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Abstract. We try to investigate whether an element of order 2 in homotopy
groups of spheres has a lift to an element of homotopy groups of mod2 Moore
spaces or not. A typical element of the affirmative property is Thomeier’s
element of g, 7(S**3). And the Whitehead square [12,,1,122,.1] of the identity
class 15,.1 of S"*! is a negative example except for n =0, 1 and 3.

Introduction.

Let 1, be the identity class of S”. We denote by M" = §"! Uy, , " the Moore
space of type (Z,n—1). An element femn(M") is called a lift of oe m(S") if
p.p = o, where p: M" — S" is the collapsing map. If 2z, o o = 0, then by the definition,
a coextension of o to M"™! is a lift of a suspension Xa. A lift which is not a co-
extension is called a strict lift. The main purpose of this note is to examine which
element of 7;(S") is strictly lifted to an element of m;(M").

To state our result, we need the notations and results of [22]. Throughout this note,
we deal with 2-primary components. Let 7, € 73(S?) be the Hopf map, 7, = X" %5, and
n2 =n,0n,. for n>2. We know that n3(S?) = Z{n,}, m,:+1(S") = Z>{n,} for n >3
and 7,,2(S") = Z,{n?} for n > 2. Let vy € n7(S*) be the Hopf map and v, = X" 4y,
for n > 4. We know that 76(S?) = Z4{v'}, 77(S*) = Z{vy} @ Z4{2ZV'} and 7, 3(S") =
Zg{v,} for n > 5. We recall the relations 2v' = 77%’ and +[ig,14] =2v4 —2V'. Let gg €
m15(S®) be the Hopf map and g, = X" 8ag for n > 8. We know that 715(S°) = Z,{c""},
m13(S%) = Z4{c"}, m4(ST) = Zs{c'}, ms(S?) = Z{os} ® Z3{20’} and 7, 1(S") =
Zi6{o,} for n > 9. We know the relations Xo” = 20", X¢” =20’ and + [15,13] = 205 —
Xo'. We recall the following elements: &3 € 711 (S3); v} € m10(S?); w3 € m12(S3); Vg €
114(S®); 0 € ma3(SM); K7 € ma1(S7); p!” € m20(S?); w14 € m30(S™); *' € w3 (SP).

Let H :m(S") — me(S*!) be the Hopf homomorphism. According to [19],

there exist elements J, € 7s,(S*") and J;, | € mg,—1 (S*~!) of order 2 satisfying X3y, =
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[tans1, tans1], 204, 1 = [tan, Nan), H(Oan) = g, and H(Sy, ) =ni, 5. These elements can
be taken as follows: 83 =v'ng, 04 =van;, 05 =a'n, ds =asns, 6, =10, dp =70,

d1s =n*" and dj6 = nj,. Our result is stated as follows.

THEOREM 1.  The following elements are strictly lifted: ns; v'ng; 4v3; vi; o; 4ve; 7,

/ . . . 2. V. .
0’714, 2[11071)10], 2K75 80—85 p s 460149 6015-

THEOREM 2. The following elements are not lifted: Ko; 0126; O4n, Oanlg, for n > 1;

[1on41, 12n1) for n# 0,1 or 3 [tani1,N4,41] for n > 1.

Let 7j; € ms(M*) be a coextension of 55 and 7, = X" 37j; € @, 2(M"") for n > 3.
There exists a lift o of #; which is a generator of n4(M?) =~ Z, (Lemma 4.1 of [14]). We
use the notation 77, = . The following result gives an example of the element of order 8
in homotopy groups of M" (cf. [3]).

THEOREM 3. Let n =3 mod4 and n > 11. Then there exists a lift f, € m1(M") of
5! such that

2B, = 1,y [tny1, tns1] mOdZTCZn(MWI)

The assertion of for n = 3, 7 except for the last one was obtained by Wu
[25]. Our method is to use the composition methods developed by Toda [22]. We use
effectively the informations of two homotopy fibers of the pinching maps p: M" — §”
and p': (M",S" 1) — (§",%) (James [5)).

Although Tipple omitted the details, some of our result overlaps with that of
120].

The authors wish to thank Mahowald for informing the property of the Mahowald

element.

1. Fundamental facts and some homotopy groups of M" A M".

Let X be a connected finitte CW-complex, 0:S"! — X be a mapping and
X*=XUge" be a complex formed by attaching an n-cell. Let p' =p) : (X* X)—
(S", %) be the collapsing map. Let y, € m,(X*, X) be the characteristic map of the n-cell
e” of X*. Let CY be the reduced cone of a space Y. For an element o € ;_(Y), we
denote by a' € 7 (CY, Y) an element satisfying 0&’ = o, where 0 : 7 (CY,Y) — w1 (Y)
is the connecting isomorphism. For o€ m_1(S"!), we set & =7,8" e m,(X*, X). We

note the following:

da=00a and pla=2u,
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where 0:7,(X*,X) — m,_1(X) is the boundary map. Let 2':m(X* X)—
1 (ZX*, ZX) be the relative suspension homomorphism ([21]). In the case that X* =
M", we can take 7,,, = (2')*y,. Let iy : S' < M? be the inclusion and p, : M2 — S?
the collapsing map. We set i, = X" 2iy : §" ! < M" and p, = 2" ?p, : M" — S".
First of all, we recall the Hilton formula. By (8.16) of Chapter 9 of [24], we have

Lemma 1.1 (Hilton). 21,00 =2a+ [1,,1,] o H(a) for any element o € m;(S").

Next we state the homotopy excision theorem (Theorem 2.1 of [5]) in the following

form.

LemMa 1.2 (James). Assume that r <3n—4. Then we have the exact sequence

n,.(Mn’ Sn—l) ﬁ) ﬂ,(S”) ﬁ) nr—n(Sn_l) _Q> 727"_1(]‘4717 Sn—l) e

where Hy =21, 10X "o H and Q() =y, |-

We denote by iz, the identity class of M". Let JX be the James reduced product
of X ([6]). The (3n—4)-skeleton of JM" is the second filtration Jo,M" = M"Up
CEX(M" ' AM"™ 1) of JM", where f=i/,1/]. Then we have the following.

n

LemvMa 13, Let X=M"AM" and let 0:[CZ'X,27'X;JM" M"] —
(71X, M"] be the connecting map. Then we have diy = [1\,1'] for n > 3.

n’’n

Let F be the homotopy fiber of the map p,: M" — S”. From the cohomology
structure of F, we have F = S" 1U2"D U3 U ..., Let Y be the (3n — 4)-skeleton
of F. We set w, = [1;,1,]. Then we have the following.

LEmma 1.4, Y = 8§*! Uoy, e?2 for n odd and Y = S""' v 8?72 for n even.

Proor. Let 4 =S""! and X be a mapping cylinder of a mapping of degree 2
of S"1. Let i:S" ! < X be the embedding satisfying i(x) = [x,1]. Then X is ho-
motopy equivalent to S”~!, i is regarded as 21,_; and X UCA = M". So the collapsing
map p, : M" — S" has the homotopy fiber (X, A4)_ ([4]). By Corollary 5.8 of [4], we
have Y = (X,4), = S" 1 Use?~2, where 6 = [1,_1,1] = 2[t,_1,1,_1]. This completes the
proof. ]

We recall that M" A M" is a mapping cone of a mapping 21}, | = iz—112,_2P2m_1
(1, [23]). Let ij: M* — X(M?* A M?) be the inclusion. We set i\ = X"} : M" —
I3 (M?AM?) for n>4. We also set i’ =i’ oi,. A Toda bracket {i},21},is} =
n4(X(M? A M?)) is well-defined and its representative 7; is a coextension of i;. Since

2uy € {iy, 21}, ia} 0 214 = —iy{215,is,213} D — ijians3{ps,ia, 213} 2 ifn; mod 0, we have 2iy =
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ifny. We set i, = 2" 4y € m, (X" (M? A M?)) for n > 4. We note that 7, € {i’, 21 i,}.
We denote by p': X(M"AM") — M** and p" =p'p: X(M"AM") — S the
collapsing maps. By making use of the cofiber sequence starting with 2:5,, we have the

following.

Lemma 1.5. Suppose n > 3. Then

() 7n(Z(M"AM")) = Za{ing};

(i) 7ot (Z(M"AM")) = Zo{iny,} © Zo{in, 201}

(iii)  7ons2 (Z(M" AM™)) = Zo{t2un3,} © ZoA i3, 100 1Mani1} © Z2{iy,von-1}.

We set oy =735 and o, = X" 20y = fj,, M3 for n>2. We have 2ijo0 =
iaf3 Pa0ln = i417§’ =2ipy'=0. So we can define a coextension o € {iy,2iy,00} c
n7(Z(M?* A M?)) of ay. We set 4, = X" 2a, for n>2. Then we show

LEMMA 1.6. (i) 20, = il 5l W75 for n > 2.

(i) 7o 3(Z (M AM™)) = Z4{d2,} ® Zr{irv2n} for n>4 and mo(X(M> A M?))
= Z{oa} @ Zo{i6ve} ® Zo{igvsng}, where (1, Afj,_y) = too, mod i3, van_17,,5 for
n>3.

Monta(Z(M" AM")) = Zr{0outy 3} for n> 4.

Proor. First we recall the following ([12], [14]):
Tone3(MP) = Zo{iinionn} @ Zo{igpe1van} (n > 3);
no(M®) = Zy{iisn3} @ Zofievsng};  manss(M™) = Zo{iin, 103, }(n > 4).
We have 20, € —i;{21,,216}. And we have
{204, 02, 216} < {iamy, 03, 216}

< {ig, 2V, 216}

> {ig, 213,73}

3 ’73’7§

mod iy 77(S?) 4 277(M*) = 0,

by of [14]. So we have 24, = i4j;72. This leads to (i).
We have 7, 4(M>") = Zo{ij2,13,.»} and 7moa(M>") =0 for n > 4. So, by the

exact sequence
!

i"* n n ’i n
0 — ora(M?) 25 g (Z(M" A M")) 25 1 4 (M) — 0,

we have ().

/l
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We note that M?" v §?" is the 2n-skeleton of X(M" A M"). Let ky : M*" — M?"v
S?" and ky : S — M v S* be the inclusions, respectively. Then X(M" A M") is a
mapping cone of kijir,n,, | +2k;. In the homotopy exact sequence of a pair
(Z(M"AM™), M?*" v §):

Tonsa(E(M" A M"Y, M v 8™ -2 s (M v S2) 1 13 (Z(M™ A M™))

L a3 (E(M" A M), M v S

L T (M v S,
the first group is isomorphic to 7ma,,4(S**!') and the fourth group is isomorphic to
7'L'2n+3(52n+1> for n > 3. We have 0v,, = 2k,v,, and 877%11 =k iznﬂgn_l + 2k277§n =0. We
have p!d, =n3,.,. Hence we have the first half of [if).

The second half of is obtained by the parallel argument to the first half.

In the exact sequence
79 (MO) ~ mo(SM3 A M3) 2 mg(EM3 A M3, M),

we have 719(M°) = Z{ijsn?} ® Z{vsng} and no(EM> A M3, M®) = ng(M7) = Z{7jens}
@® Z>{i7v¢}. So the inclusion ;' is identified with the collapsing map p’ = X'p; A1 and
PL(Z7y ATy) =g ATl = Tigng = plia. Therefore we have the relation X7, A7, —d4 €
Im i}, = {itfisn3,ifvsng}. So we have X7, Afj, = +a4 modifvsng. This completes the

proof. ]

2. Some lifts to M".

If o em(S") has a lift fen(M”) and the orders of o and f are same, then f
is called a splitting lift of «. We shall use the notion of lifting for an element of

the relative homotopy group. We remark that o € 7;(S") for kK < 3n —2 has a lift in
m(M™, S" 1) if and only if Hy(x) =0 by [Lemma 1.2, We show

LemmaA 2.1. (i) Suppose that o € m;(S™) is lifted to M". Then the composite oo f is
lifted to M", where B e m,,(S*). Furthermore, 21,00 =0 for n> 3.

(i) Any nontrivial element of mi.(S?) has no lift.

(iii) Any element of Xmi(S?) has a lift.

Proor. The first half of (i) is obviously obtained. Since p, = X'p,_, for n > 3 and
it is of order 2, we have 21, 0a = 2p, o d = 0, where ¢ € nx(M") is a lift of «. This leads
to the second half of (i).
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Since M? is the real projective plane, m;(M?) is isomorphic to 7, (S?) through the
double covering map y: S* — M?. Then the fact p,y =0 implies [ii).
Any element of X7, (S?) is represented as 53 0 Yo for o € mx(S?) and 75 has a lift.

So, the first assertion of (i) implies [(iii}, completing the proof. O
Next we show

LemMA 2.2, Let o € mi(S") for k < 3n—3. Then Yo is lifted to M if and only if

there exists an element f € ny_,1(S™) satisfying 21, o oo = 21y, f].

Proor. By [Lemma 1.2, we have an exact sequence
S 0 Mn—H S P SI’H—I
Te—n41(S8") — Ty ( ,S") — w1 (S").

Let o) € mey 1 (M™1) be a lift of Xa. By the exact sequence, there exists an element
B € mtk—n1(S") satisfying j,o1 =&+ [y,.1,B], where j: (M"™ ! %) — (M"1 S") is the
inclusion. We have 0[y,,, ] = —2[1,, 5] and 0a = 21, o a. Since (& + [y,,1,0]) = 20
o — [21,, ] =0, the converse follows. This completes the proof. O

Here we need the information about the Mahowald element 7! € n35,(S°) for i >3
([9]). It satisfies the relation H(y!) =v on S*~2 and so we have [1, 2, v, 2] =0 if n =
20— 1 for i >3. We set ni,=n; on S" and n;, ., =2y, Making use of the EHP-

sequence, we have the following two cases:
2’7;,n—1 = [tn—1, V1] (1)
and there exists an element 0 € 7y, 1(S"~2?) satisfying
2 oy = [tn1,v01] = 20 # 0. (2)

By Lemma L1, 2,1 07;, y = 27;, | + [ta-1,Vn-1]. So, by [Lemma 2.2, »; , has a lift in
the case (1) and does not have a lift in the case (2).

According to Mahowald, the order of 5] € n5,(S°) is 2 for i = 3,4,5; 4 for i = 6 and
4n! = 0. We can take 77§’6 = V¢ and 774"714 = wy4. Since 2V = [i6, V| and 2w14 = [114, V14]
([22]), v7 and w;s have lifts, respectively.

We recall the Mahowald-Thomeier result: [t 1,v2,-1] =0 if n=2"—1 or n=

0 mod4 and [1p,-1,v2,—1] is of order 2 if otherwise. We show

LEMMA 2.3. (i) [y,41,V2n) is of order 8 for n > 3.
(i) [7y,, Van_1] is of order 2 if n =2"—1 or n =0 mod4. [y,,,vau_1] is of order 4 if

otherwise.
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Proor. By [Lemma 1.7, we have the exact sequence for n > 3:
ana (ST =2 72,43(S™) — 7y (M S,
Since the order of [1,, v2,] is 4 or 8, we have Hrg, 4(S?*!) = {4v4,41}. So we have H,
is trivial and Q is a monomorphism. This leads to (i).

Next we consider the exact sequence

H — 0 _
Tani2(S™) = M2 (S ) = i (M, S¥7H).

We have ImH = Zg{vy, 1} if n=2"—1 or n=0mod4 and ImH = Z4{2v4, } if
otherwise. This leads to and completes the proof. ]

Vi

For the element k9 or o7, we know that 2i9oxg=2Kg #0 and 2500} =
2035 #0 (22]). Since 214y 0S4y = fin, 13 # 0 and 2u4,© (Baut,) = fin, 7] # 0 by [19]
we have the assertion of except for the last two. We show the following
result which completes the proof of [Theorem 2.

LEMMA 2.4. There exists an element ty, € 114,(S™") satisfying Xta, = [taus1,12041] fOr
n>4. 1,5, satisfies 21y, 0 1o, # 0. Furthermore we have the following.

(i) Let n be even. Then 21, o (touMa,) # 0.

(i) Let n be odd and n>5. Then there exists an element v’ € ng,_1(S* 1) sat-

isfying 2t" = 1o, and 2ty = [12n,7,] # 0.

Proor. Let CP” the complex n-dimensional projective space and let 7 : S*" —
XCP" ! < SU(n) be the characteristic map in the unitary group U(n). According to
[18], the characteristic map 7’ in the rotation group SO(2n+ 1) is obtained from T
followed by the inclusion SU(n) — SO(2n+1). We know that the J-image of 7" is just
[on+1,12n+1]- Then 1, is taken as the J-image of T followed by the inclusion SU(n) —
SO(2n). By [18], H(t2,) = 74,1 or 0 according as n even or odd. Since 27,,(SO(2n))
=0 for n even ), 7y, 18 of order 2 for n even. Then we have 21,01, =
(121, 12,) and 212, 0 (T214,) = [tan, n13,] by [Lemma 1.1. By [19], these are nontrivial. This
leads to (i).

Next assume that n is odd and n > 5. Then we consider the following natural map

up to sign between exact sequences:

Tt (S7)  —2 1, (SO(2n)) —— (SO0 + 1)) —— 0

Tania(SU) — (S — (ST —— 0.
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We know 7,,(SO(2n)) =~ Z4 and 7,(SO2n+1)) = Z, ([7]). This shows that t,, is
taken as a suspended element and 27y, = [124,7,,] # 0 ([19]). This leads to and

/l

completes the proof. ]

In the rest of the section, we shall prove except the last one. First we

consider the exact sequence induced from the fibration p: M" — S”" for n odd:
7a(S") -5 7, 1 (V) -5 1y (M") — 0,
where Y = S""1'U,, , e?"2. Since m, |(M") = Z,, we have A1, = 2i’ for the inclusion
i Sy,
Here we reprove the existence of a lift of #;. By [Lemma 1.4 we have the exact
sequence

74(S?) =5 73(S2Usy, €*) 5 m3(M).

We have 73(S? Uy, e*) = Zu{i'n,} and 4yy =2i’ on, = 4i'y, = 0. This shows the ex-
istence of a lift of #;.
Let v/ = p,v"" € m7(M*,S3) be a lift of v/. We show

LeMMA 2.5. vZ has a splitting lift.

PrOOF. In the homotopy exact sequence of a pair (M>,S%):
‘* >< 0
72?11(S4) L 7'[11(M5) ]—> 72311(M5, S4) E— 7'[10(S4),

there exists a lift o= (¥4 + [y5,u]) 0 V) e m1(M>,S%) of vi. We know vvs=0
(122]), 0(%4 + [ys,2a]) = 2v' and 2(bg + [p5,14]) = 2"V ([14]), where X' : 7;(M5,8%) —
ng(MS,S°) is the relative suspension ([22]). So we have do = Xv' ov; =0 and 20 =
> o V= sV o 75 =0. Since 711(S°) = Z>{v?} and m;1(S*) = Zs, there exists an
element f € 711 (M) of order 2 satisfying j,f=o and ps 8 =v2. This completes the

proof. [
Next in the exact sequence
m1a(MO) =5 mia (M6, 8%) = m3(S%) = mi3(M),

4ve is lifted to an element of 74(M°®,S°) by [Lemma 1.2, Since 713(S°) = Z»{es} and
iges survives stably, 4vg 1s lifted. By the parallel argument, 4w4 is lifted
We recall that the existence of a lift 0; of ¢” is ensured by and [14]. We show

Lemma 2.6. p!V has a splitting lift 05.
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Proor. We recall that p!” € {¢",2115,8012},. Since the lift 0, of ¢” is of order
2 ([14]), we can define an element 60, € {01, 2112,8012}; = m0(M?). We have psh, = p'”
and

2{01,2112,80’12}1 = (912{2111, 8011,2118} 5 0mod0.

This completes the proof. O

Since 2x7 = v7vZs mod (226" )a14 ([22]), 27 has a lift. We shall show that there
exist lifts of 4v] and 8a3, respectively.

Let V,, be the Stiefel manifold of 2-frames in R"”. We have a cell strucutre
Vani12 = MU, e*1. By [13], we have the following.

Lemma 2.7.  The order of 4, is 4 for n even and 8 for n odd. Furthermore 1, satisfies
A(ian) = 200, 2y = bopy1lton, 1on]  and  jly = £ [93, 120-1]-
We show

LEmMMmA 2.8. (1) 7'C6<M4) = Z4{/12} &) Zz{ﬁ37[5} and 212 = i4V/.

(i) ma(M®) = Z4{s} @Zz{\j%} and 204 = isa’, where v3 is a coextension of v3.
Proor. We know (i) by [14]. In the exact sequence
m14(S7) N ma(M?P) R ma(M®, ST) R m14(S°),
we have m14(M3,87) = Z>{12} @ Z»{[y5,17]}. So we have j, g = [yg,17] and 274 = igo’.
This completes the proof. O
We show
LemMMA 2.9. 4v} and 8a have lifts, respectively.

ProOF. We only prove the second assertion. The first one is obtained by the
parallel argument. Let F be a homotopy fiber of pg : M® — S8, Then, by [Lemma 1.4,
the 20-skeleton of Fis S7v S'. It suffices to prove 84(a3) = 0 for the connecting map
A : 713 (S?) — 1 (F). By Lemma 1.4, we have an exact sequence

7'[15(S8) i> 7'[14(S7 VS14) L) 72,'14(M8> & 7Z14<S8).

We have 4(X¢’) = 2i'c’ and 4(os) = 2114 + i'0’ by [Lemma 2.8.(ii). So we have 4(a3) =
2014 + i'd’o14 and A(Sag) = 0. This completes the proof. O
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3. Existence of a lift of the Thomeier element.

In this section, we construct an element J, € mp,,1(S") for n =3 mod4 satisfying
2
254/111—1 = [l4n7774n]; H( é/ln—l) = Hgp—3; 251,1 =0.

We set 03 = v/ = n3v4 and 85 = a'ny,. I3 has a lift 7,v4. Since 1705 = o'ny4 + V7 + &7,
5; has a lift 77,05 + V6 + &, where g is a lift of 7; and & is a coextension of ¢;. Let n be
odd and n > 11. Then, by [Lemma 2.4, there exists an element 7’ € 7, 3(S"~2) satisfying
251" = [t,_1,1, ;] and Xt = [1,,1,]. We show

LeMMA 3.1. Let n =3 mod4 and n > 11. Then 5, is taken as a represetative of the
Toda bracket {221,212, 1,121 }1-

Proor. First we remark that 7’ is taken as the J-image of a generator of
1 (SO(2n — 1)) = Zg ([7]) and X%’ = Jg),, where g5, € m2,(SO(2n+1)) = Z, is the
composite of the embedding from the real 2n-dimensional projective space RP?" to
SO(2n + 1) and the covering map ¢, : S — RP?". The Toda bracket {g},, 2t2,, 15, } is

well defined. We take d3,., as a representative of

T{G20s 20, 10} = {272 204051, Mg }-
We have
202> 2120, Man} = @3 © {2020, M3, 21201}
= 3, 3
— 0,
because 72,41(SO(2n+ 1)) * Z. So we have 295, , =0.

Since p'q,, =0 for the projection map p':SO(2n+1) — S?, we have p’o

{q£n7212n>772n} = Mpy1- So we have 25£n+1 = [12ﬂ+2a772n+2]'
Next we note that {qénvlenaWZn} = {q§n7212n7772n}1' So, by PI’OpOSitiOIl 2.6 of J

we have
H{22T/7214n+1,'74n+1}1 = _Afl(z‘v‘f/) © Nant2-

Since {22TI7214H+17774n+1}1 = {22T/7214n+17774n+1}> we have H(één—H) = né%n-i-l' This

completes the proof. O

Next we consider the fibration p, : M" — S" for odd n. We recall that ¥ = S"~!

Uaw, , €2 Let 75, 5 € {i',2Wp_1,72,_3} = m2u—1(Y) be a coextension of 7,, 5. By
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Lemma 6.6 of , we know that [z,_1,v,_1] is of order 4 or § according as n = 3 mod 4

or n=1mod4. We show

LemmA 3.2. Let n be odd and n>"1. Then

(i) 7mna(Y) = mp o (S™ ).

(i) mon1(Y) = Za{ify, 3} ® m2n1(S" ) if n =3 mod4 and ny1(Y) = Za{ij5, 3}
+i' 72, 1(S" 1) if n=1mod4

(iii) There exist independent elements i'lt,_1,v,_1] and 7}, 05,_1 of order 2 in

nzn(Y).
(iv) Let b(n) =2 or 1 according as n =3 mod4 or n =1 mod4. Then ny,1(Y) =

Zp(n) @ m2n1(S" D), where the direct summand Zyny is generated by a coextension of
(4/b(n))van—3.
PrOOF. Let k =2n—2. Then, in the exact sequence

l'/

72?k+1(Y, Snil) i) nk(Snfl) - nk(Y) L) nk(Y, Snil) i) nk71<Sn71)7

7'L'k+1(Y, Sni]) = Z2{ﬁ2n—3} and nk(Y, Snfl) = Z{?gn_3}. Since 01,3 = 2w,_1 and
015,_3 = 0, i, is an isomorphism and we have (i).

We consider the exact sequence
9 Ly Ji Sy 0 -
(Y, 8" 1) =5 70, 1 (8™ —5 2y 1 (V) =5 7m0, 1 (Y, 8" =5 1o o(S™71).

Since 7, 1(Y, 8" ) = 7m3,_1(5?7%) and 72, (Y, 8" 1) = 7,(S?"72), 0 are trivial. So j, is

an epimorphism. We have

205, 3 € i'[tn—1,tn—1] © {20203, Map_3, 210n—2} 3 i’ [ty—1, 1n—1] © ;7§n_3 mod 0.

Since [1,-1,72_,] =0 or #0 according as n =3 or 1 mod4 ([19]), we have [ii).

In the exact sequence
Tone1 (Y, 8"71) =5 7, (8771) =5 70, (V) L (Y, 8771,

we have 7Z2n+1(Y, Snfl) = Zg{f/zn_3} and ﬂzn(Y, S"il) = ZZ{ﬁanSflén—z}' Since 5\72,,_3 =
2[ty—1,vu—1] and 04,_3%4, , = 0, we have [iii).

In the exact sequence

n— 0 n— i & n—
o2 (Y, 8" 1) =5 70,1 (™71 =5 7201 (Y) =25 7 (Y, 8771,

we have 7y, 2(Y, 8" 1) =0. If [1,_1,,_1] is of order 4, we can define a coextension of

2vy,—3 by an element of {i’,2w,_1,2va,—3} < mp1(Y). [ty—1,vu—1] is of order 4 for
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n =3 mod4 ) If [1,-1,vs—1] 1s of order 8, we can define a coextension of ’7§n73 by
{i",2wy_1,m3, 3}. To determine the orders of these coextensions, we define a coex-
tension 773, 5 of #,,_3 by an element of {i'[1,_1,1,-1], 2124-3, 72,3} < {i’,2Wp_1,12,_3} =
mon—1(Y). Since 2vy,—3 € {ny,_3,210n-2,1,_»} mod4v,,_3, any element of the bracket
{75,_3,210n—1,12,_1} 1s taken as a coextension of 2vy, 3 if n =3 mod4. We have
2{ih 3,200 1,2p_1} 2 14, 3 013, mod0. Therefore any element of the bracket
{7}, 3+ 2t0n—1,13,_ } 1s of order 4 if n =3 mod4.

If [1,-1,vs—1] is of order 8, then a coextension of 775’”73 is taken as ﬁén—S”%ﬂ—l of

order 2. Hence we have a split exact sequence

0 — 72041 (S" 1) =5 11 (Y) 25 Zgpy — 0

and we have (iv). This completes the proof. O
We denote by i”: Y < M" the inclusion. We show

LemMmA 3.3. Let n be odd and n>"7. Then
(1) Jji"ns, 3 = Vs tpr)- Furthermore, for a suitable choice of 1, 5, i"#f}, 5=
[ﬁn—l? lﬂ] #0 and i//ﬁ£n—3’7%n—l # 0.

(i) Let n=3mod4. Then A5, € il Xy, 2(S"%) 0ny, -

Proor. We consider the natural map between exact sequences for k = 2n — 1:

. 1

(™) s m(Y) —I m(y,stl)

) I I

7'L'k<Sn71) ; ﬂk(M”) ]% ﬂk(Mn,Snfl) e

J/p/

nk(M”, Y),

where the vertical sequence is the exact one induced from a triple (M", Y,S""!). We

have ﬂzn_l(Y, Sn_l) = Z2{ﬁ2n73}> 57?2”,3 = 2Wn O My-3 = 0 and jlﬁénfiﬁ = ﬁ2n73' Remark

that 7, ((M",Y) = 73, 1(S") and so p! : o, 1 (M",S" ) — 1y, 1(M", Y) is regarded
=1~

as the map induced from the collapsing p’ : (M", S”—l) — (S™,%). So we have j,i"ij;, »
= [y ,—1]- By [2] and [14], we have

j*[ﬁn—l? l”] = [ynﬁr/z—hln—l] = [yn7l"—1]ﬁ£n—3 = [ym’?n—l]‘ (3)

Therefore there exists an element o € m,—1(S""!) satisfying 55 5 = [fj,_1, iy] modi.o.

Hence, by a suitable choice of 73, ;, we have the second assertion of (i). Since
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Vs3] = 417, vu—1] # 0 by [Lemma 2.3.(i), we have the third of (i). This leads to (i).
The assertion of for n=7 is true since &; = o'ny, has a lift. Hereafter we

assume that n > 11. We consider the exact sequence:

=1

nx Y| L,
Tone1(M™) L, Tont1(S") — 1, (Y) — mo (M").

By use of the EHP-sequence, we have m,1(S") = Z2{0,} ® Zm,(S"" ') ((19]). By
Theorem 5.2 of and by Lemma 3.1, we have

A6 € A{Z*T 21, 1,901 1y
- {AZZT/, 20002, Mp_2}
= {2127, 21302, 113, }
> {227, 2134 2,15, 5}
= i"{[ti—1:M5_1)s 20202, M2y }
S [ty 1y i1 W23, 20002, an—n }
= 2"ty 1, 1y ]van3
=0 mod7ry,—1(Y) ony,_-

So we have 49 € my1(Y)on,, ;. By [Lemma 3.3.(ii), we have mp,—1(Y)on,y, | =
{1y_sMan—1} + im0 1 (S" 1) 01y, 1. Since [12,75_5] # 0 ([19]), we have 7z, 1(S"') =
2m,-2(S"72). This and (i) lead to [ii] and complete the proof. 0

We show
LEMMA 3.4, iyfiy_1,Vvn—1] # 0 in 7w, (M") if n is odd and n > 5.

Proor. Let n=1mod4. For n=35, we have [u,v4] = [14,14]v7. So we have the
assertion. Since [1,-1,72 ;] #0 for n=1mod4 and n >9 ([19]), we have 7m,.1(S") =
275,(S™ 1) in this case. Assume that i,[t,_1,v,_1] =0. Then we have i'[1,_1,v, 1] €
A(m2,41(S™)).  So there exists an element f e m,(S" ") satisfying i'[1,1,v, 1] =
i'(21,-1 0 ). We know my,1(Y,S" 1) = Zyy{i2,_3} and y,_3 = 2[1,_1,v,—1]. So, by
the homotopy exact sequence of a pair (Y,S""!), we have the relation +[1,_1,v, 1] =
21,10 8. Apply the Hopf homomorphism to this relation, we have +2v,, 3 =4H(f).
This is a contadiction and leads to the assertion in the case n = 1 mod4.

Next we consider the case n =3 mod4. By [19], we have m,:+1(S") = Z>{0,} ®
275,(S™ ). Suppose that i,[1,_1,v,-1] =0. Then we have i'[1,_1,V, 1] € A7, 1(S").
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So, by [Lemma 3.3.(i), we have i'[1,_1,v, 1] =i (Zoony, | +21,-10p), where ae
Ton2(S"2), Beny,(S" ). So, by the parallel argument to the preceding case, we
have +[t,-1,vu-1] = 2o’ ony, ;1 + 21,1 0o f. Apply the Hopf homomorphism to this
relation, we have +2vy, 3 =4H(f). This is a contadiction and completes the

proof. ]

Here we recall the methods to determine the metastable homotopy groups of
spheres ([22]). By use of (11.10) and Theorem 11.7 of [22], we have the following exact

sequence for i < 4m —5:

k
ni+1(Sm)Z—>7fl+k+1(S m+k )Ln(zm IPm—l—k l)ﬁﬂ,(sm>%---7 (4)

where P/ = RP/ and P"+<=! = pmth=l pm-1,

Now we show
LemMmA 3.5. 0 has a lift if n=3 mod4.

Proor. It suffices to assume that n > 11. We apply (4) for i=2n+1, m=n—1

and k= co. Then we have an exact sequence

A’ aely Z*
0— ”nSJrz(Pnfl) — (S 1) E— ”n+1<S0) — ”5+1(Pn71>7

where P,_; =P /P"!. As is easily seen ([8]), 75, (P,_1) =0, 75 ,(P,_1) = Z4 and this

group is generated by v. So the sequence becomes the exact sequence
_qy 2
0 — Zy{[tn-1,vu1]} — mn(S"") = 7)1 (S°) — 0.

By [Cemma 1.2, there exists a lift §” € 7,1 (M", 8" ') of §/. Consider the following

diagram:

0
7T11+2(Sn71) Zy{[tn1,vn 1]}
o] o)
Tonp1(M") —L oy (M7, 87—y, (S — s (M)
p*
T 1 (S7) w8 e (M)
H,

nn—«—l(Snil) 0.
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From the diagram, we see X (d6") =0 mod2xy,
there exists an element o € 75,(S"!') such that X (06") = 22% () = 2 (21,_1 0 ). So
(0" — &) = 35" — 21,1 o o belongs to KerX®. Therefore 0(6” — &) = kft,_1,v,_1] for
some ke Z. By [Lemma 3.4, we see that k is even. Thus we can choose 6" as
30" —a)=0. Then p'(6" — &) =5, — Zo has a lift and 0 = 21,0 (6, — o) = 22, s0
2 (06") =0. We see that 66" = [[1,_1,v,_1] for some / € Z. Again, by [Lemma 3.4, we
get that / is even. Therefore we can choose ¢” so that 60” =0. Thus we have

4(6)) = 0. This completes the proof. O

(S%). Since X* is epimorphic,

4. Proof of Theorem 3 and some results.
First we show [Theorem 3.

THEOREM 4.1. (1) 7,_[tws1,ns1] is of order 4 if n is odd.
(i) If n=3mod4 and n> 11, a lift B, of 6, satisfies a relation

2ﬁn = ﬁn—l[ln+laln+1] modZnZn(M"_l)

and the order of f, is 8.

ProOF. For n=3 and 5, #,_[tnt1,1n+1] 1s of order 4 (|25]). Hereafter we assume
n>7.

In the exact sequence

=1

n nx 4 L 7
Tons2(M") Lo, Tont2(S") — o1 (Y) — w1 (M),

7'[2n+2(Sn) = 22{57/11’/2”_‘_1} @annH(S”‘l) if n =3 mod4 and 7'L'2n+2(Sn) = 27'52n+1 (Sn_l)
if n=1mod4. So, by [Lemma 3.3, An2(S") ci'my1(S™) and i’ is

*

a monomorphism on the direct summand Z,,,. By Lemmas [.6 and B.3.(i), we

have

-1~ 2 I 21,2
"My 3 0 Moy = [ty ]2

= [1{1, l"1]ﬁ2n737/§n—1
= 2[11/17 Zrlz] © 2(ﬁ11—2 A ﬁn—2)
= 2(ﬁn—1 [ln+1 ) ln+1]>‘

Therefore #,_[tyt1,141] 1s of order 4 if n is odd and n > 7. This leads to (i).
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We consider the commutative diagram (p = p,):

H
Mot (M") —— mou (E(M" 1 A M)

llm lf(pw)*

H

o1 (S") —— Tons1 (S,
By [Lemma 1.6, we have
H(B,) = 2(f,— AM1,—2) mod iz, —2v2y-2. (5)

We have
H(ﬁn—l [anrlu ln+1]> = 2(ﬁn—2 A ﬁn—Z)H([ZnJrl ) ln+1]) = 22(ﬁn—2 A ﬁn—2)'

Thus we have the equation [ii]. Since the identity class ¢, is of order 4 for n > 3, we
have 4Xm,,(M"™ ') = 0. This implies that 88, = 0.
Now suppose that 48, =0. Then the equation implies that there exists an

/l

element o € 7y,(M") such that

20,1 ltnt1, tns1] = 220
Thus we have the equation

"33 © Mgy = 2200
Applying j, : mo,1(M") — 1o, 1 (M",S"1) to this equation, we get

Joi" 3 0 M3y = Al V] # 0.
On the other hand, since
2X0=21' o X =i, 01, ;0p,0X0Emy (ST,

we have j, (2Xa) =0. This is a contradiction. This completes the proof. O

REMARK. Wu obtained the groups 7y, (M") forn=3,5and 7. Forn=3, a
lift 7,v4 € m7(M3) of n3v4 is of order 8. We have relations 2ij,vy = +7j,[14,14] + 77,2V’
and 47,v4 = isn3ve + 7,2V in (M) ((15]).

We know 715(S%) = Z,{v3} ® Z2{us} ® Z>{n¢e7} and = : m15(S°®) — 75 (S?) is an
isomorphism ([22]). We denote by Ve a lift of ¥, and by & a lift of &;. Note that

26 = i7v; and 28 = iznee7. We show

PROPOSITION 4.2. 7i¢20’ = 2(ijg[ts, 18] + V6 + &), 2(7is08 + V6 + &) = + 1718, 18] and
47760'8 = 77620'I + 2(‘_;6 + §6> = 2776[18, lg] # 0.
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ProoF. By use of the fact 5z0' = 4V = 2[5, v6], We have
ne2a’ € {iz,2i6,ns} 20’
< {i7, 216,160}
= {i7, 216, 2[16, v6]}
< {i7,216 0 [16,16], 2v11 }
= {i7,4[16, 16}, 2v11 }

> i"{i',2[16,16),4v11}

> "7 113 = 27 is, 15]

mod i7*7Z15(S6) + 7112(M7) 0 2v1s.

In the exact sequence

7'[13(S7) i> 7[12(Y) l—*> 7Z12(M7) p—7> 7'[12(S7) = 0,

we have Im 4 = 0 since 4(v3) = 2i'v2 =0. So, by Lemma 3.2.(i), we have nj3(M7) =

Z,{i;v?}. Hence we have
fieXa’ = 2ij¢[1s, 18] mod iz, my5(S°).
Since %0 = v +ne in 75 (S%) ([22]), we have a relation
2ijo = 2V + 28.

We have X (5j,20') = 2fj6 = in*c in n{,(M?). Hence we have the first relation.
Since + [13,13] = 203 — Xa’, we have +7j4lis,13] = (277408 — 7js20”’). This leads to the
second relation.
The last relation is a direct consequence of the first two relations and
4.1.(1) for n=7. This completes the proof. O

REMARK.  Since 1y, [t2n+1, 22041] = [124,120) = [120,13,] 0 for n even ([19)),

Non—1lt2n+1,120+1) 18 of order 2 for n even.
We have to show

Lemma 4.3. (i) mos(M'Y) = Zg{p,} ® Zo{inio10v},}, where B, is a lift of 0.
(il) (M) = Zr{a} ® Z>{i1oo9vis}, where o is a lift of 2[10,vi0] and Xo. = 4p,.
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Proor. First we know the following ([22]):
14(S') = Z2{0'n3} @ Za{onvisy;  ms(S') = Z22{0'}

and 7, 13(S") = Zz{o-nv,fH} for n =9 and 10. In the exact sequence

=1

A * *
7'[24(S11) — 7Z23(Y) l—) 7'[23(M11) pi) 7Z23(S11),

we have 4(0'n,;) =0, A(o11vig) =2i'a19v}; =0 and 4(0') =0 by [Lemma 3.3. By
Lemma 3.2.(iv), we have 723(Y) = Z4 @ 123(S'?). Hence, by Theorem 4.1, we have (i).
We know 7151(S°) = 0 and 7(S'%) = Z4{[110,v10]} ([22]). In the exact sequence

a3 (M1, 8%~ 15(8%) 1% 7y (M10) L5 70y (M1, 8%) — 0,

we have (M0, S%) = 7 (S'%) and 7p3(M'°,S%) = 755(S'°) by use of [Lemma 1.2.
So there exists a lift o of 2[t19,v19] and 7n(M!0) is generated by o and ijgo9vi,. The
assumption 2o = i100'9V126 induces a relation 22a = z'ualovlz7. This contradicts the result
of (i), obtaining the group 7y (M'?).

Next we consider the exact sequence

s (Z(MO A M) L 1y (M) 2 (M),

By use of the fact [i1,111] =011vis, by Lemmas [3 and 1.6fiii} we have

A(Z (79 ATlg) ©1193) = Tlolt11, 1111 = 0. So X is a monomorphism. Hence, by (i), we
have the relation of [ii]. This completes the proof. O

PROBLEM 4.4. (i) A4, = i'0y, |?

Do the elements 3, us, &, iy and &7 have lifts?
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Added in proof.

In the proof of on p. 10, the statement of lines 21 and 22 is false. This
part should be revised as follows. The statement of the last paragraph of the proof
becomes unnecessary.

Since pj,q5, =0 for the projection map pj :SO(2n+1)— S?", we have
Pan © {2 220, Man} = =D @3> 2120} © M4y = 13, because {p3,,, 43, 2120} = 1, for n odd,
which is obtained by Lemma 4.1.(ii).a) of Mukai (Even maps from spheres to spheres,
Proc. Japan Acad. 47(1971), 1-5). So we have H(d5,.,) = HJ{q5,, 210, 112y} = N3, 1-

Let i: SO(2n+ 1) — SO(2n + 2) be the inclusion. We know 75,,1(SO(2n +2)) =
Z®Z (7). We denote by pS, ., : SO2n+2) — $! and ¢}, : S* — SO(2n +2)
the corresponding elements to p;, and g¢;,, respectively. Since py,. 47,1 = 212041, oy
is taken as a representative of a Toda bracket {i,qj,21,}. Hence we have
25§n+1 = J ({2 2120, M2 }) = J ({1, @3 2020} © 2) = [12042, 20n42] © Nayi3 = [20425 Mo
because Jq3,,; = (12012, 12442). This completes the proof.
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