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Abstract. We consider a semilinear elliptic equation in a varying thin

domain of R
n. This thin domain degenerates into a geometric graph when a

certain parameter tends to zero. We determine a limit equation on the graph

and we prove that a solution of the PDE converges to a solution of the limit

equation. Conversely, when a solution of the limit equation is given, we con-

struct a solution of the PDE approaching a solution of the limit equation.

§1. Introduction.

We consider a situation that a domain W�z� of Rn �nZ 2� is a varying thin domain

whose size in some directions vanishes when z tends to zero. We assume the boundary

qW�z� is decomposed into two portions S�z� and G�z� and the size of W�z� in the

normal direction on S�z� vanishes as z ! 0. In this situation, we consider a boundary

value problem

Du� f �u� � 0 in W�z�;

qu

qn
� 0 on S�z�;

u � az on G�z�
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�1:1�

where n denotes the unit outward normal vector on qW�z�, f is a function on R and az is

a function on G�z�. For some domains, we can determine a limit problem of (1.1) on a

low dimensional domain.

Many researchers have studied PDEs on thin domains and associated low di-

mensional equations. Among them, Yanagida [8] has studied the existence of a stable

stationary solution of reaction-di¨usion equations when an associated one-dimensional

equation has a stable stationary solution. Hale and Raugel [3] have studied the upper

semi-continuity at z � 0 of the attractors of reaction-di¨usion equations on a thin L-

shaped domain of R
2. Yanagida [9] classi®ed graphs according to stability on non-

constant steady states of a reaction-di¨usion equation.
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In this paper, we specify some varying thin network-shaped domains (see Figure 1)

which approach some geometric graphs (see Figure 2) and we consider (1.1) on such a

domain W�z� and an associated equation on a graph G. The ®rst purpose is to prove a

solution of (1.1) on W�z� converges uniformly to a solution of the limit equation on G

as z tends to zero. The second purpose is, when a solution of the limit equation on G

exists, to prove the existence of a solution of (1.1) on W�z� which approaches it as

z ! 0.

An outline of this paper is as follows: In §2, we deal with a simple graph G and a

varying thin domain W�z� which degenerates into G and we describe a result in this

special case and prove it. In §3, we deal with a more general graph G and a network-

shaped domain W�z� and describe a similar result to §2 (cf. Theorem 2). In §4, we

consider a certain inverse problem of Theorem 2. We prove that if the linearized

equation around a solution of the limit equation has no zero eigenvalue, then the PDE

has a solution which approaches it.

Acknowledgment. I wish to express my sincere gratitude to Professor Shuichi

Jimbo for valuable advice and comments, and I thank Referees for valuable comments.

§2. A simple case.

We consider a simple graph G such that several line segments meet one point, that

is, G is a set which consists of a point O and line segments Ej�OVj � j�1; . . . ;N;NZ2�

(see Figure 3). To simplify an argument, O is the origin and lj > 0 denotes the length

of Ej. Let x � �x1; . . . ; xn� � �x1; x
0� A R

n. We de®ne thin cylinder regions Dj�z�H

R
n � j � 1; . . . ;N� as

Dj�z� � fRjx : zlY x1 < lj; jx
0j < zdjg for z A �0; z��

Figure 1 Figure 2
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where each dj is a positive constant and Rj is an orthogonal transformation satisfying

detRj � 1 and Rje1 � lj
ÿ1Vj for e1 � �1; 0; . . . ; 0�. We take constants l > 0 and z� > 0

such that Dj�z�0q and Dj�z�VDj 0�z� � q for j0 j 0 and z A �0; z��. We denote by

Gj �z� a portion of the boundary qDj�z� which approaches Vj and by ~Gj �z� a portion

which approaches O. Namely,

Gj �z� � fRjx : x1 � lj; jx
0jY zdjg;

~Gj �z� � fRjx : x1 � zl; jx 0jY zdjg:

Let J be an open set of R
n which contains O and satis®es J VDj�z�� � q and qJ V

qDj�z�� � ~Gj �z�� for 1Y jYN and q��6N

j�1
Dj�z���U J�n�6N

j�1
Gj �z��� is C3 (if n � 2,

each connected component is C3). We de®ne a varying region J�z�HR
n as

J�z� � f�z=z��x : x A Jg for z A �0; z��:

Now, we de®ne a varying domain W�z�HR
n �0 < zY z�� as

W�z� � 6
N

j�1

Dj�z�

 !

U J�z� for z A �0; z��

(see Figure 4). We remark that qW�z�n�6N

j�1
Gj �z�� is C 3 and 7

z>0
W�z� � G. We will

call such domains as simple network-shaped domains in this paper.

Figure 3 Figure 4
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In this situation, we study the convergence of a solution of a boundary value

problem

Du� f �u� � 0 in W�z�;

qu

qn
� 0 on S�z�;

u � aj; z on Gj �z� for j � 1; . . . ;N
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�2:1�

where S�z� is a set S�z� � qW�z�n�6N

j�1
Gj �z��, f is a real valued function on R such that

f A C 2�R�; lim sup
x!y

f �x� < 0; lim inf
x!ÿy

f �x� > 0;�2:2�

and each aj; z is a real valued continuous function on Gj �z� which approaches a certain

constant aj, that is,

lim
z!0

sup
Gj�z�

jaj; z�x� ÿ aj j � 0 for j � 1; . . . ;N:�2:3�

By the assumption (2.2) and (2.3), we can easily to show a-priori bound of solutions

of (2.1) because of Hopf 's maximum principle (see Protter and Weinberger [7]). By an

argument similar to the monotone method (see Sattinger [10]), we obtain a solution of

(2.1).

Now, we prepare a certain system of ordinary di¨erential equations used in main

results. The system of ODEs is

c 00
j �s� � f �cj�s�� � 0 on 0 < s < lj for j � 1; . . . ;N;

c1�0� � � � � � cN�0�;

P

N

j�1

d nÿ1
j c 0

j �0� � 0;

cj�lj� � aj for j � 1; . . . ;N;
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�2:4�

where each cj is a function on an interval �0; lj �, the second condition of (2.4) implies

that the solution is continuous at O and the third condition implies that the sum of ¯ux

vanishes at O (see Yanagida [9]).

The equation (2.4) is not a usual 2-points boundary value problem. However, we

can prove the existence of solutions by using the Green function. Indeed, applying the

maximum principle with the assumption (2.2) and second and third condition of (2.4), we

have a-priori bound of solutions of (2.4). From easy calculation, any solution of (2.4) is

a ®xed point of a map F : �c1; . . . ;cN� ! �f1; . . . ; fN� on C��0; l1�� � � � � � C��0; lN ��
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fj�s� �
X

N

k�1

� lk

0

Gj;k�s; t� f
��ck�t�� dt� wj�s� �1Y jYN�

where Gj;k is the Green function

Gj; j�s; t� �

lj ÿ s

lja
d nÿ1
j � aÿ

d nÿ1
j

lj

 !

t

 !

0Y tY sY lj;

lj ÿ t

lja
d nÿ1
j � aÿ

d nÿ1
j

lj

 !

s

 !

0Y sY tY lj;

8
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Gj;k�s; t� �
lj ÿ s

lja

d nÿ1
k �lk ÿ t�

lk
0Y sY lj; 0Y tY lk; j0 k;

a �
X

N

k�1

d nÿ1
j

lj

and wj is a harmonic function on �0; lj �

wj�s� � aj ÿ
1

a

X

N

k�1

d nÿ1
k ak

lk

 ! !

s

lj
�
1

a

X

N

k�1

d nÿ1
k ak

lk

 !

and f � is a continuous function

f ��x� �

f �~x� xZ ~x;

f �x� ÿ~xY xY ~x;

f �ÿ~x� xY ÿ ~x;

8

>

<

>

:

~x � maxfjajj; jxj : f �x� � 0g:

It is easy to show that the map F is a compact map on a certain bounded ball.

Therefore, we obtain a solution of (2.4).

Now, we present one of the main results as follows:

Theorem 1. Suppose that a sequence fzmg
y

m�1 H �0; z�� satis®es limm!y zm � 0 and

that um is any solution of (2.1) at z � zm. Then, there exist a subsequence fzm�k�g
y

k�1 H

fzmg
y

m�1 and a solution c � �c1; . . . ;cN� of (2.4) such that

lim
k!y

sup
x A J�zm�k��

jum�k��x� ÿ b�c�j � 0;

lim
k!y

sup
x ADj�zm�k��

jum�k��x� ÿ cj�p1 � R
ÿ1
j x�j � 0 for 1Y jYN

8
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>

:

�2:5�
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where p1 is the orthogonal projection to the ®rst coordinate p1x � x1 and b�c� is the value

of c at O, that is, b�c� � c1�0� � � � � � cN�0�.

We ®rst prove a proposition which is necessary in the proof. The following

proposition is proved by the maximum principle.

Proposition 2.1. Let WHR
n be a bounded domain with a piecewise C 3 boundary

qW which is decomposed into the sets S and G , that is, qW � SUG and SVG � q. Let

l1 � l1�W� be the ®rst eigenvalue of the eigenvalue problem

Df� lf � 0 in W;

qf

qn
� 0 on S;

f � 0 on G :

8
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>
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>

:

Assume h�x� < l1 in W and u A C2�W�VC1�WUS�VC 0�WUG� satis®es

Du� h�x�uZ 0 in W;

qu

qn
� 0 on S;

uY 0 on G:

8

>

>

>

>

<

>

>

>

>

:

Then, uY 0 in W.

Proof of Proposition 2.1. We take the ®rst eigenfunction f1 > 0 in W. We de®ne

d 0 Z 0 as

d 0 � inffd > 0 : u�x� ÿ df1�x�Y 0 in WUSg:

Suppose u attains its positive maximum u�x 0� > 0 at some points x 0 A WUS. Then,

uÿ d 0f1 attains its maximum 0 at x 0 A WUS and we obtain d 0 > 0 and

D�uÿ d 0f1� � �h�x� ÿ l1��uÿ d 0f1�

� ÿl1�uÿ d 0f1� � �l1 ÿ h�x��d 0f1

Z 0 in W:

Applying the maximum principle and E. Hopf 's lemma (see Gilbarg and Trudinger

[1]), we obtain u�x� ÿ d 0f1�x�1 0 in W. Therefore u is also the ®rst eigenfunction. This

is contrary to the assumption h�x�<l1. We complete the proof of Proposition 2.1.

r
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Proof of Theorem 1. We take a positive constant

c1 � maxfmaxfjxj : f �x� � 0; x A Rg;maxfjajj � 1 : 1Y jYNgg:

Applying the maximum principle to (2.1) with (2.2) and (2.3), any solution um of (2.1) at

z � zm satis®es

sup
x AW�zm�

jum�x�jY c1 for mZ 1:

Let e0 > 0 be small so that

p2eÿ2
0 > sup

jxj<2c1�1

j f 0�x�j�2:6�

and let 0 < d1 < d2 < e0. Without loss of generality, we may take z� > 0 small so that

z� l < d1 and z� < d2 ÿ d1.

To see the behavior of um on a thin portion Dj�z�, we de®ne a cylinder domain

Q�a; b; g�HR
n �a < b; g > 0� as

Q�a; b; g� � fy � �y1; y
0� A R

n
: a < y1 < b; jy 0j < gg

and we de®ne functions wj;m on Q�zl; lj; dj� as

wj;m�y� � um�Rj�y1; zy
0�� �y A Q�zl; lj; dj�; mZ 1; 1Y jYN�:

To see the behavior of um on J�z�, we de®ne a portion Je0�z�HW�z� which contains

J�z� as

Je0�z� � 6
N

j�1

fRjx : zlY x1 < e0; jx
0j < zdjg

 !

U J�z�

(see Figure 5) and we de®ne functions vm on a ®xed domain Je0�z�� as

vm�y� � um��zm=z��y� �y A Je0�z���:

We de®ne functions cj;m�s� on �d1; lj ÿ d1� as

cj;m�s� �
1

jBnÿ1
dj

j

�

jy 0j<dj

wj;m�s; y
0� dy 0 �d1 Y sY lj ÿ d1�

for mZ 1 and 1Y jYN where Bnÿ1
dj

is an nÿ 1 dimensional ball of a radius dj and

jBnÿ1
dj

j is its nÿ 1 dimensional measure.
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It is easy to see that the function vm satis®es

Dyvm � �zm=z
��2 f �vm� � 0 in Je0�z��;

qvm

qn
� 0 on qW�z��V Je0�z��

8

>

<

>

:

�2:7�

for mZ 1 and the function wj;m satis®es

Pzmwj;m � f �wj;m� � 0 in Q�zl; lj; dj�;

qwj;m

qn
� 0 on qQ�zl; lj ; dj�V qQ�ÿy;y; dj�

8

>

<

>

:

�2:8�

for mZ 1 and 1Y jYN where Dy is the Laplacian

Dy �
X

n

i�1

q2

qy2i

and Pz denotes the di¨erential operator

Pz �
q2

qy21
�

1

z2

X

n

i�2

q2

qy2i
:

In this situation, Jimbo [4] has proved that the partial derivative qwj; z=qy1 of the

solution of (2.8) is bounded in such a cylinder domain and that the restriction of

qwj; z=qyi to a certain portion of the boundary is bounded.

Figure 5
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Lemma 2.2. There exists a constant c2 � c2�c1; d1� > 0 such that

�

�

�

�

qwj;m

qy1
�y�

�

�

�

�

Y c2 for y A Q�d1; lj ÿ d1; dj�;

X

n

i�2

�

�

�

�

qwj;m

qyi
�y�

�

�

�

�

2

Y c2z
4
m for y A qQ�d1; lj ÿ d1; dj�V qQ�ÿy;y; dj�

for mZ 1 and 1Y jYN.

We omit the proof (see Jimbo [4; Lemma 3.7, 3.8]).

Lemma 2.3. There exists a constant c3 > 0 such that

�

Q�d1;ljÿd1;dj�

jwj;m�y� ÿ cj;m�y1�j
2
dyY c3z

2
m �mZ 1; 1Y jYN�:

Proof of Lemma 2.3. From the PoincareÂ inequality, there exists a constant c4 > 0

such that

�

jy 0j<dj

jwj;m�y1; y
0� ÿ cj;m�y1�j

2
dy 0

�

�

jy 0j<dj

�

�

�

�

wj;m�y1; y
0� ÿ

1

jBnÿ1
dj

j

�

jx 0j<dj

wj;m�y1; x
0� dx 0

�

�

�

�

2

dy 0

Y c4

�

jy 0j<dj

j`y 0wj;m�y1; y
0�j2 dy 0 �d1 Y y1 Y lj ÿ d1�:

From (2.8) and Lemma 2.2, we have

�

Q�d1; ljÿd1;d1�

j ỳ 0wj;m�y1; y
0�j2 dy � ÿ

�

Q�d1; ljÿd1;d1�

wj;m�y�Dy 0wj;m�y� dy

� z2m

�

Q�d1; ljÿd1;d1�

wj;m�y�
q2wj;m

qy21
�y� dy

� z2m

�

Q�d1; ljÿd1;d1�

wj;m�y� f �wj;m�y�� dy
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� z2m

�

jy 0j<dj

wj;m�lj ÿ d1; y
0�
qwj;m

qy1
�lj ÿ d1; y

0� dy 0

ÿ z2m

�

jy 0j<dj

wj;m�d1; y
0�
qwj;m

qy1
�d1; y

0� dy 0

ÿ z2m

�

Q�d1; ljÿd1;d1�

qwj;m

qy1
�y�

� �2

dy

� z2m

�

Q�d1; ljÿd1;d1�

wj;m�y� f �wj;m�y�� dy

Y z2mjB
nÿ1
dj

j 2c1c2 � ljc
2
2 � ljc1 sup

jxj<c1

j f �x�j

( )

:

Thus, we complete the proof of Lemma 2.3. r

Lemma 2.4. There exist a subsequence fm�k�gyk�1, cj;y A C 0��d1; lj ÿ d1�� �1Y jYN�

and a constant b such that

lim
k!y

sup
y A J�z��

jvm�k��y� ÿ bj � 0;�2:9�

lim
k!y

sup
d1YsYljÿd1

jcj;m�k��s� ÿ cj;y�s�j � 0;�2:10�

lim
k!y

sup
y A qQ�d2; ljÿd2;dj�

jwj;m�k��y� ÿ cj;y�y1�j � 0�2:11�

for 1Y jYN.

Proof of Lemma 2.4. For j � 1; . . . ;N, we de®ne a pair of functions ws
j;m and we

j;m

as

ws
j;m�y� � wj;m�zmy1 � d2; y

0� �y A Q�ÿ1; 1; dj��;

we
j;m�y� � wj;m�zmy1 � lj ÿ d2; y

0� �y A Q�ÿ1; 1; dj��:

It is easy to see that ws
j;m and we

j;m satisfy an equation

Dyw� z2m f �w� � 0 in Q�ÿ1; 1; dj�;

qw

qn
� 0 on qQ�ÿ1; 1; dj�V qQ�ÿy;y; dj�

8

>

<

>

:

�2:12�

for mZ 1 and 1Y jYN.
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Applying the Schauder interior estimates and boundary estimates (see Gilbarg and

Trudinger [1]) to (2.7) and (2.12), there exists a constant c5 > 0 such that kvmkC 2�J�z���
Y

c5, kw
s
j;mkC 2�Q�ÿ1=2;1=2;dj��

Y c5, kw
e
j;mkC 2�Q�ÿ1=2;1=2;dj��

Y c5 for mZ 1 and 1Y jYN. We

have also kcj;mkC 1��d1; ljÿd1��
Y c1 � c2 and kwj;mkC 1�qQ�d2; ljÿd2;dj�V qQ�ÿy;y;dj��

Y c1 � c2 �

��nÿ 1�c2�
1=2

z� for 1Y jYN by Lemma 2.2. From the Ascoli-ArzelaÁ theorem, there

exist a subsequence fm�k�gyk�1 and functions

vy A C1�J�z���; ws
j;y;we

j;y A C 1�Q�ÿ1=2; 1=2; dj��;

wj;y A C 0�qQ�d2; lj ÿ d2; dj�V qQ�ÿy;y; dj��;

cj;y A C 0��d1; lj ÿ d1��;

such that

lim
k!y

kvm�k� ÿ vyk
C 1�J�z���

� 0;

lim
k!y

kws
j;m�k� ÿ ws

j;yk
C 1�Q�ÿ1=2;1=2;dj��

� 0;

lim
k!y

kwe
j;m�k� ÿ we

j;yk
C 1�Q�ÿ1=2;1=2;dj��

� 0;

lim
k!y

kwj;m�k� ÿ wj;ykC 0�qQ�d2;ljÿd2;dj�V qQ�ÿy;y;dj��
� 0;

lim
k!y

kcj;m�k� ÿ cj;ykC 0��d1;ljÿd1��
� 0;

for 1Y jYN. Thus, we obtain (2.10).

By the de®nition of vm and wj;m and Lemma 2.2, we have

�

J�z��

j ỳvm�y�j
2
dy �

znÿ2
�

znÿ2
m

�

J�zm�

j x̀um�x�j
2
dx

Y
znÿ2
�

znÿ2
m

�

Je0 �zm�

j x̀um�x�j
2
dx

�
znÿ2
�

znÿ2
m

�

qJe0 �zm�

um�x�
qum

qn
�x� dsx �

�

Je0 �zm�

um�x� f �um�x�� dx

( )

Y zmz
nÿ2
� c1c2

X

N

j�1

jBnÿ1
dj

j �
jJe0�zm�j

znÿ2
m

znÿ2
� c1 sup

jxj<c1

j f �x�j

! 0 �m ! y�:

Thus, j ỳvyj � 0 in J�z�� and we obtain (2.9).
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To prove (2.11), we show ws
j;y 1cj;y�d2�, we

j;y 1cj;y�lj ÿ d2� and wj;y�y� �

cj;y�y1� on y � �y1; y
0� A qQ�d1; lj ÿ d1; dj�V qQ�ÿy;y; dj� for 1Y jYN. By a similar

argument to the proof of that vy is a constant function, ws
j;y and we

j;y are constant

functions. Thus, we have

jcj;y�d2� ÿ ws
j;yj

Y jcj;y�d2� ÿ cj;m�k��d2�j �
1

jBnÿ1
dj

j

�

jy 0j<dj

jws
j;m�k��0; y

0� ÿ ws
j;yj dy 0

! 0 �k ! y�

by the de®nition of ws
j;m and (2.10) and we obtain ws

j;y 1cj;y�d2�. In a similar way, we

obtain we
j;y 1cj;y�lj ÿ d2�.

From Lemma 2.2 and (2.8), we have

�

Q�d1; ljÿd1;dj�

j ỳ�wj;m�y� ÿ cj;m�y1��j
2
dy

�

�

Q�d1; ljÿd1;dj�

qwj;m

qy1
�y� ÿ c 0

j;m�y1�

� �2

dy

�

�

Q�d1; ljÿd1;dj�

j ỳ 0wj;m�y1; y
0�j2 dy

Y jBnÿ1
dj

j 2c22 lj � z2m�2c1c2 � ljc
2
2 � ljc1 sup

jxj<c1

j f �x�j�

( )

:

Applying the trace theorem with Lemma 2.3 and (2.10), we obtain

�

qQ�d1; ljÿd1;dj�VqQ�ÿy;y;dj�

jwj;y�y� ÿ cj;y�y1�j
2
dsy � 0 �1Y jYN�:

Thus, we obtain (2.11). r

Lemma 2.5. Functions cj;m and cj;y satisfy

c 00
j;m�s� �

1

jBnÿ1
dj

j

�

jy 0j<dj

f �wj;m�s; y
0�� dy 0 � 0�2:13�

�d1 < s < lj ÿ d1; mZ 1�;

c 00
j;y�s� � f �cj;y�s�� � 0 �d1 < s < lj ÿ d1�;�2:14�
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lim
k!y

sup
d1YsYljÿd1

jc 0
j;m�k��s� ÿ c 0

j;y�s�j � 0�2:15�

for 1Y jYN.

Proof of Lemma 2.5. We take an arbitrary f�s� A Cy

0 ��d1; lj ÿ d1��. Then, we have

0 �

�

Q�d1; ljÿd1;dj�

fPzwj;m�y� � f �wj;m�y��gf�y1� dy

�

� ljÿd1

d1

jBnÿ1
dj

jcj;m�y1�f
00�y1� �

�

jy 0j<dj

f �wj;m�y1; y
0�� dy 0f�y1�

( )

dy1

by the equation (2.8). Thus, we obtain (2.13).

By the above equation, Lemma 2.3 and (2.10), applying Schwarz's inequality, we

have

�

�

�

�

jBnÿ1
dj

j

� ljÿd1

d1

fcj;y�y1�f
00�y1� � f �cj;y�y1��f�y1�g dy1

�

�

�

�

�

�

�

�

�

�

Q�d1; ljÿd1;dj�

fcj;y�y1�f
00�y1� � f �cj;y�y1��f�y1�g dy

ÿ

�

Q�d1; ljÿd1;dj�

�Pzwj;m�y� � f �wj;m�y���f�y1� dy

�

�

�

�

�

�

�

�

�

�

Q�d1; ljÿd1;dj�

fcj;y�y1� ÿ wj;m�k��y�gf
00�y1� dy

�

�

Q�d1; ljÿd1;dj�

f f �cj;y�y1�� ÿ f �wj;m�k��y��gf�y1� dy

�

�

�

�

Y kf 00kLy � kfkLy sup
jxjY 2c1

j f 0�x�j

 !

�

fljjB
nÿ1
dj

j kcj;y ÿ cj;m�k��y1�kC��d1; ljÿd1��

� �ljjB
nÿ1
dj

j�1=2kcj;m�k� � p1 ÿ wj;m�k�kL2�Q�d1; ljÿd1;dj��
g

! 0 �k ! y�

where cj;m�k� � p1 denotes a composite function cj;m�k� � p1�y� � cj;m�k��y1�. Thus, we

obtain (2.14).
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We have cj;m�k��d1� ! cj;y�d1� and cj;m�k��lj ÿ d1� ! cj;y�lj ÿ d1� as k ! y for

1Y jYN by (2.10). Thus, from (2.13) and (2.14), we obtain (2.15). r

Lemma 2.6.

lim
k!y

sup
y AQ�d2; ljÿd2;dj�

jwj;m�k��y� ÿ cj;y�y1�j � 0 for 1Y jYN:

Proof of Lemma 2.6. For j � 1; . . . ;N, we de®ne a pair of comparison functions

Y�
j;m and Yÿ

j;m as

YG
j;m�y� � cj;y�y1�G

1

nÿ 1
sup
jxjYc1

j f �x�j�d 2
j ÿ jy 0j2�z2m

G sup
y A qQ�d2; ljÿd2;dj�

jwj;m�y� ÿ cj;y�y1�j �y A Q�d2; lj ÿ d2; dj��:

Then, we have

Pzm�k�
�wj;m�k� ÿY�

j;m�k���y�

� ÿ f �wj;m�k��y�� � f �cj;y�y1�� � 2 sup
jxjYc1

j f �x�j

Z 0 in Q�d2; lj ÿ d2; dj�;

wj;m�k� ÿY�
j;m�k� Y 0 on qQ�d2; lj ÿ d2; dj�:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Applying the maximum principle, we have wj;m�k� YY�
j;m�k� in Q�d2; lj ÿ d2; dj�. In

a similar way, we have Yÿ
j;m�k� Ywj;m�k� in Q�d2; lj ÿ d2; dj�. Thus, we obtain Lemma

2.6. r

In order to see the asymptotic behavior of wj;m�k� in Q�zm�k�l; d2; dj�UQ�ljÿd2; lj ; dj�,

we de®ne functions c
s;�
j;m�k� and c

s;ÿ
j;m�k� on an interval �zm�k�l; e0� and c

e;�
j;m�k� and c

e;ÿ
j;m�k� on

an interval �lj ÿ e0; lj� �1Y jYN� as follows:

Each of c
s;�
j;m�k� and c

s;ÿ
j;m�k� is a unique solution of

�cs;G
j;m�k��

00�s� � f �cs;G
j;m�k��s�� � 0 �zm�k�l < s < e0�;

c
s;G
j;m�k��zm�k�l� � bG sup

x A J�zm�k��

jum�k��x� ÿ bj;

c
s;G
j;m�k��e0� � cj;y�e0�G sup

y AQ�d2; ljÿd2;dj�

jwj;m�k��y� ÿ cj;y�y1�j;

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

respectively, and each of c
e;�
j;m�k� and c

e;ÿ
j;m�k� is also a unique solution of
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�ce;G
j;m�k��

00�s� � f �ce;G
j;m�k��s�� � 0 �lj ÿ e0 < s < lj�;

c
e;G
j;m�k��lj ÿ e0� � cj;y�lj ÿ e0�G sup

y AQ�d2; ljÿd2;dj�

jwj;m�k��y� ÿ cj;y�y1�j;

c
e;G
j;m�k��lj� � aj G sup

x AGj�zm�k��

jaj; zm�k�
�x� ÿ ajj;

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

respectively. It comes from (2.2) and (2.6) that each equation has a unique solution.

Then, we obtain

c
s;ÿ
j;m�k��y1�Ywj;m�k��y�Yc

s;�
j;m�k��y1� �y A Q�zm�k�l; e0; dj��;

c
e;ÿ
j;m�k��y1�Ywj;m�k��y�Yc

e;�
j;m�k��y1� �y A Q�lj ÿ e0; lj; dj��:

8

<

:

�2:16�

Indeed, we can see the function w�x� � wj;m�k��x1; zm�k�
ÿ1x 0� ÿ c

s;�
j;m�k��x1� satis®es

Dw�x� � h�x�w�x� � 0 in Q�zm�k�l; e0; zm�k�dj�;

qw

qn
�x� � 0 on qQ�zm�k�l; e0; zm�k�dj�n�fx1 � zm�k�lgU fx1 � e0g�;

w�x�Y 0 on qQ�zm�k�l; e0; zm�k�dj�V �fx1 � zm�k�lgU fx1 � e0g�

8

>

>

>

>

<

>

>

>

>

:

where h is a function h�x� �
� 1

0 f 0�twj;m�k��x1; z
ÿ1
m�k�x

0� � �1ÿ t�cs;�
j;m�k��x1�� dt. Let l1 be

the ®rst eigenvalue of the following eigenvalue problem

Df� lf � 0 in Q�zm�k�l; e0; zm�k�dj�;

qf

qn
� 0 on qQ�zm�k�l; e0; zm�k�dj�n�fx1 � zm�k�lgU fx1 � e0g�;

f � 0 on qQ�zm�k�l; e0; zm�k�dj�V �fx1 � zm�k�lgU fx1 � e0g�:

8

>

>

>

>

<

>

>

>

>

:

We have l1 � p2�e0 ÿ zm�k�l�
ÿ2

> h�x� by (2.6). Applying Proposition 2.1, we obtain

w�x�Y 0 in Q�zm�k�l; e0; zm�k�dj�. In a similar way, we obtain (2.16).

Let cs
j;y � limk!y c

s;G
j;m�k� and ce

j;y � limk!y c
e;G
j;m�k� for 1Y jYN and we de®ne

functions cj�s� on �0; lj� � j � 1; . . . ;N� as

cj�s� �

cs
j;y�s� �0Y sY e0�;

cj;y�s� �e0 < s < lj ÿ e0�;

ce
j;y�s� �lj ÿ e0 Y sY lj�:

8

>

>

>

<

>

>

>

:

Because of cs
j;y�s� � cj;y�s� on d2 < s < e0 and cj;y�s� � ce

j;y�s� on lj ÿ e0 < s < lj ÿ d2,

�c1; . . . ;cn� satis®es (2.5) and (2.4) except the compatibility condition
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XN
j�1

d nÿ1
j c 0

j �0� � 0:�2:17�

Therefore, we check the above condition.

By the de®nition of wj;m and (2.15), we get

lim
k!y

z1ÿn
m�k�

�
Je0 �zm�k��

Dxum�k��x� dx � lim
k!y

XN
j�1

�
jy 0j<dj

qwj;m�k�

qy1
�e0; y

0� dy 0

�
XN
j�1

jBnÿ1
dj

jc 0
j �e0�:

On the other hand, by Lemma 2.6 and (2.16), we have

lim
k!y

z1ÿn
m�k�

�
Je0 �zm�k��

f �um�k��x�� dx �
XN
j�1

jBnÿ1
dj

j

� e0

0

f �cj�s�� ds:

Since (2.1) and each cj satis®es c 00
j �s� � f �cj�s�� � 0 on 0 < s < lj, we obtain

XN
j�1

jBnÿ1
dj

jc 0
j �e0� � ÿ

XN
j�1

jBnÿ1
dj

j

� e0

0

f �cj�s�� ds

�
XN
j�1

jBnÿ1
dj

j

� e0

0

c 00
j �s� ds

�
XN
j�1

jBnÿ1
dj

jfc 0
j �e0� ÿ c 0

j �0�g:

Thus, we obtain (2.17) and we complete the proof of Theorem 1. r

§3. Network-shaped domains.

In this section, we consider a more general network-shaped domain W�z� for

z A �0; z��. We assume W�z� is a union of simple network-shaped domains

Wi�z� �i � 1; . . . ;N 0� de®ned in §2 (see Figure 6). Namely, we assume

W�z� � 6
N 0

i�1

Wi�z�

where each Wi�z� satis®es the following:
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Wi�z� is a union of a junction region Ji�z� and thin cylinder regions

Di;q�z� �q � 1; . . . ;Ni�, that is,

Wi�z� � 6
Ni

q�1

Di;q�z�

 !

U Ji�z�

and each 7
z>0

Wi�z� is a union of straight line segments which meet one point. If the

intersection of Wi�z� and Wi 0�z� �i0 i 0� is not empty, then there is a pair of thin

cylinder regions Di;q�z� and Di 0;q 0�z� such that Wi�z�VWi 0�z� � Di;q�z�VDi 0;q 0�z� and

that Di;q�z�UDi 0;q 0�z� is a cylinder region for any 0 < z < z�.

Let N > 0 be the number of connected components of 6
i;p
Di;p�z�. We denote by

Dj�z� one of the connected components of 6
i;p
Di;p�z� for 1Y jYN and we denote by

zdj the radius of the circular cross section of each cylinder region Dj�z�. We remark

W�z� is represented by

W�z� � 6
N 0

i�1

Ji�z�

 !

U 6
N

j�1

Dj�z�

 !

:

We denote by G the geometric graph 7
z>0

W�z�. Let Vi be a point

7
z>0

Ji�z� �i � 1; . . . ;N 0� or a extreme point of G �i � N 0 � 1; . . . ;N 00�. Let Ej be a

line segment 7
z>0

Dj�z� � j � 1; . . . ;N�. We remark G is a union of Vi �i � 1; . . . ;N 00�

and Ej � j � 1; . . . ;N�. We assume each Ej has its direction and we denote by lj its

length. We denote by i� j� and k� j� numbers of the startpoint and the endpoint of Ej

Figure 6
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respectively, that is, Vi� j� denotes the startpoint of Ej and Vk� j� denotes the endpoint of

it. Without loss of generality, we may assume i� j� < k� j� for j � 1; . . . ;N (see Figure

7).

We de®ne C 0�G� as a set of continuous functions on G, that is,

C 0�G� � ff � �f1; . . . ; fN� : fj A C 0��0; lj�� �1Y jYN�;

any fj�lj� and fj 0�0� with k� j� � i� j 0� � i have

an equal value for each i � 1; . . . ;N 0g:

We denote by bi�f� the value of f A C 0�G� at Vi, that is,

bi�f� �
fj�0� if i� j� � i;

fj�lj� if k� j� � i:

�

We de®ne mappings Tj on R
n � j � 1; . . . ;N� as

Tjx � Rjx� Vi� j� x A R
n

where each Rj is an orthogonal transformation satisfying detRj � 1 and Rje1 �

lj
ÿ1�Vk� j� ÿ Vi� j�� for e1 � �1; 0; . . . ; 0�. By using Tj, we have Tj

ÿ1Dj�z�HQ�0; lj ; zdj�.

For F A C 0�W�z�� and f A C 0�G�, we de®ne d�W�z�;F; f� as

d�W�z�;F; f� �
X

N

j�1

sup
x ADj�z�

jF�x� ÿ fj�p1 � T
ÿ1
j x�j �

X

N 0

i�1

sup
x A Ji�z�

jF�x� ÿ bi�f�j:

Figure 7
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Now, we consider a boundary value problem,

Du� f �u� � 0 in W�z�;

qu

qn
� 0 on S�z�;

u � ai; z on Gi�z� for N 0 � 1Y iYN 00

8

>

>

>

>

<

>

>

>

>

:

�3:1�

where f satis®es (2.2), each Gi�z� is a portion of qW�z� which degenerates into Vi, that is,

Gi�z� � fTjx : k� j� � i; x1 � lj; jx 0jY zdjg �N 0 � 1Y iYN 00�;

each ai; z is a continuous function on Gi�z� which converges to a constant ai, that is,

lim
z!0

sup
Gi �z�

jai; z�x� ÿ aij � 0 �N 0 � 1Y iYN 00�;�3:2�

and S�z� � qW�z�n�6Gi�z��.

In this situation, we consider that the limit problem associated with (3.1) is

c 00
j � f �cj� � 0 on 0 < s < lj for 1Y jYN;

c � �c1; . . . ;cN� A C 0�G�;

P

k� j��i

d nÿ1
j c 0

j �lj� �
P

i� j��i

d nÿ1
j c 0

j �0� for 1Y iYN 0;

bi�c� � ai for N 0 � 1Y iYN 00:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�3:3�

By a similar argument to the proof of Theorem 1 in §2, we obtain that a solution

um of (3.1) at z � zm approaches a solution c A C 0�G� of (3.3) as m ! y in the

following sense:

Theorem 2. Suppose that a sequence fzmg
y

m�1 H �0; z�� satis®es limm!yzm � 0 and

that um is any solution of (3.1) at z � zm. Then, there exist a subsequence fzm�k�g
y

k�1 H

fzmg
y

m�1 and a solution c of (3.3) such that

lim
k!y

d�W�zm�k��; um�k�;c� � 0:

Similarly, we have the following corollary:

Corollary 3.1. Let fzmg
y

m�1 be a sequence with limm!yzm � 0. Suppose that

ai; z satis®es (3.2) and sequences of functions fHmg
y

m�1; f
~Hmg

y

m�1 HC 0�W�zm�� approach

functions h; ~h A C 0�G� as m ! y respectively, that is,

lim
m!y

d�W�zm�;Hm; h� � 0 and lim
m!y

d�W�zm�; ~Hm;
~h� � 0:
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If functions um �mZ 1� satisfy

Dum �Hm�x�um � ~Hm�x� in W�zm�;

qum

qn
� 0 on S�zm�;

um � ai; zm on Gi�zm� for N 0 � 1Y iYN 00;

8

>

>

>

>

<

>

>

>

>

:

and supx AW�zm�
jum�x�jYM where the positive constant M is independent of zm. Then

there exist a subsequence fzm�k�g
y

k�1 H fzmg
y

m�1 and c � �c1; . . . ;cn� A C 0�G� such that

c 00
j � hj�s�cj �

~hj�s� 0 < s < lj for 1Y jYN;

P

i� j��i

d nÿ1
j c 0

j �0� �
P

k� j��i

d nÿ1
j c 0

j �lj� for 1Y iYN 0;

bi�c� � ai for N 0 � 1Y iYN 00

8

>

>

>

>

>

<

>

>

>

>

>

:

and that limk!y d�W�zm�k��; um�k�;c� � 0.

Remark. In the preceding theorem, when we replace the boundary condition on

Gi�z� of (3.1) by the Neumann boundary condition and we replace bi�f� � ai of the

system (3.3) by f 0
j �lj� � 0 �k� j� � i�, similar results hold by an argument similar to the

proof of Theorem 1.

We may naturally consider the case that the thin domain converges to a smooth

curve instead of a straight line. In that generalized case, we can expect similar

mathematical phenomena, while several technical di½culties arise.

§4. Inverse problem.

In this section, we consider a certain inverse problem. We have stated a solution of

PDE (3.1) approaches to a solution of an associated limit equation (3.3) as z tends to

zero. In that situation, conversely, the following problem occurs naturally:

When a solution of (3.3) is given, can we prove the existence of a solution of (3.1)

which approaches it?

We have a positive answer. Namely, we can prove that (3.1) has a solution which

approaches a solution of (3.3) when the solution of (3.3) satis®es a certain condition.

Using the same notation as §3, we present a main result in this section.

Theorem 3. Suppose that there exists a solution c � �c1; . . . ;cn� of (3.3) such that

the linearized equation

S. Kosugi692



f 00
j � f 0�cj�fj � 0 on 0 < s < lj for 1Y jYN;

f � �f1; . . . ; fn� A C 0�G�;

P

i� j��i

d nÿ1
j f 0

j �0� �
P

k� j��i

d nÿ1
j f 0

j �lj� for 1Y iYN 0;

bi�f� � 0 for N 0 � 1Y iYN 00;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�4:1�

has no solution except the trivial solution �f1; . . . ; fn� � �0; . . . ; 0�. Namely, we suppose

the eigenvalue problem of the linearized equation around the solution c has no zero

eigenvalue. Then, there exists a constant z� > 0 such that the equation (3.1) has a solution

Cz for any z A �0; z�� and that fCz : 0 < z < z�g satis®es

lim
z!0

d�W�z�;Cz;c� � 0:�4:2�

Proof of Theorem 3. We construct an approximate solution of (3.1). Let a

solution c � �c1; . . . ;cn� of (3.3) satisfy the assumption of Theorem 3. We de®ne a

Lipschitz continuous function C
�0�
z as

C
�0�
z �x� �

bi�c� x A Ji�z� for 1Y iYN 0;

cj��lj ÿ zl�ÿ1
lj�p1 � T

ÿ1
j xÿ zl�� x A Dj�z�

for i� j�YN 0 and k� j�ZN 0 � 1;

cj��lj ÿ 2zl�ÿ1
lj�p1 � T

ÿ1
j xÿ zl�� x A Dj�z�

for i� j�YN 0 and k� j�YN 0:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

We de®ne a function C
�1�
z as the unique solution of

DC
�1�
z � ÿ f �C

�0�
z �x�� in W�z�;

qC
�1�
z

qn
� 0 on S�z�;

C
�1�
z � ai; z on Gi�z� for N 0 � 1Y iYN 00:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Applying Corollary 3.1, we obtain

lim
z!0

d�W�z�;C
�0�
z ;c� � 0;�4:3�

lim
z!0

d�W�z�;C
�1�
z ;c� � 0:�4:4�
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Let c1 be an upper bound of C
�1�
z

, that is,

sup
x AW�z�

jC
�1�
z �x�jY c1 for any z > 0:

After this, let k � kz denote a norm kgkz � supx AW�z�jg�x�j of C 0�W�z��.

Lemma 4.2. There exists a constant z 0 > 0 such that if F satis®es

DF� f 0�C
�1�
z

�x��F � 0 in W�z�;

qF

qn
� 0 on S�z�;

F � 0 on Gi�z� for N 0 � 1Y iYN 00

8
>>>>><
>>>>>:

�4:5�

for any z A �0; z 0�, then F1 0 in W�z�.

Proof of Lemma 4.2. Suppose there exists a sequence fzmg
y
m�1 with limm!yzm � 0

such that the equation (4.5) at z � zm has a nontrivial solution Wm20 in W�zm�. Let

eWm�x� � Wm�x�=kWmkzm . Then, we obtain eWm satis®es (4.5) and k eWmkzm � 1 for any

mZ 1. By (4.4) and applying Corollary 3.1, we obtain a nontrivial solution of (4.1).

This contradicts the assumption of Theorem 3. Thus we complete the proof of Lemma

4.2. r

We consider the equation

Du� f 0�C
�1�
z

�u � F in W�z�;

qu

qn
� 0 on S�z�;

u � 0 on G�z�;

8
>>>>><
>>>>>:

�4:6�

where F A L2�W�z�� and G�z� � 6Gi�z�. Because of Lemma 4.2, the equation (4.6) has

a unique solution for each F. We denote by AzF the solution of (4.6) for F.

Lemma 4.3. There exist constants c2 > 0 and z 00 > 0 such that

kAzFkz Y c2kFkz

for any z A �0; z 00� and F A C 0�W�z�� satisfying AzF A C2�W�z��.

Proof of Lemma 4.3. We assume the contrary. Namely, we assume there exist a

sequence fzmg
y
m�1 with limm!y zm � 0 and C 0 functions Ym such that kYmkzm � 1 and

kAzmYmkzm Zm for mZ 1. Let
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Fm�x� �
AzmYm�x�

kAzmYmkzm
;

~Ym�x� �
Ym�x�

kAzmYmkzm
:

Then, Fm and ~Ym satisfy

DFm � f 0�C
�1�
zm

�Fm � ~Ym in W�zm�;

qFm

qn
� 0 on S�zm�;

Fm � 0 on G�zm�;

8

>

>

>

>

>

<

>

>

>

>

>

:

kFmkzm � 1;

k ~Ymkzm Y
1

m
:

Applying Corollary 3.1, we obtain a nontrivial solution of (4.1). This contradicts the

assumption of Theorem 3. Thus we complete the proof of Lemma 4.3. r

Let Wz be a harmonic function

DWz � 0 in W�z�;

qWz

qn
� 0 on S�z�;

Wz � ai; z on Gi�z� for N 0 � 1Y iYN 00;

8

>

>

>

>

<

>

>

>

>

:

and let U
�1�
z

� C
�1�
z

ÿWz. We de®ne a sequence fU
� p�
z

gyp�1 HC 0�W�z�� as

U
� p�1�
z � Fz�U

� p�
z �

� Az� f
0�C

�1�
z �U

� p�
z ÿ f �U

� p�
z �Wz�� for pZ 1:

By the de®nition of Az, each U
� p�
z

is a C2 function.

We take a constant d > 0 such that

d < min 1=2; 2c2 sup
jxj<c1�1

j f 00�x�j

 !ÿ1
8

<

:

9

=

;

:�4:7�

For this d, we can take a constant z� > 0 small so that
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k f �C
�0�
z � ÿ f �C

�1�
z �kz Y

d

4c2
for z A �0; z���4:8�

by (4.3) and (4.4). Then, we have the following:

Lemma 4.4.

kU
� p�
z ÿU

�1�
z kz Y d�4:9�

for any pZ 1 and z A �0; z��.

Proof of Lemma 4.4. We prove Lemma 4.4 for each z by the induction. It is

trivial that (4.9) is satis®ed at p � 1. We assume (4.9) is satis®ed at p � p 0. We have

kU
� p 0�1�
z

ÿU
�1�
z

kz Y kFz�U
� p 0�
z

� ÿ Fz�U
�1�
z

�kz � kFz�U
�1�
z

� ÿU
�1�
z

kz:

The estimation of the ®rst term of the right-hand side is

kFz�U
� p 0�
z � ÿ Fz�U

�1�
z �kz

Y c2









�1

0

� f 0�C
�1�
z

� ÿ f 0�tU
� p 0�
z

� �1ÿ t�U
�1�
z

�Wz�� dt�U
� p 0�
z

ÿU
�1�
z

�









z

Y c2d sup
jxjYc1�2d

j f 00�x�j kU
� p 0�
z

ÿU
�1�
z

kz

Y
1

2
d

by (4.7). The estimation of the last term is

kFz�U
�1�
z

� ÿU
�1�
z

kz

� kAz� f
0�C

�1�
z �U

�1�
z ÿ f �C

�1�
z �� ÿ Az� f

0�C
�1�
z �U

�1�
z ÿ f �C

�0�
z ��kz

Y c2k f �C
�0�
z � ÿ f �C

�1�
z �kz

Y
d

4

by (4.8). Therefore kU
� p 0�1�
z ÿU

�1�
z kY d. We complete the proof of Lemma 4.4. r

From Lemma 4.4, we have kU
� p�1�
z

ÿU
� p�
z

kz Y 2ÿ1kU
� p�
z

ÿU
� pÿ1�
z

kz for any pZ 1.

We have immediately that the sequence fU
� p�
z gyp�1 is a Cauchy sequence in C 0�W�z��.

We denote by U
�y�
z the limit of U

� p�
z as p ! y. We obtain U

�y�
z �Fz�U

�y�
z � AC2�W�z��

by the de®nition of Fz. Let Cz � U
�y�
z

�Wz. Then, Cz satis®es (3.1) and
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kCz ÿC
�1�
z

kz � kU
�y�
z

ÿU
�1�
z

kz

� kFz�U
�y�
z � ÿ Fz�U

�1�
z � � Fz�U

�1�
z � ÿU

�1�
z kz

Y
1

2
kCz ÿC

�1�
z

kz � c2k f �C
�0�
z

� ÿ f �C
�1�
z

�kz:

Thus, we obtain

kCz ÿC
�1�
z

kz Y 2c2k f �C
�1�
z

� ÿ f �C
�0�
z

�kz:

By (4.3) and (4.4), we obtain (4.2). We complete the proof of Theorem 3. r
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