
and that (0o) satisfies [4.4). Then by [4.5), we see that 0 is an element of RfG.
Hence we have proved [Proposition 4.1.

CorOLLARY 4.3. If Oy € RfG satisfies f (0p) =0, then Oy € Ry holds.

Proor. Noticing (2) of Propostion 4.1, we may suppose that Kf(ﬁo) =0.
Then just one of the eigenvalues of Hess/(0p) is zero. By (2.2), and by (1)
of [Lemma 2.1, we see that (cosOy,sinbp) is an eigenvector of Hess/(0p) cor-
responding to the zero eigenvalue and that (—sin 6y, cost)) is also an eigenvector
of Hess/(0p). Then [Proposition 2.2 says that 0y € Ry. O

For 0, € RfG, there exists a positive number &, > 0 such that each element of
(6o — €0,00 +¢)\{6} 1s not an element of RfG. Let 7,,(0) be a continuous
function on (6y — ¢, 0y + &) such that

Q0= (Gamin ) 40 = (ol

are eigenvectors of Hessy(6), and /léi)(ﬁ), 1(9?(0) the eigenvalues of Hess/(0)

corresponding to eéi)(ﬁ), eé?(@), respectively.
LemmA 4.4. An argument function W of the gradient satisfies (6y) €
{n9,(00) +nm/2;n e L} if and only if ﬂé}))(ﬁo) # /1(0?(00).

Proor. If /1(1)(00) #ié?(@o), then by [Proposition 4.1, we obtain y(6) €
{19,(00) +nm/2;n e Z}
Suppose that i ((90) i ?(00) =1 and that 6y = 0. Then f is represented

as

S0 = l)xk+; X2y 4 g(x, )y,
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where ¢ is a homogeneous polynomial of degree k — 3. We obtain

Hessy(0) = (cos* 2 0)E + (k — 2)(cos* #sin ) ((1) _126> + (sin? O)M(0),

where ¢ € R and M(0) is a continuous, matrix-valued function. Then we see that
cot 217,(0) = ¢, which implies that #,(0) ¢ {nn/2;n € Z}. On the other hand, by
(2.2), we see that y satisfies (0) € {nn;n e Z}. Therefore we obtain (0) ¢
{10(0) + nm/2;n € Z}.

Hence we have proved [Lemma 4.4 n

Suppose that /léi)(ﬁo) = /léi)(ﬁo). Then noticing (2.2) and Lemma 4.4, we
suppose that there exists the argument function v, of the gradient satisfying

Vg, (00) = b0 € (19, (00) — 7/ 2,19,(00) + 7/2)\{119, (o) }

Suppose that /1((93))(90) # iézo)(ﬁo). Then noticing [Lemma 4.4, we suppose that
there exists the argument function , of the gradient such that v, (0o) = 1,,(0o).
Then by [Proposition 4.1, we see that ié}))(ﬁ) #0 for Oe (0 —e,00+ ). In
addition, noticing [Proposition 2.2}, [Proposition 4.1, Lemma 4.2 and |Corollary 4.3,
we suppose that

W, (00) = 00, if Ay, (60) 25, (0o) # 0,

Vg, (00) = b0 + /2, if /(09) =0,
|lﬁ90(00) — 90| € (0,7[/2), if 90 € RfG\Rf.

We set

~

20

o)

Ay, (0) :=

~

Then by [Proposition 4.1, we see that Ay, (0) # 0,1 for any 0 € (0y — €, 0o + &)\
{6p}.

LEmMA 4.5. Let Oy be an element of RfG.
(1) If f(6o) # 0, then for any 0 € (0y — &, 00 + &)\{0o}, the following hold:

(4.6) {0 = 0,(0) 1 {0, (0) — 114, (0) {1 — 44,(0) } 44,(0) > 0,
(4.7) {0 = 114,(0) Hg, (0) — 19,(0) } 44,(0) > 0,
() If f(60) = 0, then for any 6 € (0o — &, 60 + &)\{00}, the following holds:

(0 = 00){1g,(0) — 19, (0)}{1 — A, ()} 49, (0) < 0.
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Proor. For 0 € (0y — &, 0) + ¢), the following holds:

(4.8) (COS 6) — cos(0 — 1,(0))ely) (0) + sin(0 — g, (0))e (0).

sin 0
By (2.2) and by [4.8], we obtain
(4.9)  grad,(0)

T Leos(0 =1y, (0) 2y (0)ef) (0) +sin(0 — 1y, (0)) i) (0)ey) (6)}.

Therefore we see that for 6e (6y — &y, 0y +¢&)\{6}, there exists the nonzero
number c(0) satisfying

cos iy, (0)
(4.10) < o lPZO(Q) >
— % {cos(0 — ’790(9))/1%)(9)(3(92)(9) + sin(6) — '790(0))1(9?(9)%?(9)}.

Suppose that f(0p) # 0. Then we see that [0y — 1y, (0)| < #/2. From
and from (4.10), we see that for 6 € (6y — &y, 0y + €)\{6o},

Yo, (0) <0 <n,(0) or ny(0) <0<y (0), if 44,(0) > 1,
{ 0 <y, (0) <my,(0) or 1ny(0) <y (0) <0, if 44,(0) € (0,1),
Yo, (0) <my,(0) <O or 0 <ng(0) <y (0), if 4g,(0) <O.

Hence we obtain [[4.6).

We set
c(0) cos(0 — 1,,(0)) 2 (0) ¢(0) sin(0 — 5, (0)) 25 (0)
k-1 - all)= k-1

Then for any 0e (6 —eo,00+e)\{0}, we see that c¢;(0) >0 and that
{W,(0) — 1y, (0)}c2(0) > 0. Therefore we obtain

(4.11) c1(0)c2(0){1g, (0) — 19,(0)} >0

for any 0e (0 —&,0+¢e)\{0}. Suppose that f~(90) # 0. Then noticing
00 — 19,(60)| < /2, we obtain [4.7]. Suppose that f(6y) =0. Then noticing
ng,(00) = 0o + m/2, we see that

(4.12) (W9, (0) = 1,(0)) 4,(0) cos(0 — 14,(6)) < 0

for 0€ (0 — e, 00 +¢)\{0}. By [4.1), we see that é(@)/i&)(ﬁ) >0 for fe
(0o — 0,00 + &). Then from (4.2), we obtain

C1 (0) =
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(0 — 0o) —sin 0
: — - 0
(4 13) /léi)(ﬁ) gradf (0), cos 0 >
for 0 e (0p —e0,00 +)\{0}. The following holds:
—sin 0 )
(4.14) ( eh ) = —sin(0) — 1,(0))ey; (60) + cos(0 — 1, (0))ey (6).

By (4.9) and by [4.14), we see that

(4.15) % <gfadf(9)’ ( ;ZI: 98) >

= L cos(0— 1y, (0)) sin(0 — 1y, (0)) A0 (6) — 11,

k—1
Therefore from (4.13) and from [4.15), we obtain
(4.16) (0 — 00){1 — A9,(0)} cos(0 — 1,,(0)) >0
for O e (0y—e,00+¢)\{0}. From [4.12) and from [4.16), we obtain (2) of
[Lemma 4.3. [

Let r be a positive constant such that on 0 < x? 4 y> < r?, there exists no
umbilical point.

LEMMA 4.6. Let 0y be an element of RG
(1) If f(6y) # 0, then for any 0 € () — 80,90 +¢&)\{bo}, the following holds:

{10 = 00,05, 00) O H s, 00,04, 00)(0) = 716, () {1 — A, (0)} 44, (0) <0
(2) Iff(Ho) =0, then for any 0 € (0y — &, 00 + €0)\{0o}, the following holds:
(0= 001, 0,0, (00/(0) — 10, O} {1 — 44,(0)} 44,(0) > 0.

Proor. Noticing (1) of [Lemma 2.1, we see that for 0 e (6y — &, 00 + &)\
{60},

(17) {00, () — 10, O} 25 (0) = 252 (O)}dy (0. 6,4, 4, 0 (0)) < O
Suppose that () #0. Then by (4.9), we obtain

<gradf(00), (cOS Pr, 00,15, (00) ((00) >> cos(fo — 1y, (90))’1(92)(90).

S ¢r 6’0 ‘//H 00 00) k - 1
By (2) of Lemma 2.1, we see that for 0 (6y — &y, 60 + €)\{0o},
(4.18) {0— 6,0, Vi, (00) (0 )}A ( )n (0, (/5,,790’%0(90)(9)) <0.

From (4.17) and from [4.18), we obtain (1) of [Lemma 4.6.
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Suppose that f(Ho) = (0. Then by (4.2), we see that for 0 € (6y — &, 00 + &)\
{60},

cos ¢V7 00,4, (00) (0) . ) (1)
<gfadf(9), (Sm b (0 sin(0 — Oo) sin(¢y, g, y, (6,)(0) = 0o) 4y, (0) > 0.
IR (]

Therefore we see from (2) of that for 0 e (0y — &y, 00 + &)\{0o},

(4.19) (0= 00)25; Oy (0., 4,4, ) (0)) > 0.
Therefore by (4.17) and by [4.19), we obtain (2) of [Lemma 4.6. O

We shall prove

ProposITION 4.7. Let 0y be an element of RfG\Rf. Then for 0e
(0o — €0,00 + €0)\{0o}, the following holds:

10— 776’0(0)}{¢r,90,l//60(90)(0) - W@O(H)}Kf(e) <0.
PrOOF.  Since 0y # 17y,(00), we see that for 0 e (0y — &, 0y + &),

{0 — 1y, (0)}{0 — ¢r,00,¢(,0(00)(9)} > 0.
Therefore we see by (1) of that

{0 = 10,0} v, 0,41, (00) (O) — 10, (D)} K7 (0) < 0
for O e (0 —e,00 + ¢)\{0p}. Therefore by [4.7), we obtain [Proposition 4.7. [

From [Proposition 4.7, we obtain [Proposition 1.4.

PROPOSITION 4.8. Let Oy be an element of Ry such that f(0) = 0.
(1) 4 root 0y is related to the origin and the gradient, and non-related to the
curvature;

(2) The following holds:
(sign(@o), g'Sign(HO)a Slgn[Kf(eo)]) = (+7 ) _)'

Proor. From [Cemma 4.2, we see that K;(6y) = 0. Therefore from (1) of
Theorem 1.2, we see that 0, is related to the origin and satisfies sign(6y) = +.
Noticing and that f is represented as in [4.1), we see that K/(0) <0 for
0 € (0p— e, 00 +¢)\{0}. Therefore we see that 6y is non-related to the cur-
vature and satisfies sign[K/(0p)] = —. By (2) of and by (2) of
Lemma 4.6, we see that for 0 e (6y — ¢, 0y +¢)\{0o},

(0= 00){4,(0) — 14,(0)} > 0,
(0 - 00){¢r,00,l/190(00)(0) —114,(0)} <O0.

Therefore we see that 6 is related to the gradient and satisfies g-sign(6y) = —.
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Hence we have proved [Proposition 4.8, N

We shall prove

THEOREM 4.9. Let 0y be an element of Ry such that f(60) #0. Then for
0 € (0y — €, 00 +¢0)\{0o}, the following holds:

(4.20) {0— 4,0, Vg, (00) () H v, Vg, (00) (0) — %0(‘9)}1@(9) <0.
Proor. For a number 0 € (0y — ¢, 0y + €0)\{0o}, one of the following holds:

(1) A49,(0) > 1, (2) Ay,(0) € (0,1), (3) A4g,(0) <O.

Suppose that Ay, (0) >1 for Oe (0y— ey, 00+ )\{0}. Then by (1) of
and by (1) of [Lemma 4.6, we see that

(4.21) {0 — g, (0)}{hg,(0) — 1y, (0)} <0,
(4.21) {0 —19,(0) by, (0) — m,(0)} > 0,
(4.23) {04, 00.1g, (60) () H¢r.0, Vg, (00) (0) —14,(0)} > 0.

From (4.23), we see that one of the following holds:

(1) 716,(0) < 81,00, 0)(0) < 0 (2) 0 <04y, (6)(0) <11g,(0)-

Moreover from (4.21), we see that one of the following holds:

(1) ¥y, (0) <0< g, 90,1/190(90)(9) < 1714,(0),
(2) 0 < 91,00, (0 (0) < 110,(0) < ¥, (0),
(3) ¥y, (0) < ’700( ) < b0, Vi, (0)(0) <0,
(4) 719,(0) < 919, Vi, 90)(9) <0< o, (0).
From (4.22), we see that (1) and (4) may happen, and that (2) and (3) may not

happen. If 0 satisfies (1) or (4), then we see that holds.
Suppose that 4y, (0) € (0,1) for 0 € (6y — 0,00 + €)\{6o}. Then we see that
one of the following holds:

(1) .0, Vi, (00)(0) <0 <y (0) <1,,(0),
(2) 0< %0( ) <1, (0) < ¢,90,1//9 (90)(9)>
E)qﬁrm (00)(0) <119, (0) < g, (60) < 0,

4) 19,(0) <y, (0) <0< ¢, 4, Vi, (0)(0)-
If 0 satisfies (1),(2),(3) or (4), then we see that [4.20) [4.20] holds.

Suppose that Ay,(0) <0 for 0e (0y — ey, 00+ &)\{0}. Then we see that
one of the following holds:
(1) 0< ¢, W, ( (00)(0) <119, (0) <y, (0),

(2) Y3, (0) <0< ., (00 (0) < 7790(9)
If 0 satisfies (1) or (2), then we see that [4.20] holds.
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Hence we have proved [Theorem 4.9. ]

From [Proposition 4.8 and from [Theorem 4.9, we obtain |Proposition 1.5.
From [Theorem 4.9, we see that for 0 e (6y — &, 0 + €)\{6},

(4.24) {10 = 4.0, y,, ) (OO = 00) [y, 0., () (0) = Y1, (0)](0 — 00)} K (0) < 0.
From [Proposition 4.8 and from (4.24), we obtain [Theorem 1.6.
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