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Abstract. Let f be a homogeneous polynomial in two variables such that on its

graph Gf , the origin o � �0; 0; 0� of R3 is an isolated umbilical point. In this paper, the

behavior of the principal distributions around o is studied in relation to the existence of

other umbilical points than o and the behavior of the gradient vector ®eld of f.

1. Introduction.

Let S be a smooth surface in the 3-dimensional Euclidean space R
3 and

Umb�S� the set of the umbilical points of S. If SnUmb�S�0q, then there

exists a principal distribution DS on S, which is a one-dimensional continuous

distribution on SnUmb�S� such that DS�p� is one of the principal directions at

p A SnUmb�S�. If DS has an isolated singularity p0, i.e., if p0 is an isolated

umbilical point, then as a quantity in relation to the behavior of the principal

distributions around p0, the index indp0�S� of p0 is de®ned ([2, p. 137]).

Let Pk
o be the set of the homogeneous polynomials of degree kZ 3 such that

on their graphs, the origin o � �0; 0; 0� of R3 is an isolated umbilical point, and f

an element of Pk
o and ~f the function on R de®ned by ~f �y� � f �cos y; sin y�. A

real number at which d ~f =dy � 0 is called a root of f and the set of the roots of f

is represented by Rf . Each root y0 A Rf determines a straight line

L�y0� :� f�x; y� A R
2; x sin y0 ÿ y cos y0 � 0g

on R
2 through o. The straight line determined by a root is called a root line of f.

The natural coordinates �x; y� on the xy-plane may be considered as coordinates

on the graph Gf of f. Then a root line is considered not only as a subset of R2

but also as a subset of Gf . The set of the root lines of f is represented by
~Rf . Let r be a positive number such that on 0 < x2 � y2 Y r2, there exists no

umbilical point, and r0 the supremum of such numbers as r. A continuous

function fr;y0;f0 is called the argument function on x2 � y2 � r2 with initial values
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�y0; f0� if fr;y0;f0 satis®es fr;y0;f0�y0� � f0 and if for any y A R, cos fr;y0;f0�y� �

�q=qx� � sin fr;y0;f0�y��q=qy� is in the principal directions at �r cos y; r sin y�. For

r A �0; r0� and for y0 A Rf , there exists the argument function fr;y0;y0 (see [1]). It

is said that the sign of y0 A Rf is positive (resp. negative) if there exists a positive

number e > 0 such that for any r A �0; r0� and for any y A �y0 ÿ e; y0 � e�nfy0g,

fyÿ fr;y0;y0�y�g�yÿ y0� > 0 �resp: < 0�:

A root y0 A Rf is said to be related (resp. non-related ) to the origin if the sign of

y0 is either positive or negative (resp. neither positive nor negative). Let N�

(resp. Nÿ) be the number of the root lines determined by the positive (resp.

negative) roots. Then the index of o is represented as

indo�Gf � � 1ÿ
N� ÿNÿ

2
;

and moreover the following holds ([1]):

N� ÿNÿ A fk ÿ 2ig
�k=2�
i�0 ;

where �k=2� is the Gauss' symbol for k=2.

One of the purposes of this paper is to describe the relation between the sign

of a root y0 related to the origin and the set Umb�Gf ;L�y0�� of the umbilical

points on L�y0�nfog. If d ~f =dy1 0, then any y0 A R is a root non-related to the

origin. Suppose that d ~f =dy2 0. Then for any y0 A Rf , there exists a positive

integer m such that �dm�1 ~f =dym�1��y0�0 0. The minimum of such integers as m

is called the multiplicity of y0 and denoted by m�y0�. The multiplicity m�y0� is

odd (resp. even) if and only if y0 is related (resp. non-related) to the origin (see

[1]).

Proposition 1.1. If y0 is a root of f non-related to the origin, then the

following holds:

Umb�Gf ;L�y0��0q:

Suppose that y0 A Rf is related to the origin. It is said that the critical sign

of y0 is positive (resp. negative) if ~f �y0��d
m�y0��1 ~f =dym�y0��1��y0�Y 0 (resp: > 0).

The sign and the critical sign of y0 are represented by sign�y0� and c-sign�y0�,

respectively. Let ~Kf �y0� be the Gaussian curvature of Gf at �cos y0; sin y0�. If
~Kf �y0�0 0, then the sign of ~Kf �y0� is represented by sign� ~Kf �y0��. Let f�;ÿg be

the set of symbols �;ÿ. In the natural way, sign�y0�, c-sign�y0� and sign� ~Kf �y0��

may be considered as elements of the set f�;ÿg. Let � be the law of composi-

tion of the set f�;ÿg such that

� � � � ÿ � ÿ � �; � � ÿ � ÿ � � � ÿ:

Then one of the main results in this paper is stated as follows.
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Theorem 1.2. Let y0 be a root of f.

(1) If ~Kf �y0� � 0, then y0 is related to the origin, and the following hold:

�sign�y0�; c-sign�y0�� � ��;��;

Umb�Gf ;L�y0�� � q;

(2) If y0 is related to the origin and satis®es ~Kf �y0�0 0, then

sign�y0� � c-sign�y0� � sign� ~Kf �y0�� � ÿ�resp: � ��

if and only if

Umb�Gf ;L�y0�� � q �resp:0q�:

The other of the purposes of this paper is to describe the relation between

the sign of a root y0 related to the origin and the behavior of the gradient vector

®eld of f near a root line L�y0�. A number y0 is called a gradient root of f if for

any r A R, the gradient

qf

qx
�r cos y0; r sin y0�

q

qx
�
qf

qy
�r cos y0; r sin y0�

q

qy

of f at �r cos y0; r sin y0� is in the principal directions. The set of the gradient

roots of f is represented by RG
f .

Proposition 1.3. A number y0 is an element of RG
f if and only if y0 is an

element of Rf or satis®es ~Kf �y0� � 0.

There exists a continuous function c such that for any y A R, the gradient at

�cos y; sin y� A Gf is represented by a tangent vector cosc�y��q=qx� � sinc�y� �

�q=qy� with constant multiplication. Such a function c is called an argument

function of the gradient. It is said that the gradient sign of y0 A RG
f is positive

(resp. negative) if there exists a positive number e > 0 such that for any r A �0; r0�

and for any y A �y0 ÿ e; y0 � e�nfy0g,

ffr;y0;c�y0��y� ÿ c�y�g�yÿ y0� > 0 �resp: < 0�:

An element y0 A RG
f is said to be related (resp. non-related ) to the gradient if the

gradient sign of y0 is positive or negative (resp. neither positive nor negative). If

y0 A RG
f is related to the gradient, then the gradient sign of y0 is represented by

g-sign�y0�.

It is said that the curvature sign of y0 A RG
f is positive (resp. negative) if there

exists a positive number e > 0 such that for any y A �y0 ÿ e; y0 � e�nfy0g,

~Kf �y� > 0 �resp: < 0�:
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An element y0 A RG
f is said to be related (resp. non-related ) to the curvature if the

curvature sign of y0 is neither positive nor negative (resp. either positive or

negative). If y0 A RG
f is non-related to the curvature, then the curvature sign of

y0 is also represented by sign� ~Kf �y0��.

Proposition 1.4. Let y0 be an element of RG
f nRf . Then y0 is related or

non-related to both of the gradient and the curvature.

Proposition 1.5. Let y0 be an element of Rf . Then exactly one of the

following happens:

(1) A root y0 is non-related to just one of the origin, the gradient and the

curvature;

(2) A root y0 is non-related to each of the origin, the gradient and the

curvature.

The other of the main results in this paper is the following.

Theorem 1.6. Suppose that y0 A Rf is related to the origin and the gradient.

(1) If ~f �y0� � 0, then the following holds:

�sign�y0�; g-sign�y0�; sign� ~Kf �y0��� � ��;ÿ;ÿ�;

(2) If ~f �y0�0 0, then the following holds:

sign�y0� � g-sign�y0� � sign� ~Kf �y0�� � ÿ:

If y0 A Rf satis®es ~f �y0� � 0, then it is seen that ~Kf �y0� � 0. Therefore from

Theorem 1.2 and from Theorem 1.6, the following is obtained.

Theorem 1.7. Suppose that y0 A Rf satis®es (1) in Proposition 1.5 and
~Kf �y0�0 0. Then c-sign�y0� � g-sign�y0� � � (resp: � ÿ� if and only if

Umb�Gf ;L�y0�� � q �resp:0q�:

Remark 1.8. A condition ~Kf �y0�0 0 in Theorem 1.7 may not be omitted.

For example, we give an element f �x; y� � x4 � y4 A P4
o . We see that

(1) 0 is a root of f related to the origin and the gradient;

(2) sign�0� � c-sign�0� � sign� ~Kf �0�� � �;

(3) g-sign�0� � ÿ.

However we also see that Umb�Gf ;L�y0�� � q, because of ~Kf �0� � 0.

This paper is organized as follows. In Section 2, notations and fundamental

results are prepared. In Section 3, the set of the umbilical points on each root

line of f A Pk
o is studied. Particularly, Proposition 1.1 and Theorem 1.2 are

proved. In Section 4, the behavior of a principal distribution is compared with
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the behavior of the gradient vector ®eld near a point �r cos y0; r sin y0� where

y0 A RG
f . Particularly, Proposition 1.3, Proposition 1.4, Proposition 1.5 and

Theorem 1.6 are proved.

The author is grateful to Professor T. Ochiai for helpful advices and for

constant encouragement.

2. Preliminaries.

Let f �x; y� be a homogeneous polynomial in two real variables x; y of degree

kZ 3 and Gf the graph of f. We set

pf :�
qf

qx
; qf :�

qf

qy
; rf :�

q2f

qx2
; sf :�

q2f

qxqy
; tf :�

q2f

qy2
:

Moreover we set

~pf �y� :� pf �cos y; sin y�; ~qf �y� :� qf �cos y; sin y�;

~rf �y� :� rf �cos y; sin y�; ~sf �y� :� sf �cos y; sin y�;

~tf �y� :� tf �cos y; sin y�;

and

df �y; f� :� ~sf �y� cos
2 f� f~tf �y� ÿ ~rf �y�g cos f sin fÿ ~sf �y� sin

2 f;

nf �y; f� :� f~sf �y�~pf �y�
2 ÿ ~pf �y�~qf �y�~rf �y�g cos

2 f

� f~tf �y�~pf �y�
2 ÿ ~rf �y�~qf �y�

2g cos f sin f

� f~pf �y�~qf �y�~tf �y� ÿ ~sf �y�~qf �y�
2g sin2 f:

Then �r; y0; f0� satis®es the equation

rkÿ2df �y0; f0� � r3kÿ4nf �y0; f0� � 0�2:1�

if and only if a tangent vector cos f0�q=qx� � sin f0�q=qy� at �r cos y0; r sin y0� is in

the principal directions. We set

gradf �y� :�
~pf �y�

~qf �y�

� �

; Hessf �y� :�
~rf �y� ~sf �y�

~sf �y� ~tf �y�

� �

:

We denote by h ; i the scalar product in R
2, and for a vector v A R

2, we set

kvk :�
������������

hv; vi
p

.
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Lemma 2.1. For real numbers y0; f0, the following hold:

(1)

df �y0; f0� �
1

2

q

qf
Hessf �y0�

cos f

sin f

� �

;

cos f

sin f

� �� ��

�

�

�

f�f0

� Hessf �y0�
cos f0
sin f0

� �

;

ÿsin f0
cos f0

� �� �

;

(2)

nf �y0; f0� �
�1� kgradf �y0�k

2�2

k ÿ 1
~Kf �y0� gradf �y0�;

cos f0
sin f0

� �� �

sin�f0 ÿ y0�:

Proof. We immediately obtain (1). We rewrite nf �y0; f0� by

�k ÿ 1� gradf �y� � Hessf �y�
cos y

sin y

� �

�2:2�

as follows.

nf �y0; f0� �
1

�k ÿ 1�2
f�~sf �y0��~rf �y0� cos y0 � ~sf �y0� sin y0�

2

ÿ ~rf �y0��~rf �y0� cos y0 � ~sf �y0� sin y0�

� �~sf �y0� cos y0 � ~tf �y0� sin y0�� cos
2 f0

� �~tf �y0��~rf �y0� cos y0 � ~sf �y0� sin y0�
2

ÿ ~rf �y0��~sf �y0� cos y0 � ~tf �y0� sin y0�
2� cos f0 sin f0

� �ÿ~sf �y0��~sf �y0� cos y0 � ~tf �y0� sin y0�
2

� ~tf �y0��~rf �y0� cos y0 � ~sf �y0� sin y0�

� �~sf �y0� cos y0 � ~tf �y0� sin y0�� sin
2 f0g

� fÿ�~rf �y0� cos y0 � ~sf �y0� sin y0� sin y0 cos
2 f0

� �~rf �y0� cos
2 y0 ÿ ~tf �y0� sin

2 y0� cos f0 sin f0

� �~sf �y0� cos y0 � ~tf �y0� sin y0� cos y0 sin
2 f0g

�
~rf �y0�~tf �y0� ÿ ~sf �y0�

2

�k ÿ 1�2
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� fÿ~pf �y0� sin y0 cos
2 f0

� � ~pf �y0� cos y0 ÿ ~qf �y0� sin y0� cos f0 sin f0

� ~qf �y0� cos y0 sin
2 f0g

~rf �y0�~tf �y0� ÿ ~sf �y0�
2

k ÿ 1

�
~rf �y0�~tf �y0� ÿ ~sf �y0�

2

k ÿ 1
gradf �y0�;

cos f0
sin f0

� �� �

sin�f0 ÿ y0�:

Gaussian curvature Kf �x; y� of Gf at �x; y� is represented as

Kf �x; y� �
rf �x; y�tf �x; y� ÿ sf �x; y�

2

f1� pf �x; y�
2 � qf �x; y�

2g2
:�2:3�

Therefore we obtain (2) of Lemma 2.1. r

Proposition 2.2. For a number y0, the following are mutually equivalent:

(1) A number y0 is a root of f ;

(2) Two vectors �cos y0; sin y0� and �ÿsin y0; cos y0� are eigenvectors of

Hessf �y0�;

(3) A vector gradf �y0� is represented as

gradf �y0� � k~f �y0�
cos y0

sin y0

� �

;

(4) A tangent vector cos y0�q=qx� � sin y0�q=qy� is in the principal directions

at �r cos y0; r sin y0�.

Proof. We set

~df �y� :� df �y; y�; ~nf �y� :� nf �y; y�:

From (2) of Lemma 2.1, we obtain ~nf 1 0. By (2.2) and by (1) of Lemma 2.1,

we obtain

~df �y� � �k ÿ 1�
d ~f

dy
�y��2:4�

for any y A R. Therefore it is seen that (1) and (4) are equivalent. By

k~f �y� � gradf �y0�;
cos y

sin y

� �� �

;�2:5�

we see that (1) and (3) are equivalent. By (2.2) and by (2.5), we see that (2) and

(3) are equivalent. r
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Corollary 2.3. If �r cos y0; r sin y0� is an umbilical point of Gf , then y0 is an

element of Rf .

From now on, suppose that f A Pk
o , and let r be a positive constant such that

on 0 < x2 � y2 Y r2, there exists no umbilical point, and r0 the supremum of such

numbers as r. The argument function fr;y0;f0 on x2 � y2 � r2 with initial values

�y0; f0� is characterized as the function satisfying fr;y0;f0�y0� � f0 and

rkÿ2df �y; fr;y0;f0�y�� � r3kÿ4nf �y; fr;y0;f0�y�� � 0�2:6�

for any y A R. For any r A �0; r0� and for �y0; f0� satisfying (2.1), the argument

function fr;y0;f0 is smooth ([1]). For an integer n A f0; 1; . . . ; m�y0�g, the fol-

lowing holds ([1]):

d n

dyn �yÿ fr;y0;y0�

�

�

�

�

y�y0

�

d n�~df �

dyn �y0�

q�df � r2kÿ2nf �

qf

�

�

�

�

�y;f���y0;y0�

:�2:7�

Therefore by (2.4) and by (2.7), we see that for a root y0 related to the origin,

sign�y0� � � (resp: � ÿ� if and only if

d m�y0�

dym�y0�
�yÿ fr;y0;y0�

�

�

�

�

y�y0

> 0 �resp: < 0�:

3. The set of the umbilical points on a root line.

Let f be an element of Pk
o with kZ 3 and y0 an element of Rf . Let l

�1�
y0

be

the eigenvalue of Hessf �y0� corresponding to an eigenvector �cos y0; sin y0�, and

l
�2�
y0

the other eigenvalue of Hessf �y0�.

Proposition 3.1. There exists an umbilical point on L�y0�nfog if and only if

�l
�1�
y0

ÿ l
�2�
y0
��l

�1�
y0
�2l

�2�
y0

> 0:�3:1�

In addition, if (3.1) holds, then the following holds:

Umb�Gf ;L�y0�� � fG�ry0 cos y0; ry0 sin y0�g;�3:2�

where

ry0 �
�l

�1�
y0

ÿ l
�2�
y0
��k ÿ 1�2

�l
�1�
y0
�2l

�2�
y0

( )1=�2kÿ2�

:
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Proof. For any f0 A R, the following hold:

cos f0
sin f0

� �

� cos�f0 ÿ y0�
cos y0

sin y0

� �

� sin�f0 ÿ y0�
ÿsin y0

cos y0

� �

;�3:3�

ÿsin f0
cos f0

� �

� ÿsin�f0 ÿ y0�
cos y0

sin y0

� �

� cos�f0 ÿ y0�
ÿsin y0

cos y0

� �

:�3:4�

Applying (3.3) and (3.4) to (1) of Lemma 2.1, we obtain

df �y0; f0� � �l
�2�
y0

ÿ l
�1�
y0
� cos�f0 ÿ y0� sin�f0 ÿ y0�:

Applying (2.2) to (2) of Lemma 2.1, we obtain

nf �y0; f0� �
�l

�1�
y0
�2l

�2�
y0

�k ÿ 1�2
cos�f0 ÿ y0� sin�f0 ÿ y0�:

Therefore noticing (2.1), we see that Umb�Gf ;L�y0��0q holds if and only if

(3.1) holds. We immediately obtain (3.2). r

If y0 A Rf , then from (2.2) and from (2.5), we obtain

l
�1�
y0

� k�k ÿ 1�~f �y0�:�3:5�

Then by Proposition 2.2, we obtain

kgradf �y0�k �
jl

�1�
y0
j

k ÿ 1
:�3:6�

Applying (3.6) to (2.3), we may represent Gaussian curvature Kf at a point

�r cos y0; r sin y0� as

Kf �r cos y0; r sin y0� �
l
�1�
y0
l
�2�
y0
r2kÿ4

1�
l
�1�
y0

k ÿ 1

 !2

r2kÿ2

8

<

:

9

=

;

2
:

Particularly the following holds:

~Kf �y0� �
l
�1�
y0
l
�2�
y0

1�
l
�1�
y0

k ÿ 1

 !2
8

<

:

9

=

;

2
:�3:7�

We shall prove
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Proposition 3.2. Let y0 be a number such that ~Kf �y0� � 0. Then

(1) just one of l
�1�
y0

and l
�2�
y0

is equal to 0;

(2) The following holds:

Umb�Gf ;L�y0�� � q:

Proof. Since ~Kf �y0� � 0, it follows from (3.7) that l
�1�
y0

� 0 or l
�2�
y0

� 0.

However from f A Pk
o , we see that just one of l

�1�
y0

and l
�2�
y0

is nonzero. If

y0 A Rf , then from Proposition 3.1, we see that Umb�Gf ;L�y0�� � q. If y0 B Rf ,

then from Corollary 2.3, we see that Umb�Gf ;L�y0�� � q. r

Corollary 3.3. For any y0 A Rf , either ~f �y0� or �d 2 ~f =dy2��y0� is not equal

to 0.

Proof. By (2.2), we obtain

d 2 ~f

dy2
�y0� � ÿ

1

k ÿ 1

cos y0

sin y0

� �

;Hessf �y0�
cos y0

sin y0

� �� �

�3:8�

� Hessf �y0�
ÿsin y0

cos y0

� �

;
ÿsin y0

cos y0

� �� �

:

Therefore we obtain

d 2 ~f

dy2
�y0� � ÿ

1

k ÿ 1
l
�1�
y0

� l
�2�
y0
:�3:9�

Therefore from (3.5), (3.9) and from (1) of Proposition 3.2, we obtain Corollary

3.3. r

We want to construct a map D:Qf from Rf to ~R :� RU fyg. Suppose that

y0 is a root of f at which ~f �y0� � 0. Then we set D:Qf �y0� :� y. Suppose that

y0 is a root of f at which ~f �y0�0 0. Then we set

D:Qf �y0� :�
d 2 ~f

dy2
�y0�

�

~f �y0�:

The value D:Qf �y0� is called the determinant quotient at y0. By (3.5) and by

(3.9), we obtain

d 2 ~f

dy2
�0�

�

k�k ÿ 1�~f �y0� �
l
�2�
y0

l
�1�
y0

ÿ
1

k ÿ 1
:�3:10�

From (3.10), we obtain
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Lemma 3.4. Let y0 be a root at which ~f �y0�0 0. Then the following holds:

l
�2�
y0

l
�1�
y0

�
1

k ÿ 1
1�

D:Qf �y0�

k

� �

:

For any a A R, we de®ne the subset �a;y� (resp. �y; a�) of ~R by

fx A R; aY x �resp: xY a�gU fyg:

Similarly we de®ne the subsets

�a;y�; �a;y�; �a;y�; �y; a�; �y; a�; �y; a�

of ~R.

Noticing (3.7) and Lemma 3.4, we obtain

Proposition 3.5. Let y0 be a root. Then

(1) ~Kf �y0� � 0 if and only if D:Qf �y0� � ÿk or y;

(2) ~Kf �y0� > 0 if and only if D:Qf �y0� A �ÿk;y�;

(3) ~Kf �y0� < 0 if and only if D:Qf �y0� A �y;ÿk�.

In this section, an element of Rf related to the origin is merely called a

related root.

Proposition 3.6. If y0 is a root such that ~Kf �y0� � 0, then y0 is a related

root with c-sign�y0� � �.

Proof. We see from Proposition 3.5 that D:Qf �y0� � ÿk or y. If

D:Qf �y0� � ÿk, then we see that m�y0� � 1 and that y0 is a related root with

c-sign�y0� � �. If D:Qf �y0� � y, then it follows that ~f �y0� � 0. Then from

Corollary 3.3, we obtain �d 2 ~f =dy��y0�0 0. Therefore we see that m�y0� � 1,

which implies that y0 is a related root. Since ~f �y0� � 0, it follows that

c-sign�y0� � �. r

From Proposition 3.1 and from Lemma 3.4, we see that Umb�Gf ;L�y0��0

q if and only if

1

k ÿ 1
1�

D:Qf �y0�

k

� �

A �0; 1�:

Therefore we obtain

Proposition 3.7. Let y0 be a root and L�y0� the root line determined by

y0. Then Umb�Gf ;L�y0��0q if and only if the determinant quotient D:Qf �y0�

satis®es

D:Qf �y0� A �ÿk; k�k ÿ 2��:�3:11�
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In addition, if (3.11) holds, then the following holds:

]Umb�Gf ;L�y0�� � 2:

Corollary 3.8. Let y0 be a root such that m�y0�Z 2. Then the following

holds:

]Umb�Gf ;L�y0�� � 2:

Particularly Corollary 3.8 implies Proposition 1.1.

Proposition 3.9. Let f be a homogeneous polynomial of degree kZ 3

satisfying ~f 2 0 and d ~f =dy1 0, and Gf the graph of f. Then the set Umb�Gf � of

the umbilical points on Gf is represented as follows:

Umb�Gf � � fog t fx2 � y2 � c20g;�3:12�

where c0 is a nonzero number.

Proof. For a homogeneous polynomial f satisfying ~f 2 0 and d ~f =dy1 0, it

is obvious that D:Qf �y0� � 0 for any y0 A R. Therefore if the degree k of f is not

less than 3, then we see from Proposition 3.7 that ]Umb�Gf ;L� � 2 for any

straight line L on R
2 through o. From Lemma 3.4, we obtain

l
�2�
y0

l
�1�
y0

�
1

k ÿ 1
�3:13�

for any y0 A R. By Proposition 3.1, (3.5) and by (3.13), we see that for any

y0 A R, the set of the umbilical points on L�y0� is represented as

o;G
k ÿ 2

k2 ~f �y0�
2

 !1=2�kÿ1�

�cos y0; sin y0�

8

<

:

9

=

;

:

Since ~f is a constant function, we see that the set Umb�Gf � is represented as

Umb�Gf � � fog t x2 � y2 �
k ÿ 2

k2c2

� �1=�kÿ1�
( )

;

where c is a nonzero number. Hence we have proved Proposition 3.9. r

Remark 3.10. If f satis®es d ~f =dy1 0, then k is even and f is represented by

�x2 � y2�k=2 with constant multiplication ([1]).

From now on, we suppose that d ~f =dy2 0.
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Proposition 3.11. Let f be an element of Pk
o with kZ 3. Then the fol-

lowing holds:

]Umb�Gf � A f2i � 1gk
i�0:

Proof. If we set

Df �x; y� :� x2sf �x; y� � xyftf �x; y� ÿ rf �x; y�g ÿ y2sf �x; y�;

then we see that Df �x; y� is a homogeneous polynomial of degree k and that
~df �y� � Df �cos y; sin y�: Therefore we see that the number ] ~Rf is less than or

equal to k. Noticing Corollary 2.3 and Proposition 3.7, we obtain ]Umb�Gf � A

f2i � 1gk
i�0. r

Proposition 3.12 ([1]). Let y0 be a related root with c-sign�y0� � �. Then

sign�y0� � � holds.

Proof. We shall show

qdf

qf
�y0; y0�

d m�y0��1 ~f

dym�y0��1
�y0� > 0:�3:14�

From (2.7) and from (3.14), we obtain sign�y0� � �.

By (1) of Lemma 2.1, we obtain

qdf

qf
�y0; y0� � l

�2�
y0

ÿ l
�1�
y0
:�3:15�

Therefore by (3.9) and by (3.15), we obtain

d 2 ~f

dy2
�y0� �

qdf

qf
�y0; y0� �

k ÿ 2

k ÿ 1
l
�1�
y0
:�3:16�

If ~f �y0� � 0, then from (3.5) we obtain �d 2 ~f =dy2��y0� � �qdf =qf��y0; y0�. By

Corollary 3.3, we obtain (3.14). Suppose that ~f �y0�0 0. Then we see from

(3.5) and from (3.16) that

D:Qf �y0� �
1

~f �y0�

qdf

qf
�y0; y0� � k�k ÿ 2�:�3:17�

Since c-sign�y0� � �, we obtain

1

~f �y0�

qdf

qf
�y0; y0�Yÿk�k ÿ 2�:�3:18�

Therefore we see that
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qdf

qf
�y0; y0�

d m�y0��1 ~f

dym�y0��1
�y0� �

1

~f �y0�

qdf

qf
�y0; y0�

" #

~f �y0�
d m�y0��1 ~f

dym�y0��1
�y0�

" #

:

By c-sign�y0� � � and by (3.18), we obtain (3.14). r

Remark 3.13. We obtain (1) of Theorem 1.2, from Proposition 3.2,

Proposition 3.6 and from Proposition 3.12.

We want to study the number ]Umb�Gf ;L�y0�� determined by a related root

y0 with c-sign�y0� � �.

Proposition 3.14. Let y0 be a related root with c-sign�y0� � � and L�y0� the

root line determined by y0. Then ]Umb�Gf ;L�y0�� � 0 (resp: � 2) if and only if
~Kf �y0�Y 0 (resp: > 0).

Proof. Since c-sign�y0� � �, we see that D:Qf �y0� A �y; 0�. Therefore by

Proposition 3.5 and by Proposition 3.7, we obtain Proposition 3.14. r

We want to study the number ]Umb�Gf ;L�y0�� determined by a related root

y0 with c-sign�y0� � ÿ. It is seen that D:Qf �y0� A �0;y�. Therefore from

Proposition 3.5, we obtain

Proposition 3.15. Let y0 be a related root with c-sign�y0� � ÿ. Then
~Kf �y0� is a positive number.

Next, we shall prove

Lemma 3.16. Let y0 be a related root satisfying �qdf =qf��y0; y0� � 0. Then

the following holds:

�c-sign�y0�; sign�y0�� � �ÿ;��:

Proof. Noticing (3.14), we see that c-sign�y0� � ÿ, and by (3.15) we

obtain l
�1�
y0

� l
�2�
y0
. By (2) of Lemma 2.1 and by Proposition 3.15, we

obtain l
�1�
y0
�qnf =qf��y0; y0� > 0. Since c-sign�y0� � ÿ, we see from (2.7) that

sign�y0� � �. r

Proposition 3.17. Let y0 be a related root with c-sign�y0� � ÿ. Then

sign�y0� � � (resp: � ÿ) if and only if ]Umb�Gf ;L�y0�� � 0 (resp: � 2).

Proof. If sign�y0� � �, then by (2.7) we obtain �1=~f �y0���qdf =qf��y0; y0�Z

0. By (3.17), we see that D:Qf �y0� A �k�k ÿ 2�;y�. Therefore it follows from

Proposition 3.7 that ]Umb�Gf ;L�y0�� � 0.

Conversely, if ]Umb�Gf ;L�y0�� � 0, then from Proposition 3.5, Proposition

3.7 and from Proposition 3.15, we see that D:Qf �y0� A �k�k ÿ 2�;y�. If

D:Qf �y0� A �k�k ÿ 2�;y�, then it is seen that sign�y0� � �. If D:Qf �y0� �
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k�k ÿ 2�, i.e., if �qdf =qf��y0; y0� � 0, then it follows from Lemma 3.16 that

sign�y0� � �.

Therefore considering Proposition 3.7, we obtain Proposition 3.17. r

From Proposition 3.12, we see that the critical sign of a negative root is

negative. Therefore noticing Proposition 3.17, we obtain

Corollary 3.18. Let y0 be a related root with sign�y0� � ÿ. Then the

following holds:

]Umb�Gf ;L�y0�� � 2:

Noticing Corollary 3.8 and Proposition 3.17, we obtain

Corollary 3.19. Let y0 be a related root such that �sign�y0�; c-sign�y0�� �

��;ÿ�. Then m�y0� � 1 holds.

Proof of Theorem 1.2. Noticing Remark 3.13, suppose that y0 is a related

root satisfying ~Kf �y0�0 0. Then from Proposition 3.12, Proposition 3.14,

Proposition 3.15 and from Proposition 3.17, we obtain Theorem 1.2. r

4. The behaviors of the principal distributions and of the gradient vector

®eld.

Proposition 4.1. Let f be an element of Pk
o . Then for a real number y0, the

following are mutually equivalent:

(1) A real number y0 is an element of RG
f ;

(2) A real number y0 is an element of Rf or satis®es ~Kf �y0� � 0;

(3) Let c be an argument function of the gradient. Then a vector

�cosc�y0�; sinc�y0��

is an eigenvector of Hessf �y0� corresponding to a nonzero eigenvalue;

(4) Let f0 be a number such that for a nonzero number r, cos f0�q=qx� �

sin f0�q=qy� is in the principal directions at �r cos y0; r sin y0�. Then for any r A R,

cos f0
q

qx
� sin f0

q

qy
; ÿsin f0

q

qx
� cos f0

q

qy

are in the principal directions at �r cos y0; r sin y0�, and

�cos f0; sin f0�; �ÿsin f0; cos f0�:

are eigenvectors of Hessf �y0�.

To prove Proposition 4.1, we need the following.
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Lemma 4.2. A number y0 is an element of Rf satisfying ~f �y0� � 0 if and only

if y0 satis®es gradf �y0� � �0; 0�. In addition, if gradf �y0� � �0; 0�, then the fol-

lowing hold:

(1) ~Kf �y0� � 0;

(2) There exists an integer n such that

c�y0� � y0 � p=2� np;

(3) A vector �cosc�y0�; sinc�y0�� is an eigenvector of Hessf �y0� corresponding

to a nonzero eigenvalue.

Proof. By Proposition 2.2, we see that a number y0 is an element of Rf

satisfying ~f �y0� � 0 if and only if y0 satis®es gradf �y0� � �0; 0�.

Suppose that gradf �y0� � �0; 0�. Then by (3.5), (3.7) and by ~f �y0� � 0, we

obtain ~Kf �y0� � 0. A homogeneous polynomial f �x; y� is represented as

f �x; y� � fÿ�sin y0�x� �cos y0�yg
2
g�x; y�;�4:1�

where g�x; y� is a homogeneous polynomial such that ~g�y0�0 0. Then we see

that

gradf �y� � sin�yÿ y0�
ÿ2 sin y0

2 cos y0

� �

~g�y� � sin�yÿ y0� gradg�y�

� �

:�4:2�

Therefore we see that there exists an integer n satisfying (2) of Lemma 4.2.

From (2.2), we see that �cos y0; sin y0� is an eigenvector of Hessf �y0� corre-

sponding to an eigenvalue 0. Therefore we see from Proposition 3.2 and from

(2) of Lemma 4.2 that �cosc�y0�; sinc�y0�� is an eigenvector of Hessf �y0�

corresponding to the nonzero eigenvalue. r

We shall prove Proposition 4.1.

Proof of (4) from (2). If y0 is a root of f, then we see from Proposition

2.2 that a vector cos y0�q=qx� � sin y0�q=qy� is in the principal directions at

�r cos y0; r sin y0� and that two vectors �cos y0; sin y0� and �ÿsin y0; cos y0� are

eigenvectors of Hessf �y0�. By Lemma 2.1 and by Proposition 2.2, we see that

ÿsin y0�q=qx� � cos y0�q=qy� is in the principal directions at �r cos y0; r sin y0�.

If a number y0 satis®es ~Kf �y0� � 0, then from (2) of Lemma 2.1, we see that

nf �y0; f� � 0 for any f A R. Let cos f0�q=qx� � sin f0�q=qy� be in the principal

directions at �r cos y0; r sin y0�. Then from nf �y0; f0� � 0, we obtain df �y0; f0� �

0. Then we also obtain df �y0; f0 � p=2� � 0. Therefore we see that

cos f0
q

qx
� sin f0

q

qy
; ÿsin f0

q

qx
� cos f0

q

qy
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are in the principal directions at �r cos y0; r sin y0�, and that �cos f0; sin f0� and

�ÿsin f0; cos f0� are eigenvectors of Hessf �y0�. Hence we have proved (4)

from (2).

Proof of (2) from (4). If (4) in Proposition 4.1 holds, then we obtain

nf �y0; f0� � 0. Noticing Lemma 4.2, we suppose that gradf �y0�0 �0; 0�. Then

we may suppose that f0 satis®es

gradf �y0�;
cos f0
sin f0

� �� �

0 0:

Therefore by (2) of Lemma 2.1 and by Proposition 2.2, we see that y0 A Rf or

that ~Kf �y0� � 0. Hence we have proved (2) from (4).

Proof of (3) from (2). Let y0 be an element of Rf with ~f �y0�0 0. Then

by (2.2) and by Proposition 2.2, we see that �cosc�y0�; sinc�y0�� is an eigen-

vector of Hessf �y0� corresponding to a nonzero eigenvalue.

By (2.2), we see that for f0 A R, the following holds:

�k ÿ 1� gradf �y0��4:3�

� Hessf �y0�

�

cos�y0 ÿ f0�
cos f0
sin f0

� �

� sin�y0 ÿ f0�
ÿsin f0
cos f0

� ��

:

We choose as f0 a number such that �cos f0; sin f0� is an eigenvector of

Hessf �y0�. If y0 B Rf , then it follows that ~Kf �y0� � 0. Then just one of the

eigenvalues of Hessf �y0� is zero. By Lemma 4.2, we see that gradf �y0�0 �0; 0�.

Therefore we see from (4.3) that a vector �cosc�y0�; sinc�y0�� is an eigenvector

of Hessf �y0� corresponding to the nonzero eigenvalue. Hence we have proved

(3) from (2).

Proof of (2) from (3). We suppose that a vector �cosc�y0�; sinc�y0�� is an

eigenvector of Hessf �y0�. Moreover noticing Lemma 4.2, we suppose that

gradf �y0�0 �0; 0�. Then by Proposition 2.2 and by (4.3), we see that y0 A Rf or

that just one of the eigenvalues of Hessf �y0� is zero. Hence we have proved (2)

from (3).

Proof of (3) from (1). We suppose that ~pf �y0��q=qx� � ~qf �y0��q=qy� is in

the principal directions at �cos y0; sin y0�, and that gradf �y0�0 �0; 0�. Then we

may suppose that

1

kgradf �y0�k
gradf �y0� �

cosc�y0�

sinc�y0�

� �

:�4:4�

A number c�y0� satis®es the equation
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df �y0;c�y0�� � r2kÿ2nf �y0;c�y0�� � 0:

By direct computations, we obtain

nf �y0;c�y0�� � kgradf �y0�k
2
df �y0;c�y0��:�4:5�

Therefore we obtain

f1� r2kÿ2kgradf �y0�k
2gdf �y0;c�y0�� � 0;

which implies that df �y0;c�y0�� � 0. Therefore noticing (1) of Lemma 2.1 and

(4.3), we obtain (3) from (1).

Proof of (1) from (3). Suppose that (3) in Proposition 4.1 holds. Then

the number c�y0� satis®es df �y0;c�y0�� � 0. We may suppose that gradf �y0�0 0

and that c�y0� satis®es (4.4). Then by (4.5), we see that y0 is an element of RG
f .

Hence we have proved Proposition 4.1.

Corollary 4.3. If y0 A RG
f satis®es ~f �y0� � 0, then y0 A Rf holds.

Proof. Noticing (2) of Propostion 4.1, we may suppose that ~Kf �y0� � 0.

Then just one of the eigenvalues of Hessf �y0� is zero. By (2.2), (2.5) and by (1)

of Lemma 2.1, we see that �cos y0; sin y0� is an eigenvector of Hessf �y0� cor-

responding to the zero eigenvalue and that �ÿsin y0; cos y0� is also an eigenvector

of Hessf �y0�. Then Proposition 2.2 says that y0 A Rf . r

For y0 A RG
f , there exists a positive number e0 > 0 such that each element of

�y0 ÿ e0; y0 � e0�nfy0g is not an element of RG
f . Let hy0�y� be a continuous

function on �y0 ÿ e0; y0 � e0� such that

e
�1�
y0
�y� :�

cos hy0�y�

sin hy0�y�

� �

; e
�2�
y0
�y� :�

ÿsin hy0�y�

cos hy0�y�

� �

are eigenvectors of Hessf �y�, and l
�1�
y0
�y�, l

�2�
y0
�y� the eigenvalues of Hessf �y�

corresponding to e
�1�
y0
�y�, e

�2�
y0
�y�, respectively.

Lemma 4.4. An argument function c of the gradient satis®es c�y0� A

fhy0�y0� � np=2; n A Zg if and only if l
�1�
y0
�y0�0 l

�2�
y0
�y0�.

Proof. If l
�1�
y0
�y0�0 l

�2�
y0
�y0�, then by Proposition 4.1, we obtain c�y0� A

fhy0�y0� � np=2; n A Zg.

Suppose that l
�1�
y0
�y0� � l

�2�
y0
�y0� � 1 and that y0 � 0. Then f is represented

as

f �x; y� �
1

k�k ÿ 1�
xk �

1

2
xkÿ2y2 � g�x; y�y3;
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where g is a homogeneous polynomial of degree k ÿ 3. We obtain

Hessf �y� � �coskÿ2 y�E � �k ÿ 2��coskÿ3 y sin y�
0 1

1 ÿ2c

� �

� �sin2 y�M�y�;

where c A R and M�y� is a continuous, matrix-valued function. Then we see that

cot 2h0�0� � c, which implies that h0�0� B fnp=2; n A Zg. On the other hand, by

(2.2), we see that c satis®es c�0� A fnp; n A Zg. Therefore we obtain c�0� B

fh0�0� � np=2; n A Zg.

Hence we have proved Lemma 4.4. r

Suppose that l
�1�
y0
�y0� � l

�2�
y0
�y0�. Then noticing (2.2) and Lemma 4.4, we

suppose that there exists the argument function cy0
of the gradient satisfying

cy0
�y0� � y0 A �hy0�y0� ÿ p=2; hy0�y0� � p=2�nfhy0�y0�g:

Suppose that l
�1�
y0
�y0�0 l

�2�
y0
�y0�. Then noticing Lemma 4.4, we suppose that

there exists the argument function cy0
of the gradient such that cy0

�y0� � hy0�y0�.

Then by Proposition 4.1, we see that l
�1�
y0
�y�0 0 for y A �y0 ÿ e0; y0 � e0�. In

addition, noticing Proposition 2.2, Proposition 4.1, Lemma 4.2 and Corollary 4.3,

we suppose that

cy0
�y0� � y0; if l

�1�
y0
�y0�l

�2�
y0
�y0�0 0,

cy0
�y0� � y0 � p=2; if ~f �y0� � 0,

jcy0
�y0� ÿ y0j A �0; p=2�; if y0 A RG

f nRf .

8

>

>

<

>

>

:

We set

Ly0�y� :�
l
�2�
y0
�y�

l
�1�
y0
�y�

:

Then by Proposition 4.1, we see that Ly0�y�0 0; 1 for any y A �y0 ÿ e0; y0 � e0�n

fy0g.

Lemma 4.5. Let y0 be an element of RG
f .

(1) If ~f �y0�0 0, then for any y A �y0 ÿ e0; y0 � e0�nfy0g, the following hold:

fyÿ cy0
�y�gfcy0

�y� ÿ hy0�y�gf1ÿ Ly0�y�gLy0�y� > 0;�4:6�

fyÿ hy0�y�gfcy0
�y� ÿ hy0�y�gLy0�y� > 0;�4:7�

(2) If ~f �y0� � 0, then for any y A �y0 ÿ e0; y0 � e0�nfy0g, the following holds:

�yÿ y0�fcy0
�y� ÿ hy0�y�gf1ÿ Ly0�y�gLy0�y� < 0:
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Proof. For y A �y0 ÿ e0; y0 � e0�, the following holds:

cos y

sin y

� �

� cos�yÿ hy0�y��e
�1�
y0
�y� � sin�yÿ hy0�y��e

�2�
y0
�y�:�4:8�

By (2.2) and by (4.8), we obtain

gradf �y��4:9�

�
1

k ÿ 1
fcos�yÿ hy0�y��l

�1�
y0
�y�e

�1�
y0
�y� � sin�yÿ hy0�y��l

�2�
y0
�y�e

�2�
y0
�y�g:

Therefore we see that for y A �y0 ÿ e0; y0 � e0�nfy0g, there exists the nonzero

number c�y� satisfying

coscy0
�y�

sincy0
�y�

� �

�4:10�

�
c�y�

k ÿ 1
fcos�yÿ hy0�y��l

�1�
y0
�y�e

�1�
y0
�y� � sin�yÿ hy0�y��l

�2�
y0
�y�e

�2�
y0
�y�g:

Suppose that ~f �y0�0 0. Then we see that jy0 ÿ hy0�y0�j < p=2. From (4.8)

and from (4.10), we see that for y A �y0 ÿ e0; y0 � e0�nfy0g,

cy0
�y� < y < hy0�y� or hy0�y� < y < cy0

�y�; if Ly0�y� > 1,

y < cy0
�y� < hy0�y� or hy0�y� < cy0

�y� < y; if Ly0�y� A �0; 1�,

cy0
�y� < hy0�y� < y or y < hy0�y� < cy0

�y�; if Ly0�y� < 0.

8

<

:

Hence we obtain (4.6).

We set

c1�y� :�
c�y� cos�yÿ hy0�y��l

�1�
y0
�y�

k ÿ 1
; c2�y� :�

c�y� sin�yÿ hy0�y��l
�2�
y0
�y�

k ÿ 1
:

Then for any y A �y0 ÿ e0; y0 � e0�nfy0g, we see that c1�y� > 0 and that

fcy0
�y� ÿ hy0�y�gc2�y� > 0. Therefore we obtain

c1�y�c2�y�fcy0
�y� ÿ hy0�y�g > 0�4:11�

for any y A �y0 ÿ e0; y0 � e0�nfy0g. Suppose that ~f �y0�0 0. Then noticing

jy0 ÿ hy0�y0�j < p=2, we obtain (4.7). Suppose that ~f �y0� � 0. Then noticing

hy0�y0� � y0 � p=2, we see that

�cy0
�y� ÿ hy0�y��Ly0�y� cos�yÿ hy0�y�� < 0�4:12�

for y A �y0 ÿ e0; y0 � e0�nfy0g. By (4.1), we see that ~g�y�=l
�1�
y0
�y� > 0 for y A

�y0 ÿ e0; y0 � e0�. Then from (4.2), we obtain
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�yÿ y0�

l
�1�
y0
�y�

gradf �y�;
ÿsin y

cos y

� �� �

> 0�4:13�

for y A �y0 ÿ e0; y0 � e0�nfy0g. The following holds:

ÿsin y

cos y

� �

� ÿsin�yÿ hy0�y��e
�1�
y0
�y� � cos�yÿ hy0�y��e

�2�
y0
�y�:�4:14�

By (4.9) and by (4.14), we see that

1

l
�1�
y0
�y�

gradf �y�;
ÿsin y

cos y

� �� �

�4:15�

�
1

k ÿ 1
cos�yÿ hy0�y�� sin�yÿ hy0�y��fLy0�y� ÿ 1g:

Therefore from (4.13) and from (4.15), we obtain

�yÿ y0�f1ÿ Ly0�y�g cos�yÿ hy0�y�� > 0�4:16�

for y A �y0 ÿ e; y0 � e�nfy0g. From (4.12) and from (4.16), we obtain (2) of

Lemma 4.5. r

Let r be a positive constant such that on 0 < x2 � y2 Y r2, there exists no

umbilical point.

Lemma 4.6. Let y0 be an element of RG
f .

(1) If ~f �y0�0 0, then for any y A �y0 ÿ e0; y0 � e0�nfy0g, the following holds:

fyÿ fr;y0;cy0
�y0�

�y�gffr;y0;cy0
�y0�

�y� ÿ hy0�y�gf1ÿ Ly0�y�gLy0�y� < 0;

(2) If ~f �y0� � 0, then for any y A �y0 ÿ e0; y0 � e0�nfy0g, the following holds:

fyÿ y0gffr;y0;cy0
�y0�

�y� ÿ hy0�y�gf1ÿ Ly0�y�gLy0�y� > 0:

Proof. Noticing (1) of Lemma 2.1, we see that for y A �y0 ÿ e0; y0 � e0�n

fy0g,

ffr;y0;cy0
�y0�

�y� ÿ hy0�y�gfl
�1�
y0
�y� ÿ l

�2�
y0
�y�gdf �y; fr;y0;cy0

�y0�
�y�� < 0:�4:17�

Suppose that ~f �y0�0 0. Then by (4.9), we obtain

gradf �y0�;
cos fr;y0;cy0

�y0�
�y0�

sin fr;y0;cy0
�y0�

�y0�

 !* +

�
cos�y0 ÿ hy0�y0��l

�1�
y0
�y0�

k ÿ 1
:

By (2) of Lemma 2.1, we see that for y A �y0 ÿ e0; y0 � e0�nfy0g,

fyÿ fr;y0;cy0
�y0��y�gl

�2�
y0
�y�nf �y; fr;y0;cy0

�y0��y�� < 0:�4:18�

From (4.17) and from (4.18), we obtain (1) of Lemma 4.6.

The behavior of the principal distributions 257



Suppose that ~f �y0� � 0. Then by (4.2), we see that for y A �y0 ÿ e0; y0 � e0�n

fy0g,

gradf �y�;
cos fr;y0;cy0

�y0��y�

sin fr;y0;cy0
�y0��y�

 !* +

sin�yÿ y0� sin�fr;y0;cy0
�y0��y� ÿ y0�l

�1�
y0
�y� > 0:

Therefore we see from (2) of Lemma 2.1 that for y A �y0 ÿ e0; y0 � e0�nfy0g,

�yÿ y0�l
�2�
y0
�y�nf �y; fr;y0;cy0

�y0�
�y�� > 0:�4:19�

Therefore by (4.17) and by (4.19), we obtain (2) of Lemma 4.6. r

We shall prove

Proposition 4.7. Let y0 be an element of RG
f nRf . Then for y A

�y0 ÿ e0; y0 � e0�nfy0g, the following holds:

fyÿ hy0�y�gffr;y0;cy0
�y0�

�y� ÿ cy0
�y�g ~Kf �y� < 0:

Proof. Since y0 0 hy0�y0�, we see that for y A �y0 ÿ e0; y0 � e0�,

fyÿ hy0�y�gfyÿ fr;y0;cy0
�y0�

�y�g > 0:

Therefore we see by (1) of Lemma 4.6 that

fyÿ hy0�y�gffr;y0;cy0
�y0��y� ÿ hy0�y�g

~Kf �y� < 0

for y A �y0 ÿ e; y0 � e�nfy0g. Therefore by (4.7), we obtain Proposition 4.7. r

From Proposition 4.7, we obtain Proposition 1.4.

Proposition 4.8. Let y0 be an element of Rf such that ~f �y0� � 0.

(1) A root y0 is related to the origin and the gradient, and non-related to the

curvature;

(2) The following holds:

�sign�y0�; g-sign�y0�; sign� ~Kf �y0��� � ��;ÿ;ÿ�:

Proof. From Lemma 4.2, we see that ~Kf �y0� � 0. Therefore from (1) of

Theorem 1.2, we see that y0 is related to the origin and satis®es sign�y0� � �.

Noticing (2.3) and that f is represented as in (4.1), we see that ~Kf �y� < 0 for

y A �y0 ÿ e0; y0 � e0�nfy0g. Therefore we see that y0 is non-related to the cur-

vature and satis®es sign� ~Kf �y0�� � ÿ. By (2) of Lemma 4.5 and by (2) of

Lemma 4.6, we see that for y A �y0 ÿ e; y0 � e�nfy0g,

�yÿ y0�fcy0
�y� ÿ hy0�y�g > 0;

�yÿ y0�ffr;y0;cy0
�y0�

�y� ÿ hy0�y�g < 0:

Therefore we see that y0 is related to the gradient and satis®es g-sign�y0� � ÿ.
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Hence we have proved Proposition 4.8. r

We shall prove

Theorem 4.9. Let y0 be an element of Rf such that ~f �y0�0 0. Then for

y A �y0 ÿ e0; y0 � e0�nfy0g, the following holds:

fyÿ fr;y0;cy0
�y0��y�gffr;y0;cy0

�y0��y� ÿ cy0
�y�g ~Kf �y� < 0:�4:20�

Proof. For a number y A �y0 ÿ e0; y0 � e0�nfy0g, one of the following holds:

�1� Ly0�y� > 1; �2� Ly0�y� A �0; 1�; �3� Ly0�y� < 0:

Suppose that Ly0�y� > 1 for y A �y0 ÿ e0; y0 � e0�nfy0g. Then by (1) of

Lemma 4.5 and by (1) of Lemma 4.6, we see that

fyÿ cy0
�y�gfcy0

�y� ÿ hy0�y�g < 0;�4:21�

fyÿ hy0�y�gfcy0
�y� ÿ hy0�y�g > 0;�4:21�

fyÿ fr;y0;cy0
�y0�

�y�gffr;y0;cy0
�y0�

�y� ÿ hy0�y�g > 0:�4:23�

From (4.23), we see that one of the following holds:

�1� hy0�y� < fr;y0;cy0
�y0��y� < y; �2� y < fr;y0;cy0

�y0��y� < hy0�y�:

Moreover from (4.21), we see that one of the following holds:

(1) cy0
�y� < y < fr;y0;cy0

�y0�
�y� < hy0�y�,

(2) y < fr;y0;cy0
�y0��y� < hy0�y� < cy0

�y�,

(3) cy0
�y� < hy0�y� < fr;y0;cy0

�y0�
�y� < y,

(4) hy0�y� < fr;y0;cy0
�y0��y� < y < cy0

�y�.

From (4.22), we see that (1) and (4) may happen, and that (2) and (3) may not

happen. If y satis®es (1) or (4), then we see that (4.20) holds.

Suppose that Ly0�y� A �0; 1� for y A �y0 ÿ e0; y0 � e0�nfy0g. Then we see that

one of the following holds:

(1) fr;y0;cy0
�y0�

�y� < y < cy0
�y� < hy0�y�,

(2) y < cy0
�y� < hy0�y� < fr;y0;cy0

�y0�
�y�,

(3) fr;y0;cy0
�y0��y� < hy0�y� < cy0

�y� < y,

(4) hy0�y� < cy0
�y� < y < fr;y0;cy0

�y0�
�y�.

If y satis®es �1�; �2�; �3� or (4), then we see that (4.20) holds.

Suppose that Ly0�y� < 0 for y A �y0 ÿ e0; y0 � e0�nfy0g. Then we see that

one of the following holds:

(1) y < fr;y0;cy0
�y0�

�y� < hy0�y� < cy0
�y�,

(2) cy0
�y� < y < fr;y0;cy0

�y0��y� < hy0�y�.

If y satis®es (1) or (2), then we see that (4.20) holds.
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Hence we have proved Theorem 4.9. r

From Proposition 4.8 and from Theorem 4.9, we obtain Proposition 1.5.

From Theorem 4.9, we see that for y A �y0 ÿ e0; y0 � e0�nfy0g,

f�yÿ fr;y0;cy0
�y0�

�y���yÿ y0�gf�fr;y0;cy0
�y0�

�y� ÿ cy0
�y���yÿ y0�g ~Kf �y� < 0:�4:24�

From Proposition 4.8 and from (4.24), we obtain Theorem 1.6.
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