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Abstract. We investigate the cohomology of a group having ®nite virtual coho-

mological dimension in terms of the contributions from ®nite subgroups. As a result, we

prove a variant of Quillen's F-isomorphism theorem which remains valid for an arbitrary

commutative ring of coe½cients and for suitable families of ®nite subgroups.

1. Introduction.

A discrete group G is said to have ®nite virtual cohomological dimension (written

vcdG < y) if there is a subgroup G
0
JG of ®nite index such that G

0 has ®nite co-

homological dimension. Some of examples of this type of groups are ®nite groups,

arithmetic groups [8], mapping class groups [4], outer automorphism groups of free

groups [3], and Coxeter groups [7]. One of the fundamental problems in topology as

well as in group cohomology is to understand the cohomology of these groups having

®nite virtual cohomological dimension.

This paper is an attempt to understand the cohomology of a group G with

vcdG < y in terms of the contributions from ®nite subgroups. In his famous paper

[5 ], Quillen showed that the natural map

H ��G ;Fp� ! lim

E
 �

H ��E;Fp�

is a uniform F-isomorphism, where Fp is the ®eld of p elements (p a prime) and E runs

all the elementary abelian p-subgroups of G [5, Theorem 14.1]. He also remarked that,

for a ®nite group G, the kernel and the cokernel of the natural map

H ��G;Z� ! lim

A
 �

H ��A;Z�

consist of nilpotent elements, where Z is the ring of integers and A runs all the abelian

subgroups of G [5, p. 599].

In this paper, we will prove a variant of the last mentioned result of Quillen which

holds for groups having ®nite virtual cohomological dimension. To be more precise,

for an arbitrary commutative ring k with identity and an arbitrary family F of ®nite

subgroups of G such that (i) for every ®nite subgroup H in G , there is K A F such that
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HJK , and (ii) F is closed under conjugation and taking intersections, we will show

that the kernel and the cokernel of the natural map

H ��G ; k� ! lim

H AF
 �

H ��H; k�

consist of nilpotent elements (see Theorem 1 for detail). Our result illustrates the

importance of the contributions from ®nite subgroups in understanding the cohomology

of a group G with vcdG < y, not only with coe½cients in Fp but also with coe½cients

in an arbitrary commutative ring, particularly in Z.

In trying to explain the cohomology of a group G with vcdG < y in terms of

its ®nite subgroups, one could also consider the Farrell-Tate cohomology Ĥ ��G ; k� of

G (or the Farrell cohomology in the literature), which is expected to have a better

behavior than the ordinary cohomology in relation to ®nite subgroups. We will also

prove the analogue of our main result for the Farrell-Tate cohomology (see Theorem 2

for detail). We refer to [2, Chapter X] for the general theory of the Farrell-Tate

cohomology.

The rest of this paper is organized as follows: In §2, we state our main results in

full detail. In §3, we consider the Leray spectral sequences associated to a contractible,

proper G-simplicial complex, which are necessary to prove our results. The proofs of

Theorems 1 and 2 will be given in §4. As byproducts of Theorems 1 and 2, we will

prove in §5 that if u A H ��G ; k� (resp. u A Ĥ ��G; k�� restricts to zero for every maximal

®nite subgroup of G , then u is nilpotent (Theorem 4).

This study grew out of our earlier paper [1], in which the analogues of Theorems 1

and 2 for Coxeter groups were proved. Indeed, the main result of [1] follows from

Theorems 1 and 2. Some of the arguments in §4 are re®nements of those used in [1].

Notation. Let G be a group with vcdG < y and H a subgroup of G . For a

subgroup K of H, we denote by resHK the restriction map H ��H; k� ! H ��K ; k� or

Ĥ ��H; k� ! Ĥ ��K ; k�. For u A H ��H; k� (resp. u A Ĥ ��H; k�) and g A G , we denote by

gu the image of u under the isomorphism H ��H; k� ! H ��gHgÿ1; k� (resp. Ĥ ��H; k� !

Ĥ ��gHgÿ1; k�) induced by conjugation gHgÿ1 ! H by gÿ1.

2. Statement of main results.

Let G be a group having ®nite virtual cohomological dimension. A family F of

®nite subgroups of G is said to be admissible if the following three conditions are

satis®ed:

1. gHgÿ1 A F for all g A G, H A F.

2. If H1;H2 A F then H1 VH2 A F.

3. For every ®nite subgroup H in G , there exists K A F such that HJK .

In particular, the family of all ®nite subgroups is admissible. Let k be an

arbitrary commutative ring with identity. Let H ��G ; k� (resp. Ĥ��G ; k�) be the sub-

ring of
Q

H AF H ��H; k� (resp.
Q

H AF Ĥ ��H; k�) consisting of those families �uH�H AF

satisfying the following two conditions:

1. guH � ugHgÿ1 for all g A G , H A F.

2. If K JH then resHK uH � uK .
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The subring H ��G ; k� is identical to the inverse limit of H ��H; k� which appeared in

the introduction. Let r : H ��G; k� ! H ��G ; k� (resp. r̂ : Ĥ ��G ; k� ! Ĥ��G ; k�) be the

canonical ring homomorphism induced by restriction maps H ��G; k� ! H ��H; k� (resp.

Ĥ ��G ; k� ! Ĥ ��H; k�). Now we can state our main results.

Theorem 1. Let G be a group with vcdG < y, F an admissible family of ®nite

subgroups of G , and k a commutative ring with identity. Then the kernel and the cokernel

of the canonical ring homomorphism r : H ��G ; k� ! H ��G ; k� consist of nilpotent ele-

ments.

We also have an analogue of Theorem 1 for the Farrell-Tate cohomology:

Theorem 2. Let G be a group with vcdG < y, F an admissible family of ®nite

subgroups of G , and k a commutative ring with identity. Then the kernel and the cokernel

of the canonical ring homomorphism r̂ : Ĥ ��G; k� ! Ĥ��G; k� consist of nilpotent

elements.

The proof of Theorem 2, for the case F is the family of all ®nite subgroups and k is

the ®eld Fp of p elements (p a prime), can be found in [2, Proposition X.4.6].

3. Preliminaries.

We begin with some de®nitions concerning of the notion of a G-simplicial complex.

An ordered simplicial complex is a simplicial complex together with a partial ordering on

its vertices, such that the vertices of any simplex are linearly ordered: v0 < v1 < � � � < vn.

Let G be a group. An ordered G-simplicial complex is an ordered simplicial complex X

together with a simplicial action of G on X which preserves an ordering on vertices.

If X is an ordered G-simplicial complex, then for each simplex s of X the isotropy

subgroup Gs ®xes s pointwise. An ordered G-simplicial complex X is proper if the

isotropy subgroup Gs is ®nite for every simplex s of X . The following lemma due to

Serre [7 ] occurs as a fundamental ingredient for proving Theorems 1 and 2.

Lemma 1. Let G be a group having ®nite virtual cohomological dimension. Then

there exists a ®nite dimensional, contractible, proper, ordered G-simplicial complex having

the following property: For every ®nite subgroup HHG , the ®xed point set X H is non-

empty and contractible.

See also [2, Chapter VIII]. Associated with such a G-simplicial complex X , we

have the Leray spectral sequences

E
p;q
1 �

Y

s ASp

H q�Gs; k� ) H p�q�G; k� �1�

for the ordinary cohomology of G , and

Ê
p;q
1 �

Y

s ASp

Ĥ q�Gs; k� ) Ĥ p�q�G; k� �2�

for the Farrell-Tate cohomology of G , where Sp is a set of representatives for the p-

simplices of X modulo G , and Gs is the isotropy subgroup of s [2, §VII.7 and §X.4].
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Let X0 be the set of vertices of X . The ®ber terms of the spectral sequences (1)

and (2) can be characterized as follows:

Lemma 2. E
0;�
2 (resp. Ê

0;�
2 � can be identi®ed with the subring of

Q

v AX0
H ��Gv; k�

(resp.
Q

v AX0
Ĥ ��Gv; k�� consisting of those families �uv�v AX0

satisfying the following two

conditions:

1. guv � ugv for any g A G , v A X0.

2. If e is a 1-simplex of X with vertices v0; v1, then uv0 and uv1 restrict to the same

element of H ��Ge; k� (resp. Ĥ ��Ge; k��.

Proof. See [2, §X.4]. r

The rest of this section is devoted to prove H ��G ; k� (resp. Ĥ��G ; k�) is isomorphic

to E
0;�
2 (resp. Ê0;�

2 ). Let �uH�H AF be an element of H ��G ; k� or Ĥ��G ; k�. For each

v A X0, choose H A F such that Gv JH and set wv � resHGv uH . Then wv is independent

of the choice of H A F. Indeed, if Gv JK A F is another choice, then Gv JH VK A

F and resHGv uH � resH VK
Gv

� resHH VKuH � resH VK
Gv

uH VK � resH VK
Gv

� resKH VKuK � resKGvuK by

the de®nition of H ��G ; k� or Ĥ��G ; k�.

Lemma 3. Under the identi®cations of E
0;�
2 (resp. Ê

0;�
2 � with the subring of

Q

v AX0
H ��Gv; k� (resp.

Q

v AX0
Ĥ ��Gv; k�� given in Lemma 2, the family �wv�v AX0

de®ned

above belongs to E
0;�
2 (resp. Ê

0;�
2 �.

Proof. The family �wv�v AX0
satis®es the ®rst condition of Lemma 2. Indeed, if

H A F with Gv JH then gHgÿ1 A F and Ggv � gGvg
ÿ1

J gHgÿ1, which implies

gwv � g � resHGv uH � resgHgÿ1

Ggv
guH � resgHgÿ1

Ggv
ugHgÿ1 � wgv:

Here the third equality follows from the de®nition of H ��G ; k� or Ĥ��G ; k�.

To see �wv�v AX0
satis®es the second condition of Lemma 2, for every 1-simplex e of

X with vertices v0; v1, choose H0;H1 A F with Gv0 JH0, Gv1 JH1. Then Ge JGv0 VGv1

JH0 VH1 A F and the following diagram is commutative:

H ��H0; k� ����!
res

H0
H0 VH1

H ��H0 VH1; k�  ����

res
H1
H0 VH1

H ��H1; k�

res
H0
Gv0

?
?
?
y

res
H0 VH1
Ge

?
?
?
y

res
H1
Gv1

?
?
?
y

H ��Gv0 ; k� ����!
res

Gv0
Ge

H ��Ge; k�  ����

res
Gv1
Ge

H ��Gv1 ; k�:

This proves res
Gv0
Ge

wv0 � res
Gv1
Ge

wv1 , since wv0 � resH0

Gv
uH0

and wv1 � resH1

Gv
uH1

. The proof

for the Farrell-Tate cohomology is similar. r

Now de®ne j : H ��G ; k� ! E
0;�
2 and ĵ : Ĥ��G ; k� ! Ê

0;�
2 to be the ring homo-

morphisms which assign �wv�v AX0
to �uH�H AF.

Lemma 4. j : H ��G; k� ! E
0;�
2 and ĵ : Ĥ��G ; k� ! Ê

0;�
2 are isomorphisms.

Proof. To prove j is injective, suppose j assigns to �uH�H AF and �u 0H�H AF

the same element �wv�v AX0
. Given H A F, choose v A X0 such that HJGv. This is
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possible since X H 0q by Lemma 1. Choose K A F such that HJGv JK , then

resKGvuK � wv � resKGvu
0
K by the assumption. It follows from the second condition in the

de®nition of H ��G ; k� that

uH � resKHuK � resGvH � resKGvuK � resGvH � resKGvu
0
K � resKHu

0
K � u 0

H ;

which proves that j is injective.

To prove that j is surjective, suppose �wv�v AX0
satis®es conditions 1 and 2 of

Lemma 2. Given H A F, choose a vertex v such that HJGv and set uH � resGvHwv.

Since X H is connected, the second condition of Lemma 2 shows that uH is independent

of the choice of v. It is easy to check that the resulting family �uH�H AF is in H ��G ; k�

and that its image under j is �wv�v AX0
. The proof for ĵ is similar. r

4. Proof of theorems.

Using the identi®cations H ��G ; k�GE
0;�
2 and Ĥ��G ; k�G Ê

0;�
2 given in the last

section, it is easy to see that r is simply the edge homomorphism

H ��G ; k� !! E0;�
y ,! E

0;�
2 G

j

H ��G ; k�

associated to the spectral sequence (1), and that r̂ is the edge homomorphism

Ĥ ��G ; k� !! Ê0;�
y ,! Ê

0;�
2 G

ĵ

Ĥ��G; k�

associated to the spectral sequence (2) (cf. the proof of Proposition X.4.6 and Exercise 1

of §VII.7 in [2]). Thus, to prove Theorems 1 and 2, it su½ces to show the following

two claims: (i) Every element in the kernel of the edge homomorphism H ��G ; k� !

E
0;�
2 (resp. Ĥ ��G ; k� ! Ê

0;�
2 ) is nilpotent. (ii) For any u A E

�;0
2 (resp. u A Ê

�;0
2 ), there is

an integer nV 1 such that un A E�;0
y (resp. un A Ê�;0

y ). Since dimX < y, the ®rst claim

is a formal consequence of the multiplicative structure of the spectral sequences (1) and

(2) (cf. the proof of [2, Proposition X.4.6]).

Let l � l�G� be the least common multiple of the orders of the ®nite subgroups of

G . Such l�G� exists since G is a group having ®nite virtual cohomological dimension.

Lemma 5. In the spectral sequences �1� and �2�, E p;q
r is annihilated by l�G� for any

p and q0 0, and Ê p;q
r is annihilated by l�G� for any p and q.

Proof. Since E p;q
r (resp. Ê p;q

r ) is a subquotient of E
p;q
rÿ1 (resp. Ê p;q

rÿ1), it su½ces to

prove the case r � 1. For any simplex s of X the isotropy subgroup Gs is ®nite since X

is proper. Hence H q�Gs; k� �q > 0� and Ĥ q�G ; k� (all q) are annihilated by the order of

Gs. Since E
p;q
1 (resp. Ê p;q

1 ) is a product of H q�Gs; k� (resp. Ĥ q�Gs; k�) with s A Sp, E
p;q
1

�q > 0� and Ê
p;q
1 is annihilated by l�G�. r

Lemma 6. Suppose rV 2. For any element u A E0;q
r (resp. u A Ê0;q

r �, there is an

integer nV 1 such that un A E
0;nq
r�1 (resp. un A Ê

0;nq
r�1 �.

Proof. Let dr and d̂r be the di¨erentials d 0;q
r : E0;q

r ! E r;qÿr�1
r and d̂ 0;q

r : Ê0;q
r !

Ê r;qÿr�1
r , respectively. Let u A Ê 0;q

r . If q is even, then d̂r�u
l� � lu lÿ1d̂r�u� � 0, since
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Ê r;qÿr�1
r is annihilated by l � l�G�. Hence u l A Ê

0; lq
r�1 . If q is odd, then d̂r�u

2� � 0 as in

the proof of [1, Lemma 1]. Hence u2 A Ê
0;2q
r�1 .

Now let u A E0;q
r . When q0 rÿ 1, the proof is similar to the case of u A Ê0;q

r .

When q � rÿ 1, the image of the di¨erential d 0;q
r belongs to E r;0

r , which may not be

annihilated by l�G�. However, applying to u2 the assertion for u A Ê0;q
r with q even, we

obtain u2l A E
0;2lq
r�1 . r

By making use of Lemma 6, the proof of the second claim is similar to that of

[1, Theorem 1]. This completes the proof of Theorems 1 and 2.

5. An application.

The result of Quillen mentioned in the introduction implies the following:

Theorem 3. Let G be a group with vcdG < y. If u A H ��G ;Fp� restricts to zero

on every elementary abelian p-subgroup of G , then u is nilpotent.

The alternative proof of Theorem 3 for ®nite groups can be found in [6]. As an

application of Theorems 1 and 2, we obtain a variant of Theorem 3 for an arbitrary

commutative ring of coe½cients:

Theorem 4. Let G be a group with vcdG < y and k a commutative ring with

identity. If u A H ��G ; k� (resp. u A Ĥ ��G ; k�� restricts to zero on every maximal ®nite

subgroup of G , then u is nilpotent.

Proof. Suppose that u A H ��G ; k� (resp. u A Ĥ ��G ; k�) satis®es resGKu � 0 for every

maximal ®nite subgroup K. Choose an admissible family F of ®nite subgroups of G

and let r : H ��G ; k� ! H��G ; k� (resp. r̂ : Ĥ ��G ; k� ! Ĥ��G ; k�) be the canonical ring

homomorphism induced by restrictions as in §2. In view of Theorems 1 and 2, to prove

Theorem 4 it su½ces to show ru � 0 (resp. r̂u � 0). A family F contains all maximal

®nite subgroups of G by the de®nition of F. We have resGHu � 0 for every H A F, since

there is a maximal ®nite subgroup K A F with HJK . As the homomorphism r (resp.

r̂) is induced by resGH �H A F�, we have ru � 0 (resp. r̂u � 0). r
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