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Regularity properties of the Azukawa metric
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Abstract. Some regularity properties of the Azukawa pseudometric for a wide class

of domains (including bounded hyperconvex domains) are proven. Among others we

prove that in this class of domains the Azukawa metric is continuous and the upper limit

in its de®nition may be replaced with the limit. Some properties of the pluricomplex

Green function with one (as well as with many) pole are also given.

0. Introduction.

The pluricomplex Green function has been studied by many authors and many

regularity properties of this function are known. In many cases properties of the Green

function can be transported without large e¨ort to its in®nitesimal version, i.e. to the

Azukawa pseudometric. Nevertheless, it is not always the case.

In this paper we want to show some new properties of the Azukawa pseudometric,

which come from analoguous ones for the Green function. The good class of domains

for which the Green function has `nice' properties are bounded hyperconvex domains.

Among others it is known that the Green function of a domain from this class is

continuous. Below we consider a class of domains containing bounded hyperconvex

domains and using some localization (with the help of sublevel sets) we show that from

the point of view of the Azukawa pseudometric this class of domains is the same as

bounded hyperconvex domains. We prove in this paper the continuity of the Azukawa

pseudometric for this class of domains.

It is interesting to know whether we can get rid of `limsup' in the de®nition of

the Azukawa pseudometric and to replace it with `lim'. We prove that the answer

is a½rmative in the reasonable class of domains. Nevertheless, we ®nd an example

showing that this is not true in general. On the other hand in a class of domains

(containing bounded hyperconvex domains) we can take the limit over the larger family

of points tending along the given vector to the pole. In particular, we need not have

in the de®nition of the Azukawa pseudometric the pole ®xed. One of conclusions of

our results is that the Green function is `almost' symmetric for points lying not far from

each other (still in the considered class of domains).

We also study the behaviour of the Green function for balanced domains and relate

it to the Green function of their holomorphic envelopes.
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Finally, we consider the Green function with many poles and we show some simple

properties of this function making use of its alternate de®nition (to that with the help of

plurisubharmonic functionsÐsee [Lel ]), namely, the one given in [Lar-Sig].

1. Notations, de®nitions and formulation of most important results.

Following [Kli1], [Kli2] for a given domain DHC
n and points w; z A D we de®ne

the pluricomplex Green function with pole at w

gD�w; z�

:� supfu�z� : u A PSH�D�; u < 0 and u��� ÿ logk � ÿwk is bounded above near wg

(we allow plurisubharmonic functions to be identically equal to ÿy).

The in®nitesimal version of the Green function is the Azukawa pseudometric de®ned

as follows (see [Azu1], [Azu2]):

AD�z;X � :� limsupl!0�gD�z; z� lX � ÿ logjlj�; z A D; X A C
n
:

Let us denote the unit disk in C by E.

Let us recall that a domain D is hyperconvex if there is a negative plurisubharmonic

continuous function u de®ned on D such that for any e > 0 the sublevel set fu < ÿeg is

relatively compact in D (note that we do not assume that the hyperconvex domain must

be bounded).

A plurisubharmonic function u : D 7! R is maximal if for any open set U HHD

and for any upper semicontinuous function v on U , which is plurisubharmonic on U, if

vU u on qU , then vU u on U.

Let us recall some well-known properties of the pluricomplex Green function

and the Azukawa pseudometric, which will be helpful in our considerations (see [Azu1],

[Azu2], [Dem], [Jar-P¯1], [Jar-P¯2], [Kli1] and [Kli2]), which are also a good starting

point for our considerations.

Theorem 1.1. (i) If F : D1 7! D2 (D1 and D2 are domains) is a holomorphic

mapping then

gD2
�F�w�;F �z��U gD1

�w; z�;

AD2
�F�w�;F 0�w�X�UAD1

�w;X �; w; z A D1; X A C
n
:

(ii) If the mapping above is a biholomorphism then the inequalities above become

equalities.

(iii) AD�w; lX � � AD�w;X � � logjlj for any w A D, X A C
n, l A C .

(iv) For any w A D gD�w; �� A PSH�D; �ÿy; 0��. Moreover, gD�w; z� ÿ logkwÿ zk

is bounded above for z close to w.

(v) AD�w; �� A PSH�C n�, which in connection with (iii) gives us that

I�D;w� :� fX A C
n
: AD�w;X� < 0g

is a balanced pseudoconvex domain.
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(vi) For any sequence of domains fDjg
y

j�1 such that Dj HDj�1 and 6y

j�1
Dj � D the

following convergences hold:

gDj
! gD on D�D;

ADj
! AD on D� C n:

(vii) The functions gD and AD are upper semicontinuous. If D is a bounded

hyperconvex domain then gD is continuous and, even more, gD�w; z� ! 0 as z ! qD.

(viii) If Dh :� fz A C n
: h�z� < 1g, where h is a non-negative homogeneous upper

semicontinuous function, then the following formulas hold:

gDh
�0; z�U log h�z�;

ADh
�0;X�U log h�X�; z A Dh; X A C

n:

If h is plurisubharmonic (or equivalently Dh is pseudoconvex) then in the inequalities above

we have the equalities.

(ix) If D is a bounded domain then gD�w; �� is a maximal function on Dnfwg.

For ®xed w A D we often consider the following number:

e�w� :� liminf z!qD gD�w; z�:

It is easy to see that for any bounded D we have that e�w� > ÿy for any w A D. As

we shall see latter if e�w� > ÿy then gD�w; z� > ÿy for any z A D, z0w.

Our aim is to prove the continuity of the Azukawa pseudometric.

Theorem 4.1. Let D be a domain such that e�w� > ÿy for any w A D and gD is a

continuous function. Then AD is a continuous function (as a function de®ned on D� C n).

Note that bounded hyperconvex domains ful®ll the assumptions of Theorem 4.1 (as

well as the assumptions of all theorems from Section 4)Ðsee Theorem 1.1(vii).

It turns out that in many cases we can replace `limsup' in the de®nition of the

Azukawa pseudometric with `lim' as the following result shows:

Theorem 4.2. Let w A D, where D is a domain in C n such that gD�w; �� is con-

tinuous and e�w� > ÿy. Then

AD�w;X� � liml!0�gD�w;w� lX � ÿ logjlj�; X A C
n:

Let us underline already here that we cannot generalize Theorem 4.2 to all

domainsÐthe counterexample is given in Example 4.6, our example is a bounded

pseudoconvex domain in C
2. However, for many domains some sharper version of

Theorem 4.2 remains true, namely:

Corollary 4.4. Let D be a domain such that gD is continuous and e�w� > ÿy for

any w A D. Then for any w A D, X A C
n, kXk � 1 the following formula holds:

AD�w;X� � limw 0;w 00!w;w 0 0w 00; �w 0ÿw 00�=kw 0ÿw 00k!X �gD�w
0;w 00� ÿ logkw 0 ÿ w 00k�:
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As a conclusion of the above results we get some result on symmetry of the Green

function. It turns out that the Green function is `almost' symmetric when both variables

are close to each other. More precisely, we have

Corollary 4.5. Let D be as in Theorem 4.1 and let w A D be ®xed. Then

limw 0;w 00!w;w 00w 00�gD�w
0;w 00� ÿ gD�w

00;w 0�� � 0:

In Section 3 we prove some result on the Green function for balanced domains,

which may be treated as the generalization of Theorem 1.1(viii), which shows that in this

case a close relation between the Green function of the domain and that of the envelope

of holomorphy exists (at least for points not far from the origin).

Let D � Dh be a balanced domain with the Minkowski function equal to some

upper semicontinuous function h. Let ~h be the largest non-negative homogenuous

plurisubharmonic function not larger than h (note that such a function exists). Then we

have

Theorem 3.1. If Dh is bounded, then

gDh
�0; z� � log ~h�z� � gD~h

�0; z� for z A Dh close enough to 0:

In Section 2 we introduce sublevel sets. We introduce this notion for the Green

function with many poles. We give some properties of the sublevel sets, which play

later the key role in proofs of the results from Sections 3 and 4.

In Section 5 some properties following from the de®nition from [Lar-Sig] of the

pluricomplex Green function with many poles are given.

2. Sublevel setsÐde®nition and basic properties.

Up to now we have dealt with the Green function with one pole. Below we give

some properties of the sublevel sets of the Green function. Since the properties of

sublevel sets de®ned below are obtained for the Green function with one pole exactly in

the same way as for the Green function with many poles we recall the notion of the

Green function with several poles.

Let D be a domain in C
n. Let q0PHD be a ®nite set and let n :

P 7! �0;y�. We de®ne the pluricomplex Green function with poles in P with weights n

as follows (see [Lel ]):

gD�P; n; z� :� supfu�z�g;

where the supremum is taken over all u A PSH�D�, u < 0 and such that u��� ÿ

n�p� logk � ÿpk is bounded from above near p for all p A P.

Note that when ]P � 1 and n1 1 then the above de®ned function is the pluri-

complex Green function de®ned earlier.

It is well-known that gD�P; n; �� is plurisubharmonic. Let us recall that if the

domain D is bounded, then the Green function gD�P; n; �� is maximal on DnP; if D is a

bounded hyperconvex domain, then gD�P; n; �� is a continuous function, which extends

continuously to 0 on the boundaryÐcompare Theorem 1.1(vii) (see [Dem] and [Lel ]).
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It turns out that the equivalent de®nition with the help of analytic disks is pos-

sible. Namely, the following equality has been obtained in [Lar-Sig] (in case of the

Green function with one pole this equality is to be found in [Edi ] and [Pol ]):

gD�P; n; z��2:1�

� inffgE�j
ÿ1�P�VE; ~n; 0�; j A O�E;D�; j�0� � z;E V jÿ1�P�0qg

� inffgE�j
ÿ1�P�VE; ~n; l�; j A O�E;D�; j�l� � z;E V jÿ1�P�0qg;

where ~n�l� :� ordl�jÿ j�l�� � n�j�l��, l A jÿ1�P�.

For y > eV 0 let us consider the following sublevel sets

D�P; n; e� :� fz A D : gD�P; n; z� < ÿeg:

Note that D�P; n; e� is open (the Green function is plurisubharmonic, and therefore

upper-semicontinuous). In case of one pole with weight 1 we write De�p�. If it does

not lead to misunderstanding, then we omit the set of poles and weight and we simply

denote the sublevel set by De.

We start with the problem of the connectivity of sublevel sets.

Our aim is the following:

Lemma 2.1. Let D be a domain. Let P and n be given as above. Then:

(i) For any eV 0 any connected component of the set De has non-empty intersection

with P; in particular, the number of connected components of De is at most ]P.

(ii) There is e0 with yV e0 > 0 such that for any e with 0 < e < e0 the set De is

connected and for any e with e0 < e the set De is disconnected.

Proof. Let us put u�z� :� gD�P; n; z�, z A D. Suppose that (i) does not hold. Let

U be a connected component of De, U VP � q. The upper-semicontinuity of the Green

function implies that U is open. We know that u < ÿe on U and u�z�Vÿe for z A

qU VD. Consequently, the function

v�z� :�
ÿe; if z A U ,

u�z�; if z A DnU

�

is plurisubharmonic. Moreover, from the de®nition of the Green function and the fact

that U VP � q we have uV v, which implies that u�z�Vÿe for z A UÐcontradiction.

We are remained with (ii). First we prove the following property:

if for some e > 0, De is connected then De 0 is connected

for any e 0 with 0 < e 0 < e.

(2.2)

To prove (2.2) note that there is a compact connected set K with PHKHDe. But

De HDe 0 , so P is contained in one connected component of De 0 , which in view of (i)

®nishes the proof of (2.2).

To ®nish the proof of (ii) it is su½cient to show the existence of e > 0 such that De

is connected. Let us take a connected compact set KHD such that PHK . We

know that gD�P; n; ��jK is bounded by some ÿe0. Therefore, PHKHDe for any e with
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0 < e < e0, which shows that all poles lie in one connected component of De. This, in

connection with (i) ®nishes the proof. r

Remark 2.2. Note that if D is pseudoconvex then the sets De are pseudoconvex.

In general case (D is not pseudoconvex) it need not always be the case. Nevertheless,

if D is a bounded domain then for large e the sublevel sets De are pseudoconvex. It

follows from the fact that for large e the set De satis®es that De H6
p AP

B�p; r�HD

for some r > 0 such that the balls B�p; r� are pairwise disjoint for p A P. Even more

generally, for any domain D, if De HU HD, where U is pseudoconvex, then De is

pseudoconvex.

Now we come back to the situation of the Green function with one pole. First,

note that in view of Lemma 2.1 all sublevel sets in this case are connected.

Below for unbounded domains D we assume that y A qD.

The lemma below will play a fundamental role in the later considerations:

Lemma 2.3. Let D be a domain in C
n, p A D and De � De�p�. Then the following

formulas hold:

gDe
�p; z� � gD�p; z� � e;�2:3�

ADe
�p;X� � AD�p;X� � e:�2:4�

Moreover, for any e1; e2 V 0, we have

De1�e2
� �De1

�
e2
:

Proof. Note that gD�p; z� � e < 0 for z A De. Consequently, we have `V' in (2.3).

Therefore, and additionally because for z A qDe VD we have

gD�p; z�VÿeV limsupw!z;w A De
�gDe

�p;w� ÿ e�;

the function

o�z� :�
gDe

�p; z� ÿ e; z A De,

gD�p; z�; z A DnDe

�

is plurisubharmonic. Therefore, o�z�U gD�p; z�, z A D, which completes the proof of

(2.3).

Property (2.4) as well as the last part of the lemma follow from (2.3) and the

de®nition of the Azukawa pseudometric. r

For w A D let us recall the de®nition

e�w� :� liminf z!qD gD�w; z�:

We shall be interested in case when e�w� > ÿy. Note that then gD�w; z� > ÿy for any

z A D, z0w. In fact, take any e > ÿe�w�. Then the set De�w� is bounded; otherwise,

in view of Lemma 2.3 there would be a sequence zn ! y, zn A De�w�HD such that

limsupn!y gD�w; z
n� � limsupn!y gDe�w��w; z

n� ÿ eUÿe < e�w�

Ðcontradiction with the the de®nition of e�w�. Take any z A D, z0w such that
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gD�w; z� � ÿy. Take any e > ÿe�w�. Then z A De�w�, the boundedness of De�w�

implies that gDe�w��w; z� > ÿy, which in view of Lemma 2.3 implies that gD�w; z� >

ÿyÐcontradiction.

Lemma 2.4. Fix w A D. Assume that gD�w; �� is continuous on D and e�w� > ÿy.

Then for any eVÿe�w� the domain De�w� is hyperconvex. Moreover, if e 0 > eVÿe�w�

then De 0�w�HHDe�w�. Consequently, De 0�w� is a bounded hyperconvex domain.

Proof. Note that if z0 A qDe�w�V qD (z0 may be equal to y) then because of

Lemma 2.3

0V limsupz ADe�w�; z!z0
gDe�w��w; z�V liminf z ADe�w�; z!z0 gDe�w��w; z� �

liminf z ADe�w�; z!z0 gD�w; z� � eV e�w� � eV 0:

If z0 A qDe�w�VD then because of continuity of gD�w; �� and Lemma 2.3

limz ADe�w�; z!z0 gDe�w��w; z� � 0:

Note that the de®nition of e�w� implies that De�w� is bounded for any e > ÿe�w�, which

in view of Lemma 2.3 gives us the second statement. r

3. The Green function for balanced domains.

Let h : C
n 7! �0;y� be a homogeneous function, i.e.

h�lz� � jljh�z�; l A C ; z A C
n
;

which is upper-semicontinuous.

Then we may de®ne a domain

D :� Dh :� fz A C
n
: h�z� < 1g:

Let ~h be the largest plurisubharmonic homogeneous function such that ~hU h. It is easy

to verify that the function ~h is well-de®ned. Note that then D~h is the holomorphic

envelope of Dh. Certainly, Dh HD~h.

It is trivial that (see Theorem 1.1)

gDh
�0; z�V log ~h�z�; z A Dh:�3:1�

Note that for any z A Dh, l A E,

gDh
�0; lz�U logjlj � gDh

�0; z�:�3:2�

In fact, ®rst note that gDh
�0; e iyz� � gDh

�0; z� for any y A R. For ®xed z A Dh consider

the function

u : E C l 7! gDh
�0; lz� ÿ gDh

�0; z�:

Then u is subharmonic on E, upper-semicontinuous on E, u � 0 on qE, u�l� ÿ logjlj is

bounded above near 0. The Riemann removability theorem and maximum principle

imply that
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u�l�U logjlj; l A E;

which ®nishes the proof of (3.2).

Below we shall consider sublevel sets with the pole at 0.

Note that

log h�X �VADh
�0;X�VAD~h

�0;X� � log ~h�X�; X A C
n
:

Therefore, in view of Theorem 1.1(v) (and the de®nition of ~h) we have that (see [Azu1]):

ADh
�0;X� � log ~h�X��� AD~h

�0;X ��; X A C
n
:�3:3�

Below we shall see that in the case of bounded balanced domains something more is

true:

Theorem 3.1. Assume that Dh is bounded. Then

gDh
�0; z� � log ~h�z� � gD~h

�0; z�; for z A Dh close enough to 0:�3:4�

Proof. In view of Remark 2.2 we know that there is e > 0 such that De :� �Dh�e
is pseudoconvex. We claim that De is balanced. To see this take z A De and l A E.

Then in view of (3.2) we have gDh
�0; lz�U logjlj � gDh

�0; z� < ÿe. Consequently, De �

Dh1 for some plurisubharmonic, homogeneous h1.

From Theorem 1.1(viii) and Lemma 2.3 we get

gDh
�0; z� � gDe

�0; z� ÿ e � log h1�z� ÿ e; z A De:�3:5�

Therefore, to ®nish the proof it is su½cient to show that ~h � exp�ÿe�h1 on C
n (or

equivalently on some neighbourhood of 0).

In view of (3.1) and (3.5) we get that ~hU exp�ÿe�h1 on De, which certainly implies

that the inequality holds on C
n. We are remained with the proof of the inequality

~hV exp�ÿe�h1, which will be proved if we show that exp�ÿe�h1 U h.

To prove the last inequality it is su½cient to show that exp�ÿe�h1�z� < 1 for any

z A Dh. Let us take z A Dh. Then there is m A E� such that mz A De. So in view of

(3.2) and (3.5) we have

logjmj � gDh
�0; z� � eV gDh

�0; mz� � e � f

gDe
�0; mz� � log h1�mz� � logjmj � log h1�z�;

from which we easily ®nish the proof. r

As a conclusion of Theorem 3.1 we get a relation between sublevel sets of

the balanced domain and that of its holomorphic envelope. By D̂ we denote the

holomorphic envelope of D.

Corollary 3.2. We have the following:

�Dh�e � �D~h�ed

for any e > 0. In particular, if �D~h�e HDh then

gDh
�0; z� � log ~h�z�; z A �Dh�e:
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Proof. We know that

�Dh�e � fĥ < 1gd
for some homogeneous, plurisubharmonic ĥ. It is su½cient to prove that

exp�ÿe�ĥ � ~h:

First let us consider only bounded Dh. Let us take d < y su½ciently large. Then in

view of Lemma 2.3, Theorem 1.1(viii), (3.1) and Theorem 3.1 we have

�Dh�e�d � ��Dh�e�d H ��Dh�e�d H ��D~h�e�d � �D~h�e�d � �Dh�e�d:d
From which we conclude that ĥ�z� exp�d� � ~h�z� exp�e� d� for small z. This completes

the proof in the bounded case.

The unbounded case follows from the standard approximation process. Put

hn�z� :� maxfh�z�; kzk=ng.

Note that fhngyn�1 tends decreasingly to h. The sequence f~hngyn�1 is also decreasing.

Let us denote its limit by ĥ. Note that ĥ is homogenuous and plurisubharmonic on

C
n. From the de®nition we have that

~hU ~hn
U hn:

Therefore, ~hU ĥ but ĥ is plurisubharmonic and ĥU h, so ~h � ĥ. Consequently,

�D~h n�e ! �D~h�e (see Theorem 1.1(vi)). Similarily, �Dh n�e ! �Dh�e, and the same holds

for their holomorphic envelopes (remember that we are still in the class of balanced

domains).

The special case �D~h�e HDh implies, in view of the corollary, (3.1) and Remark 2.2,

that �Dh�e 0 � �D~h�e 0 for any e 0 > e. Suppose that there is z A Dh such that for some e 0

(see (3.1))

ÿe > gDh
�0; z� > ÿe 0 > log ~h�z�:

Then z A �D~h�e 0n�Dh�e 0Ðcontradiction. r

Example 3.3. If D is a bounded, Reinhardt domain with 0 A D (but not balanced),

then Theorem 3.1 does not hold any more. Consider the following example (see

Example 4.2.8 from [Jar-P¯1]):

D :� E2nfz A E2 : jz1jU a; jz2jV bg;

where 0 < b < a < 1. Then

gD�0; z� � max log
a

b
� logjz2j; logjz1j

� �
0 gD̂�0; z� � gE 2�0; z�;

for z close to 0. Moreover,

AD�0;X � � max log
a

b
� logjX2j; logjX1j

� �
0AD̂�0;X �; X A C

2:
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It is worth noting that in the case of balanced domains we do not have in general

that (compare Theorem 3.1)

gDh
�0; z� � log ~h�z� for any z A Dh

as the following example shows:

Example 3.4. The example is based on the following observation. Assume that

for a bounded domain D there is a local strong peak function at z0 A qD, in the

following sense:

for any w A D there are neighbourhoods U1 HHU of z0, w B U and a pluri-

subharmonic function u : U VD 7! �ÿy; 0� such that limz!z0; z AU VD u�z� � 0 and

supDV �UnU1�
u < 0.

Then for any w A D, limz!z0; z A D gD�w; z� � 0. In fact, there is M > 0 such that

gD�w; z�VMu�z� for z A qU1 VD. De®ne v�z� :� gD�w; z� for z A DnU1 and v�z� :�

maxfgD�w; z�;Mu�z�g for z A DVU1. Then v is plurisubharmonic and, consequently,

limz!z0; z AD gD�w; z�V limz!z0; z AU1 VD Mu�z� � 0:

Let GHE2 be any pseudoconvex Reinhardt domain such that qGV q�E2� � �qE�2, G

contains no points from the axes and such that every point from its boundary is a strong

peak point (such domains are easy to construct). Then de®ne

D :� �rE2�UG;

where r A �0; 1� is so large that �rE2�VG0q. Then D̂ � E2; moreover, we may

choose G so that D is a balanced complete Reinhardt domain. In view of the remark

above gD�0; z� ! 0 as z ! qGnrE2, from which we easily get the desired phenomenon.

4. Regularity properties of the Azukawa pseudometric.

Theorem 4.1. Let D be a domain such that e�w� > ÿy for any w A D (e.g. D is a

bounded domain) and gD is a continuous function (e.g. D is a bounded hyperconvex

domain). Then AD is a continuous function (as a function de®ned on D� C n).

Proof. Fix �w;X� A D� C n. It is su½cient to prove that for any sequence

�wn;Xn� ! �w;X �,

limn!y AD�wn;Xn� � AD�w;X�:�4:1�

Since AD is upper semicontinuous we may assume without loss of generality that

X ;Xn 0 0.

Fix e 0 > e > ÿe�w�. From the assumptions of the theorem, Lemma 2.4 and

Theorem 1.1(vi) we can choose a sequence of a½ne isomorphisms Fn : C
n 7! C

n such

that for large n:

Fn�wn� � w; F 0
n�wn��Xn� � X ;�4:2�

Fn�De 0�wn��HDe�w�;�4:3�

De 0�w�HHFn�De�wn��:�4:4�
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From Lemma 2.3, (4.2) and (4.3) we get

AD�wn;Xn� � e
0 � ADe 0 �wn��wn;Xn�

� AFn�De 0 �wn���Fn�wn�;F
0
n
�wn�Xn�

� AFn�De 0 �wn���w;X �

VADe�w��w;X � � AD�w;X � � e:

Consequently,

AD�wn;Xn� ÿ AD�w;X�V eÿ e
0
:

Analoguously, Lemma 2.3, (4.2) and (4.4) give us

AD�wn;Xn� ÿ AD�w;X�U e
0 ÿ e:

Passing with e 0 to e in both inequalities above we get (4.1). r

Theorem 4.2. Fix w A D. Assume that D is a domain in C n such that gD�w; �� is

continuous and e�w� > ÿy (e.g. D is a bounded hyperconvex domain). Then

AD�w;X� � liml!0�gD�w;w� lX � ÿ logjlj�; X A C
n
:

Proof. In view of Lemma 2.3 and Lemma 2.4 we lose no generality assuming that

D is a bounded hyperconvex domain.

Suppose that the theorem does not hold, so there are a sequence flkg
y

k�1 HE�,

e > 0 and X A C
nnf0g such that lk ! 0 and

gD�w;w� lkX� ÿ logjlkj < AD�w;X� ÿ 2e; k � 1; 2; . . . :�4:5�

For our convenience we may assume that w � 0. We have that De HHD. Note that

there is y0 A �0; p� such that

e iyDe HHD for any jyj < y0:�4:6�

Taking if necessary a subsequence we may assume that lkX A De, k � 1; 2; . . . : We

know that (see (4.5), (4.6), Theorem 1.1 and Lemma 2.3)

gD�0; e
iy
lkX� ÿ logjlkj�4:7�

U ge iyDe
�0; e iylkX� ÿ logjlkj � gDe

�0; lkX� ÿ logjlkj �

gD�0; lkX� � eÿ logjlkj < AD�0;X � ÿ e; jyj < y0; k � 1; 2; . . . :

Let us de®ne for l A U , where U is a su½ciently small neighbourhood of 0 in C , a

subharmonic function u as follows:

u�l� :� gD�0; lX � ÿ logjlj; for l0 0

u�0� :� AD�0;X �:

Without loss of generality we may assume that lk A U for any k. Note that
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limsupl!0 u�l� � u�0� and u is upper semicontinuous, therefore for k large enough

u�e iylk� < u�0� �
e2y0

2pÿ 2y0
�: u�0� � ~e; y A �ÿp; p�:�4:8�

On the other hand we know from (4.7) that

u�e iylk� < u�0� ÿ e for any k and jyj < y0:�4:9�

Subharmonicity of u combined with (4.8) and (4.9) gives us for large k

2pu�0�U

�
p

ÿp

u�e iylk� dy <

�
jyj<y0

�u�0� ÿ e� dy�

�
pVjyj>y0

u�e iylk� dy <

�u�0� ÿ e�2y0 � �2pÿ 2y0��u�0� � ~e� � 2pu�0�;

which is a clear contradiction. r

Lemma 4.3. Assume that D is a domain such that e�w� > ÿy for any w A D and gD
is continuous. Fix w A D. Assume that the sequences fwn

j g
y

n�1, fz
n

j g
y

n�1 of points from D,

j � 1; 2 are such that

wn

j ; z
n

j ! w; j � 1; 2;
wn

1 ÿ wn

2

kwn

1 ÿ wn

2k
ÿ

zn1 ÿ zn2
kzn1 ÿ zn2k

! 0;
kwn

1 ÿ wn

2k

kzn1 ÿ zn2k
! 1:�4:10�

Then gD�w
n

1 ;w
n

2� ÿ gD�z
n

1 ; z
n

2� ! 0.

Proof. Fix e 0 > e > ÿe�w�. From the assumptions of the lemma, Theorem

1.1(vii) and Lemma 2.4 we know that for n large enough there is Fn : C
n 7! C

n an a½ne

isomorphism such that

Fn�w
n

j � � znj ; j � 1; 2 and Fn�De 0�w
n

1��HHDe�z
n

1�:

Now we have, in view of Lemma 2.3, for n large enough:

gD�z
n

1 ; z
n

2� � e � gDe�z
n

1
��z

n

1 ; z
n

2�U gFn�De 0 �w
n

1
���Fn�w

n

1�;Fn�w
n

2�� �

gDe 0 �w
n

1
��w

n

1 ;w
n

2� � gD�w
n

1;w
n

2� � e
0:

Consequently, for n large enough,

gD�z
n

1 ; z
n

2�U gD�w
n

1 ;w
n

2� � e
0 ÿ e:

Similarily, we get for n large enough:

gD�w
n

1 ;w
n

2�U gD�z
n

1 ; z
n

2� � e
0 ÿ e:

Passing with e 0 to e we complete the proof of the lemma. r

Corollary 4.4. Let D be a domain as in Lemma 4.3, w A D and X A C
n, kXk � 1.

Then

AD�w;X� � limw 0;w 00!w;w 00w 00; �w 0ÿw 00�=kw 0ÿw 00k!X �gD�w
0;w 00� ÿ logkw 0 ÿ w 00k�:

W. Zwonek910



Proof. Take any sequences fwn

j g
y

n�1 of di¨erent points from D such that

wn

j ! w � j � 1; 2� and �wn

1 ÿ wn

2�=kw
n

1 ÿ wn

2k ! X . De®ne

zn1 :� w; zn2 :� wÿ kwn

1 ÿ wn

2kX :

Note that kzn1 ÿ zn2k � kwn

1 ÿ wn

2k and �zn1 ÿ zn2�=kz
n

1 ÿ zn2k ! X . Therefore, in view of

Lemma 4.3

limn!y�gD�w
n

1 ;w
n

2� ÿ logkwn

1 ÿ wn

2k�

� limn!y�gD�z
n

1 ; z
n

2� ÿ logkzn1 ÿ zn2k�

� limn!y�gD�w;wÿ kwn

1 ÿ wn

2kX� ÿ logkwn

1 ÿ wn

2k�;

the last expression is, in view of Theorem 4.2, equal to AD�w;X �. r

Corollary 4.5. Let D be as Lemma 4.3. Then

limw 0;w 00!w;w 00w 00�gD�w
0;w 00� ÿ gD�w

00;w 0�� � 0; w A D:

Proof. It is su½cient to consider two sequences fwn

j g
y

n�1 � j � 1; 2� tending to w

such that �wn

1 ÿ wn

2�=kw
n

1 ÿ wn

2k ! X for some X A C
n, kXk � 1. Note that, in view of

Corollary 4.4,

limn!y�gD�w
n

1 ;w
n

2� ÿ logkwn

1 ÿ wn

2k�

� AD�w;X� � AD�w;ÿX�

� limn!y�gD�w
n

2;w
n

1� ÿ logkwn

2 ÿ wn

1k�;

from which we get that

limn!y�gD�w
n

1 ;w
n

2� ÿ gD�w
n

2;w
n

1�� � 0: r

Having the result on symmetry of the Green function as in Corollary 4.5 it seems to

be probable that the integrated form of the Azukawa pseudometric coincides with some

kind of inner pseudodistance related to the Green function (at least for bounded

hyperconvex domains), de®ned similarily as it was done in [Jar-P¯1].

Example 4.6. There is a bounded pseudoconvex domain for which we cannot

replace `limsup' with `lim' in the de®nition of the Azukawa pseudometric. Let

Dh � fz A C 2
: h�z� < 1g be a bounded pseudoconvex balanced domain, where h is the

Minkowski function of Dh, such that h�1; 1� � 1 and there are sequences fakg
y

k�1 and

fbkg
y

k�1 of points from E di¨erent from 0 such that ak ! 0, bk ! 0 and

limk!y h�1; exp�ak�� ! d < 1; limk!y h�1; exp�bk�� � 1

(note that such a function and sequences exist). De®ne F : C
2
C �z1; z2� 7!

�z1; z2 exp�z1�� A C
2. Note that F is a biholomorphism. Put D :� F

ÿ1�Dh�. Remark

that D is a bounded pseudoconvex domain. For k large we have the following

sequence of equalities (see Theorem 1.1(ii) and (viii)):

gD�0; �ak; ak�� ÿ logjakj � gDh
�0; �ak; exp�ak�ak�� ÿ logjakj

� log h�ak; exp�ak�ak� ÿ logjakj � log h�1; exp�ak��
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and the last expression tends to log d < 0 as k tends to in®nity. Similarily we get that

gD�0; �bk; bk�� ÿ logjbkj ! 0 as k tends to infinity;

which gives us that there is no limit in the de®nition of the Azukawa metric of

AD�0; �1; 1��.

Corollary 4.7. If D is a domain in C , then AD is continuous and for any w A D

AD�w; 1� � liml!0�gD�w;w� l� ÿ logjlj� and if qD is not polar then

AD�w; 1� � limw 0;w 00!w;w 00w 00�gD�w
0;w 00� ÿ logkw 0 ÿ w 00k�:

Proof. The result is trivial if qD is polar. Therefore, we may assume that qD

is not polar. We know that gD is continuous (see [Ran]), therefore, in view of

Theorems 4.1 and 4.2 and Corollary 4.4, it is su½cient to show that for any w A D,

e�w� > ÿy. Take any point z0 A qD. Without loss of generality we may assume that

z0 A C . There is r > 0 such that qDnB�z0; r� is not polar. Put ~D :� DUB�z0; r�. ~D is

a domain. Then z0 A ~D and q ~D is not polar. Therefore, (see [Ran]),

liminf z!z0; z A D gD�w; z�V liminf z!z0; z A ~D g~D�w; z� � g~D�w; z0� > ÿy:

This completes the proof. r

5. Pluricomplex Green function with many poles.

Below we deal with the upper and lower bound from the following formula (see

[Lel ]):

minfn�p�gD�p; z� : p A PgV gD�P; n; z�V
X

p AP

n�p�gD�p; z�; z A D:�5:1�

First we consider the case of the lower bound from the formula (5.1). Let us consider

the following sets (see [Lel ]):

E�D;P; n� :� z A D : gD�P; n; z� �
X

p AP

n�p�gD�p; z�

( )

:

Certainly, PHE�D;P; n�.

We have the following:

Lemma 5.1. Let D and P be as above. Then for any m; n : P 7! �0;y� the following

equality holds:

E�D;P; n� � E�D;P; m�:

Proof. Let us take z A E�D;P; n�, z B P. In view of (5.1) we may assume without

loss of generality that gD�p; z� > ÿy for any p A P. Fix e > 0 so small that:

min
X

p AQ

n�p�gD�p; z� : q0QHP;Q0P

( )

�5:2�

>
X

p AP

n�p�gD�p; z� �min
n�p�

m�p�
: p A P

� �

e

]P
:
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Because of (2.1) there is j A O�E;D� such that j�0� � z, jÿ1�P�VE0q and

gE�j
ÿ1�P�VE; ~n; 0� <

X

p AP

n�p�gD�p; z� �min
n�p�

m�p�
: p A P

� �

e

�

]P:�5:3�

First note that in view of (5.1), (5.2) and (2.1) we get that jÿ1�p�VE0q for any

p A P. The left hand-side in the inequality (5.3) equals

X

l AE;j�l� A P

~n�l� logjlj �
X

p AP

X

l AE;j�l��p

~n�l� logjlj

�
X

p AP

gE�j
ÿ1�p�VE; ~njjÿ1�p�VE ; 0�:

Each summand in the last expression is at least n�p�gD�p; z�, which gives us, in view of

(5.3), that

n�p�

m�p�
gE�j

ÿ1�p�VE; ~mjjÿ1�p�VE ; 0�

� gE�j
ÿ1�p�VE; ~njjÿ1�p�VE ; 0�

< n�p�gD�p; z� �min
n�p�

m�p�
: p A P

� �

e

�

]P; p A P;

so

gE�j
ÿ1�p�VE; ~mjjÿ1�p�VE ; 0� < m�p�gD�p; z� � e=]P:

Summing over p A P we get that (see (5.1))

X

p AP

m�p�gD�p; z�U gD�P; m; z� <
X

p AP

m�p�gD�p; z� � e;

and, consequently, z A E�D;P; m�. r

As an immediate corollary we get

Corollary 5.2. Let PHBn, ]PV 2, nV 2. Then E�Bn;P; n� � PU �LVBn�,

where L is the complex straight line containing P (L � q if such a line does not exist).

Proof. Use Lemma 5.1 and Remark 3.4 from [Edi-Zwo]. r

We get also the following generalization of the results from [Com] (Proposition 4):

Proposition 5.3. Let P and D be arbitrary. Assume that n; m : P ! �0;y�,

m�p�=n�p�U m�p0�=n�p0� and

gD�P; n; z� � n�p0�gD�p0; z�

for some z A D. Then

gD�P; m; z� � m�p0�gD�p0; z�:
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Proof. Suppose that the last equality does not hold. So because of (2.1) and

(5.1) there is j A O�E;D� such that j�0� � z, j
ÿ1�P�VE0q and

gE�j
ÿ1�P�VE; ~m; 0� < m�p0�gD�p0; z�:

The left hand-side in the last inequality equals the left hand-side of the following:

X

p AP;jÿ1�p�VE0q

m�p�

n�p�
gE�j

ÿ1�p�VE; ~njjÿ1� p�VE ; 0�

V
m�p0�

n�p0�

X

p AP;jÿ1�p�VE0q

gE�j
ÿ1�p�VE; ~njjÿ1�p�VE ; 0�V

m�p0�

n�p0�
gD�P; n; z�

Ðcontradiction. r
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