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Abstract. Let F, denote the Farey series of order [x], i.e. the increasing sequence
of irreducible fractions p, € (0, 1] whose denominators do not exceed x. We shall obtain

H H D(x)
precise asymptotic formulae for the sum > i’ p- for complex z and related sums,
@(x) = {F, coinciding the summatory function of Euler’s function. In particular, we
shall prove an asymptotic formula for Y p;! with as good an estimate as for the prime
number theorem by extracting an intermediate error term occurring in the asymptotic
formula for &(x).

1. Introduction and statement of results.

For a variable x > 1, let F, = F},; denote the Farey series of order [x] ([x] = integral
part of x), i.e. the sequence of irreducible fractions e (0,1] whose denominators < x,
arranged in increasing order of magnitude:

b
Fx:{pv:c_v

4

(by,c,) =1,0< b, <¢, < x}.

Supplementarily, we put p, = by/co = 0/1.
The number of p,’s in Fy with ¢, =nis 37} 4,y = ¢(n), Euler’s function. The

total number of p,’s in Fy is therefore @(x) =), _ ¢(n).

Let Q.= Q}y denote all pairs (c,,c,41) of denominators of consecutive Farey
fractions p, = b,/c, and p,.; = byy1/cyi1 (With ¢g = 1):

(1) 0. = {(ernere) [0 < v < B(x) — 1}

(ﬁQx = ﬁFx = ¢<x>) Eg O3 = {(17 3)7 (372)7 (27 3)7 (37 1)}

In Part I we considered the m-th power moments s,,(x) for m = 2,3 (Theorems
1 and 2) and revealed the connection between these and the (associated) error terms of
Euler’s function, where

sm(x) =Y (cenw)™ (meN).
(CvaJrl)eQx
In view of the basic relation

bV_HCV - bvcv+l = 1,
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we have p,.; —p, = (¢yey1) ™', so that

D(x)—1

Sm(x) = Z (pv-H _pv)m

v=0

is indeed the m-th power moment of the difference of consecutive Farey fractions. In
particular, s1(x) = pg(y) —py=1—0=1. Rather surprisingly, our Theorems as
well as those of Hall-Tenenbaum [9] caught attention of physicists in connection with
circle maps (Cvitanovi¢ [4]).

In this Part II our objective is twofold. The first-half of the paper is a direct
continuation as well as an improved generalization of results in Part I, and the second-
half is the presentation of results in the unpublished MS of the first author’s former
paper (jointly with R. Sita Rama Chandra Rao and A. Siva Rama Sarma) which was
once submitted to these volumes, but withdrawn for better organization, years ago;
although preparation of the new MS has been suspended because of untimely death of
Sita Rama Chandra Rao, the first author’s friend and collaborator, that withdrawn MS
is now completely rewritten, incorporating new developments.

Namely, [Theorem 1 contains not only improvements of Theorems 1 and 2 of Part I
by a factor of (loglog x)4/ 3 but also rather precise asymptotic formulas for s, (x) in the
cases m =4 and m > 5. The proof goes on the similar lines as those of Theorems 1
and 2; however, we shall prove all the results at a stretch, i.e. new asymptotic formulas
for s,(x) for m >4 as well as improvements, by modifying proofs of Part I and
introducing new lemmas, and also as byproducts evaluate certain infinite series.

Then we proceed to give refinements of the former paper (referred to above),
namely improvements over Mikolas’ results [22] concerning the asymptotic behavior of
sums Zv@:(f) p,¢ for a >0 (for positive power sums, see [16]) and precise asymptotic
formulas for unsymmetric form of s,(x), i.e.

Z 1

)
clc
(Cw C\'H) €0V v+l

the special case a = 2 of which constitutes an improvement of Hans and Dumir’s results
[10].
All these results rest on Lehner-Newman’s first sum formula [19]:

LemmA (Lehner-Newman’s first sum formula [19]). For any complex-valued
function f(u,v) defined at least for positive integral arguments u, v, we have

?(x)—1

(2) Sf(x) = Z fev, evgn)

v=0

r

:f(171)+ Z Z {f(kvr)+f(r7k)_f(kar_k>}'
2<r<x k=1

(e r)=1

On the other hand, our Theorems 6 and 7 are based on Lehner-Newman’s second sum
formula:
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LemMA (Lehner-Newman’s second sum formula).

D(x)—1

(3) Z f(cv;cwl)zz Z f(r k).

v=0 r<x x—r<k<x
(k,r)=1

By these formulas we can transform the sum over Farey points into one over
primitive lattice points, for which we can apply ordinary apparatus of number theory.

Successful applications were made by Lehner and Newman [19], Hall [7], subsequently
by the first author and then in Part I [15].

ACKNOWLEDGMENT. The authors would like to express their hearty thanks to the
referee for careful reading of the manuscript and pointing out errors, which resulted in
the present improved form of Theorem 3, [ii] and led to a new research [30].

NOTATION AND KNOWN RESULTS. The associated error term E(x) is defined by

(4) quﬁ %+ E),
and it is known that
E(x) = O(xlogx) (Mertens),
©) {E(x) — O(xlog®? x(loglog x)**)  (Walfisz [28]).
The closely related error term H(x) is defined by
9 SO = gy
It is known that
(7) E(x) = xH(x) + O(x6(x)),
where
(8) 6(x) = exp(—A(log x)"*(loglog x) ")

A >0 being an absolute constant, is the reducing factor which appears in the prime
number theorem

©) M(x):=) uln) = O(x5(x)),

n<x

where u(n) denotes the Mdobius function. Let Bi(f) denote the k-th Bernoulli poly-
nomial and let Bi(¢) := Bx(t— [f]) denote the k-th periodic Bernoulli polynomial.
Define

(10) U(x) = Z@Bl (E)

n<x
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U(x) is the main term of E(x), i.e.

(11) E(x) = —xU(x) + O(xd(x)),
and, as a basis of the second estimate in (5),

(12) U(x) = 0(log”? x(loglog x)*?)

is the hitherto best known estimate. The estimate of Saltykov used in Part I is
erroneous and Pétermann has confirmed, after amending some errors in Saltykov’s
paper, that Saltykov’s method yields only [12].

Let J, denote the distance from the v-th division point v/(®(x)) of the unit interval
to the v-th Farey point p,:

y
5v—l’v—m,

The celebrated Riemann hypothesis (RH) is equivalent in the first place to one of
the forms of the prime number theorem:

(13) RH < M(x) = O(x'/?+),

for every ¢ > 0 (hereafter we always use ¢ in this context). Franel’s theorem [5],
asserts that the RH is equivalent to the mean square of J,:

D(x)
(14) RH & ) 60 =0(x'").
v=1

In what follows we always denote by s the complex variable with Rs = ¢, and by m
a fixed integer > 2.

Define
(15) Sy(x) = ; <§>n
Then it is well known that
(16) S_i1(x) = d(x), So(x) =1,
and that
(17) RH <& S(x)=0(x"Y**)), for some s with ¢ > %

We are now in a position to state main results of the paper.

THEOREM 1. As x — oo, we have for s,(x) = Z;p:(g)fl(cvcvﬂ)*m

: 2 1 ('(2)1 4U(x)logx log x
(i) sz(x)—m{logx+y+§— 5(2)}+ 3 +0( 3 >
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/
10gx—|—y—1—£<2>

- 17

S LB3)x {(2)x

N 12U(x2 logx+ 0(log5x)
X R

_ 2C<2> 3 { —I—ZCZ(Z)CEI)(X)}

1) sq(x :7%(3) — i()
i) 5400 = 2+ { i+ 8O |

20 13 (2
*ﬁﬂ#g+“%w@+ﬁ><wmxu%%

40U (x)1 1
N (xz ogx+0(0g7x>7
X X

and for m > 5
2L(m — 1)+ m
{m)xm L(m—1)

e DI = 20+ €m0}

350" log x 1
5 oy ems 2(( )xm+3 + O(XWH-S)’
where U(x) is defined by (10), y is Euler’s constant, 0" equals 0 or 1 according as m =5 or
m > 6, and for a > 1 and r e N,

(1 =310 5, (%)

n=1

(iv)  sm(x) = S {Lm = 2) + 202(m — 1)) (%)}

which satisfies

B
(19) 11£n1nfc (x) < o)’

so that ¢! ( ) #0(1), x — oo, where B, denotes the r-th Bernoulli number.
In the course of proof we shall obtain the identity

o0 r 2<";ilf> L

Z Z pmtjtl fem—j—1 7

j=0 r —1
ke,r)=1

which, combined with Lemmas 9, 11, yields a vast amount of identities.

COROLLARY 1. We have the following evaluations

' m—2 m‘|‘] 0 m=2 m+]
(i) Z(]+1>erm+]+lkm_fl t(2m {1+2Z(J+1)}

r=1 k
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e A2 m4 & K m+
0 25 ()% X e o)

J=0 J=0
(k,

§
m

‘ + o
(1)+ 2 ( i ) zl:kz:rm+j+lkm—j 1

{(2m) {1+2Z<]+1> 2m+1)<2:_—12>}

(214/1 2>2mz362m_l_1 ( 1)

m—3
22( 1>erm] 1km+]+l

J=0

\

[\

m+ j
= < 1>C(m+j+1)€(m—j—1)

-3
%

2m — 2
+2{(2m— 1)( I ) - I}C(2m)
m — 2m—3
_ (2 f) > tem—i—1ii+1),
m — i=1

where empty sums are understood to be 0.

ReEMARK 1. (i) is a new essential formula, of Which ()* is the relatively prime
version and (i)" the reciprocal version, and so is Formula [[ii), which has relatively prime
and reciprocal version. Each of these has its relatively prlme and reciprocal versions.
E.g. the reciprocal version of (i)", (i)”, states that

. m—3 m+] 0 r
(1)+ Z( )Z W

j + 1 r=1 :1

m2/m+j 2m —2
=1+2 . — (2m+1)
j=0 ]‘I‘l m—l

m — 2m—3
+ (2 f) o tam—i—1i+1).

i=1

ExamprLe. Let H and H* denote functions in [Lemma 10. Then

B HED=33 1 =)
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{6) _ gy 7"
3 2835’

N~ 137 2(3) 31 9458(3)

r2kd 12 (6 12 ms

r=1 k=1
(k,r)=1
etc.
ProOF. By taking m = 2 in (i) of [Corollary 1, m = 3 in (i)™ of [Corollary 1 and in
(1)*" of Remark 1 we obtain the above identities. O

The identities including (i) can be traced back to Nielsen’s book on gamma function
and are also later given by Williams (see and references given there).
Each of these has its relatively prime versions. E.g. H*(3,1) = 5/4 due to the first

author [14]; for (i) itself, see Matsuoka [2I]. These evaluations do not seem possible to
deduce from Apostol and Vu’s consideration [2].

REMARK 2. Those identities in as well as those in may be
of particular interest in the light of recent investigations of Zagier [31].
For r,...,r;eN (I is called the depth) define the multiple zeta-values

1
é(rl,...,r]): Z ”7}1},[
/

1y >-->n>0 n

Question. Consider the numbers Z, :={(r) (re N) as known. Then to what
extent can one write all {(r,...,r;) as polynomials in Z;,Z;,...7
A partial answer has been given by himself.

THEOREM (Zagier [31]). Let 91,?2 be the Z-span of all multiple zeta-values of weight
k:=r +ry, depth | <2. Then

(k=3)/2 _
2= Y )l (k — 2n) (dim - _)

n=0

if 24k, while if 2|k, then

-2
QU= = Q7 + E 0Z,Zy_n+ (space of dim {k?} )
3<n<k/2
n odd

Lemma 11, (i), Example (i), (ii) are in conformity with this theorem with / = 2, and
k=a+1, k=4, and k = 6, respectively.
For related topics, see Zagier [32] and Arakawa and Kaneko [1].

COROLLARY 2 (Maier [20]). For integers g, h >0 define

?(x)—1
S = Sgn(x) =Y (8,)7@in)".

v=1
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Then

PD(x)—
$20 (=5,2) E 5

_ 1 ' log x
=511 +C(2) (logx-l—y— R (2)) + 0<—>,

and

81 = 35((32)))63 + O(x_4).

Franel’s sum s ¢ has been considered by several authors, the initiator being Franel,
whose theorem (see Formula (14) above) is based on the Franel identity, which in turn

has its genesis in the 3-term relation for the 2-dimensional Dedekind sums (for this and
references, see [16]).
Regarding power moments, we have

THEOREM 2. For 2 <ge N,

?(x)
>l =2 (<),
v=I
and on the RH, for 1 <geR
Z 10, ‘g —(3/2) g—o—a) +O(x 1- g—&-u).

In particular, for Maier’s sums with g € N

P O(x1720+¢) on the RH
00— Q. (x'7%9),0(x*>%) unconditionally.
THEOREM 3 (Refinements of Mikolds’ results)

D(x) » C(a)x”“ 1
D rt=
v=1 (

i@ a—1tW
B {C(a)cgl)(x)x”, Ra > 1

O0<Ra<l, a#l
+ Oa(xmax{iRa—l,l}(logx)(f)7
where 0 = 0(a) =1 or 0 according as Ra =2 or Ra # 2, and

D(x !
Zi {logx—f—y—l—C@)

20 } + O(xlog’ x)

1
200) <10gx+ Y —5—2(2)) — xD(x) — yxU(x) + O(xd(x)),

For Ra >0, a#1

2
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where

= O(log’x) (trivially)

0
= U(x)logx + O((log x)**(loglog x)*?)
0

((log x)5/3 (loglog x)4/3).

Although only the formula in expresses the relation between the
distribution of Farey points and the error term of the prime number theorem, it is
possible to refine the formula in (i) in a similar way, with some additional effects, to be
carried out in detail elsewhere.

On the other hand, if we extract the main term, we again get equivalent conditions
to the RH in terms of negative powers of Farey fractions.

THEOREM 4. For

— 60{(3) I3
let
1
F(0) = (1) = 5= (o) (= =L+ 1),
where
= 1

gﬂv(l) - ; (l’l + t)i
denotes the Hurwitz zeta-function, and let

D(x) 1

£ = Y f(p) = 05) | f0)d
v=1

Then
RH < Ep(x) = O(x!1/2+9),
This is a direct consequence of the modified of Yoshimoto [29]:

THEOREM 5. Let [ € 6°[0,1] satisfy (at least) one of the conditions that f @ is of
constant sign, in which case ¢ = 15/8; f @ and f © gre of the same constant sign, ¢ = 1;
f @ and f © gre of opposite constant sign, ¢ =7/8. For thus defined c, suppose f
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satisfies the inequality

WSO < LU0/

>_

AR A (O] U

Then statement (E) of [29] holds, i.e.

RH & Ef(x) = O(x!1/Y+%),

THEOREM 6 (Improved generalization of Hans and Dumir [10]).

1 5 Ulx)logx ) (logx
= o (logx+y+1—z(2)> T +0(7>’
) D(x)—1 1
(ll) pry C‘%cv—&-l
2 1 S
=§%L+x@wzwa+y—a—%@w+%“”§“”>

U(x)l 1
N (x) ogx_i_O(ogx),

x3 x3
D(x)—1
(iii) 2 e,
_ f(f))x 37 (;)xz (€(2) +223)e ()

O\I\l
L

1
+—3C(2) (logx+y

N U(x)iogx+ O<log4x>7
X X

s |

and for every integer a > 5

‘ ?(x)—1
(IV) v=1 ¢y vy O+l
_cle—l) : a— 20— 1D (x
= l@x T2 @2 2@ e (%)
T m (C(a—3)+30%(a —2)c, (%)

(2) +33(2)5" (x) + 3 (2)LB3)e
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+3¢(a - 2)¢(a— 1)e?, (%)

0'log x 1
RO 0(?) |

where 0" is 1 or 0 according as a=15 or a > 6.

In the course of proof we prove [Lemma 11, (i), and hence (i) also.

THEOREM 7 (Refinements over results of [14], which in turn are refinements of
Lehner and Newman’s results [19]).
(i) For non-negative reals a, b,

D(x)—1

v v+1
v=0

2
el | = pxthTE - % (a4 b+ 2)capU(x)x Tt
+0(x*"* ! (loglogx)"),
where 0" =1 if 0 <b <1/2 and 0 if either b=0 or b > 1/2, and

6 1 I'(l+a)'(1+b)
Ca,b—p{<1+a)(l+b)_ I'G+a+b) }

—
o
P o
E
N
Mk

_ 12log2  2log2 1
U ol —
cevii(cy +e1)  mix * x2 (x) + (xz)’

@(X)—l 1 6
= 2 (2log2—1 1 —2log2)U o(1
D nz( og )x + ( 0g2)U(x) + O(1),
and
d(x)—1 _
v:() CV + CV+1 372:

As we deduce in the course of proof of Theorem 1, we reprove Gupta’s
identity

0 r 1

3
22 Arim W

r=1 k=1
(k,r)=1

which follows also from Apostol and Vu’s consideration [2]. Indeed, defining

6= S e

(k7 r):l
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one has

where T'(s,z) is defined by of [2]. Their Eq. gives, for a = 1, Gupta’s identity
above.

Regarding Gupta’s identity and generalizations thereof, we refer to an extensive
work of Hata which enables us to evaluate a large class of infinite series in closed
form, using Farey fractions, or rather the intervals between them.

In regard to [Theorem 1 we note the recent papers [6], [7] of Hall who considers the
moments of length of Farey arcs. From the point of view of circle maps as well as the
analogy with the difference between zeros of the Riemann zeta-function on the critical
line these may be of particular interest and may shed some new light.

2. Preliminaries.
We collect basic lemmas some of which are of interest in their own right.
LemmA 1 (Ishibashi-Kanemitsu [12], Lemmas 3 and 8). For any ue C define

L,(x) = Zn” and M,(x) = Zn”logn,

n<x n<x

where for n* = e"1°¢" with logne R. Then for any le N satisfying | > Ru-+1 (if
ue NU{0}, we take | =u+1) we have

! +1
- u _ _1
i) Lu(x)= u+ 1x +{(—u), u#
10gx—|—y’ u=—1
u

+ Z <_r1)r (r o >Br(x)xu+lr

r=1

X

(—1)/ (”) JxE,(t)t”—’ di, ué NU{OY,
N I

0, ue NU{0},
where the error term can also be estimated as O(x™!), and

(i) M, (x)

1
—x**ogx — x N (—u), u# -1

1
Elogzx—i—yl, u=-—1
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/ 1\ u B
Z( : <r 1)B"(x>(1°gx+J‘r_z(u>>x““‘r, u¢ N

+ ”z: (_1)1‘ ( u 1 )Br(x)(logx + jr_z(u)>xu+lfr

I o N
(=1 Z—”'(’ r‘!‘ P B~ ueN

W] —uy— 1) [© _
(—U"Wl—b,ll)j By(1) dt, ue NU{0},

where vy, is the first generalized Euler constant defined by

. 1 1
(5 o)

n<x

and
( r—2 1
Z , 2<reN
gu—h
jer(u) = 0, r=1
J— 1 JR—
\ M—}—l, v

and the error term can be estimated as O(x™*'logx), respectively.

COROLLARY. Let ke N be given. Then for any ue C and any le N with
[ >Ru+1, we have

Lix)=Li ()= Y n"

n<x,(nk)=1
1 ¢(k) u+1 u
il kY " +5(_“)§k:ﬂ(d)d ;o ou#E—1
M(longroc(k)JrV), u=—1

k
/ r u
+ Ql ) < )x”*“ > u(d)B, (ﬁ) d" + 0(x"""a)(k)),
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where
=> d,
d|n
and
k u(d) log p k
k)=———) ——=logd = =——t(k) — logk,
)= 2 a2y g ) e

with a(k) denoting Davenport’s function and t(k) denoting the function in Lemma 5 below.

LemMma 2 (Kanemitsu-Yoshimoto [16]). Let 0 < & < 1 and let f(t) be defined at the
points m/n ((m,n) =1, 1 <m<n<x). Then

=3 o) = s Ve ZM()

py <& n<x n<x

where

and * denotes the Dirichlet convolution.

LemmA 3 (Lemma 6 of [15]). For complex s we have
¢(n)logn
Z nstl

n<x
1 <1_(s—1)logx_ 1)7 o1

_ (s—1)*(2) o1 o
\ 24“12) log” x. s=1
C(;giv(it)l) - c(i/f)m T oo 11)25(2), s#1,6>0
) 5(12) <_ c(82) (g(ls))” Lt V%Q) + V1>, s=1
" otherwise

1
+xH(x )logx—i—O(ng).
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COROLLARY.

SJ“ H(t)logtdl

1 [S-H

({)(s+1) () (s) s 5> 0,5
s+ 1) §(S+1)+SC(S—|—1) (S—l)zé(z)’ > 0,5 #1

1 //2 2 _2/22 /
amc(méy“>+%“”ﬁ>
- . )
*@(V‘l‘z@))’ s=1
“H
L l‘gg) a, o=0
O g<0

+ 0()6_‘7 log x),
In particular,

“ J dt = O(log x).
1
LemmA 4. For complex s,
{(s) 1
¢(n) s+ (- D@1 ° # 1
’;‘ T %
{(2) (logx+y_f(2)>, s=1
+XH() + O,
and
o0 H(l) B C(S) - p
(21) SJ] s+l dl_C(S-l‘l) (5_1)4(2) (S?é 1),
CH@) 1 IR
(22) Jl s =5 <y -5 (2)),
and

*H(t .
Jx tsfrl) dt=0(x"’), >0

XH [ .
Jl [S—(H) dt = O(X )7 o <0.

LEMMA 5. Define the arithmetic function t(k) by t(k) := 3_,,(u(d))/d)(log (k)/d),
and let T(x) =), _.t(k). Then we have as x — oo
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T(x) = X {logx —1- : <2)} — D(x) —|—%—|— O((x))

where D(x) is defined in Theorem 3.

ProoOF. Rewriting the 2-dimensional sum into a double sum and noting that
B(n) = X a(d)(n/d), we may write

(23) T(X) = Sl — Sz,
where
o) o ud)
S| = ’; " logn, S;= d(;zq 7 logd.

To treat S;, we apply the refinement of Pan Cheng Dong’s (Pan Cheng Tung’s)
result

gn)  x X
;T log = O] + 0(6(x))
The left-hand side is
(log x) o) _ 5ol logn
n<x h n<x hn

whence

S, = T)C) (logx — 1) + H(x) log x + O(3(x)).

Comparing (7) and [I1}, we have

(24) H(x) = =U(x) + 0(d(x)),
whence
(25) Si = -~ (logx — 1) — U(x)log x + 0(d(x)).

(26) Szzz’%m logd:d @<g—%—§1(§>>logd
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Applying
(27) @ logd = -1+ 0(d(x)),
d<x
u(d) (2 d(x)

(28) 2 e 10gd—€(2)2+0< . ),
we conclude that

{'@2) ud) = (x 1
29 S, = X — —~Bi|=)logd +=+ O((x)).
(29) = o= Y (3 towd + 5.+ 06(v)

Putting together, we conclude the assertion.
For the sake of completeness, we give a proof of [24). Similarly to [27], [28), we
have a form of the prime number theorem

(30) “9) _ o)),
d<x d
wd) _ 1 (o)
Y 2w o(y)
Hence

and follows. OJ

As a well-known generalization of Euler’s function (¢(n) = Ji(n)), we introduce
Jordan’s totient function

5im = Y ) (3)
d\n

(= nk ol — p~¥) = the number of ordered sets of k positive integers such that the
g.c.d. of them is relatively prime to n).

LEMMA 6. For complex s and k € R satisfying either (i) 2<k<o—1 or (i)
g—1<k<0 it holds that
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: —s xk7s+1 C(‘S — k) (1) k—s
(1) ’;n Jk(n)_(k—s+1)é(k+1)+ ) + ¢ (x)x
[ O(x'"7logx), k=2
k=s fe—s—1 10 100
i 5 c;q(x)x +O0(x7log"x), 2<k<3
k=5 ) k—s—1 k—1-0
5 ¢ (x)x + O(x )s 3<k,

where 0 is 1 or 0 according as k =3 or not.
In particular, for k > 2

k+1

X (1 (1)K
Ji(n) = + ¢, (x)x
,;x (k+1D)¢(k+1) °k
O(xlogx), k=2
k _
N chfjl(x)xk '+ O(xlog’x), 2<k<3
Ec,(f_)l(x)xk_1 + 0(x* 1), 3<k.

\

(i) Y nJk(n) = O(x'").

n<x

The special case of (i) gives an improvement of Jarden’s formula [13]. Of course,
in other cases, we can obtain asymptotic formulas. The case of s =1 reduces to

Lemma 4. Ifeg. 0<o—1<k<1, then

( xk—sH {(S—k) B B
G—s+nikrn gy 0 K E
Zn_sJk(n):
n<x 1 _Z:/(S) o
\TS)(logx-l—y) 26y s=—1
+O(x1_”)

Then for a > 1,
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(a,1) ¥) = & 4 - l
(32) St (x) Z; ; 3
(k,r)=1
1 g
= @ 1) <logx+y+—1—z(2)>
+L)l _I_O(logx),
and for a>1, b>?2
(@b) () — £o) 1 e —
(33) §H) = (@— Db+ Do T 3o (C(b) (9 ac( )>

2
1 —a ) (b—2)p log” x
+ Jyatl (aC(b)Cbzl(x) - m) +0 (xa+2oc> ’
where o = [2/a] and p = [3/b].

Proor. Since

—a g *
ZV 5l

r>x

we substitute from |Corollary| to [Lemma 1 to get

(
Z a+1’ b=1
r>x r>7c
S0 = 1 $(r)
a—b r
ZF Jb lzraer’ b;él
\ r>x r>x
a1 (r)
+0 Z ra+b '
F>Xx

Applying Lemmas 4-6 as well as Corollary to Lemma 3 to respective sums and the
trivial estimate Y, __oy(n) = O(x?) completes the proof. O

n<x

Lemma 8. For 0 < je Z let

. [Y] r
m+ j 1
Ajx) = 2( j+1 ) gt fem—j—1"
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and

.. m+j\ &
) Jim A0 = (HI)ZZWW”

r=2

Proor. We apply Formula (2) with f(x,y) = (xy)™" to get

_1—2 Z( )rmkm_jl k)jzl—s,’n(x),

say, where > stands for the double sum extended over 2 <r <x, 1<k <r with
(k,r)=1.
Now, putting for 0 <i<n-—2,

m—i—1 m+i
G

jf

we see that
C,'(.X) = A,‘(X) + C[.H(X).
Since s/ (x) = Cop(x) and Cp_2(x) = Am—2(x), it follows from this that

thereby proving our assertion. O

Lemma 9 (Relatively prime version). Suppose f(tx,ty) =t*f(x,y) for o< —1L
Then

the series converging simultaneously.

Lemma 10 (Reciprocity relation). For ¢ > max{l,2 — Rz}, let

Then
(1) H(s,z) + H(z,s) = {(s){(z) + {(s + 2).
Similarly, defining

o0 r 1

H(s,2z) = ;r—s ; k= = 1o H(s,z)
(k,r)=1

H* satisfies (1)" with the right-hand side divided by ((s+ z).
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Lemma 11. Let a > 2 be an integer. Then

' 1 r 1 a—2
(i) 2Z—a E:(a+2 {(a+1) Zéa—z ),
=1 k= P

or equivalently

GQ)* 2 V\ rla Z %=a+2—m {la—DL(i+1).

r=1 k=1

a—2
= 1
(k,r)=1

For Lemmas 9, 10, 11 see Sita Rama Chandra Rao and Siva Rama Sarma [26],
[27] and references thereof.

The following Lemmas 12-14 are needed solely for the proof of the estimate for
D(x) in Theorem 3, (ii).

Lemma 12 (Lemma 2, [15]). Ler {a,},”, be a complex sequence such that a, =
O((logn)®), K >0 and suppose that

> a, = 0(xd(x))

n<x

Then

uniformly in Xx.

LemMmA 13. Let

—4/3

= {80000 (log x) 1/3 (loglog x)

Then for any Q, Q' satisfying

0<0'<20 x <0< <xexp(—(logx)'?),

we have

iuw)w(%) — 0(Qlog) ™).

This follows immediately from Walfisz [28], Lemma 4.5.4.

LemmA 14. For any a >0 and an arithmetical function f(n) we have

(4) STOYOIEI R SETO LU Y CAVIES

a<n<x a<n<x m<x/a

N JX H M) £ (u) duu + H M(a)f(a).

a LU
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In particular,

(35) Zﬂm)f(n){%} = xnsxmn)@—mZQM(%)f (%)

_ + L H M(u) f/(u)_du
Also,
59 3w (3)
- xJ M) % it — j B G) M) f (u) du
-T m(2)r(2) - 8 (3) s+ 3

Proor. It suffices to get an asymptotic formula for the sum G = G(x)=
> acn<y (n) f(n)[x/n]. As in Walfisz [28], we transform G in the following manner by
noting that [x/n| =m if x/(m+1) <n < x/m:

G(x) = Z +

x/[x/al<n<x a<n<x/[x/d]

SN S YR D SETore)

m<x/a—1  x/(m+1)<n<x/m a<n<x/[x/a

Then by partial summation

= ¥ m(M(é)f(%)-M@il)f(mil)-JfffZ+l)M<“>f’<“>d”)

m<x/a—1

[ | ( () ( x/a1> - J:W Mt d”)
3 G-

x/m HM du_ x/[x/d HM(”) () du

m<x/a 1 Y/ (m+1)

SHRS

whence we infer that

7 G(x) = mZ/M(%)f(n%) - [f] s
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Now Formula follows from Formula on noting that {x/n} = x/n — [x/n,
and Formula follows from Formula on taking a between 0 and 1.

Vi

Formula follows from Formula by expressing the LHS as

> unse{E -3 Y umso

a<n<x a<n<x

and substituting partial summation formulas for > _, _ u(n)f(n)/n and > ,_, _ p(n)-

f(n). O

3. Proofs of theorems.

PROOF OF LEHNER-NEWMAN’S FIRST AND SECOND SUM FORMULAS. Lehner and
Newman’s original proof of their sum formulas (2) and (3) depend on geometrical
consideration. For the sake of completeness, we give here a proof of (2) and (3) based
on the following (algebraic) expression for Q., thus avoiding any appeal to geometry:

(38) 0. =A{(a,b)|1 <a,b <x;(a,b)=1;a+b> x}.

(cf. also the recent paper of Kargaev and Zhigljavsky [17])
Thus for the integral variable r > 1

Extracting from s/(r) the extremal terms with a or b equal to r, we are left with the sum
over 1 <a,b<r—1, which is the same as s;(r — 1) with those terms with a+b=r
subtracted. Hence s7(r) —sy(r — 1) gives exactly the inner sum on the RHS of (2).
Adding these resulting equalities for r = 2,3,...,[x] and noting that s,(1) = f(1,1) and
sr(0) =0, we get (2).

Formula (3) is a simple transformation of the 2-dimensional sum over the region
into a double sum. O

PROOF OF THEOREM 1. Since, for m > 2, s,,(x) = o(1), it follows from
that

m—2 2<mjrrlj>
J
(39) Sm(x) = 20: Z: k2<: pmtj+1jem—j—1
Jj= r>x r
(k,r)=1

(note that we have proved altogether Formula [18)). Now can be rewritten as

(23 S o

and so formulas (i)—(iv) can be readily read off from this and [Lemma 7. O

ProoF OF THEOREM 2. For 0 < ¢ <1 define
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=) 1-¢o(x)
p<&

Then we see easily that for ke N

1 ko (2k+1

E(& )% D(x)%
|, I e = s ;( )Szg,o (x)
= 0(x)* (5210 + O(x)).

On the other hand,

B 1 @(x)*
- (2k + 1)22k+1 2k+1
=Q, (x*1),
whence
sak.0 = Q4 (x1 7). O

PrOOF OF THEOREM 3. By [Lemma 2

iﬁpv ZM() (n).

n<x

Hence, substituting from [Lemma 1, (i) with /=2, we have

1
P(x) {(a)S_y(x) ———=S_1(x), a#1
> o= - +350(%)
= —8" (x) + pS_1(x), a=1
—%Sl(x) +a(a2+ l)ch(%) %ch Bz(l’ll) a Zdt
(@)S ()~ = B(x), a# ]
= 4= + O(xd(x)),
—S7 (%) +9yP(x), a=1

on using and estimating the sum ) ,_. M (x/n)(1/n) by dint of (9) (first we need to
divide it into subsums), where S_,(x) is defined in and

Vi

ZM( >nlogn.

n<x
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(i) S_4(x) is easy to treat. Indeed, using [Lemma 2 and [Lemma 1, (i) with / =1
or /> [Ra]+ 1 as the case may be, we deduce

S = 3L, (f)
s ()

a+1n£xn n<x

a+1

O(x™=1 RNa>2
+ 4 O(xlogx), Ra=2
O(x), 0<Ra<?2,

whence, transforming the finite sums into series, (i) follows.
Treating S’,(x) similarly, we rewrite

—S1 () = > ulm) M, (g)

n<x

and apply Lemma 1, with / =3 with error estimate to get

x2 '
—S"(x) = D) (logx — % (2) — %) — xD(x) + O(x),

after transforming finite sums into infinite series.
This only gives the trivial error term O(x) and not the final form of assertion ({ii),
although it covers Mikolas’ by using the trivial estimate D(x) = O(log” x).
To prove the final form of the theorem we use with V:(n) = nlogn to get

(40) ~S'4(x) = D> uld) 5 log &
n<x d|n
= Znt(n)
=x» 1n) =) (x—n)(n)

Form now on we use the decomposition and calculate the integrals | S; du and
S du separately.
First we treat

JSl duzzw&—n)

n<x

This can be written as
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(41) JS] du= xS, + 2, —cD(x)logx,

where

=) ¢(n)log % = J: 2) 4,

u
n<x

\

In a similar way as we prove Formula (24),

b (x) =§Z$—x2@él <g) +é2ﬂ(”) (Ez(g) —%)

n<x n<x n<x

we can prove that

whence follows in the first place that

(42) x? = xU(x) + O(x0(x)),

1
?0) = 35w

or Formula on using the estimate (to be proved later)

Vi

_ [x
43 B(—) =0(xo
(3 S utn)Bs (1) = 00,
and in the second place that
Ip(n) (x* n? Y~ (u\du
(44) n=3 iR (5-) - e[ B (5) 5

azeo], (%) 9%

The first term on the RHS of can be rewritten as

) - %M(x) + O(x6(x)),

while the second becomes

_%Zﬂ(n)éz (g) + %M(X),

n<x

which is O(xd(x)) on account of [43).
Changing the order of summation and integration, the third term on the RHS of

becomes
1(* _ [x 1\ du
|\ M B (2] -2
), e () -2) 3
to which we apply the estimate

(45) L'MTE“)' du = O(x5(x))

to obtain again the same order of error term O(xd(x)).
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Estimate follows immediately on dividing the range of integration into [I,/X]
and [/x,x] and applying (9) to the latter.

Thus, simplifies to

x2

(46) 51 =45+ 0PI,
Substituting into [41], we deduce that
X 2
(47) J Sy du = xS — 22C<2> (logx — 1) + xlogxU(x) + O(x6(x)).
1

It remains to prove [43). Writing

S () = w2} - S {5+ bmi,

n<x n<x n<x

we see that the first and the third term can be estimated by and (9),
respectively. By [Lemma 14, [35) with f(n) =1 and ), _ M(x/m) = Sy(x) =1 (by
(16)), we see that the second sum is

;mm{%} = xz@ — 1= 0(xd(x))

n<x
by [30). This proves [43).
Similarly, we integrate both sides of to get

} X M(n) X u(n) 1 1
(48) J Szdu—727logn—EZTlogn_§22+Eg3’

1 n<x n<x

2= un)lognB, G) 3= uln)logn.

n<x n<x

First, by partial summation and (9) we have
(49) 23 = O(x0(x)).

Secondly, we apply the similar argument that we applied to prove [43]. Namely,
we apply to the first and to the third term, respectively, of the expression

=3 uln) logn{g}z () logn{%} + %Z/x(n) logn

n<x n<x n<x

to get
(50) 2y = —24 + O(x6(x)),

where 24 denotes the 2nd term.
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Since
(51) —ZM( )log—:—logx+ZM< >logm
m<x m<x m
= —logx + ZA(n)
n<x
we deduce from [Lemma 14, with f(n) = logn that
p(n x| M(u)
52 = lo n—logx+ A(n +J [—} du.
(52) ; gn —log ; ORS NF aw
We express the last integral as
M X M
(53) xJ (2”) du — J {f} M) du.
1 u 1 U u

Since

JX Mu ) = x 3 ar(x) = ()

1 n<x

by [30), and the second integral in (53) is O(xd(x)) by [43), it follows that the integral in
(52) is O(x0(x)). Hence, putting all together, we conclude from [(27) and a form of the
prime number theorem for the von Mangoldt function A(n) that

24 =—x+x+ 0(xd(x)) = O(xd(x)),

so that by [50), 2> = O(xd(x)).
Substituting this and into [48), and using and [28), we infer that

/l

(54) L Sa du 222((2)) + g + O(x0(x)).

Hence, substituting [25), [29), [47) and [54) into

—S" 1 (x) = xS — xS, — J

S| du + J S du,
1

1

we conclude that

2 !/
(55) —8",(x) = 222 3 <logx - % (2) — %) — xD(x) + 0(x(x)).

Finally, we substitute and into

Zp = —S](x) + y@(x) + O(x(x)),

to complete the proof.
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It remains to establish the estimate of D(x). We shall do this, following Walfisz’s

argument [28].
To make the dependence of our proof on Walfisz’s result explicit, we use the

notation y(u) for the present defined by
0 ifueZ.

Then D(x) differs from Di(x) =), ¥(x/n)(u(n)/n)logn only when x is an
integer, in which case, however, the difference is in absolute value not greater than

Z Ing < Zlogp<logx

o P plx
p prime

This difference being negligible, we may as well consider D;(x) for D(x). For simplicity
we write D(x) for Dj(x):

(56) Z¢( ) logn.

n<x

We divide the sum over 1 <n <x into three parts 1 <n < Qy, Qyp<n<R,
R < n < x, where

Qo = Oo(x) =x*, R=R(x) = xexp(—/logx),

X being defined in [Cemma 13.
Then the first sum is in absolute value

0(2 1"%) — 0((log 0)?)

n< Qo
= O((logx)**(loglog x)*?),

which gives the error term stated in the theorem.
We are thus left with two sums D,(x) and Ds;(x) to estimate, where

Z lﬁ( ) logn

Qo<n<R
Z lp( ) logn.
R<n<x

We apply to D;(x) the standard technique of expressing the sum as the union of
subsums of length 2Qy.
Let x be the largest integer satisfying

2KQ0 < R,

1.e.
K = [logy(05' R)] = O(logx).
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Then we may express D>(x) as  subsums of the form » .o < pycariigy K =0,..., K,
where 2°F1Q is to be replaced by R
Each of three subsums being of the form

1
u(mw(%) =T 0<0'<20
o<m<Q’

we apply the estimate

= ()2 o(29)

0<m<Q’
which follows from by partial summation.
Then

k—1

Dy(x) = 0<(logX)1 (log2¥Qy) + (logx)~'log 2'<Q°>

e
Il

0
= O((logx)~'rclog Qo + (logx)™'x?)
= O(logx).

Now we use to supersede the trivial bound O((logx)¥?) for Ds(x).
Formula (36) of [Lemma 14 with a = R = xexp(—+/logx) and f(¢) = (logt)/¢ states
that

S )Bl<n) 105;1

R<n<x
logu X X 1 —logu
= M du — M(u)———— d
XJR()“ JR <>() u? !
1 R
— Z ( >mlog——31<%) Og
m<A/R
1 log x
—M(x)—.
+2 (x) .
Applying Estimate (9) to each term, we see that

D3(x) = 0(%5(1{) log R> + O(d(R) log* x).
By x/R =exp(y/logx), log R = O(logx), we conclude that the first term is

O(exp((logx)'"* — e(log.x)**(loglog.x) %)) = 0(6(x)),
and so is the second term, completing the proof. O

ProoF oF THEOREM 5. We take a closer look at the error term R; = R,(x) of the
Euler-Maclaurin formula
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n 1
7(5) =n [ s 500+ O+ T ) - 10+ Re

where

R = Ro(w) = — g [ gt 90
with
¢4(1) = Ba(t) — Ba.
We can express R, corresponding to three cases stated in our [Theorem 3:

B, 0
4 n3

Then, slightly modifying the argument of proof of we have, with
b(n) = (u=b")(n)

(57) Ry=c¢ (Y1) - oy, o<<l.

where .
) = gy | Aa() 1) .

Using for the estimate of |b’(n)|, we obtain
Lf'(1) = f'(0)]

) = T+ 1) = 10 (1) = 700 +3)
1 6) 71(0)] - o
> T3 g7 D = SO =5 1O = 79017/
> 0.
Solving the last inequality, we conclude the assertion. ]

DEDUCTION OF THEOREM 4 FROM THEOREM 5. follows from
with f(t) = f,(t) = =(;(t+1). The constant 1y is the maximum of A for which the
imposed inequality holds.

PrOOF OF THEOREM 6. By Lehner-Newman’s first sum formula with f(x,y) =
x“y~! we have

D(x)—1

E cyeyr = Sp(x
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whence, rewriting the summand as — Y% "'k~ we deduce that

D(x)—1 a—1 1
a _ § : *
CyCyy1 = a — pitl Li—a<r)7
0

i=1 r<x

y=

where
i—a(r): Z kiia
=
(k,r)=1
is the sum in [Corollary| to [Lemma 1. Using [38), we see that
sp(x) < Z k=21

and hence that

&(x)—1 a—1
1

Y e =33 L)

v=0 i=1 r>x
Substituting from [Lemma 7 completes the proof. O

The proof of rests on Lehner-Newman’s second sum formula (only the
first formula in rests on the first sum formula) and similar reasonings in this paper
with frequent use of |Corollary| to [Lemma 1.

We shall not, however, give a proof of [Theorem 7 as it requires another series of
lemmas. We shall publish it as well as detailed proofs of (generalizations of) some
lemmas in §2 elsewhere.
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