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Abstract. Some regularity properties of the Azukawa pseudometric for a wide class
of domains (including bounded hyperconvex domains) are proven. Among others we
prove that in this class of domains the Azukawa metric is continuous and the upper limit
in its definition may be replaced with the limit. Some properties of the pluricomplex
Green function with one (as well as with many) pole are also given.

0. Introduction.

The pluricomplex Green function has been studied by many authors and many
regularity properties of this function are known. In many cases properties of the Green
function can be transported without large effort to its infinitesimal version, i.e. to the
Azukawa pseudometric. Nevertheless, it is not always the case.

In this paper we want to show some new properties of the Azukawa pseudometric,
which come from analoguous ones for the Green function. The good class of domains
for which the Green function has ‘nice’ properties are bounded hyperconvex domains.
Among others it is known that the Green function of a domain from this class is
continuous. Below we consider a class of domains containing bounded hyperconvex
domains and using some localization (with the help of sublevel sets) we show that from
the point of view of the Azukawa pseudometric this class of domains is the same as
bounded hyperconvex domains. We prove in this paper the continuity of the Azukawa
pseudometric for this class of domains.

It is interesting to know whether we can get rid of ‘limsup’ in the definition of
the Azukawa pseudometric and to replace it with ‘lim’. We prove that the answer
is affirmative in the reasonable class of domains. Nevertheless, we find an example
showing that this is not true in general. On the other hand in a class of domains
(containing bounded hyperconvex domains) we can take the limit over the larger family
of points tending along the given vector to the pole. In particular, we need not have
in the definition of the Azukawa pseudometric the pole fixed. One of conclusions of
our results is that the Green function is ‘almost’ symmetric for points lying not far from
each other (still in the considered class of domains).

We also study the behaviour of the Green function for balanced domains and relate
it to the Green function of their holomorphic envelopes.
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Finally, we consider the Green function with many poles and we show some simple
properties of this function making use of its alternate definition (to that with the help of
plurisubharmonic functions—see [Lel]), namely, the one given in | Lar-Sig|.

1. Notations, definitions and formulation of most important results.

Following [KIlil], [Kli2] for a given domain D < C" and points w,z € D we define
the pluricomplex Green function with pole at w

gD(W7Z)
:=sup{u(z) :ue PSH(D), u < 0 and u(-) —log|| - —w|| is bounded above near w}

(we allow plurisubharmonic functions to be identically equal to —o0).
The infinitesimal version of the Green function is the Azukawa pseudometric defined
as follows (see [Azul], [Azu2]):

Ap(z; X) :=limsup,_o(gp(z,z + AX) —log||), zeD, XeC"

Let us denote the unit disk in C by E.

Let us recall that a domain D is hyperconvex if there is a negative plurisubharmonic
continuous function u defined on D such that for any ¢ > 0 the sublevel set {u < —¢} is
relatively compact in D (note that we do not assume that the hyperconvex domain must
be bounded).

A plurisubharmonic function u : D — R is maximal if for any open set U c< D
and for any upper semicontinuous function v on U, which is plurisubharmonic on U, if
v<u on U, then v <u on U.

Let us recall some well-known properties of the pluricomplex Green function
and the Azukawa pseudometric, which will be helpful in our considerations (see [Azul],

[Azu2], [Dem], [Jar-Pfll], [Jar-Pfi2], [Klil] and [KIli2]), which are also a good starting

point for our considerations.

Tueorem 1.1. (i) If F:Dyw— D, (Dy and D, are domains) is a holomorphic

mapping then
9p,(F(w), F(z)) < gp, (w,2),
Ap,(F(w); F'(w)X) < Ap,(w; X), w,zeD;, XeC".

(i) If the mapping above is a biholomorphism then the inequalities above become
equalities.

(iil) Ap(w;AX) = Ap(w; X) +log|| for any we D, X e C", L€ C.

(iv) For any we D gp(w,-) € PSH(D,[—00,0)). Moreover, gp(w,z) — log||w — z||
is bounded above for z close to w.

(v) Ap(w;-) e PSH(C"), which in connection with (iii) gives us that

J(D,w):={XeC": Ap(w; X) < 0}

is a balanced pseudoconvex domain.
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(vi) For any sequence of domains {D;}”, such that D; = Djy and Ujoil Dj =D the
following convergences hold-

gp, = gp on D x D,

AD,- —>AD on D x C".

(vil) The functions gp and Ap are upper semicontinuous. If D is a bounded
hyperconvex domain then gp is continuous and, even more, gp(w,z) — 0 as z — dD.

(viii) If Dy :={ze C":h(z) <1}, where h is a non-negative homogeneous upper
semicontinuous function, then the following formulas hold.

gp,(0,z) <logh(z),
Ap,(0;X) <logh(X), zeD,, XeC".
If h is plurisubharmonic (or equivalently D, is pseudoconvex) then in the inequalities above

we have the equalities.
(ix) If D is a bounded domain then gp(w,-) is a maximal function on D\{w}.

For fixed we D we often consider the following number:
e(w) :=liminf,_;p gp(w, 2).

It is easy to see that for any bounded D we have that ¢(w) > —oo for any we D. As
we shall see latter if &(w) > —oo then gp(w,z) > —oo for any ze€ D, z # w.
Our aim is to prove the continuity of the Azukawa pseudometric.

THEOREM 4.1. Let D be a domain such that &(w) > —oo for any we D and gp is a
continuous function. Then Ap is a continuous function (as a function defined on D x C").

Note that bounded hyperconvex domains fulfill the assumptions of (as
well as the assumptions of all theorems from Section 4)—see [heorem [.1|(vii).

It turns out that in many cases we can replace ‘limsup’ in the definition of the
Azukawa pseudometric with ‘lim’ as the following result shows:

THEOREM 4.2. Let we D, where D is a domain in C" such that gp(w,-) is con-
tinuous and &(w) > —oo. Then

AD(W; X) = lim,l_@(gD(w, w + }.X) — IOgMDa XeC".

Let us underline already here that we cannot generalize to all
domains—the counterexample is given in Example 4.6, our example is a bounded
pseudoconvex domain in C>. However, for many domains some sharper version of

remains true, namely:

COROLLARY 4.4. Let D be a domain such that gp is continuous and &(w) > —oo for
any we D. Then for any we D, X € C", || X|| =1 the following formula holds:

AD(W, X) = lil'l'l‘,vl’wuﬁw7 W £ w”,(w’—w”)/||w’—w”H—»X(gD(W/7 WN) — IOgHW/ — WNH).
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As a conclusion of the above results we get some result on symmetry of the Green
function. It turns out that the Green function is ‘almost’ symmetric when both variables
are close to each other. More precisely, we have

COROLLARY 4.5. Let D be as in Theorem 4.1 and let we D be fixed. Then

limw’,w”—nv,w’;éw” (gD(W/a W”) - gD<W/I7 W/)) = 0

In Section 3 we prove some result on the Green function for balanced domains,
which may be treated as the generalization of [Theorem 1.1/(viii), which shows that in this
case a close relation between the Green function of the domain and that of the envelope
of holomorphy exists (at least for points not far from the origin).

Let D = D), be a balanced domain with the Minkowski function equal to some
upper semicontinuous function 4. Let & be the largest non-negative homogenuous
plurisubharmonic function not larger than /4 (note that such a function exists). Then we
have

THeEOREM 3.1. If D;, is bounded, then
gp,(0,2) = logh(z) = gp;(0,2) for ze Dy close enough to 0.

In Section 2 we introduce sublevel sets. We introduce this notion for the Green
function with many poles. We give some properties of the sublevel sets, which play
later the key role in proofs of the results from Sections 3 and 4.

In Section 5 some properties following from the definition from |Lar-Sig| of the
pluricomplex Green function with many poles are given.

2. Sublevel sets—definition and basic properties.

Up to now we have dealt with the Green function with one pole. Below we give
some properties of the sublevel sets of the Green function. Since the properties of
sublevel sets defined below are obtained for the Green function with one pole exactly in
the same way as for the Green function with many poles we recall the notion of the
Green function with several poles.

Let D be a domain in C". Let J#PcD be a finite set and let v:
P (0,00). We define the pluricomplex Green function with poles in P with weights v
as follows (see [Lel]):

gp(P;v;z) := sup{u(z)},

where the supremum is taken over all ue PSH(D), u<0 and such that u(-)—
v(p)log|| - —p|| is bounded from above near p for all p e P.

Note that when P =1 and v =1 then the above defined function is the pluri-
complex Green function defined earlier.

It is well-known that gp(P;v;-) is plurisubharmonic. Let us recall that if the
domain D is bounded, then the Green function gp(P;v;-) is maximal on D\P; if D is a
bounded hyperconvex domain, then gp(P,v,-) is a continuous function, which extends

continuously to 0 on the boundary—compare [Theorem 1.1(vii) (see and [Lel]).
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It turns out that the equivalent definition with the help of analytic disks is pos-
sible. Namely, the following equality has been obtained in |Lar-Sig| (in case of the
Green function with one pole this equality is to be found in and [Pol]):

(2.1)  gp(Psviz)
= inf{ge(p~ (P)NE,7,0),9 € O(E,D),p(0) = z, EN g~ (P) # &}
= inf{gE(¢7l(P) NE, 17,},),(p € (O(EvD)v(p(i) = ZvEmgoil(P) 7 @}7

where ¥(1) := ord; (¢ — ¢(A)) - v(p(1)), A€o~ (P).
For oo > &> 0 let us consider the following sublevel sets

D(P;v;e):={ze€ D :gp(P;v;z) < —¢}.

Note that D(P;v;e) is open (the Green function is plurisubharmonic, and therefore
upper-semicontinuous). In case of one pole with weight 1 we write D,(p). If it does
not lead to misunderstanding, then we omit the set of poles and weight and we simply
denote the sublevel set by D,.

We start with the problem of the connectivity of sublevel sets.

Our aim is the following:

LemMA 2.1. Let D be a domain. Let P and v be given as above. Then:

(i) For any ¢ > 0 any connected component of the set D, has non-empty intersection
with P; in particular, the number of connected components of D, is at most §P.

(i) There is & with o0 >¢&y > 0 such that for any ¢ with 0 < ¢ < & the set D, is
connected and for any & with ¢ < ¢ the set D, is disconnected.

ProOOF. Let us put u(z) := gp(P;v;z), ze D. Suppose that (i) does not hold. Let
U be a connected component of D,, UNP = F. The upper-semicontinuity of the Green
function implies that U is open. We know that u < —¢ on U and u(z) > —¢ for z €
oUND. Consequently, the function

(2) = —e, if ze U,
P = u(z), if ze D\U

is plurisubharmonic. Moreover, from the definition of the Green function and the fact
that UN P = & we have u > v, which implies that u(z) > —¢ for z € U—contradiction.

We are remained with (ii). First we prove the following property:

(2.2) if for some ¢ >0, D, is connected then D, 1s connected
for any ¢ with 0 <&’ <e.

To prove (2.2) note that there is a compact connected set K with P < K < D,. But
D, < D,/, so P is contained in one connected component of D,, which in view of (i)
finishes the proof of (2.2).

To finish the proof of (ii) it is sufficient to show the existence of ¢ > 0 such that D,
is connected. Let us take a connected compact set K < D such that P K. We
know that gp(P;v; -)‘K is bounded by some —¢&. Therefore, P = K < D, for any ¢ with
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0 < ¢ < &), which shows that all poles lic in one connected component of D,. This, in
connection with (i) finishes the proof. O

RemARK 2.2. Note that if D is pseudoconvex then the sets D, are pseudoconvex.
In general case (D is not pseudoconvex) it need not always be the case. Nevertheless,
if D is a bounded domain then for large ¢ the sublevel sets D, are pseudoconvex. It
follows from the fact that for large ¢ the set D, satisfies that D, Upe pB(p,r)= D
for some r > 0 such that the balls B(p,r) are pairwise disjoint for p e P. Even more
generally, for any domain D, if D, = U = D, where U is pseudoconvex, then D, is
pseudoconvex.

Now we come back to the situation of the Green function with one pole. First,
note that in view of [Lemma 2.1 all sublevel sets in this case are connected.

Below for unbounded domains D we assume that oo € dD.

The lemma below will play a fundamental role in the later considerations:

LemmA 2.3, Let D be a domain in C", p e D and D, = D,(p). Then the following
formulas hold:

(23) go.(p,z) = gn(p,z) te,
(2.4) Ap,(p; X) = Ap(p; X) + e
Moreover, for any &,e >0, we have

Dy sy = (Dyy),,-

Proor. Note that gp(p,z) +¢& < 0 for ze D,. Consequently, we have ‘>’ in [2.3).
Therefore, and additionally because for ze D, D we have

gD(p7Z) = —&= hmsupw—»z, weDﬁ<gDs (p7 W) - 8)7

the function

C()(Z) ::{ng(p7Z)_87 ZGDSJ

gD(p7Z)7 ZGD\DS

is plurisubharmonic. Therefore, w(z) < gp(p,z), z € D, which completes the proof of
2.3

).
Property as well as the last part of the lemma follow from and the
definition of the Azukawa pseudometric. ]

For we D let us recall the definition
e(w) := liminf,_;p gp(w, z).

We shall be interested in case when ¢(w) > —co. Note that then gp(w,z) > —co for any
zeD, z#w. In fact, take any ¢ > —¢(w). Then the set D,(w) is bounded; otherwise,
in view of there would be a sequence z' — oo, z' € D,(w) = D such that

limsupvﬂoo gD(W72v> = limsup\JHoo ng(w)(Wa Zv) —&é=s —¢< 8<W>

—contradiction with the the definition of ¢(w). Take any ze D, z #w such that
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gp(w,z) = —oo. Take any &> —e(w). Then ze D,(w), the boundedness of D,(w)
implies that gp, . (w,z) > —oo, which in view of implies that gp(w,z) >
—oo—contradiction.

LemmA 2.4. Fix we D. Assume that gp(w,-) is continuous on D and &(w) > —o0.
Then for any ¢ > —&(w) the domain D.(w) is hyperconvex. Moreover, if ¢ > &> —e(w)
then D, (w) c< Dg(w). Consequently, D, (w) is a bounded hyperconvex domain.

Proor. Note that if zp € 0D, (w)NdD (zp may be equal to oo) then because of

0 > Nmsup.  p, (), z—z, 9D,(0) (W, 2) = iminf ¢ p, () 2z G, () (W; 2) =
liminf . ¢ p, (), -z, gp(W, 2) +& = &(w) +& > 0.
If zy € 0D, (w) N D then because of continuity of gp(w,-) and
lim_ ¢ p, (), =z 9,00 (W, 2) = 0.

Note that the definition of &(w) implies that D.(w) is bounded for any ¢ > —¢&(w), which
in view of gives us the second statement. ]

3. The Green function for balanced domains.

Let 4: C" — [0,00) be a homogeneous function, i.e.

h(2z) =|Alh(z), AeC, zeC",

which is upper-semicontinuous.
Then we may define a domain

D:=Dj:={zeC":h(z) < 1}.

Let / be the largest plurisubharmonic homogeneous function such that 7 < h. It is easy
to verify that the function % is well-defined. Note that then D; is the holomorphic

envelope of Dy. Certainly, D, = D;,.
It is trivial that (see Theorem I.1))

(3.1) gp,(0,2) > logh(z), ze Dy,
Note that for any ze D;, A€ E,
(3.2) gp,(0,4z) < log|A| + ¢gp, (0, z).

In fact, first note that gp,(0,e”z) = gp,(0,z) for any 0 € R. For fixed z € D;, consider
the function

u:E>s2iw gp,(0,4z) — gp,(0,2).
Then u is subharmonic on E, upper-semicontinuous on E, u = 0 on 0E, u(1) — log|/| is

bounded above near 0. The Riemann removability theorem and maximum principle
imply that
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u(l) <logli|, L€k,

which finishes the proof of [3.2).
Below we shall consider sublevel sets with the pole at 0.

Note that
logh(X) = Ap,(0; X) > Ap,(0; X) =logh(X), XeC"
Therefore, in view of [Theorem 1.1(v) (and the definition of /) we have that (see [Azul)):
(3.3) Ap,(0;X) = logh(X)(= 4p,(0; X)), XeC"

Below we shall see that in the case of bounded balanced domains something more is
true:

THEOREM 3.1. Assume that D, is bounded. Then
(3.4) gp,(0,z) = logﬁ(z) =gp;(0,2), for ze D, close enough to 0.

ProOF. In view of Remark 2.2 we know that there is ¢ > 0 such that D, := (Dj),
is pseudoconvex. We claim that D, is balanced. To see this take ze D, and A€ E.
Then in view of we have gp,(0,4z) <log|4| + ¢p,(0,z) < —e. Consequently, D, =
D, for some plurisubharmonic, homogeneous #;.

From [Theorem [.|(viii) and we get
(3.5) 9p,(0,2) = ¢gp,(0,z) —e=loghi(z) —¢, ze€D,.

Therefore, to finish the proof it is sufficient to show that /i = exp(—&)h; on C" (or
equivalently on some neighbourhood of 0).

In view of [3.1) and [3.5] we get that & < exp(—¢)h; on D,, which certainly implies
that the inequality holds on C". We are remained with the proof of the inequality
h > exp(—¢)h;, which will be proved if we show that exp(—e)h, < h.

To prove the last inequality it is sufficient to show that exp(—é)h;(z) < 1 for any
ze Dy. Let us take ze D;,. Then there is u€ E, such that uze D,. So in view of

and we have

10g|/i\ + b, (0, Z) +é&=4p, (O,IMZ) +eé :f

9p,(0, uz) = loghy (uz) = log|u| + log /i (z),
from which we easily finish the proof. ]

As a conclusion of we get a relation between sublevel sets of
the balanced domain and that of its holomorphic envelope. By D we denote the
holomorphic envelope of D.

COROLLARY 3.2. We have the following:

——

(Dn), = (D),
for any ¢ >0. In particular, if (D;), < D) then

gp,(0,2) = logfz(z), z € (D),
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ProOF. We know that
(Dn), = {h < 1}
for some homogeneous, plurisubharmonic h. 1t is sufficient to prove that
exp(—e)h = h.

First let us consider only bounded D;,. Let us take 0 < oo sufficiently large. Then in

view of [Lemma 2.3, Theorem I.1(viii), (3.1} and Theorem 3.1 we have

——

<D11)3+5 = ((Dh)8)5 = ((Dh)a>5 - ((Dil)g)é = (D/:I)S-HS = (Dh>£+5‘

From which we conclude that /(z) exp(d) = /(z) exp(e +6) for small z. This completes
the proof in the bounded case.

The unbounded case follows from the standard approximation process. Put
h*(z) := max{h(z), ||z[| /v}. i

Note that {h"}~, tends decreasingly to &. The sequence {h"},, is also decreasing.
Let us denote its limit by h. Note that & is homogenuous and plurisubharmonic on
C". From the definition we have that

h<h"<h'.

Therefore, 7 <h but h is plurisubharmonic and h<h, so h=h. Consequently,
(Djv), — (D;;), (see Mheorem I.1|(vi)). Similarily, (Dj), — (Ds),, and the same holds
for their holomorphic envelopes (remember that we are still in the class of balanced
domains).

The special case (D;), = D, implies, in view of the corollary, and Remark 2.2,
that (Dy), = (D;), for any ¢’ >e&.  Suppose that there is z € D such that for some &’

(see [3.1))
—&> gp,(0,2) > —&' > logh(z).
Then z e (D;), \(Dy),—contradiction. O

ExampLE 3.3. If D is a bounded, Reinhardt domain with 0 € D (but not balanced),
then Theorem 3.1 does not hold any more. Consider the following example (see
Example 4.2.8 from [Jar-Pfll)):

D:=E\{z€E*: |z1| < a,|zn| > B},
where 0 < f <a < 1. Then

04

gp(0,2) = maX{log/), + 10g|Zz|,10g|21|} # 9p(0,2) = gg2(0, 2),
for z close to 0. Moreover,

Ap(0; X) :max{logg—i—log|X2|,log\Xl|} # Ap(0;X), XeC~

B
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It is worth noting that in the case of balanced domains we do not have in general

that (compare [Theorem 3.1))
gp,(0,2) =logh(z) for any z e D,
as the following example shows:

ExampLE 3.4. The example is based on the following observation. Assume that
for a bounded domain D there is a local strong peak function at zy e dD, in the
following sense:

for any we D there are neighbourhoods U; c< U of z;,, w¢ U and a pluri-
subharmonic function wu: UND+— [—-0,0) such that lim; .. rcunpu({) =0 and
suppn (o) U < 0.

Then for any we D, lim;_.., re pgp(w,{) =0. In fact, there is M > 0 such that
gp(w,{) = Mu({) for (e dU ND. Define v({):=gp(w,{) for {€ D\U; and v({) :=
max{gp(w,{), Mu({)} for {e DN U;. Then v is plurisubharmonic and, consequently,

limez repgp(w, () = limy_.-, ce v, np Mu() = 0.

Let G = E? be any pseudoconvex Reinhardt domain such that G N3(E?) = (3E)?, G
contains no points from the axes and such that every point from its boundary is a strong
peak point (such domains are easy to construct). Then define

D := (rE*)UG,

where re (0,1) is so large that (rE?)NG # . Then D = E?; moreover, we may
choose G so that D is a balanced complete Reinhardt domain. In view of the remark
above ¢gp(0,¢) — 0 as { — dG\rE?, from which we easily get the desired phenomenon.

4. Regularity properties of the Azukawa pseudometric.

THEOREM 4.1. Let D be a domain such that ¢(w) > —oo for any we D (e.g. D is a
bounded domain) and gp is a continuous function (e.g. D is a bounded hyperconvex
domain). Then Ap is a continuous function (as a function defined on D x C").

Proor. Fix (w;X)e D x C". 1t is sufficient to prove that for any sequence
(w3 X)) — (w3 X),

(4.1) limy_o Ap(wy; Xy) = Ap(w; X).

Since Ap is upper semicontinuous we may assume without loss of generality that
X, X, #0.
Fix ¢ >é&> —¢(w). From the assumptions of the theorem, and

Theorem 1.1(vi) we can choose a sequence of affine isomorphisms @, : C" — C" such
that for large v:

(4.2) D,(wy) =w, @,(w)(X,) =X,

(4.3) D, (D, (wy)) = Dy(w),

(4.4) Dy(w) == @,y(Dy(wy)).
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From [Lemma 2.3, [4.2] and we get
Ap(wy; X,) + & = Ap, () (W3 X))
= A@V(Dg/(wv))(¢V(WV); ¢;(Wv)Xv)
= Aw, (D, (w,))(W; X)
> Ap,wy(w; X) = Ap(w; X) +e.
Consequently,
Ap(wy; X)) — Ap(w; X) > e — ¢
Analoguously, [Lemma 2.3, {4.2) and give us
Ap(wy; X)) — Ap(w; X) <&’ —e.

Passing with ¢’ to ¢ in both inequalities above we get [4.1). 0

THEOREM 4.2. Fix we D. Assume that D is a domain in C" such that gp(w,-) is
continuous and &(w) > —oo (e.g. D is a bounded hyperconvex domain). Then

Ap(w; X) =lim)_o(gp(w,w + 2X) —log|4|), X eC".

ProoF. In view of [Lemma 2.3 and [Lemma 2.4 we lose no generality assuming that
D is a bounded hyperconvex domain.

Suppose that the theorem does not hold, so there are a sequence {/x},~, < E,,
¢>0 and X € C"\{0} such that 44 — 0 and

(4.5) gp(w,w + 4 X) —log|dx| < Ap(w; X) —2¢, k=1,2,....

For our convenience we may assume that w =0. We have that D, c< D. Note that
there is 0y € (0,7) such that

(4.6) e?D, cc D for any |0] < .

Taking if necessary a subsequence we may assume that 44X e D, k=1,2,.... We

know that (see [4.5), (4.6), Mheorem 1.1 and [Lemma 2.3)
(4.7)  gp(0,e5; X) — log| /x|
< genp, (0,24 X) —log|Zx| = g, (0, 4 X) — log| | =
gp(0, 4k X) +¢—loglik| < Ap(0; X) —e, 0] < By, k=1,2,....

Let us define for 4 € U, where U is a sufficiently small neighbourhood of 0 in C, a
subharmonic function u as follows:

u(4) :=gp(0,AX) — log|4|, for A#0
u(0) := Ap(0; X).

Without loss of generality we may assume that /4y e U for any k. Note that
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limsup,_,, u(4) = u(0) and u is upper semicontinuous, therefore for k large enough

200 _ 0 +s Oel-mal

(4.8) u(ei) < u(0) + 20

On the other hand we know from (4.7) that
(4.9) u(eii) <u(0)—e for any k and || < 6.
Subharmonicity of u combined with and (4.9) gives us for large k

27u(0) < J u(e 1) do < J (u(0) — &) dO +J u(e ) do <

|0‘<0() 7'[2‘0|>00

(u(0) — )20y + (27 — 260) (u(0) + &) = 27u(0),
which is a clear contradiction. O

LemmA 4.3.  Assume that D is a domain such that e(w) > —oo for any w € D and gp
is continuous. Fix we D.  Assume that the sequences {w/},”, {z/},Z, of points from D,
j=1,2 are such that
A vy — w3

STa—TS — 1.
HZ1 Zz”

(4.10) w/V,;/V —w, j=1,2,

Y

wi =will Iz = 23]
Then gp(wi,w3) — gp(z},23) — 0.

Proor. Fix & >¢> —¢(w). From the assumptions of the lemma,
1.1(vii) and we know that for v large enough there is @, : C" — C” an affine
isomorphism such that

O,(w!)=z/', j=12 and @,(Dy(w])) =< D(zy).
Now we have, in view of [Lemma 2.3, for v large enough:
gp(z1,23) + &= gp,)(2],22) < G, (0, (w) (Pu(W]), Dy(wy)) =
9p, ey (Wi w3) = gp(wi, wy) +¢'.

Consequently, for v large enough,

gp(z1,23) < gp(wj,w3) +¢&' —e.
Similarily, we get for v large enough:

gp(w{,w3) < gp(z{,z3) +¢& —e.
Passing with &’ to ¢ we complete the proof of the lemma. O

COROLLARY 4.4. Let D be a domain as in Lemma 4.3, we D and X € C", || X|| = 1.
Then

AD(W; X) = limw’,w”ﬂw,w’;éw”,(w’fw”)/Hw’fw””HX(gD<W,7 W”) - IOgHW/ - WIIH)-
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Proor. Take any sequences {wjv}jo: , of different points from D such that
wi —w (j=1,2) and (w| —w))/|lwj —wj|| = X. Define

i i=w, oz, =w—|lw) —w||X.

Note that |z{ — z}|| = ||w{ — wy|| and (z{ —z3)/||z{ — z}|| — X. Therefore, in view of

lim, o (gp(wy, wy) — log|jwy — w;]])
= lim, .0 (g9n(z1,2;) —log|lz] — z,]|)
= lim, o (9p(w, w — |[w) — w[|X) —log|[wy — w,]]),
the last expression is, in view of [Theorem 4.2) equal to Ap(w;X). O
COROLLARY 4.5. Let D be as Lemma 4.3. Then
1imyyr g ot 2 (g (W, w") — gp(W",w")) =0, weD.

Proor. It is sufficient to consider two sequences {w/},Z; (j=1,2) tending to w
such that (wj —w})/[jw] —w}| — X for some X € C", || X| =1. Note that, in view of
Corollary 4.4

lim, .. (gp(wy, wy) — log|jwy —w,]])
= AD(W; X) = AD(W; —X)
- liml/ﬂoc(gD(ng Wr) - lOg”W; - le”)’
from which we get that
lim, oo (gp(wy, w3) — gp(wy, wy)) = 0. H

Having the result on symmetry of the Green function as in it seems to
be probable that the integrated form of the Azukawa pseudometric coincides with some
kind of inner pseudodistance related to the Green function (at least for bounded
hyperconvex domains), defined similarily as it was done in [Jar-Pfil].

ExampLE 4.6. There is a bounded pseudoconvex domain for which we cannot
replace ‘limsup’ with ‘lim’ in the definition of the Azukawa pseudometric. Let
D ={ze C?:h(z) < 1} be a bounded pseudoconvex balanced domain, where / is the
Minkowski function of Dj, such that /(1,1) =1 and there are sequences {a},—, and
{br};_, of points from E different from O such that ay — 0, by — 0 and

limy_., h(l,exp(ax)) — o0 <1, limg_ ., h(1,exp(br)) =1

(note that such a function and sequences exist). Define @ :C?3(z1,25)
(z1,z2exp(z1)) € C*. Note that @ is a biholomorphism. Put D := & '(D;). Remark
that D is a bounded pseudoconvex domain. For k large we have the following
sequence of equalities (see [Theorem [1.1\(ii) and (viii)):

gp(0, (ar, ar)) — loglar| = gp, (0, (ar, exp(ar)ar)) — log|ay|

= log h(ax,exp(ay)ax) — loglax| = logh(1,exp(ax))
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and the last expression tends to logd < 0 as k tends to infinity. Similarily we get that
gp(0, (b, bi)) — loglbg| — 0 as k tends to infinity,

which gives us that there is no limit in the definition of the Azukawa metric of
AD(07(171))

COROLLARY 4.7. If D is a domain in C, then Ap is continuous and for any w € D
Ap(w; 1) =1lim;_o(gp(w,w+ 1) — log|A|) and if 0D is not polar then

Ap(w;1) = limW’,W”—maw’#wv"(gD(Wl7 W”) - IOgHW/ - W”H)-

Proor. The result is trivial if 0D is polar. Therefore, we may assume that oD
is not polar. We know that gp is continuous (see [Ran]), therefore, in view of
Theorems K.1 and and [Corollary 4.4} it is sufficient to show that for any we D,

g(w) > —oo. Take any point zp € dD. Without loss of generality we may assume that
zo € C. There is r > 0 such that 0D\ B(zo,r) is not polar. Put D := DU B(zy,r). D is
a domain. Then zy € D and 0D is not polar. Therefore, (see [Ran]),

liminf. .., -e p gp(w,2) > liminf___ __595(w,2) = gp(w,z9) > —o0.

This completes the proof. O

5. Pluricomplex Green function with many poles.

Below we deal with the upper and lower bound from the following formula (see
[Lel]):

(5.1) min{v(p)gp(p,z) : p€ P} > gp(P;v;z) > Zv(p)gD(p,z), zeD.

First we consider the case of the lower bound from the formula [5.1]. Let us consider
the following sets (see [Lel]):

&(D,P,v) = {Z eD:gp(P;v;z) = Zv(p)gp(p,z)}.

peP
Certainly, P = (D, P,v).
We have the following:

LemMmA 5.1.  Let D and P be as above. Then for any u,v: P — (0, 00) the following
equality holds:

&(D, P,v) = &(D, P, ).

PrOOF. Let us take z e &(D, P,v), z¢ P. In view of we may assume without
loss of generality that gp(p,z) > —co for any pe P. Fix ¢ >0 so small that:

(5.2) min{z W(p)gn(p.z): & # Q= P,Q # P}

peQ

> Zv(p)gD(p,z) —|—min{:% :pE P}ﬂip

peP
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Because of (2.1) there is ¢ € O(E, D) such that ¢(0) =z, ¢ '(P)NE # & and
(5.3) ge(p~ ' (P)NE; #,0) <Z P)gn(p,z +min{%:peP}3/ﬁP.

First note that in view of (5.1), and (2.1) we get that ¢~ '(p)NE # & for any
p € P. The left hand-side in the inequality equals

Y, JWlegl=3 5. i(dosl

AeE,p(2) e PeP LeE, p(2)=p

—ZQE P)OE; Vi, 1,nE;0)
peP

Each summand in the last expression is at least v(p)gp(p,z), which gives us, in view of

(5.3), that
——=ge(0" (P) N E, fi1 (0 > 0)
=ge(e” ' (p)NE; Vip-1(p)ne; 0)

<v(p)gp(p,z) —|—min{l% :pE P}g/le, pEeP,

SO
g9~ () N E; flyy1(yn g 0) < u(p)gn(p, z) + &/4P.

Summing over p € P we get that (see (5.1))

/

> u(p)gn(p,z) < gp(P,u,2) < > u(p)an(p,z) + &,

and, consequently, z € &(D, P, 1). O
As an immediate corollary we get

COrROLLARY 5.2. Let Pc<B,, #P>2, n>2. Then &(B,,P,v)=PU(LNB,),
where L is the complex straight line containing P (L = (& if such a line does not exist).

Proor. Use [Lemma 5.1 and Remark 3.4 from [Edi-Zwo). ]
We get also the following generalization of the results from [Com] (Proposition 4):

ProposITION 5.3. Let P and D be arbitrary. Assume that v,u: P — (0, 0),
#(p)/v(p) < 1(po)/v(po) and

gn(P;v;z) = v(po)gp(po,2)

for some ze D. Then

9p(P; 5 2) = u(po)gp(po, 2).-
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ProOOF. Suppose that the last equality does not hold. So because of (2.1) and
(5.1) there is ¢ € O(E, D) such that ¢(0) =z, ¢ (P)NE # & and

ge(p~ ' (P)NE; [i;0) < u(po)gp(po, 2).

The left hand-side in the last inequality equals the left hand-side of the following:

mp _ -
Z %QE((P '(p)NE; Vip1(pnE; 0)
peP,p ' (pNE# p

up - ~ Hp
> B S e (BT s 0) = S go(Pivi
Po) pep i NE2D Po

—contradiction. n
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