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Abstract. Let Fx denote the Farey series of order �x�, i.e. the increasing sequence

of irreducible fractions rn A �0; 1� whose denominators do not exceed x. We shall obtain

precise asymptotic formulae for the sum
PF�x�

n�1 r z
n for complex z and related sums,

F�x� � ]Fx coinciding the summatory function of Euler's function. In particular, we

shall prove an asymptotic formula for
P

rÿ1
n with as good an estimate as for the prime

number theorem by extracting an intermediate error term occurring in the asymptotic

formula for F�x�.

1. Introduction and statement of results.

For a variable xV 1, let Fx � F�x� denote the Farey series of order �x� (�x� � integral

part of x), i.e. the sequence of irreducible fractions A �0; 1� whose denominatorsU x,

arranged in increasing order of magnitude:

Fx � rn �
bn

cn

�

�

�

�

�bn; cn� � 1; 0 < bn U cn U x

� �

:

Supplementarily, we put r0 � b0=c0 � 0=1.

The number of rn's in Fx with cn � n is
Pn

k�1;�k;n��1 � f�n�, Euler's function. The

total number of rn's in Fx is therefore F�x� �
P

nUx f�n�.

Let Qx � Q�x� denote all pairs �cn; cn�1� of denominators of consecutive Farey

fractions rn � bn=cn and rn�1 � bn�1=cn�1 (with c0 � 1):

Qx � f�cn; cn�1� j 0U nUF�x� ÿ 1g�1�

(]Qx � ]Fx � F�x�). E.g. Q3 � f�1; 3�; �3; 2�; �2; 3�; �3; 1�g.

In Part I [15] we considered the m-th power moments sm�x� for m � 2; 3 (Theorems

1 and 2) and revealed the connection between these and the (associated) error terms of

Euler's function, where

sm�x� �
X

�cn; cn�1� AQx

�cncn�1�
ÿm �m A N�:

In view of the basic relation

bn�1cn ÿ bncn�1 � 1;
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we have rn�1 ÿ rn � �cncn�1�
ÿ1, so that

sm�x� �
XF�x�ÿ1

n�0

�rn�1 ÿ rn�
m

is indeed the m-th power moment of the di¨erence of consecutive Farey fractions. In

particular, s1�x� � rF�x� ÿ r0 � 1ÿ 0 � 1. Rather surprisingly, our Theorems [15] as

well as those of Hall-Tenenbaum [9] caught attention of physicists in connection with

circle maps (CvitanovicÂ [4]).

In this Part II our objective is twofold. The ®rst-half of the paper is a direct

continuation as well as an improved generalization of results in Part I, and the second-

half is the presentation of results in the unpublished MS of the ®rst author's former

paper ( jointly with R. Sita Rama Chandra Rao and A. Siva Rama Sarma) which was

once submitted to these volumes, but withdrawn for better organization, years ago;

although preparation of the new MS has been suspended because of untimely death of

Sita Rama Chandra Rao, the ®rst author's friend and collaborator, that withdrawn MS

is now completely rewritten, incorporating new developments.

Namely, Theorem 1 contains not only improvements of Theorems 1 and 2 of Part I

by a factor of �log log x�4=3 but also rather precise asymptotic formulas for sm�x� in the

cases m � 4 and mV 5. The proof goes on the similar lines as those of Theorems 1

and 2; however, we shall prove all the results at a stretch, i.e. new asymptotic formulas

for sm�x� for mV 4 as well as improvements, by modifying proofs of Part I and

introducing new lemmas, and also as byproducts evaluate certain in®nite series.

Then we proceed to give re®nements of the former paper (referred to above),

namely improvements over MikolaÂs' results [22] concerning the asymptotic behavior of

sums
PF�x�

n�1 rÿa
n for a > 0 (for positive power sums, see [16 ]) and precise asymptotic

formulas for unsymmetric form of sm�x�, i.e.

X

�cn; cn�1� AQx

1

can cn�1
;

the special case a � 2 of which constitutes an improvement of Hans and Dumir's results

[10].

All these results rest on Lehner-Newman's ®rst sum formula [19]:

Lemma (Lehner-Newman's ®rst sum formula [19]). For any complex-valued

function f �u; v� de®ned at least for positive integral arguments u, v, we have

sf �x� :�
XF�x�ÿ1

n�0

f �cn; cn�1��2�

� f �1; 1� �
X

2UrUx

Xr

k�1
�k; r��1

f f �k; r� � f �r; k� ÿ f �k; rÿ k�g:

On the other hand, our Theorems 6 and 7 are based on Lehner-Newman's second sum

formula:
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Lemma (Lehner-Newman's second sum formula).

X

F�x�ÿ1

n�0

f �cn; cn�1� �
X

rUx

X

xÿr<kUx
�k; r��1

f �r; k�:�3�

By these formulas we can transform the sum over Farey points into one over

primitive lattice points, for which we can apply ordinary apparatus of number theory.

Successful applications were made by Lehner and Newman [19], Hall [7], subsequently

by the ®rst author [14] and then in Part I [15].

Acknowledgment. The authors would like to express their hearty thanks to the

referee for careful reading of the manuscript and pointing out errors, which resulted in

the present improved form of Theorem 3, (ii) and led to a new research [30].

Notation and known results. The associated error term E�x� is de®ned by

F�x� �
X

nUx

f�n� �
1

2z�2�
x2 � E�x�;�4�

and it is known that

E�x� � O�x log x� (Mertens),

E�x� � O�x log2=3 x�log log x�4=3� (Wal sz [28]).

�

�5�
®

The closely related error term H�x� is de®ned by

X

nUx

f�n�

n
�

1

z�2�
x�H�x�:�6�

It is known that

E�x� � xH�x� �O�xd�x��;�7�

where

d�x� � exp�ÿA�log x�0:6�log log x�ÿ0:2��8�

A > 0 being an absolute constant, is the reducing factor which appears in the prime

number theorem

M�x� :�
X

nUx

m�n� � O�xd�x��;�9�

where m�n� denotes the MoÈbius function. Let Bk�t� denote the k-th Bernoulli poly-

nomial and let Bk�t� :� Bk�tÿ �t�� denote the k-th periodic Bernoulli polynomial.

De®ne

U�x� �
X

nUx

m�n�

n
B1

x

n

� �

:�10�
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U�x� is the main term of E�x�, i.e.

E�x� � ÿxU�x� �O�xd�x��;�11�

and, as a basis of the second estimate in (5),

U�x� � O�log2=3 x�log log x�4=3��12�

is the hitherto best known estimate. The estimate of Saltykov used in Part I is

erroneous and PeÂtermann [24] has con®rmed, after amending some errors in Saltykov's

paper, that Saltykov's method yields only (12).

Let dn denote the distance from the n-th division point n=�F�x�� of the unit interval

to the n-th Farey point rn:

dn � rn ÿ
n

F�x�
; n � 1; 2; . . . ;F�x�:

The celebrated Riemann hypothesis (RH) is equivalent in the ®rst place to one of

the forms of the prime number theorem:

RH , M�x� � O�x1=2�e�;�13�

for every e > 0 (hereafter we always use e in this context). Franel's theorem [5 ], [18]

asserts that the RH is equivalent to the mean square of dn:

RH ,
X

F�x�

n�1

d2n � O�xÿ1�e�:�14�

In what follows we always denote by s the complex variable with Rs � s, and by m

a ®xed integerV 2.

De®ne

Ss�x� �
X

nUx

M
x

n

� �

nÿs:�15�

Then it is well known that

Sÿ1�x� � F�x�; S0�x� � 1;�16�

and that

RH , Ss�x� � O�x1=2�e�; for some s with sV
1

2
:�17�

We are now in a position to state main results of the paper.

Theorem 1. As x ! y, we have for sm�x� �
PF�x�ÿ1

n�0 �cncn�1�
ÿm

(i) s2�x� �
2

z�2�x2
log x� g�

1

2
ÿ
z 0�2�

z�2�

� �

�
4U�x� log x

x3
�O

log x

x3

� �
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(ii) s3�x� �
2z�2�

z�3�x3
�

3

z�2�x4
log x� gÿ

1

4
ÿ
z 0�2�

z�2�
� 2z2�2�c

�1�
2 �x�

� �

�
12U�x� log x

x5
�O

log x

x5

� �

(iii) s4�x� �
2z�3�

z�4�x4
�

1

x5

4z�2�

z�3�
� 8z�3�c

�1�
3 �x�

� �

�
20

3z�2�x6
log x� gÿ

13

30
ÿ
z 0�2�

z�2�
� 3z2�2�c

�1�
2 �x� � 3z�2�z�3�c

�2�
2 �x�

� �

�
40U�x� log x

x7
�O

log x

x7

� �

;

and for mV 5

(iv) sm�x� �
2z�mÿ 1�

z�m�xm
�

m

z�mÿ 1�xm�1
fz�mÿ 2� � 2z2�mÿ 1�c

�1�
mÿ1�x�g

�
m�m� 1�

xm�2

z�mÿ 3�

3z�mÿ 2�
� z�mÿ 2�c

�1�
mÿ2�x� � z�mÿ 1�c

�2�
mÿ2�x�

� �

�
35y 0 log x

2z�2�xm�3
�O

1

xm�3

� �

;

where U�x� is de®ned by (10), g is Euler's constant, y 0 equals 0 or 1 according as m � 5 or

mV 6, and for s > 1 and r A N ,

c�r�s �x� :�
X

y

n�1

m�n�

ns
Br

x

n

� �

;�18�

which satis®es

lim inf
x!y

c�r�s �x�U
Br

z�s�
;�19�

so that c
�1�
s �x�2 0�1�, x ! y, where Br denotes the r-th Bernoulli number.

In the course of proof we shall obtain the identity

X

mÿ2

j�0

X

y

r�2

X

r

k�1
�k; r��1

2 m� j
j�1

� �

rm�j�1kmÿjÿ1
� 1;

which, combined with Lemmas 9, 11, yields a vast amount of identities.

Corollary 1. We have the following evaluations

(i) 2
X

mÿ2

j�0

m� j

j � 1

� �

X

y

r�1

X

r

k�1

1

rm�j�1kmÿjÿ1
� z�2m� 1� 2

X

mÿ2

j�0

m� j

j � 1

� �

( )
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(i)� 2
X

mÿ2

j�0

m� j

j � 1

� �

X

y

r�1

X

r

k�1
�k; r��1

1

rm�j�1kmÿjÿ1
� 1� 2

X

mÿ2

j�0

m� j

j � 1

� �

(i)� 2
X

mÿ3

j�0

m� j

j � 1

 !

X

y

r�1

X

r

k�1

1

rm�j�1kmÿjÿ1

� z�2m� 1� 2
X

mÿ2

j�0

m� j

j � 1

 !

ÿ �2m� 1�
2mÿ 2

mÿ 1

 !( )

�
2mÿ 2

mÿ 1

 !

X

2mÿ3

i�1

z�2mÿ i ÿ 1�z�i � 1�

(ii) 2
X

mÿ3

j�0

m� j

j � 1

 !

X

y

r�1

X

r

k�1

1

rmÿjÿ1km�j�1

� 2
X

mÿ3

j�0

m� j

j � 1

 !

z�m� j � 1�z�mÿ j ÿ 1�

� 2 �2mÿ 1�
2mÿ 2

mÿ 1

 !

ÿ 1

( )

z�2m�

ÿ
2mÿ 2

mÿ 1

 !

X

2mÿ3

i�1

z�2mÿ i ÿ 1�z�i � 1�;

where empty sums are understood to be 0.

Remark 1. (i) is a new essential formula, of which �i�� is the relatively prime

version and �i�� the reciprocal version, and so is Formula (ii), which has relatively prime

and reciprocal version. Each of these has its relatively prime and reciprocal versions.

E.g. the reciprocal version of �i��, �i���, states that

(i)�� 2
X

mÿ3

j�0

m� j

j � 1

 !

X

y

r�1

X

r

k�1
�k; r��1

1

rm�j�1kmÿjÿ1

� 1� 2
X

mÿ2

j�0

m� j

j � 1

 !

ÿ �2m� 1�
2mÿ 2

mÿ 1

 !

�
2mÿ 2

mÿ 1

 !

X

2mÿ3

i�1

z�2mÿ i ÿ 1�z�i � 1�:

Example. Let H and H � denote functions in Lemma 10. Then

(i) H�3; 1� �
X

y

r�1

X

r

k�1

1

r3k
�

5

4
z�4�;
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(ii) H�4; 2� �
X

y

r�1

X

r

k�1

1

r4k2
� z2�3� ÿ

z�6�

3
� z2�3� ÿ

p6

2835
;

(iii) H ��2; 4� �
X

y

r�1

X

r

k�1
�k; r��1

1

r2k4
�

37

12
ÿ
z2�3�

z�6�
�

37

12
ÿ
945z2�3�

p6
;

etc.

Proof. By taking m � 2 in (i) of Corollary 1, m � 3 in �i�� of Corollary 1 and in

�i��� of Remark 1 we obtain the above identities. r

The identities including (i) can be traced back to Nielsen's book on gamma function

and are also later given by Williams (see [24] and references given there).

Each of these has its relatively prime versions. E.g. H ��3; 1� � 5=4 due to the ®rst

author [14]; for (i) itself, see Matsuoka [21]. These evaluations do not seem possible to

deduce from Apostol and Vu's consideration [2].

Remark 2. Those identities in Lemma 11 as well as those in Corollary 1 may be

of particular interest in the light of recent investigations of Zagier [31].

For r1; . . . ; rl A N (l is called the depth) de®ne the multiple zeta-values

z�r1; . . . ; rl� �
X

n1>���>nl>0

1

nr1
1 � � � nrl

l

:

Question. Consider the numbers Zr :� z�r� �r A N� as known. Then to what

extent can one write all z�r1; . . . ; rl� as polynomials in Z1;Z2; . . .?

A partial answer has been given by himself.

Theorem (Zagier [31]). Let AU2
k be the Z-span of all multiple zeta-values of weight

k :� r1 � r2, depth lU 2. Then

A
U2
k �

X

�kÿ3�=2

n�0

Qz�2n�z�k ÿ 2n� dim �
k ÿ 1

2

� �

if 2a k, while if 2jk, then

QAU2
k � QZk �

X

3UnUk=2
n odd

QZnZkÿn � space of dim
k ÿ 2

6

� �� �

:

Lemma 11, (i), Example (i), (ii) are in conformity with this theorem with l � 2, and

k � a� 1, k � 4, and k � 6, respectively.

For related topics, see Zagier [32] and Arakawa and Kaneko [1].

Corollary 2 (Maier [20]). For integers g, hV 0 de®ne

sg;h � sg;h�x� :�
X

F�x�ÿ1

n�1

�dn�
g�dn�1�

h:
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Then

s2;0 �� s0;2� �
X

F�x�ÿ1

n�1

d2n

� s1;1 �
1

z�2�x2
log x� gÿ

z 0

z
�2�

� �

�O
log x

x3

� �

;

and

s2;1 �
z�2�

3z�3�x3
�O�xÿ4�:

Franel's sum s2;0 has been considered by several authors, the initiator being Franel,

whose theorem (see Formula (14) above) is based on the Franel identity, which in turn

has its genesis in the 3-term relation for the 2-dimensional Dedekind sums (for this and

references, see [16 ]).

Regarding power moments, we have

Theorem 2. For 2U g A N ,

X

F�x�

n�1

jdnj
g � W��x

1ÿg�;

and on the RH, for 1U g A R,

X

F�x�

n�1

jdnj
g � O�x2ÿ�3=2�g�e� �O�x1ÿg�e�:

In particular, for Maier's sums with g A N ,

s2g;0 �
O�x1ÿ2g�e� on the RH

W��x
1ÿ2g�; o�x2ÿ2g� unconditionally:

�

Theorem 3 (Re®nements of MikolaÂs' results). For Ra > 0, a0 1

(i)
X

F�x�

n�1

rÿa
n �

z�a�xa�1

�a� 1�z�a� 1�
ÿ

1

aÿ 1
F�x�

ÿ
z�a�c

�1�
a �x�xa; Ra > 1

0; 0 < RaU 1; a0 1

(

�Oa�x
maxfRaÿ1;1g�log x�y�;

where y � y�a� � 1 or 0 according as Ra � 2 or Ra0 2, and

(ii)
X

F�x�

n�1

1

rn
� F�x� log x� gÿ

1

2
ÿ
z 0�2�

z�2�

� �

�O�x log2 x�

�
x2

2z�2�
log x� gÿ

1

2
ÿ
z 0

z
�2�

� �

ÿ xD�x� ÿ gxU�x� �O�xd�x��;
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where

D�x� :�
X

nUx

m�n�

n
B1

x

n

� �

log
x

n

�
X

y

n�1

m�n�

n
B1

x

n

� �

log
x

n
�O�d�x��

� O�log2 x� �trivially�

� U�x� log x�O��log x�4=3�log log x�8=3�

� O��log x�5=3�log log x�4=3�:

Although only the formula (ii) in Theorem 3 expresses the relation between the

distribution of Farey points and the error term of the prime number theorem, it is

possible to re®ne the formula in (i) in a similar way, with some additional e¨ects, to be

carried out in detail elsewhere.

On the other hand, if we extract the main term, we again get equivalent conditions

to the RH in terms of negative powers of Farey fractions.

Theorem 4. For

1 < lU l0 :�

�����������������������������������

60z�3�

z�3=2�z�7=2�
�
1

4

s

ÿ
3

2
� 3:4752 . . . ;

let

f �t� � fl�t� �
1

tl
ÿ zl�t� �� ÿzl�t� 1��;

where

zl�t� �
X

y

n�0

1

�n� t�l

denotes the Hurwitz zeta-function, and let

Ef �x� �
X

F�x�

n�1

f �rn� ÿF�x�

�1

0

f �t� dt:

Then

RH , Ef �x� � O�x�1=2��e�:

This is a direct consequence of the modi®ed Theorem 4 of Yoshimoto [29]:

Theorem 5. Let f A C
6�0; 1� satisfy (at least) one of the conditions that f �4� is of

constant sign, in which case c � 15=8; f �4� and f �6� are of the same constant sign, c � 1;

f �4� and f �6� are of opposite constant sign, c � 7=8. For thus de®ned c, suppose f
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satis®es the inequality

j f 0�1� ÿ f 0�0�j

j f �3��1� ÿ f �3��0�j
V

c

60
�
z�3=2�z�7=2�

z�3�
:

Then statement (E) of [29] holds, i.e.

RH , Ef �x� � O�x�1=2��e�:

Theorem 6 (Improved generalization of Hans and Dumir [10]).

(i)
X

F�x�ÿ1

n�1

1

c2n cn�1

�
1

z�2�x
log x� g� 1ÿ

z 0

z
�2�

� �

�
U�x� log x

x2
�O

log x

x2

� �

;

(ii)
X

F�x�ÿ1

r�1

1

c3n cn�1

�
z�2�

z�3�x
�

1

2z�2�x2
log x� gÿ

1

2
ÿ
z 0

z
�2� � 2z2�2�c

�1�
2 �x�

� �

�
U�x� log x

x3
�O

log x

x3

� �

;

(iii)
X

F�x�ÿ1

r�1

1

c4n cn�1

�
z�3�

z�4�x
�

1

2z�2�x2
�z�2� � 2z2�3�c

�1�
3 �x��

�
1

3z�2�x3
log x� gÿ

7

6
ÿ
z 0

z
�2� � 3z2�2�c

�1�
2 �x� � 3z�2�z�3�c

�2�
2 �x�

� �

�
U�x� log x

x4
�O

log x

x4

� �

;

and for every integer aV 5

(iv)
X

F�x�ÿ1

n�1

1

can cn�1

�
z�aÿ 1�

z�a�x
�

1

2z�aÿ 1�x2
�z�aÿ 2� � 2z2�aÿ 1�c

�1�
aÿ1�x��

�
1

3z�aÿ 2�x3
�z�aÿ 3� � 3z2�aÿ 2�c

�1�
aÿ2�x�
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� 3z�aÿ 2�z�aÿ 1�c
�2�
aÿ2�x��

�
y
0 log x

�aÿ 1�z�2�xaÿ1
�O

1

x4

� �

;

where y
0 is 1 or 0 according as a � 5 or aV 6.

In the course of proof we prove Lemma 11, �i��, and hence (i) also.

Theorem 7 (Re®nements over results of [14], which in turn are re®nements of

Lehner and Newman's results [19]).

(i) For non-negative reals a, b,

X

F�x�ÿ1

n�0

can c
b
n�1 � ca;bx

a�b�2 ÿ
p2

6
�a� b� 2�ca;bU�x�xa�b�1

�O�xa�b�1�log log x�y
00

�;

where y
00 � 1 if 0 < bU 1=2 and 0 if either b � 0 or b > 1=2, and

ca;b �
6

p2

1

�1� a��1� b�
ÿ
G�1� a�G�1� b�

G�3� a� b�

� �

:

(ii)
X

F�x�ÿ1

n�0

1

cncn�1�cn � cn�1�
�

12 log 2

p2x
�
2 log 2

x2
U�x� �O

1

x2

� �

;

X

F�x�ÿ1

n�0

1

cn � cn�1
�

6

p2
�2 log 2ÿ 1�x� �1ÿ 2 log 2�U�x� �O�1�;

and

X

F�x�ÿ1

n�0

cncn�1

cn � cn�1
�

11ÿ 12 log 2

3p2
x3 � �11ÿ 12 log 2�

xE�x�

6
�O�x2�:

As we deduce Corollary 1 in the course of proof of Theorem 1, we reprove Gupta's

identity

X

y

r�1

X

r

k�1
�k; r��1

1

r2�r� k�
�

3

4
;

which follows also from Apostol and Vu's consideration [2]. Indeed, de®ning

T 0�s; z� �
X

y

r�1

X

r

k�1
�k; r��1

1

rsk z�r� k�
;
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one has

T 0�s; z� �
1

z�s� z� 1�
T�s; z�;

where T�s; z� is de®ned by (19) of [2]. Their Eq. (22) gives, for a � 1, Gupta's identity

above.

Regarding Gupta's identity and generalizations thereof, we refer to an extensive

work of Hata [11] which enables us to evaluate a large class of in®nite series in closed

form, using Farey fractions, or rather the intervals between them.

In regard to Theorem 1 we note the recent papers [6 ], [7] of Hall who considers the

moments of length of Farey arcs. From the point of view of circle maps as well as the

analogy with the di¨erence between zeros of the Riemann zeta-function on the critical

line these may be of particular interest and may shed some new light.

2. Preliminaries.

We collect basic lemmas some of which are of interest in their own right.

Lemma 1 (Ishibashi-Kanemitsu [12], Lemmas 3 and 8). For any u A C de®ne

Lu�x� �
X

nUx

nu and Mu�x� �
X

nUx

nu log n;

where for nu � eu log n with log n A R. Then for any l A N satisfying l > Ru� 1 (if

u A N U f0g, we take l � u� 1) we have

(i) Lu�x� �

1

u� 1
xu�1 � z�ÿu�; u0ÿ1

log x� g; u � ÿ1

8

>

<

>

:

�
X

l

r�1

�ÿ1�r

r

u

rÿ 1

 !

Br�x�x
u�1ÿr

�
�ÿ1� l

u

l

 !

�y

x

Bl�t�t
uÿl dt; u B N U f0g;

0; u A N U f0g;

8

>

>

>

<

>

>

>

:

where the error term can also be estimated as O�xRuÿl�, and

(ii) Mu�x�

�

1

u� 1
xu�1 log xÿ

1

�u� 1�2
xu�1 ÿ z 0�ÿu�; u0ÿ1

1

2
log2 x� g1; u � ÿ1

8

>

>

>

<

>

>

>

:
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�

X

l

r�1

�ÿ1�r

r

u

rÿ 1

 !

Br�x��log x� jrÿ2�u��x
u�1ÿr

; u B N

X

u�1

r�1

�ÿ1�r

r

u

rÿ 1

 !

Br�x��log x� jrÿ2�u��x
u�1ÿr

��ÿ1�u
X

l

r�u�2

u!�rÿ uÿ 2�!

r!
Br�x�x

u�1ÿr
; u A N

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

�ÿ1� l
u

l

 !

�y

x

Bl�t�t
uÿl�log t� jlÿ1�u�� dt; u B N U f0g

�ÿ1�u
u!�l ÿ uÿ 1�!

l!

�y

x

Bl�t�t
uÿl dt; u A N U f0g;

8

>

>

>

>

>

<

>

>

>

>

>

:

where g1 is the ®rst generalized Euler constant de®ned by

g1 � lim
x!y

X

nUx

log n

n
ÿ
1

2
log2 x

 !

;

and

jrÿ2�u� �

X

rÿ2

h�0

1

uÿ h
; 2U r A N

0; r � 1

ÿ
1

u� 1
; r � 0,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

and the error term can be estimated as O�xRuÿl log x�, respectively.

Corollary. Let k A N be given. Then for any u A C and any l A N with

l > Ru� 1, we have

L�
u �x� � L�

u;k�x� �
X

nUx; �n;k��1

nu

�

1

u� 1

f�k�

k
xu�1 � z�ÿu�

X

djk

m�d �d u
; u0ÿ1

f�k�

k
�log x� a�k� � g�; u � ÿ1

8

>

>

>

>

<

>

>

>

>

:

�
X

l

r�1

�ÿ1�r

r

u

rÿ 1

 !

xu�1ÿr
X

djk

m�d �Br

x

d

� �

d rÿ1 �O�xRuÿlsl�k��;
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where

sl�n� �
X

djn

d l ;

and

a�k� � ÿ
k

f�k�

X

djk

m�d �

d
log d �

X

pjn

log p

pÿ 1
�

k

f�k�
t�k� ÿ log k;

with a�k� denoting Davenport's function and t�k� denoting the function in Lemma 5 below.

Lemma 2 (Kanemitsu-Yoshimoto [16 ]). Let 0 < xU 1 and let f �t� be de®ned at the

points m=n ��m; n� � 1, 1UmU nU x�. Then

h�x; f � :�
X

rnUx

f �rn� �
X

nUx

�m � Vx��n� �
X

nUx

M
x

n

� �

Vx�n�;

where

Vx�n� :�
X

kUnx

f
k

n

� �

and � denotes the Dirichlet convolution.

Lemma 3 (Lemma 6 of [15]). For complex s we have

X

nUx

f�n� log n

ns�1

�

1

�sÿ 1�2z�2�
1ÿ

�sÿ 1� log x

x sÿ1
ÿ

1

xsÿ1

� �

; s0 1

1

2z�2�
log2 x; s � 1

8

>

>

>

>

>

<

>

>

>

>

>

:

�

z�s�z 0�s� 1�

z2�s� 1�
ÿ

z 0�s�

z�s� 1�
ÿ

1

�sÿ 1�2z�2�
; s0 1; s > 0

1

z�2�
ÿ
z�2�

8

1

z�s�

� �00�
�

�

�

s�2

� g
z 0

z
�2� � g1

� �

; s � 1

0; otherwise

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

� xÿsH�x� log x�O
log x

xs

� �

:
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Corollary.

s

� x

1

H�t� log t

ts�1
dt

�

z�s�z 0�s� 1�

z2�s� 1�
ÿ

z 0�s�

z�s� 1�
�

z�s�

sz�s� 1�
ÿ

s

�sÿ 1�2z�2�
; s > 0; s0 1

1

z�2�

z 00�2�z�2� ÿ 2z 0�2�2

z�2�2
� g

z 0

z
�2� � g1

 !

�
1

z�2�
gÿ 1ÿ

z 0

z
�2�

� �

; s � 1

� x

1

H�t�

ts�1
dt; s � 0

0; s < 0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�O�xÿs log x�:

In particular,
� x

1

H�t� log t

t
dt � O�log x�:�20�

Lemma 4. For complex s,

X

nUx

f�n�

n s�1
�

z�s�

z�s� 1�
ÿ

1

�sÿ 1�z�2�xsÿ1
; s0 1

1

z�2�
log x� gÿ

z 0

z
�2�

� �

; s � 1

8

>

>

>

>

<

>

>

>

>

:

� xÿsH�x� �O�xÿs�;

and

s

�

y

1

H�t�

ts�1
dt �

z�s�

z�s� 1�
ÿ

s

�sÿ 1�z�2�
�s0 1�;�21�

�

y

1

H�t�

t2
dt �

1

z�2�
gÿ 1ÿ

z 0

z
�2�

� �

;�22�

and
�

y

x

H�t�

ts�1
dt � O�xÿs�; s > 0

� x

1

H�t�

ts�1
dt � O�xÿs�; sU 0:

Lemma 5. De®ne the arithmetic function t�k� by t�k� :�
P

djk��m�d ��=d��log �k�=d�,

and let T�x� �
P

kUx t�k�. Then we have as x ! y
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T�x� �
x

z�2�
log xÿ 1ÿ

z 0�2�

z�2�

� �

ÿD�x� �
1

2
�O�d�x��

�
x

z�2�
log xÿ 1ÿ

z 0�2�

z�2�

� �

ÿD�x� �O�1�;

where D�x� is de®ned in Theorem 3.

Proof. Rewriting the 2-dimensional sum into a double sum and noting that

f�n� �
P

djn m�d ��n=d�, we may write

T�x� � S1 ÿ S2;�23�

where

S1 �
X

nUx

f�n�

n
log n; S2 �

X

ddUx

m�d �

d
log d:

To treat S1, we apply the re®nement of Pan Cheng Dong's (Pan Cheng Tung's)

result [23]

X

nUx

f�n�

n
log

x

n
�

x

z�2�
�O�d�x��:

The left-hand side is

�log x�
X

nUx

f�n�

n
ÿ
X

nUx

f�n�

n
log n

� log x
x

z�2�
�H�x�

� �

ÿ S1;

whence

S1 �
x

z�2�
�log xÿ 1� �H�x� log x�O�d�x��:

Comparing (7) and (11), we have

H�x� � ÿU�x� �O�d�x��;�24�

whence

S1 �
x

z�2�
�log xÿ 1� ÿU�x� log x�O�d�x��:�25�

On the other hand,

S2 �
X

dUx

m�d �

d

x

d

� �

log d �
X

dUx

m�d �

d

x

d
ÿ
1

2
ÿ B1

x

d

� �� �

log d�26�

� x
X

dUx

m�d �

d 2
log d ÿ

1

2

X

dUx

m�d �

d
log d ÿ

X

dUx

m�d �

d
B1

x

d

� �

log d:
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Applying

X

dUx

m�d �

d
log d � ÿ1�O�d�x��;�27�

X

dUx

m�d �

d 2
log d �

z 0�2�

z�2�2
�O

d�x�

x

� �

;�28�

we conclude that

S2 �
z 0�2�

z�2�2
xÿ

X

dUx

m�d �

d
B1

x

d

� �

log d �
1

2
�O�d�x��:�29�

Putting together, we conclude the assertion.

For the sake of completeness, we give a proof of (24). Similarly to (27), (28), we

have a form of the prime number theorem

X

dUx

m�d �

d
� O�d�x��;�30�

X

dUx

m�d �

d 2
�

1

z�2�
�O

d�x�

x

� �

:�31�

Hence

X

nUx

f�n�

n
�

X

ddUx

m�d �

d
�

X

dUx

m�d �

d

X

dUx=d

1 �
X

dUx

m�d �

d

x

d

� �

� ÿ
X

dUx

m�d �

d
B1

x

d

� �

ÿ
x

d
�
1

2

� �

� ÿU�x� � x
X

dUx

m�d �

d 2
ÿ
1

2

X

dUx

m�d �

d

�
x

z�2�
ÿU�x� �O�d�x��;

and (24) follows. r

As a well-known generalization of Euler's function (f�n� � J1�n�), we introduce

Jordan's totient function

Jk�n� �
X

djn

m�d �
n

d

� �k

(� nk
Q

pjn�1ÿ pÿk� = the number of ordered sets of k positive integers such that the

g.c.d. of them is relatively prime to n).

Lemma 6. For complex s and k A R satisfying either (i) 2U k < sÿ 1 or (ii)

sÿ 1U kU 0 it holds that
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(i)
X

nUx

nÿsJk�n� �
xkÿs�1

�k ÿ s� 1�z�k � 1�
�
z�sÿ k�

z�s�
� c

�1�
k �x�xkÿs

�

O�x1ÿs log x�; k � 2

k ÿ s

2
c
�2�
kÿ1�x�x

kÿsÿ1 �O�x1ÿs logy x�; 2 < kU 3

k ÿ s

2
c
�2�
kÿ1�x�x

kÿsÿ1 �O�xkÿ1ÿs�; 3 < k;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

where y is 1 or 0 according as k � 3 or not.

In particular, for kV 2

X

nUx

Jk�n� �
xk�1

�k � 1�z�k � 1�
� c

�1�
k �x�xk

�

O�x log x�; k � 2

k

2
c
�2�
kÿ1�x�x

kÿ1 �O�x logy x�; 2 < kU 3

k

2
c
�2�
kÿ1�x�x

kÿ1 �O�xkÿ1�; 3 < k:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(ii)
X

nUx

nÿsJk�n� � O�x1ÿs�:

The special case of (i) gives an improvement of Jarden's formula [13]. Of course,

in other cases, we can obtain asymptotic formulas. The case of s � 1 reduces to

Lemma 4. If e.g. 0 < sÿ 1U k < 1, then

X

nUx

nÿsJk�n� �

xkÿs�1

�k ÿ s� 1�z�k � 1�
�
z�sÿ k�

z�s�
; k ÿ s0ÿ1

1

z�s�
�log x� g� ÿ

z 0�s�

z2�s�
; k ÿ s � ÿ1

8

>

>

>

>

>

<

>

>

>

>

>

:

�O�x1ÿs�:

Lemma 7. For a, b A R, let

S�a;b��x� �
X

y

r>x

rÿa
X

r

k�1
�k; r��1

kÿb
:

Then for a > 1,
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S�a;1��x� �
X

y

r>x

rÿa
X

r

k�1
�k; r��1

1

k
�32�

�
1

�aÿ 1�z�2�xaÿ1
log x� g�

1

aÿ 1
ÿ
z 0

z
�2�

� �

�
U�x�

xa
log x�O

log x

xa

� �

;

and for a > 1, bV 2

S�a;b��x� �
z�b�

�aÿ 1�z�b� 1�xaÿ1
�

1

xa
z�b�c

�1�
b �x� ÿ

a

az�2�

� �

�33�

�
1ÿ a

2xa�1
az�b�c

�2�
bÿ1�x� ÿ

�bÿ 2�b

�a� 1�z�2�

� �

�O
logb x

xa�2ÿa

 !

;

where a � �2=a� and b � �3=b�.

Proof. Since

S�a;b��x� �
X

r>x

rÿaL�
ÿb�r�

we substitute from Corollary to Lemma 1 to get

S�a;b��x� �

X

r>x

t�r�

ra
� g

X

r>x

f�r�

ra�1
; b � 1

z�b�
X

r>x

rÿaÿbJb�r� ÿ
1

bÿ 1

X

r>x

f�r�

ra�b
; b0 1

8

>

>

>

>

>

<

>

>

>

>

>

:

�O
X

r>x

s1�r�

ra�b

 !

:

Applying Lemmas 4±6 as well as Corollary to Lemma 3 to respective sums and the

trivial estimate
P

nUx s1�n� � O�x2� completes the proof. r

Lemma 8. For 0U j A Z let

Aj�x� � 2
m� j

j � 1

� �

X

�x�

r�2

X

r

k�1
�k; r��1

1

rm�j�1kmÿjÿ1
:

Then for mV 2

(i) sm�x� � 1ÿ
X

mÿ2

j�0

Aj�x�;
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and

(ii) lim
x!y

Aj�x� � 2
m� j

j � 1

� �

X

y

r�2

X

r

k�1
�k; r��1

1

rm�j�1kmÿjÿ1
:

Proof. We apply Formula (2) with f �x; y� � �xy�ÿm to get

sm�x� � 1ÿ
X 0 X

mÿ1

j�1

m

j

� �

1

rmkmÿj�rÿ k� j
� 1ÿ s 0m�x�;

say, where
P 0 stands for the double sum extended over 2U rU x, 1U kU r with

�k; r� � 1.

Now, putting for 0U iU nÿ 2,

Ci�x� �
X 0 X

mÿiÿ1

j�1

m�i
j�i

� �

rm�ikmÿjÿi�rÿ k� j
;

we see that

Ci�x� � Ai�x� � Ci�1�x�:

Since s 0m�x� � C0�x� and Cmÿ2�x� � Amÿ2�x�, it follows from this that

s 0m�x� �
X

mÿ2

j�0

Aj�x�;

thereby proving our assertion. r

Lemma 9 (Relatively prime version). Suppose f �tx; ty� � ta f �x; y� for a < ÿ1.

Then

X

y

r�1

X

r

k�1

f �k; r� � z�ÿa�
X

y

r�1

X

r

k�1
�k; r��1

f �k; r�;

the series converging simultaneously.

Lemma 10 (Reciprocity relation). For s > maxf1; 2ÿRzg, let

H�s; z� �
X

y

r�1

rÿs
X

r

k�1

kÿz
:

Then

(i) H�s; z� �H�z; s� � z�s�z�z� � z�s� z�:

Similarly, de®ning

H ��s; z� �
X

y

r�1

rÿs
X

r

k�1
�k; r��1

kÿz �
1

z�s� z�
H�s; z�

H � satis®es �i�� with the right-hand side divided by z�s� z�.
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Lemma 11. Let aV 2 be an integer. Then

(i) 2
X

y

r�1

1

ra

X

r

k�1

1

k
� �a� 2�z�a� 1� ÿ

X

aÿ2

i�1

z�aÿ i�z�i � 1�;

or equivalently

(i)� 2
X

y

r�1

1

ra

X

r

k�1
�k; r��1

1

k
� a� 2ÿ

1

z�a� 1�

X

aÿ2

i�1

z�aÿ i�z�i � 1�:

For Lemmas 9, 10, 11 see Sita Rama Chandra Rao and Siva Rama Sarma [26],

[27 ] and references thereof.

The following Lemmas 12±14 are needed solely for the proof of the estimate for

D�x� in Theorem 3, (ii).

Lemma 12 (Lemma 2, [15 ]). Let fang
y

n�1 be a complex sequence such that an �

O��log n�K�, K > 0 and suppose that

X

nUx

an � O�xd�x��:

Then

X

nUx

an
x

n

� �2

� O�xd�x��

uniformly in x.

Lemma 13. Let

X �
1

80000
�log x�1=3�log log x�ÿ4=3

� �

:

Then for any Q, Q 0 satisfying

QUQ 0
U 2Q; x6=X

UQUQ 0
U x exp�ÿ�log x�1=2�;

we have

X

Q 0

m�Q

m�m�c
x

m

� �

� O�Q�log x�ÿ1�:

This follows immediately from Wal®sz [28], Lemma 4.5.4.

Lemma 14. For any a > 0 and an arithmetical function f �n� we have

X

a<nUx

m�n� f �n�
x

n

� �

� x
X

a<nUx

m�n�
f �n�

n
ÿ

X

mUx=a

M
x

m

� �

f
x

m

� �

�34�

�

� x

a

x

u

� �

M�u� f 0�u� du�
x

a

� �

M�a� f �a�:
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In particular,

X

nUx

m�n� f �n�
x

n

� �

� x
X

nUx

m�n�
f �n�

n
ÿ
X

mUx

M
x

m

� �

f
x

m

� �

�35�

�

� x

1

x

u

� �

M�u� f 0�u� du:

Also,

X

a<nUx

m�n� f �n�B1
x

n

� �

�36�

� x

� x

a

M�u�
f �u�

u2
duÿ

� x

a

B1
x

u

� �

M�u� f 0�u� du

ÿ
X

mUx=a

M
x

m

� �

f
x

m

� �

ÿ B1
x

a

� �

M�a� f �a� �
1

2
M�x� f �x�:

Proof. It su½ces to get an asymptotic formula for the sum G � G�x� �
P

a<nUx m�n� f �n��x=n�. As in Wal®sz [28], we transform G in the following manner by

noting that �x=n� � m if x=�m� 1� < nU x=m:

G�x� �
X

x=�x=a�<nUx

�
X

a<nUx=�x=a�

�
X

mUx=aÿ1

m
X

x=�m�1�<nUx=m

m�n� f �n� �
x

a

� �

X

a<nUx=�x=a�

m�n� f �n�:

Then by partial summation

G�x� �
X

mUx=aÿ1

m M
x

m

� �

f
x

m

� �

ÿM
x

m� 1

� �

f
x

m� 1

� �

ÿ

� x=m

x=�m�1�

M�u� f 0�u� du

 !

�
x

a

� �

M
x

�x=a�

� �

f
x

�x=a�

� �

ÿM�a� f �a� ÿ

� x=�x=a�

a

M�u� f 0�u� du

 !

�
X

mUx=aÿ1

M
x

m

� �

f
x

m

� �

�mÿ �mÿ 1�� ÿ
x

a

� �

M�a� f �a�

ÿ
X

mUx=aÿ1

� x=m

x=�m�1�

x

u

� �

M�u� f 0�u� duÿ

� x=�x=a�

a

x

u

� �

M�u� f 0�u� du;

whence we infer that

G�x� �
X

mUx=a

M
x

m

� �

f
x

m

� �

ÿ
x

a

� �

M�a� f �a��37�

ÿ

� x

a

x

u

� �

M�u� f 0�u� du:
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Now Formula (34) follows from Formula (37) on noting that fx=ng � x=nÿ �x=n�,

and Formula (35) follows from Formula (34) on taking a between 0 and 1.

Formula (36) follows from Formula (34) by expressing the LHS as

X

a<nUx

m�n� f �n�
x

n

� �

ÿ
1

2

X

a<nUx

m�n� f �n�

and substituting partial summation formulas for
P

a<nUx m�n� f �n�=n and
P

a<nUx m�n� �

f �n�. r

3. Proofs of theorems.

Proof of Lehner-Newman's first and second sum formulas. Lehner and

Newman's original proof of their sum formulas (2) and (3) depend on geometrical

consideration. For the sake of completeness, we give here a proof of (2) and (3) based

on the following (algebraic) expression for Qx, thus avoiding any appeal to geometry:

Qx � f�a; b�j1U a; bU x; �a; b� � 1; a� b > xg:�38�

(cf. also the recent paper of Kargaev and Zhigljavsky [17 ])

Thus for the integral variable rV 1

sf �r� �
X

1Ua;bUr
�a;b��1
a�bVr�1

f �a; b�:

Extracting from sf �r� the extremal terms with a or b equal to r, we are left with the sum

over 1U a; bU rÿ 1, which is the same as sf �rÿ 1� with those terms with a� b � r

subtracted. Hence sf �r� ÿ sf �rÿ 1� gives exactly the inner sum on the RHS of (2).

Adding these resulting equalities for r � 2; 3; . . . ; �x� and noting that sf �1� � f �1; 1� and

sf �0� � 0, we get (2).

Formula (3) is a simple transformation of the 2-dimensional sum over the region

(38) into a double sum. r

Proof of Theorem 1. Since, for mV 2, sm�x� � o�1�, it follows from Lemma 8

that

sm�x� �
X

mÿ2

j�0

X

r>x

X

k<r
�k; r��1

2 m� j
j�1

� �

rm�j�1kmÿjÿ1
�39�

(note that we have proved altogether Formula (18)). Now (39) can be rewritten as

sm�x� � 2
2mÿ 2

mÿ 1

� �

S�2mÿ1;1��x� �
X

mÿ3

j�0

2
2m� j

j � 1

� �

S�m�j�1;mÿjÿ1��x�

� �

and so formulas (i)±(iv) can be readily read o¨ from this and Lemma 7. r

Proof of Theorem 2. For 0 < xU 1 de®ne
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E�x; x� �
X

rnUx

1ÿ xF�x�:

Then we see easily that for k A N

� 1

0

jE�x; x�j2k dx �
1

�2k � 1�F�x�

X

k

g�0

2k � 1

2g

 !

s2g;0F�x�2g

� F�x�2kÿ1�s2k;0 �O�xÿ2k��:

On the other hand,

�1

0

jE�x; x�j2k dxV

�1=2x

0

�

�1=2x

0

�ÿxF�x��2k dx

�
1

�2k � 1�22k�1

F�x�2k

x2k�1

� W��x
2kÿ1�;

whence

s2k;0 � W��x
1ÿ2k�: r

Proof of Theorem 3. By Lemma 2,

X

F�x�

n�1

rÿa
n �

X

nUx

M
x

n

� �

naLÿa�n�:

Hence, substituting from Lemma 1, (i) with l � 2, we have

X

F�x�

n�1

rÿa
n �

z�a�Sÿa�x� ÿ
1

aÿ 1
Sÿ1�x�; a0 1

ÿS 0
ÿ1�x� � gSÿ1�x�; a � 1

8

>

<

>

:

�
1

2
S0�x�

ÿ
a

12
S1�x� �

a�a� 1�

2

X

nUx

M
x

n

� �

1

n

�

y

1

B2�nt�t
ÿaÿ2 dt

�
z�a�Sÿa�x� ÿ

1

aÿ 1
F�x�; a0 1

ÿS 0
ÿ1�x� � gF�x�; a � 1

8

>

<

>

:

�O�xd�x��;

on using (16) and estimating the sum
P

nUz M�x=n��1=n� by dint of (9) (®rst we need to

divide it into subsums), where Sÿa�x� is de®ned in (15) and

S 0
ÿ1�x� � ÿ

X

nUx

M
x

n

� �

n log n:
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(i) Sÿa�x� is easy to treat. Indeed, using Lemma 2 and Lemma 1, (i) with l � 1

or l > �Ra� � 1 as the case may be, we deduce

Sÿa�x� �
X

nUx

m�n�La

x

n

� �

�
xa�1

a� 1

X

nUx

m�n�

na�1
ÿ xa

X

nUx

m�n�

na
B1

x

n

� �

�

O�xRaÿ1�; Ra > 2

O�x log x�; Ra � 2

O�x�; 0 < Ra < 2;

8

>

<

>

:

whence, transforming the ®nite sums into series, (i) follows.

(ii) Treating S 0
ÿ1�x� similarly, we rewrite

ÿS 0
ÿ1�x� �

X

nUx

m�n�M1
x

n

� �

and apply Lemma 1, (ii) with l � 3 with error estimate to get

ÿS 0
ÿ1�x� �

x2

2z�2�
log xÿ

z 0

z
�2� ÿ

1

2

� �

ÿ xD�x� �O�x�;

after transforming ®nite sums into in®nite series.

This only gives the trivial error term O�x� and not the ®nal form of assertion (ii),

although it covers MikolaÂs' Theorem 4 by using the trivial estimate D�x� � O�log2 x�.

To prove the ®nal form of the theorem we use Lemma 2 with Vx�n� � n log n to get

ÿS 0
ÿ1�x� �

X

nUx

X

djn

m�d �
n

d
log

n

d
�40�

�
X

nUx

nt�n�

� x
X

nUx

t�n� ÿ
X

nUx

�xÿ n�t�n�

� xT�x� ÿ

� x

1

T�u� du:

Form now on we use the decomposition (23) and calculate the integrals
�

S1 du and
�

S2 du separately.

First we treat

�

S1 du �
X

nUx

f�n� log n

n
�xÿ n�:

This can be written as
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�

S1 du � xS1 � S1 ÿF�x� log x;�41�

where

S1 :�
X

nUx

f�n� log
x

n
�

�

x

1

F�u�

u
du:

In a similar way as we prove Formula (24), we can prove that

F�x� �
x2

2

X

nUx

m�n�

n2
ÿ x

X

nUx

m�n�

n
B1

x

n

� �

�
1

2

X

nUx

m�n� B2
x

n

� �

ÿ
1

6

� �

;

whence follows in the ®rst place that

F�x� �
1

2z�2�
x
2 ÿ xU�x� �O�xd�x��;�42�

or Formula (11) on using the estimate (to be proved later)

X

nUx

m�n�B2
x

n

� �

� O�xd�x��;�43�

and in the second place that

S1 �
1

2

X

nUx

m�n�

n2

x2

2
ÿ
n2

2

� �

ÿ
X

nUx

m�n�

�

x

n

B1
u

n

� �

du

n
�44�

�
1

2

X

nUx

m�n�

�

x

n

B2
u

n

� �

ÿ
1

6

� �

du

u
:

The ®rst term on the RHS of (44) can be rewritten as

x2

4z�2�
ÿ
1

4
M�x� �O�xd�x��;

while the second becomes

ÿ
1

2

X

nUx

m�n�B2
x

n

� �

�
1

12
M�x�;

which is O�xd�x�� on account of (43).

Changing the order of summation and integration, the third term on the RHS of

(44) becomes

1

2

�

x

1

M�u� B2
x

u

� �

ÿ
1

6

� �

du

u
;

to which we apply the estimate

�

x

1

jM�u�j

u
du � O�xd�x���45�

to obtain again the same order of error term O�xd�x��.
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Estimate (45) follows immediately on dividing the range of integration into �1; ���

x
p �

and � ���

x
p

; x� and applying (9) to the latter.

Thus, (44) simpli®es to

S1 �
x2

4z�2� �O�xd�x��:�46�

Substituting (46) into (41), we deduce that

� x

1

S1 du � xS1 ÿ
x2

2z�2� �log xÿ 1� � x log xU�x� �O�xd�x��:�47�

It remains to prove (43). Writing

X

nUx

m�n�B2
x

n

� �

�
X

nUx

m�n� x

n

� �2

ÿ
X

nUx

m�n� x

n

� �

� 1

6
M�x�;

we see that the ®rst and the third term can be estimated by Lemma 12 and (9),

respectively. By Lemma 14, (35) with f �n� � 1 and
P

mUx M�x=m� � S0�x� � 1 (by

(16)), we see that the second sum is

X

nUx

m�n� x

n

� �

� x
X

nUx

m�n�
n

ÿ 1 � O�xd�x��

by (30). This proves (43).

Similarly, we integrate both sides of (26) to get

� x

1

S2 du � x2

2

X

nUx

m�n�
n2

log nÿ x

2

X

nUx

m�n�
n

log nÿ 1

2
S2 �

1

12
S3;�48�

where

S2 �
X

nUx

m�n� log nB2
x

n

� �

; S3 �
X

nUx

m�n� log n:

First, by partial summation and (9) we have

S3 � O�xd�x��:�49�

Secondly, we apply the similar argument that we applied to prove (43). Namely,

we apply Lemma 12 to the ®rst and (49) to the third term, respectively, of the expression

S2 �
X

nUx

m�n� log n x

n

� �2

ÿ
X

nUx

m�n� log n x

n

� �

� 1

6

X

nUx

m�n� log n

to get

S2 � ÿS4 �O�xd�x��;�50�

where S4 denotes the 2nd term.
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Since

ÿ
X

mUx

M
x

m

� �

log
x

m
� ÿlog x�

X

mUx

M
x

m

� �

logm�51�

� ÿlog x�
X

nUx

L�n�;

we deduce from Lemma 14, (35) with f �n� � log n that

S4 � x
X

nUx

m�n�

n
log nÿ log x�

X

nUx

L�n� �

� x

1

x

u

� �

M�u�

u
du:�52�

We express the last integral as

x

� x

1

M�u�

u2
duÿ

� x

1

x

u

� �

M�u�

u
du:�53�

Since

� x

1

M�u�

u2
du � x

X

nUx

m�n�

n
ÿM�x� � O�xd�x��

by (30), and the second integral in (53) is O�xd�x�� by (45), it follows that the integral in

(52) is O�xd�x��. Hence, putting all together, we conclude from (27) and a form of the

prime number theorem for the von Mangoldt function L�n� that

S4 � ÿx� x�O�xd�x�� � O�xd�x��;

so that by (50), S2 � O�xd�x��.

Substituting this and (49) into (48), and using (27) and (28), we infer that

� x

1

S2 du �
z 0�2�

2z2�2�
x2 �

x

2
�O�xd�x��:�54�

Hence, substituting (25), (29), (47) and (54) into

ÿS 0
ÿ1�x� � xS1 ÿ xS2 ÿ

� x

1

S1 du�

� x

1

S2 du;

we conclude that

ÿS 0
ÿ1�x� �

x2

2z�2�
log xÿ

z 0

z
�2� ÿ

1

2

� �

ÿ xD�x� �O�xd�x��:�55�

Finally, we substitute (42) and (55) into

X

F�x�

n�1

rÿ1
n � ÿS 0

1�x� � gF�x� �O�xd�x��;

to complete the proof.

S. Kanemitsu, T. Kuzumaki and M. Yoshimoto942



It remains to establish the estimate of D�x�. We shall do this, following Wal®sz's

argument [28].

To make the dependence of our proof on Wal®sz's result explicit, we use the

notation c�u� for the present de®ned by

c�u� �
B1�u� if u A RnZ

0 if u A Z:

�

Then D�x� di¨ers from D1�x� �
P

nUx c�x=n��m�n�=n� log n only when x is an

integer, in which case, however, the di¨erence is in absolute value not greater than

X

pjx
p prime

log p

pÿ 1
U

X

pjx

log pU log x:

This di¨erence being negligible, we may as well consider D1�x� for D�x�. For simplicity

we write D�x� for D1�x�:

D�x� �
X

nUx

c
x

n

� �

m�n�

n
log n:�56�

We divide the sum over 1U nU x into three parts 1U nUQ0, Q0 < nUR,

R < nU x, where

Q0 � Q0�x� � x6=X ; R � R�x� � x exp�ÿ
����������

log x
p

�;

X being de®ned in Lemma 13.

Then the ®rst sum is in absolute value

O
X

nUQ0

log n

n

 !

� O��logQ0�
2�

� O��log x�4=3�log log x�8=3�;

which gives the error term stated in the theorem.

We are thus left with two sums D2�x� and D3�x� to estimate, where

D2�x� �
X

Q0<nUR

c
x

n

� �

m�n�

n
log n

D3�x� �
X

R<nUx

c
x

n

� �

m�n�

n
log n:

We apply to D2�x� the standard technique of expressing the sum as the union of

subsums of length 2Q0.

Let k be the largest integer satisfying

2kQ0 UR;

i.e.

k � �log2�Q
ÿ1
0 R�� � O�log x�:
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Then we may express D2�x� as k subsums of the form
P

2kQ0Um<2k�1Q0
, k � 0; . . . ; k,

where 2k�1Q0 is to be replaced by R.

Each of three subsums being of the form

X

QUm<Q 0

m�m�c
x

m

� �

logm

m
; QUQ 0

U 2Q;

we apply the estimate

X

QUm<Q 0

m�m�c
x

m

� �

logm

m
� O

logQ

log x

� �

;

which follows from Lemma 13 by partial summation.

Then

D2�x� � O �log x�ÿ1
X

kÿ1

k�0

�log 2kQ0� � �log x�ÿ1log 2kQ0

 !

� O��log x�ÿ1
k logQ0 � �log x�ÿ1

k2�

� O�log x�:

Now we use Lemma 14 to supersede the trivial bound O��log x�3=2� for D3�x�.

Formula (36) of Lemma 14 with a � R � x exp�ÿ
����������

log x
p

� and f �t� � �log t�=t states

that

X

R<nUx

m�n�B1
x

n

� �

log n

n

� x

� x

R

M�u�
log u

u3
duÿ

� x

R

B1
x

u

� �

M�u�
1ÿ log u

u2
du

ÿ
1

x

X

mUx=R

M
x

m

� �

m log
x

m
ÿ B1

x

R

� �

M�R�
logR

R

�
1

2
M�x�

log x

x
:

Applying Estimate (9) to each term, we see that

D3�x� � O
x

R
d�R� logR

� �

�O�d�R� log2 x�:

By x=R � exp�
����������

log x
p

�, logR � O�log x�, we conclude that the ®rst term is

O�exp��log x�1=2 ÿ c�log x�0:6�log log x�ÿ0:2�� � O�d�x��;

and so is the second term, completing the proof. r

Proof of Theorem 5. We take a closer look at the error term R2 � R2�x� of the

Euler-Maclaurin formula
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X

n

k�0

f
k

n

� �

� n

� 1

0

f �t� dt�
1

2
� f �1� � f �0�� �

B2

2

1

n
� f 0�1� ÿ f 0�0�� � R2;

where

R2 � R2�x� � ÿ
1

4!n3

�1

0

f4�nt� f
�4��t� dt;

with

f4�t� � B4�t� ÿ B4:

We can express R2 corresponding to three cases stated in our Theorem 5:

R2 � c
B4

4!

y

n3
� f �3��1� ÿ f �3��0��; 0U byU 1:�57�

Then, slightly modifying the argument of proof of Theorem 4 [29] we have, with

b�n� � �m � b 0��n�

F �s� � z�s� 1�
f 0�1� ÿ f 0�0�

12
ÿ
X

y

n�1

b�n�

ns�1

 !

�
f 0�1� ÿ f 0�0�

12
z�s� 1� ÿ

X

y

n�1

b 0�n�

ns�1
;

where

b 0�n� �
1

4!n2

�1

0

f4�nt� f
�4��t� dt:

Using (57) for the estimate of b 0�n�j j, we obtain

jF�s�jV
j f 0�1� ÿ f 0�0�j

12
jz�s� 1�j ÿ

c

720
j f �3��1� ÿ f �3��0�jz�s� 3�

>
1

12

z�3�

z�3=2�
j f 0�1� ÿ f 0�0�j ÿ

c

720
j f �3��1� ÿ f �3��0�jz�7=2�

V 0:

Solving the last inequality, we conclude the assertion. r

Deduction of Theorem 4 from Theorem 5. Theorem 4 follows from Theorem 5

with f �t� � fl�t� � ÿzl�t� 1�. The constant l0 is the maximum of l for which the

imposed inequality holds.

Proof of Theorem 6. By Lehner-Newman's ®rst sum formula with f �x; y� �

xÿa yÿ1, we have

X

F�x�ÿ1

n�1

can cn�1 � sf �x�

� 1�
X

2UrUx

X

r

k�1
�k; r��1

1

k ar
�

1

ra�rÿ k�
ÿ

1

k a�rÿ k�

� �

;

Farey fractions 945



whence, rewriting the summand as ÿ
Paÿ1

i�1 rÿiÿ1k iÿa, we deduce that

X

F�x�ÿ1

n�0

ca
n
cn�1 � aÿ

X

aÿ1

i�1

X

rUx

1

r i�1
L�
iÿa�r�;

where

L�
iÿa�r� �

X

r

k�1
�k; r��1

k iÿa

is the sum in Corollary to Lemma 1. Using (38), we see that

sf �x�U
X

1Uk; rUx
k�r>x

kÿ2rÿ1

� O
X

rUx

1

r��x� � 1ÿ r�

 !

� O
log x

x

� �

;

X

F�x�ÿ1

n�0

ca
n
cn�1 � O

log x

x

� �

;

and hence that

X

F�x�ÿ1

n�0

ca
n
cn�1 �

X

aÿ1

i�1

X

r>x

1

r i�1
L�
iÿa�r�:

Substituting from Lemma 7 completes the proof. r

The proof of Theorem 7 rests on Lehner-Newman's second sum formula (only the

®rst formula in (ii) rests on the ®rst sum formula) and similar reasonings in this paper

with frequent use of Corollary to Lemma 1.

We shall not, however, give a proof of Theorem 7 as it requires another series of

lemmas. We shall publish it as well as detailed proofs of (generalizations of ) some

lemmas in §2 elsewhere.

References

[ 1 ] T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions,

to appear.

[ 2 ] T. M. Apostol and T. H. Vu, Dirichlet series related to the Riemann zeta function, J. Number

Theory, 19 (1984), 85±102.

[ 3 ] S. Chowla, Contributions to the analytic theory of numbers, Math. Z., 35 (1932), 279±299.

[ 4 ] P. CvitanovicÂ, Circle maps: irrationally winding, From Number Theory to Physics, ed. by

Waldschmidt et al., Springer Verlag 1992, 631±658.

[ 5 ] J. Franel, Les suites de Farey et les probleÁms des nombres premiers, Nachr. Ges. Wiss. GoÈttingen,

Math.-Phys. Kl. (1924), 198±201.

S. Kanemitsu, T. Kuzumaki and M. Yoshimoto946



[ 6 ] R. R. Hall, A note on Farey series, J. London Math. Soc. (2), 2 (1970), 139±148.

[ 7 ] R. R. Hall, On consecutive Farey arcs, Acta Arith., 66 (1994), 1±9.

[ 8 ] R. R. Hall, Franel integrals, Sieve Methods, Exponential Sums, and their Applications in Number

Theory, ed. by G. R. H. Greaves, G. Harman and M. N. Huxley, Cambridge UP. 1997, 143±159.

[ 9 ] R. R. Hall and G. Tenenbaum, On consecutive Farey series, Acta Arith., 44 (1984), 397±405.

[10] R. J. Hans and V. C. Dumir, An interesting identity, Res. Bull. Panjab Univ. (N.S), 15 (1964/65),

353±356.

[11] M. Hata, Farey fractions and sums over coprime pairs, Acta Arith., 70 (1995), 149±159.

[12] M. Ishibashi and S. Kanemitsu, Fractional part sums and divisor functions I, Number Theory and

Combinatorics, ed. by J. Akiyama et al., World Sci. 1985, 119±183.

[13] M. Jarden, Roots of unity over large algebraic ®elds, Math. Ann., 213 (1975), 109±127.

[14] S. Kanemitsu, On some sums involving Farey fractions, Math. J. Okayama Univ., 20 (1978), 101±

113.

[15] S. Kanemitsu, R. Sita Rama Chandra Rao and A. Siva Rama Sarma, Some sums involving Farey

fractions I, J. Math. Soc. Japan, 34 (1982), 125±142.

[16] S. Kanemitsu and M. Yoshimoto, Farey series and the Riemann hypothesis, Acta Arith., 75 (1996),

351±374.

[17] P. Kargaev and A. Zhigljavsky, Asymptotic distribution of the distance function to the Farey

points, J. Number Theory, 65 (1997), 130±149.

[18] E. Landau, Vorlesungen uÈber Zahlentheorie, 2nd ed. Chelsea 1969.

[19] J. Lehner and M. Newman, Sums involving Farey fractions, Acta Arith., 15 (1968/69), 181±187.

[20] W. Maier, Fareysche Folgen und Sektorengitter, OÈ sterreich. Akad. Wiss. Math. -Natur. Kl. Sit-

zungsber. II, 191 (1982), 141±156.

[21] Y. Matsuoka, On the values of a certain Dirichlet series at rational integers, Tokyo J. Math., 5

(1982), 389±403.

[22] M. MikolaÂs, Farey series and their connection with the prime number problem I, II, Acta Univ.

Szeged. Sect. Sci. Math., 13 (1949), 93±117; 14 (1951/52), 5±21.

[23] Pan Cheng-Tung, On s�n� and f�n�, Bull. Acad. Polon. Sci. Cl. III, 4 (1956), 637±638; Acta Sci.

Natur. Univ. Pekinensis, No. 3 (1956), 302±322 (Chinese).

[24] Y. -F. S. PeÂtermann, Private communication to the ®rst author, May 20, 1996.

[25] S. S. Pillai and S. D. Chowla, On the error terms in some asymptotic formulae in the theory of

numbers (I), J. London Math. Soc., 5 (1930), 95±101.

[26] R. Sita Rama Chandra Rao and A. Siva Rama Sarma, Some identities involving the Riemann zeta

function, Indian J. Pure Appl. Math., 10 (1979), 602±607.

[27] R. Sita Rama Chandra Rao and A. Siva Rama Sarma, Two identities due to Ramanujan, ibid., 11

(1980), 1139±1140.

[28] A. Wal®sz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der

Wissenschaften, Berlin, 1963.

[29] M. Yoshimoto, Farey series and the Riemann hypothesis II, Acta Math. Hung., 78 (1998), 287±304.

[30] M. Yoshimoto, Farey series and the Riemann hypothesis VI, (in preparation).

[31] D. Zagier, Talk at Prof. Yoshida's seminar at Kyushu Univ., Apr. 1992.

[32] D. Zagier, Values of zeta functions and applications, Progress in Math., 120 (1994), 497±512.

Shigeru Kanemitsu

Department of Electrical Engineering

University of Kinki, Iizuka

Fukuoka 820-8555, Japan

Takako Kuzumaki

Department of Electrical Engineering

Faculty of Engineering

Gifu University

Gifu City 501-1193, Japan

Masami Yoshimoto

Graduate School of Mathematics

Kyushu University

Fukuoka 812-8581, Japan

Farey fractions 947


	1. Introduction and statement ...
	THEOREM 1. ...
	THEOREM (Zagier ...
	THEOREM 2. ...
	THEOREM 3 ...
	THEOREM 4. ...
	THEOREM 5. ...
	THEOREM 6 ...
	THEOREM 7 ...

	2. Preliminaries.
	3. Proofs of theorems.
	References

