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Abstract. We study holomorphic solutions for convolution equations in tube

domains. Let Ot be the sheaf of holomorphic functions in tube domains on the

purely imaginary space
�������

ÿ1
p

R
n and S the complex 0 ÿ! O

t ÿ!m� O
t ÿ! 0

generated by the convolution operator m� with hyperfunction kernel m. In this

paper, we give a new de®nition of ``the characteristic set'' Char�m�� using terms

of zeros of the total symbol of m�, and show, under the abstract condition �S�,
the equivalence between two notions of characteristics outside of the zero

section T �
�����

ÿ1
p

R
n�

�������

ÿ1
p

R
n�. Moreover we conclude that the micro-support SS�S�

of S coincides with the characteristics Char�m��.

0. Introduction.

Convolution equations are a natural extension of linear partial di¨erential equations

with constant coe½cients, and have been studied in various situations. The solvability

and the continuation of holomorphic solutions have attracted many researchers.

In the case where the kernels are analytic functionals, the existence of holomorphic

solutions in the complex domain was considered by Malgrange [11]. In particular,

KorobeõÆnik [8] and Epifanov [2] gave a complete answer to the problem of the existence

in one-dimensional case.

For the equations with analytic functional kernels supported by the origin, the

results of Kawai [10] are outstanding. Such equations become di¨erential equations of

®nite or in®nite order with constant coe½cients. In the case of ®nite-order di¨erential

equations, Kiselman [6] considered the continuation of holomorphic solutions. Refer

also to Sebbar [13] for the case of in®nite-order operators with constant coe½cients, and

to Aoki [1] for the case of in®nite-order operators with variable coe½cients.

In the case where the kernels are supported by the real axis, that is, where the

kernels are hyperfunctions, the convolution operators act on the space of hyperfunctions

or of Fourier hyperfunctions. Kawai [10] proved surjectivity of such operators under

some natural condition (called Condition (S) in [10]). He also constructed parametrix
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and gave estimates of singularities. In this direction, we also recall Kaneko [7] for a

structure theorem of hyperfunctions, the author [12] for the surjectivity of convolution

operators, and Ishimura [4] for the estimate of characteristics.

Ishimura and the author in [5] studied the existence and the continuation of

holomorphic solutions in tube domains for convolution equations with hyperfunction

kernels. These two problems can be formulated in a uni®ed way by means of the

complex S on the purely imaginary space
�������

ÿ1
p

R
n generated by the convolution op-

erator m� which operates on the spaces of holomorphic functions in tube domains. Then

the characteristics are de®ned in terms of the exponential behavior of the total symbol of

m�. They showed, under condition �S� due to Kawai [10], that the micro-support of the

complex is included in the characteristics.

In the present paper, we will give another de®nition of characteristics in terms of

the zeros of the total symbol (§2). The new de®nition given in this paper is essentially

equivalent to our previous one (Corollary 2.6), but the new one is much simpler and

convenient for checking examples. We will also show that the characteristic set of m�
coincides with the micro-support of the complex S (§3).

1. Preliminaries.

Let O be the sheaf of germs of holomorphic functions on C
n. We make the

identi®cation C
n
GR

n �
�������

ÿ1
p

R
n. Then we denote by t the natural projection C

n to the

purely imaginary space
�������

ÿ1
p

R
n. We introduce the sheaf O

t on
�������

ÿ1
p

R
n by

O
t
:� t�O:

For a hyperfunction m A BR
n with compact support, the convolution operator P :� m�

becomes a sheaf morphism of O
t and induces the complex

S : 0 ! O
t !P O

t ! 0;

on
�������

ÿ1
p

R
n. The aim of the present note is to clarify how the micro-support SS�S� of

S is estimated by the kernel m. We refer to Kashiwara-Schapira [9] for notions such

as sheaves, complexes, derived functors, and micro-supports.

For a holomorphic function f de®ned on an open convex subset U in C
n and a

compact subset K in U, we de®ne the semi-norm k f kK by

k f kK :� sup
z AK

j f �z�j:

Note that the system of semi-norms fk � kKgKHHU de®nes (FS) topology on the

space O�U�.
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For an analytic functional T A O�C n� 0, we denote by T̂�z� its Fourier-Borel

transform

T̂�z� � hT ; ez�ziz:

According to the theorem of PolyaÁ-Ehrenpreis-Martineau, T̂�z� is an entire function of

exponential type satisfying the following estimate. If T is supported by a compact set

K in C
n, then for every e > 0, we can take a constant Ce > 0 satisfying

jT̂�z�jUCe exp�HK�z� � ejzj�:

Here HK�z� :� supz AK Rehz; zi is the supporting function of K. In particular, if m is

a hyperfunction with compact support, its Fourier-Borel transform m̂�z� has an infra-

exponential growth on
�������

ÿ1
p

R
n: for any e > 0, we have

sup
�����

ÿ1
p

h A
�����

ÿ1
p

R
n

jm̂�
�������

ÿ1
p

h�eÿejhjj < y:

The system of coordinates of the dual complex space C
n is denoted by z � x�

�������

ÿ1
p

h with x; h A R
n. For R > 0 and z0 A C

n, we denote by B�z0;R� the open ball

centered at z0 with radius R in C
n.

In this paper, we suppose the following condition �S� due to T. Kawai [10] for the

entire function f �z� � m̂�z�.

For every e > 0; there exists N > 0 such that

for any
�������

ÿ1
p

h A
�������

ÿ1
p

R
n with jhj > N;

we can z A B�
�������

ÿ1
p

h; ejhj� satisfying j f �z�jV eÿejhj:

8

>

<

>

:

�S�
®nd

We recall the de®nition of the characteristic set Chary�P� at in®nity. We de®ne

the sphere at in®nity S2nÿ1
y by �C nnf0g�=R�. Then zy denotes the equivalent class of

z A C
nnf0g. We de®ne a natural compacti®cation D

2n � C
n t S2nÿ1

y of C n. We denote

by
�������

ÿ1
p

S nÿ1
y the pure imaginary sphere at in®nity f�x�

�������

ÿ1
p

h�y A S2nÿ1
y ; x � 0g, which

is a closed subset in S2nÿ1
y . For an entire function f and e > 0, we set

Vf �e� :� fz A C
n
; eejzjj f �z�j < 1g;

Wf �e� :�
�������

ÿ1
p

S nÿ1
y V �the closure of Vf �e� in D

2n�:

Definition 1.1. ([5, De®nition 4.3]). Under the above notation, we de®ne the

characteristics of m� (at in®nity)

Chary�m�� :� the closure of 6
e>0

Wm̂�e�;

which is a closed set in
�������

ÿ1
p

S nÿ1
y .
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2. A new de®nition of characteristics.

In this section, we will give a new de®nition of characteristics in terms of zeros

of the total symbol m̂, and give an estimate of the modulus of m̂ from below outside

characteristic directions, which shows the equivalence between two de®nitions of

characteristics. To give the de®nition, we utilize the topological spaces X :� R� C
n and

X� :� f�t; z� A X ; t > 0g, and also utilize the diagram:

C
n ,!{ X  -| X� !

$
C

n:

Here { is the closed embedding {�z� � �0; z�, | the natural inclusion, and $ the map

de®ned by j�t; z� � tÿ1z.

Definition 2.1. For an entire function f A O�C n�, we de®ne the set Zy� f �HC
n

by

Zy� f � � {ÿ1�the closure of |�$ÿ1�f f � 0g�� in X �:

Let m be a hyperfunction with compact support and P � m� the convolution operator

with kernel m. We de®ne the characteristics Char�P�HT ��
�������

ÿ1
p

R
n� of P by

Char�P� � f�
�������

ÿ1
p

y;
�������

ÿ1
p

h�;
�������

ÿ1
p

h A Zy�m̂�V
�������

ÿ1
p

R
ng:�2:1�

Remark 2.2. Note that Zy� f � is a closed and that Char�P� is a closed subset of

T ��
�������

ÿ1
p

R
n�. For a non-zero vector _z A

�������

ÿ1
p

R
n, _z does not belong to Zy� f � if and

only if there exist an open cone gHC
n containing _z and a constant N > 0 satisfying

fjzj > NgV gV f f � 0g �q. Conversely, _z belongs to Zy� f � if and only if there exists

a sequence fzkgk H f f � 0g with jzkj !y and zk=jzkj ! _z=j _zj as k !y. The con-

dition 0 A Zy� f � is equivalent to f f � 0g0q.

In order to show the equivalence between the two de®nitions of characteristics,

we need a minimum modulus estimate for holomorphic functions of infra-exponential

growth on a direction.

Lemma 2.3. Let f be a holomorphic function de®ned in an open cone gHC
n. We

assume that f 0 0 on g. Let r A g be a vector with jrj � 1. We assume that f satis®es

the estimate of infra-exponential type with respect to the direction r:

for any e > 0; there exists an open cone g 0H g

containing r with supz A g 0 j f �z�j exp�ÿejzj� < y:

(

�2:2�

We also assume the following localized condition of �S� with respect to the direction r:
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for every e > 0; there exists N > 0 such that for any r > N

we can find z A gVB�rr; er� satisfying j f �z�jV eÿe r:

�

�Sr�

Then for any e > 0, we can ®nd an open cone Ge H g containing r and constants N 0
e and C 0

e

with the estimate

j f �z�jVC 0
e exp�ÿejzj� if z A Ge; jzj > N 0

e :�2:3�

We remark that the condition (2.2) is always satis®ed for the Fourier-Borel

transform m̂ of a hyperfunction m with compact support and a purely imaginary vector

r A
�������

ÿ1
p

R
n with jrj � 1. Moreover for an entire function f, the condition �S� implies

the condition �Sr� for any r A
�������

ÿ1
p

R
n.

Proof of Lemma 2.3. For a given constant e > 0, take e 0 > 0 with the properties

9e 0

1ÿ e 0
< e;

and

B�r; 4e 0�H g:

On account of (2.2), we can take constants d with 0 < d < e 0 and Me 0 so that for any

r > 0 f satis®es

j f �z�j < Me 0 exp�e 0r��2:4�

on the ball B�rr; 4dr�. The condition �Sr� let us choose such a constant Nd > 0 that for

any r > Nd, there exist z 0 A B�rr; dr� satisfying

j f �z 0�j > exp�ÿdr�:

Here we recall a lemma of Harnack-Malgrange-HoÈrmander ([3, Lemma 3.1]).

Lemma 2.4. Let F �z�, H�z� and G�z� � H�z�=F�z� be three holomorphic functions

in the open ball B�0;R�. If jF�z�j < A and jH�z�j < B hold on B�0;R�, then the estimate

jG�z�jUBA2jzj=�Rÿjzj�jF�0�jÿ�R�jzj�=�Rÿjzj�

holds for all z A B�0;R�.

We apply this lemma to F � f , G � 1= f , and H � 1 on the ball B�z 0; 3dr�. By the

inclusions B�rr; dr�HB�z 0; 2dr�HB�z 0; 3dr�HB�rr; 4dr�, we have, by (2.4),

sup
z AB�z 0;3dr�

j f �z�jUMe 0 exp�e 0r�:
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Hence we get the estimate for r > Nd

sup
z AB�rr; dr�

j1= f �z�j

U sup
z AB�z 0;2dr�

j1= f �z�j

U �Me 0 exp�e 0r���2�2dr�=�3drÿ2dr��exp�ÿdr��ÿ�3dr�2dr�=�3drÿ2dr�

� M 4
e 0 exp�4e 0r� 5dr�

UM 4
e 0 exp�9e 0r�:

Since z A B�rr; dr� satis®es the estimate �1ÿ d�r < jzj, we get

j f �z�jVMÿ4
e 0 exp ÿ 9e 0

1ÿ d
jzj

� �

VMÿ4
e 0 exp ÿ 9e 0

1ÿ e 0
jzj

� �

where z A B�rr; dr�.
We set

C 0
e � Mÿ4

e 0 ;

N 0
e � Nd;

Ge � 6
r>0

B�rr; dr�:

Then we have the desired result (2.3). (q.e.d. for Lemma 2.3). r

Now we give

Theorem 2.5. Let m be a hyperfunction with compact support, and
�������

ÿ1
p

_h a vector

in
�������

ÿ1
p

R
n with _h0 0. Assume that m̂ satis®es the condition �S�. Then

�������

ÿ1
p

_h belongs to

Zy�m̂� if and only if
�������

ÿ1
p

_hy belongs to Chary�m��.

Corollary 2.6. Under the same hypothesis, we have

Char�m��nT �
�����

ÿ1
p

R
n�

�������

ÿ1
p

R
n� �

�������

ÿ1
p

R
n � pÿ1�Chary�m���:

Here p is the projection
�������

ÿ1
p

R
nnf0g !

�������

ÿ1
p

S nÿ1
y

de®ned by p�
�������

ÿ1
p

h� �
�������

ÿ1
p

hy.

Proof of Theorem 2.5. We set f � m̂.
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First we show that if
�������

ÿ1
p

_h A Zy� f � then
�������

ÿ1
p

_hy A Chary�m��. There exists a

sequence fzkgk in C
nnf0g satisfying

f �zk� � 0 for any k;�2:5�

lim
k!y

jzkj � y;�2:6�

lim
k!y

zk=jzkj �
�������

ÿ1
p

_h=j _hj:�2:7�

From (2.5) we have fzkgk HVf �e� for any e > 0, and from (2.6) and (2.7) it follows that

fzkgk converges to
�������

ÿ1
p

_hy in D
2n. Thus

�������

ÿ1
p

_hy belongs to Chary� f �.
Next we show that if

�������

ÿ1
p

_h B Zy� f � then
�������

ÿ1
p

_hy B Chary�m��. Since Zy� f � is

closed, we can take an open neighborhood U H

�������

ÿ1
p

R
nnf0g of

�������

ÿ1
p

_h which does not

meet Zy� f �. For any vector
�������

ÿ1
p

h A U , we can take an open cone gHC
n containing

�������

ÿ1
p

h and a constant r > 0 with �
�������

ÿ1
p

rh� g�V f f � 0g � q. By applying Lemma 2.3

to the function g�z� :� f �z�
�������

ÿ1
p

rh�, a vector r �
�������

ÿ1
p

h=jhj, and the cone g, we have

�������

ÿ1
p

hy B Wf �e� for any e > 0:�2:8�

From (2.8), we can deduce

f
�������

ÿ1
p

hy;
�������

ÿ1
p

h A UgVWf �e� � q for any e > 0;

which shows
�������

ÿ1
p

_h B Chary� f �. r

3. The inverse inclusion between the micro-support and the characteristics.

In this section, we denote by N, the sheaf of O
t-solutions of the homogeneous

equation m � g � 0. Namely, for any open set
�������

ÿ1
p

oH

�������

ÿ1
p

R
n, we set

N�
�������

ÿ1
p

o� :� fg A O
t�

�������

ÿ1
p

o�; m � g � 0g:

For a convex subset
�������

ÿ1
p

oH

�������

ÿ1
p

R
n, the space N�

�������

ÿ1
p

o� is a closed subspace

of O
t�

�������

ÿ1
p

o� � O�Rn �
�������

ÿ1
p

o�. Thus N�
�������

ÿ1
p

o� is an (FS) space by the induced

topology.

Proposition 3.1. Let m be a hyperfunction with compact support and
�������

ÿ1
p

_h a

vector in Zy�m̂� with j _hj � 1. For any open convex subset
�������

ÿ1
p

WH

�������

ÿ1
p

R
n and any

point
�������

ÿ1
p

_y A
�������

ÿ1
p

W, we set

�������

ÿ1
p

W 0 :� f
�������

ÿ1
p

y A
�������

ÿ1
p

W; �yÿ _y� � _h < 0g:
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Then the restriction map

r :N�
�������

ÿ1
p

W� !N�
�������

ÿ1
p

W 0�

is not surjective.

Note that this proposition holds without assuming the condition �S�.

Proof. We will prove this proposition by contradiction. Assume that the re-

striction map r is surjective. Since r is injective and continuous, we can deduce, from the

open mapping theorem, that r must be a topological isomorphism.

Take a sequence fzkgk in C
nnf0g satisfying

m̂�zk� � 0 for any k;

lim
k!y

jzkj � y;

lim
k!y

zk=jzkj �
�������

ÿ1
p

_h=j _hj;

and set

jk�z� :� jzkj exp�ÿzk � �zÿ
�������

ÿ1
p

_y��:

Then we can easily show that each jk satis®es m � jk � 0.

Claim 3.2. The sequence fjkgk converges to 0 in N�
�������

ÿ1
p

W 0�.

Proof. For any compact subset K in R
n �

�������

ÿ1
p

W 0, we can take a constant e > 0

and an open cone gHC
n containing

�������

ÿ1
p

_h which enjoy the estimate

Reÿ z � �zÿ
�������

ÿ1
p

_y� < ÿejzj

for any z A g and any z A K . If k is su½ciently large, then zk belongs to g and we get the

estimate

kjkkK < jzkj exp�ÿejzkj�:

Since the right hand side converges to 0, we deduce

lim
k!y

kjkkK � 0:

(q.e.d. for Claim). r

Claim 3.3. The sequence fjkgk is not a convergent series in N�
�������

ÿ1
p

W�.
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Proof. Take K :� f
�������

ÿ1
p

_ygHW. Then we get

kjkkK � jjk�
�������

ÿ1
p

_y�j � jzkj

for any k. Since the right hand side diverges, fjkgk can not be a convergent series in

N�
�������

ÿ1
p

W�. (q.e.d. for Claim). r

From the above two Claims, it follows that the sequence fjkgk is a convergent series in

N�
�������

ÿ1
p

W 0� but not a convergent series in N�
�������

ÿ1
p

W�, which is a contradiction. (q.e.d.

for Proposition 3.1). r

Now we state our main theorem.

Theorem 3.4. Let P � m� be a convolution operator with kernel m and S the

complex 0 ! O
t !P O

t ! 0. Assume that m̂ satis®es the condition �S�. Then we have

SS�S� � Char�P�:

Proof. Outside the zero section T �
�����

ÿ1
p

R
n�

�������

ÿ1
p

R
n� �

�������

ÿ1
p

R
n, the inclusion

SS�S�n
�������

ÿ1
p

R
n
HChar�P�n

�������

ÿ1
p

R
n is proved in [5, Theorem 5.2], and the inverse

inclusion can be deduced from Proposition 3.1.

The equality SS�S�V
�������

ÿ1
p

R
n � Char�P�V

�������

ÿ1
p

R
n is an easy corollary of the

following lemma. r

Lemma 3.5. N � 0 if and only if m̂ has no zeros.

Proof. If there exists _z A C
n with m̂� _z� � 0, the entire function exp�ÿ _z � z� is a

solution of m � g � 0.

Conversely, assume that m̂ has no zeros. Then there exist a constant C0 0 and a

real vector _x A R
n with m̂�z� � C exp� _x � z�, which implies m � Cd�xÿ _x�. Here d denotes

Dirac's delta function. Thus the operator m� is the composition of the multiplication by

the constant C and the translation g�z� 7! g�zÿ _x�, which shows N � 0. r
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