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Abstract. We try to investigate whether an element of order 2 in homotopy

groups of spheres has a lift to an element of homotopy groups of mod 2 Moore

spaces or not. A typical element of the a½rmative property is Thomeier's

element of p8n�7�S
4n�3�. And the Whitehead square �i2n�1; i2n�1� of the identity

class i2n�1 of S2n�1 is a negative example except for n � 0, 1 and 3.

Introduction.

Let in be the identity class of S n. We denote by M n � S nÿ1 U2inÿ1
en the Moore

space of type �Z2; nÿ 1�. An element b A pk�M
n� is called a lift of a A pk�S

n� if

p�b � a, where p : M n ! S n is the collapsing map. If 2in � a � 0, then by the de®nition,

a coextension of a to M n�1 is a lift of a suspension Sa. A lift which is not a co-

extension is called a strict lift. The main purpose of this note is to examine which

element of pk�S
n� is strictly lifted to an element of pk�M

n�.

To state our result, we need the notations and results of [22]. Throughout this note,

we deal with 2-primary components. Let h2 A p3�S
2� be the Hopf map, hn � Snÿ2h2 and

h2n � hn � hn�1 for nV 2. We know that p3�S
2� � Zfh2g, pn�1�S

n� � Z2fhng for nV 3

and pn�2�S
n� � Z2fh

2
ng for nV 2. Let n4 A p7�S

4� be the Hopf map and nn � Snÿ4n4

for nV 4. We know that p6�S
3� � Z4fn

0g, p7�S
4� � Zfn4glZ4fSn

0g and pn�3�S
n� �

Z8fnng for nV 5. We recall the relations 2n 0 � h33 and G�i4; i4� � 2n4 ÿ Sn 0. Let s8 A

p15�S
8� be the Hopf map and sn � Snÿ8s8 for nV 8. We know that p12�S

5� � Z2fs
000g,

p13�S
6� � Z4fs

00g, p14�S
7� � Z8fs

0g, p15�S
8� � Zfs8glZ8fSs

0g and pn�7�S
n� �

Z16fsng for nV 9. We know the relations Ss 000 � 2s 00, Ss 00 � 2s 0 and G�i8; i8� � 2s8 ÿ

Ss 0. We recall the following elements: e3 A p11�S
3�; n24 A p10�S

4�; m3 A p12�S
3�; n6 A

p14�S
6�; y 0

A p23�S
11�; k7 A p21�S

7�; rIV A p20�S
5�; o14 A p30�S

14�; h� 0 A p31�S
15�.

Let H : pk�S
n� ! pk�S

2nÿ1� be the Hopf homomorphism. According to [19],

there exist elements d4n A p8n�S
4n� and d 04nÿ1 A p8nÿ1�S

4nÿ1� of order 2 satisfying Sd4n �

2000 Mathematics Subject Classi®cation. Primary 55Q52; Secondary 55Q40, 55Q15.

Key Words and Phrases. Lift, mod 2 Moore space, Whitehead product.



�i4n�1; i4n�1�, Sd
0
4nÿ1 � �i4n; h4n�, H�d4n� � h8nÿ1 and H�d 04nÿ1� � h28nÿ3. These elements can

be taken as follows: d 03 � n 0h6, d4 � n4h7, d 07 � s 0h14, d8 � s8h15, d 011 � y 0, d12 � y,

d 015 � h� 0 and d16 � h�
16. Our result is stated as follows.

Theorem 1. The following elements are strictly lifted: h3; n
0h6; 4n

2
4 ; n

2
5 ; s

000; 4n6; n7;

s 0h14; 2�i10; n10�; 2k7; 8s2
8 ; rIV ; 4o14; o15.

Theorem 2. The following elements are not lifted: k10; s2
16; d4n, d4nh8n for nV 1;

�i2n�1; i2n�1� for n0 0; 1 or 3; �i4n�1; h4n�1� for nV 1.

Let ~h3 A p5�M
4� be a coextension of h3 and ~hn � Snÿ3

~h3 A pn�2�M
n�1� for nV 3.

There exists a lift a of h3 which is a generator of p4�M
3�GZ4 (Lemma 4.1 of [14]). We

use the notation ~h2 � a. The following result gives an example of the element of order 8

in homotopy groups of M n (cf. [3]).

Theorem 3. Let n1 3 mod 4 and nV 11. Then there exists a lift bn A p2n�1�M
n� of

d 0n such that

2bn 1 ~hnÿ1�in�1; in�1� modSp2n�M
nÿ1�:

The assertion of Theorem 3 for n � 3, 7 except for the last one was obtained by Wu

[25]. Our method is to use the composition methods developed by Toda [22]. We use

e¨ectively the informations of two homotopy ®bers of the pinching maps p : M n ! S n

and p 0
: �M n

;S nÿ1� ! �S n
; �� (James [5]).

Although Tipple [20] omitted the details, some of our result overlaps with that of

[20].

The authors wish to thank Mahowald for informing the property of the Mahowald

element.

1. Fundamental facts and some homotopy groups of M n5M n.

Let X be a connected ®nite CW-complex, y : S nÿ1 ! X be a mapping and

X � � X Uy e
n be a complex formed by attaching an n-cell. Let p 0 � p 0

n : �X
�
;X � !

�S n
; �� be the collapsing map. Let gn A pn�X

�
;X� be the characteristic map of the n-cell

en of X �. Let CY be the reduced cone of a space Y. For an element a A pkÿ1�Y �, we

denote by â 0 A pk�CY ;Y � an element satisfying qâ 0 � a, where q : pk�CY ;Y� ! pkÿ1�Y �

is the connecting isomorphism. For a A pkÿ1�S
nÿ1�, we set â � gnâ

0 A pn�X
�
;X �. We

note the following:

qâ � y � a and p 0
�â � Sa;
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where q : pn�X
�
;X � ! pnÿ1�X� is the boundary map. Let S 0 : pk�X

�
;X � !

pk�1�SX
�
;SX� be the relative suspension homomorphism ([21]). In the case that X � �

M n, we can take gn�k � �S 0�kgn. Let i2 : S
1
,! M 2 be the inclusion and p2 : M

2 ! S2

the collapsing map. We set in � Snÿ2i2 : S
nÿ1

,! M n and pn � Snÿ2 p2 : M
n ! S n.

First of all, we recall the Hilton formula. By (8.16) of Chapter 9 of [24], we have

Lemma 1.1 (Hilton). 2in � a � 2a� �in; in� �H�a� for any element a A pk�S
n�.

Next we state the homotopy excision theorem (Theorem 2.1 of [5]) in the following

form.

Lemma 1.2 (James). Assume that rU 3nÿ 4. Then we have the exact sequence

pr�M
n
;S nÿ1� �!

p 0
n�

pr�S
n� �!

H2
prÿn�S

nÿ1� �!
Q

prÿ1�M
n
;S nÿ1� �! � � � ;

where H2 � 2inÿ1 � S
ÿn �H and Q� � � �gn; �.

We denote by i 0n the identity class of M n. Let JX be the James reduced product

of X ([6]). The �3nÿ 4�-skeleton of JM n is the second ®ltration J2M
n � M n Ub

CS�M nÿ15M nÿ1� of JM n, where b � �i 0n; i
0
n�. Then we have the following.

Lemma 1.3. Let X � M n5M n and let q : �CSÿ1X ;Sÿ1X ; JM n
;M n� !

�Sÿ1X ;M n� be the connecting map. Then we have qîX � �i 0n; i
0
n� for nV 3.

Let F be the homotopy ®ber of the map pn : M
n ! S n. From the cohomology

structure of F, we have F � S nÿ1 U e2�nÿ1� U e3�nÿ1� U � � � : Let Y be the �3nÿ 4�-skeleton

of F. We set wn � �in; in�. Then we have the following.

Lemma 1.4. Y � S nÿ1 U2wnÿ1
e2nÿ2 for n odd and Y � S nÿ14S2nÿ2 for n even.

Proof. Let A � S nÿ1 and X be a mapping cylinder of a mapping of degree 2

of S nÿ1. Let i : S nÿ1
,! X be the embedding satisfying i�x� � �x; 1�. Then X is ho-

motopy equivalent to S nÿ1, i is regarded as 2inÿ1 and X UCA � M n. So the collapsing

map pn : M
n ! S n has the homotopy ®ber �X ;A�

y
([4]). By Corollary 5.8 of [4], we

have Y � �X ;A�2 � S nÿ1 Ud e
2nÿ2, where d � �inÿ1; i� � 2�inÿ1; inÿ1�. This completes the

proof. r

We recall that M n5M n is a mapping cone of a mapping 2i 02nÿ1 � i2nÿ1h2nÿ2 p2nÿ1

([1], [23]). Let i 04 : M
4
,! S�M 25M 2� be the inclusion. We set i 0n � Snÿ4i 04 : M

n
,!

Snÿ3�M 25M 2� for nV 4. We also set i 00n � i 0n � in. A Toda bracket fi 04; 2i
0
4; i4gH

p4�S�M
25M 2�� is well-de®ned and its representative ~{4 is a coextension of i4. Since

2~{4 A fi 04; 2i
0
4; i4g � 2i4 � ÿi 04f2i

0
4; i4; 2i3gI ÿ i 04i4h3fp4; i4; 2i3g C i 004 h3 mod 0, we have 2~{4 �
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i 004 h3. We set ~{n � Snÿ4~{4 A pn�S
nÿ3�M 25M 2�� for nV 4. We note that ~{n A fi 0n; 2i

0
n; ing.

We denote by p 0 : S�M n5M n� ! M 2n�1 and p 00 � p 0p : S�M n5M n� ! S2n�1 the

collapsing maps. By making use of the co®ber sequence starting with 2i 02n, we have the

following.

Lemma 1.5. Suppose nV 3. Then

(i) p2n�S�M
n5M n�� � Z4f~{2ng;

(ii) p2n�1�S�M
n5M n�� � Z2f~{2nh2nglZ2fi

0
2n~h2nÿ1g;

(iii) p2n�2�S�M
n5M n�� � Z2f~{2nh

2
2nglZ2fi

0
2n~h2nÿ1h2n�1glZ2fi

00
2nn2nÿ1g.

We set a2 � ~h3h5 and an � Snÿ2a2 � ~hn�1hn�3 for nV 2. We have 2i 04 � a2 �

i4h3p4a2 � i4h
3
3 � 2i4n

0 � 0. So we can de®ne a coextension ~a2 A fi 04; 2i
0
4; a2gH

p7�S�M
25M 2�� of a2. We set ~an � Snÿ2~a2 for nV 2. Then we show

Lemma 1.6. (i) 2~an � i 0n�2~hn�1h
2
n�3 for nV 2.

(ii) p2n�3�S�M
n5M n�� � Z4f~a2nglZ2f~{2nn2ng for nV 4 and p9�S�M

35M 3��

� Z4f~a4glZ2f~{6n6glZ2fi
00
6 n5h8g, where S�~hnÿ15~hnÿ1�1G~a2n mod i 002nn2nÿ1h2n�2 for

nV 3.

(iii) p2n�4�S�M
n5M n�� � Z2f~a2nh2n�3g for nV 4.

Proof. First we recall the following ([12], [14]):

p2n�3�M
2n�1� � Z2f~h2nh2n�2glZ2fi2n�1n2ng�nV 3�;

p9�M
6� � Z2f~h5h

2
7glZ2fi6n5h8g; p2n�3�M

2n� � Z2f~h2nÿ1h
2
2n�1g�nV 4�:

We have 2~a2 A ÿ i 04f2i
0
4; a2; 2i6g. And we have

f2i 04; a2; 2i6gH fi4h3; h
2
4 ; 2i6g

H fi4; 2n
0
; 2i6g

I fi4; 2i3; h
3
3g

C ~h3h
2
5

mod i4�p7�S
3� � 2p7�M

4� � 0;

by Lemma 2.2 of [14]. So we have 2~a2 � i 04~h3h
2
5 . This leads to (i).

We have p2n�4�M
2n�1� � Z2f~h2nh

2
2n�2g and p2n�4�M

2n� � 0 for nV 4. So, by the

exact sequence

0 �! p2n�4�M
2n� �!

i 0
2n�

p2n�4�S�M
n
5M n�� �!

p 0
�
p2n�4�M

2n�1� �! 0;

we have (iii).
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We note that M 2n4S2n is the 2n-skeleton of S�M n5M n�. Let k1 : M
2n

,! M 2n4

S2n and k2 : S
2n

,! M 2n4S2n be the inclusions, respectively. Then S�M n5M n� is a

mapping cone of k1i2nh2nÿ1 � 2k2. In the homotopy exact sequence of a pair

�S�M n5M n�;M 2n4S2n�:

p2n�4�S�M
n
5M n�;M 2n

4S2n� �!
q

p2n�3�M
2n
4S2n� �!

i�
p2n�3�S�M

n
5M n��

�!
j�

p2n�3�S�M
n
5M n�;M 2n

4S2n�

�!
q

p2n�2�M
2n
4S2n�;

the ®rst group is isomorphic to p2n�4�S
2n�1� and the fourth group is isomorphic to

p2n�3�S
2n�1� for nV 3. We have qn̂2n � 2k2n2n and qch22n � k1i2nh

3
2nÿ1 � 2k2h

2
2n � 0. We

have p 00
� ~a2n � h22n�1. Hence we have the ®rst half of (ii).

The second half of (ii) is obtained by the parallel argument to the ®rst half.

In the exact sequence

p9�M
6� �!

i 0
6�

p9�SM
3
5M 3� �!

j 0�
p9�SM

3
5M 3

;M 6�;

we have p9�M
6� � Z2f~h5h

2
7glZ2fn5h8g and p9�SM

35M 3
;M 6�G p9�M

7� � Z2f~h6h8g

lZ2fi7n6g. So the inclusion j 0 is identi®ed with the collapsing map p 0 � Sp35i 03 and

p 0
��S~h25~h2� � h45~h2 � ~h6h8 � p 0

�~a4. Therefore we have the relation S~h25~h2 ÿ ~a4 A

Im i 06� � fi 06~h5h
2
7 ; i

00
6 n5h8g. So we have S~h25~h2 1G~a4 mod i 006 n5h8. This completes the

proof. r

2. Some lifts to M n
.

If a A pk�S
n� has a lift b A pk�M

n� and the orders of a and b are same, then b

is called a splitting lift of a. We shall use the notion of lifting for an element of

the relative homotopy group. We remark that a A pk�S
n� for kU 3nÿ 2 has a lift in

pk�M
n
;S nÿ1� if and only if H2�a� � 0 by Lemma 1.2. We show

Lemma 2.1. (i) Suppose that a A pk�S
n� is lifted to M n. Then the composite a � b is

lifted to M n, where b A pm�S
k�. Furthermore, 2in � a � 0 for nV 3.

(ii) Any nontrivial element of pk�S
2� has no lift.

(iii) Any element of Spk�S
2� has a lift.

Proof. The ®rst half of (i) is obviously obtained. Since pn � Spnÿ1 for nV 3 and

it is of order 2, we have 2in � a � 2pn � d � 0, where d A pk�M
n� is a lift of a. This leads

to the second half of (i).
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Since M 2 is the real projective plane, pk�M
2� is isomorphic to pk�S

2� through the

double covering map g : S2 ! M 2. Then the fact p2g � 0 implies (ii).

Any element of Spk�S
2� is represented as h3 � Sa for a A pk�S

3� and h3 has a lift.

So, the ®rst assertion of (i) implies (iii), completing the proof. r

Next we show

Lemma 2.2. Let a A pk�S
n� for kU 3nÿ 3. Then Sa is lifted to M n�1 if and only if

there exists an element b A pkÿn�1�S
n� satisfying 2in � a � 2�in; b�.

Proof. By Lemma 1.2, we have an exact sequence

pkÿn�1�S
n� �!

Q
pk�1�M

n�1
;S n� �!

p 0
�

pk�1�S
n�1�:

Let a1 A pk�1�M
n�1� be a lift of Sa. By the exact sequence, there exists an element

b A pkÿn�1�S
n� satisfying j�a1 � â� �gn�1; b�, where j : �M n�1

; �� ,! �M n�1
;S n� is the

inclusion. We have q�gn�1; b� � ÿ2�in; b� and qâ � 2in � a. Since q�â� �gn�1; b�� � 2in �

aÿ �2in; b� � 0, the converse follows. This completes the proof. r

Here we need the information about the Mahowald element h 0
i A pS

2 i�S0� for iV 3

([9]). It satis®es the relation H�h 0
i � � n on S2 iÿ2 and so we have �inÿ2; nnÿ2� � 0 if n �

2 i ÿ 1 for iV 3. We set h 0
i;n � h 0

i on S n and h 0
i;n�1 � Sh 0

i;n. Making use of the EHP-

sequence, we have the following two cases:

2h 0
i;nÿ1 � �inÿ1; nnÿ1� �1�

and there exists an element y A p2nÿ1�S
nÿ2� satisfying

2h 0
i;nÿ1 ÿ �inÿ1; nnÿ1� � Sy0 0: �2�

By Lemma 1.1, 2inÿ1 � h
0
i;nÿ1 � 2h 0

i;nÿ1 � �inÿ1; nnÿ1�. So, by Lemma 2.2, h 0
i;n has a lift in

the case (1) and does not have a lift in the case (2).

According to Mahowald, the order of h 0
i A pS

2 i�S0� is 2 for i � 3; 4; 5; 4 for i � 6 and

4h 0
i � 0. We can take h 0

3;6 � n6 and h 0
4;14 � o14. Since 2n6 � �i6; n6� and 2o14 � �i14; n14�

([22]), n7 and o15 have lifts, respectively.

We recall the Mahowald-Thomeier result: �i2nÿ1; n2nÿ1� � 0 if n � 2 i ÿ 1 or n1

0 mod 4 and �i2nÿ1; n2nÿ1� is of order 2 if otherwise. We show

Lemma 2.3. (i) �g2n�1; n2n� is of order 8 for nV 3.

(ii) �g2n; n2nÿ1� is of order 2 if n � 2 i ÿ 1 or n1 0 mod 4. �g2n; n2nÿ1� is of order 4 if

otherwise.
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Proof. By Lemma 1.2, we have the exact sequence for nV 3:

p4n�4�S
2n�1� �!

H2
p2n�3�S

2n� �!
Q

p4n�3�M
2n�1

;S2n�:

Since the order of �i2n; n2n� is 4 or 8, we have Hp4n�4�S
2n�1�H f4n4n�1g. So we have H2

is trivial and Q is a monomorphism. This leads to (i).

Next we consider the exact sequence

p4n�2�S
2n� �!

H2
p2n�2�S

2nÿ1� �!
Q

p4n�1�M
2n
;S2nÿ1�:

We have ImH � Z8fn4nÿ1g if n � 2 i ÿ 1 or n1 0 mod 4 and ImH � Z4f2n4nÿ1g if

otherwise. This leads to (ii) and completes the proof. r

For the element k9 or s2
15, we know that 2i9 � k9 � 2k9 0 0 and 2i15 � s

2
15 �

2s2
15 0 0 ([22]). Since 2i4n � d4n � �i4n; h4n�0 0 and 2i4n � �d4nh8n� � �i4n; h

2
4n�0 0 by [19],

we have the assertion of Theorem 2 except for the last two. We show the following

result which completes the proof of Theorem 2.

Lemma 2.4. There exists an element t2n A p4n�S
2n� satisfying St2n � �i2n�1; i2n�1� for

nV 4. t2n satis®es 2i2n � t2n 0 0. Furthermore we have the following.

(i) Let n be even. Then 2i2n � �t2nh4n�0 0.

(ii) Let n be odd and nV 5. Then there exists an element t 0 A p4nÿ1�S
2nÿ1� sat-

isfying St 0 � t2n and 2t2n � �i2n; h2n�0 0.

Proof. Let CPn the complex n-dimensional projective space and let T : S2n !

SCPnÿ1
,! SU�n� be the characteristic map in the unitary group U�n�. According to

[18], the characteristic map T 0 in the rotation group SO�2n� 1� is obtained from T

followed by the inclusion SU�n� ,! SO�2n� 1�. We know that the J-image of T 0 is just

�i2n�1; i2n�1�. Then t2n is taken as the J-image of T followed by the inclusion SU�n� ,!

SO�2n�. By [18], H�t2n� � h4nÿ1 or 0 according as n even or odd. Since 2p2n�SO�2n��

� 0 for n even ([7]), t2n is of order 2 for n even. Then we have 2i2n � t2n �

�i2n; h2n� and 2i2n � �t2nh4n� � �i4n; h
2
4n� by Lemma 1.1. By [19], these are nontrivial. This

leads to (i).

Next assume that n is odd and nV 5. Then we consider the following natural map

up to sign between exact sequences:

p2n�1�S
2n� ���!

D 0

p2n�SO�2n�� ���!
i�

p2n�SO�2n� 1�� ���! 0
?
?
?
y

S2n�1

?
?
?
y

J

?
?
?
y

J

p4n�2�S
4n�1� ���!

D
p4n�S

2n� ���!
S

p4n�1�S
2n�1� ���! 0:
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We know p2n�SO�2n��GZ4 and p2n�SO�2n� 1��GZ2 ([7]). This shows that t2n is

taken as a suspended element and 2t2n � �i2n; h2n�0 0 ([19]). This leads to (ii) and

completes the proof. r

In the rest of the section, we shall prove Theorem 1 except the last one. First we

consider the exact sequence induced from the ®bration p : M n ! S n for n odd:

pn�S
n� �!

D
pnÿ1�Y� �!

i�
pnÿ1�M

n� �! 0;

where Y � S nÿ1 U2wnÿ1
e2nÿ2. Since pnÿ1�M

n�GZ2, we have Din � 2i 0 for the inclusion

i 0 : S nÿ1
,! Y .

Here we reprove the existence of a lift of h3. By Lemma 1.4, we have the exact

sequence

p4�S
3� �!

D
p3�S

2
U4h2 e

4� �!
i�

p3�M
3�:

We have p3�S
2 U4h2 e

4� � Z4fi
0h2g and Dh3 � 2i 0 � h2 � 4i 0h2 � 0. This shows the ex-

istence of a lift of h3.

Let bn 0 � g4
bn 0 0 A p7�M

4
;S3� be a lift of n 0. We show

Lemma 2.5. n25 has a splitting lift.

Proof. In the homotopy exact sequence of a pair �M 5
;S4�:

p11�S
4� �!

i5�
p11�M

5� �!
j�

p11�M
5
;S4� �!

q
p10�S

4�;

there exists a lift a � �n̂4 � �g5; i4�� � n̂
0
7 A p11�M

5
;S4� of n25 . We know n 0n6 � 0

([22]), q�n̂4 � �g5; i4�� � Sn 0 and 2�n̂4 � �g5; i4�� � S 0bn 0 ([14]), where S 0
: p7�M

5
;S4� !

p8�M
6
;S5� is the relative suspension ([22]). So we have qa � Sn 0 � n7 � 0 and 2a �

S 0bn 0 � n̂ 07 � g5S
0bn 0 0 � n̂ 07 � 0. Since p11�S

5� � Z2fn
2
5g and p11�S

4�GZ15, there exists an

element b A p11�M
5� of order 2 satisfying j�b � a and p5�b � n25 . This completes the

proof. r

Next in the exact sequence

p14�M
6� �!

j�
p14�M

6
;S5� �!

q
p13�S

5� �!
i6�

p13�M
6�;

4n6 is lifted to an element of p14�M
6
;S5� by Lemma 1.2. Since p13�S

5� � Z2fe5g and

i6e5 survives stably, 4n6 is lifted. By the parallel argument, 4o14 is lifted

We recall that the existence of a lift y1 of s 000 is ensured by [16] and [14]. We show

Lemma 2.6. rIV has a splitting lift y2.
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Proof. We recall that rIV A fs 000
; 2i12; 8s12g1. Since the lift y1 of s 000 is of order

2 ([14]), we can de®ne an element y2 A fy1; 2i12; 8s12g1 H p20�M
5�. We have p5y2 � rIV

and

2fy1; 2i12; 8s12g1 � y1Sf2i11; 8s11; 2i18g C 0mod 0:

This completes the proof. r

Since 2k7 1 n7n
2
15 mod �S2s 000�s14 ([22]), 2k7 has a lift. We shall show that there

exist lifts of 4n24 and 8s2
8 , respectively.

Let Vn;2 be the Stiefel manifold of 2-frames in R
n. We have a cell strucutre

V2n�1;2 � M 2n Uln e
4nÿ1. By [13], we have the following.

Lemma 2.7. The order of ln is 4 for n even and 8 for n odd. Furthermore ln satis®es

D�~{4n� �G2ln; Sln � i2n�1�i2n; i2n� and j�ln �G�g2n; i2nÿ1�:

We show

Lemma 2.8. (i) p6�M
4� � Z4fl2glZ2f~h3h5g and 2l2 � i4n

0.

(ii) p14�M
8� � Z4fl4glZ2f

en27g and 2l4 � i8s
0, where en27 is a coextension of n27 .

Proof. We know (i) by [14]. In the exact sequence

p14�S
7� �!

i8�
p14�M

8� �!
j�

p14�M
8
;S7� �!

q
p14�S

6�;

we have p14�M
8
;S7� � Z2f

bn27glZ2f�g8; i7�g. So we have j�l4 � �g8; i7� and 2l4 � i8s
0.

This completes the proof. r

We show

Lemma 2.9. 4n24 and 8s2
8 have lifts, respectively.

Proof. We only prove the second assertion. The ®rst one is obtained by the

parallel argument. Let F be a homotopy ®ber of p8 : M
8 ! S8. Then, by Lemma 1.4,

the 20-skeleton of F is S74S14. It su½ces to prove 8D�s2
8� � 0 for the connecting map

D : p22�S
8� ! p21�F�. By Lemma 1.4, we have an exact sequence

p15�S
8� �!

D
p14�S

7
4S14� �!

i�
p14�M

8� �!
p�

p14�S
8�:

We have D�Ss 0� � 2i 0s 0 and D�s8� � 2i14 G i 0s 0 by Lemma 2.8.(ii). So we have D�s2
8� �

2s14 G i 0s 0s14 and D�8s2
8� � 0. This completes the proof. r
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3. Existence of a lift of the Thomeier element.

In this section, we construct an element d 0n A p2n�1�S
n� for n1 3 mod 4 satisfying

Sd 04nÿ1 � �i4n; h4n�; H�d 04nÿ1� � h28nÿ3; 2d 0n � 0:

We set d 03 � n 0h6 � h3n4 and d 07 � s 0h14. d 03 has a lift ~h2n4. Since h7s8 � s 0h14 � n7 � e7,

d 07 has a lift ~h6s8 � ~n6 � ~e6, where ~n6 is a lift of n7 and ~e6 is a coextension of e6. Let n be

odd and nV 11. Then, by Lemma 2.4, there exists an element t 0 A p2nÿ3�S
nÿ2� satisfying

2St 0 � �inÿ1; hnÿ1� and S2t 0 � �in; in�. We show

Lemma 3.1. Let n1 3 mod 4 and nV 11. Then d 0n is taken as a represetative of the

Toda bracket fS2t 0; 2i2nÿ1; h2nÿ1g1.

Proof. First we remark that t 0 is taken as the J-image of a generator of

p2n�SO�2nÿ 1��GZ8 ([7]) and S2t 0 � Jq 0
2n, where q 0

2n A p2n�SO�2n� 1��GZ2 is the

composite of the embedding from the real 2n-dimensional projective space RP2n to

SO�2n� 1� and the covering map q2n : S
2n ! RP2n. The Toda bracket fq 0

2n; 2i2n; h2ng is

well de®ned. We take d 02n�1 as a representative of

Jfq 0
2n; 2i2n; h2ngH fS2t 0; 2i4n�1; h4n�1g:

We have

2fq 0
2n; 2i2n; h2ng � q 0

2n � f2i2n; h2n; 2i2n�1g

� q 0
2n � h

2
2n

� 0;

because p2n�1�SO�2n� 1��GZ. So we have 2d 02n�1 � 0.

Since p 0q 0
2n � 0 for the projection map p 0 : SO�2n� 1� ! S2n, we have p 0 �

fq 0
2n; 2i2n; h2ng � h2n�1. So we have Sd 02n�1 � �i2n�2; h2n�2�.

Next we note that fq 0
2n; 2i2n; h2ng � fq 0

2n; 2i2n; h2ng1. So, by Proposition 2.6 of [22],

we have

HfS2t 0; 2i4n�1; h4n�1g1 � ÿDÿ1�2St 0� � h4n�2:

Since fS2t 0; 2i4n�1; h4n�1g1 � fS2t 0; 2i4n�1; h4n�1g, we have H�d 02n�1� � h24n�1. This

completes the proof. r

Next we consider the ®bration pn : M
n ! S n for odd n. We recall that Y � S nÿ1

U2wnÿ1
e2nÿ2. Let ~h 0

2nÿ3 A fi 0; 2wnÿ1; h2nÿ3gH p2nÿ1�Y � be a coextension of h2nÿ3. By
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Lemma 6.6 of [17], we know that �inÿ1; nnÿ1� is of order 4 or 8 according as n1 3 mod 4

or n1 1 mod 4. We show

Lemma 3.2. Let n be odd and nV 7. Then

(i) p2nÿ2�Y �G p2nÿ2�S
nÿ1�.

(ii) p2nÿ1�Y�GZ2f~h
0
2nÿ3gl p2nÿ1�S

nÿ1� if n1 3 mod 4 and p2nÿ1�Y� � Z4f~h
0
2nÿ3g

� i 0�p2nÿ1�S
nÿ1� if n1 1 mod 4

(iii) There exist independent elements i 0�inÿ1; nnÿ1� and ~h 0
2nÿ3h2nÿ1 of order 2 in

p2n�Y�.

(iv) Let b�n� � 2 or 1 according as n1 3 mod 4 or n1 1 mod 4. Then p2n�1�Y�G

Z2b�n� l p2n�1�S
nÿ1�, where the direct summand Z2b�n� is generated by a coextension of

�4=b�n��n2nÿ3.

Proof. Let k � 2nÿ 2. Then, in the exact sequence

pk�1�Y ;S nÿ1� �!
q

pk�S
nÿ1� �!

i 0�
pk�Y � �!

j�
pk�Y ;S nÿ1� �!

q
pkÿ1�S

nÿ1�;

pk�1�Y ;S nÿ1� � Z2fĥ2nÿ3g and pk�Y ;S nÿ1� � Z f̂i2nÿ3g. Since q̂i2nÿ3 � 2wnÿ1 and

qĥ2nÿ3 � 0, i 0� is an isomorphism and we have (i).

We consider the exact sequence

p2n�Y ;S nÿ1� �!
q

p2nÿ1�S
nÿ1� �!

i 0�
p2nÿ1�Y� �!

j�
p2nÿ1�Y ;S nÿ1� �!

q
p2nÿ2�S

nÿ1�:

Since p2nÿ1�Y ;S nÿ1�G p2nÿ1�S
2nÿ2� and p2n�Y ;S nÿ1�G p2n�S

2nÿ2�, q are trivial. So j� is

an epimorphism. We have

2~h 0
2nÿ3 A i 0�inÿ1; inÿ1� � f2i2nÿ3; h2nÿ3; 2i2nÿ2g C i 0�inÿ1; inÿ1� � h

2
2nÿ3 mod 0:

Since �inÿ1; h
2
nÿ1� � 0 or 00 according as n1 3 or 1 mod 4 ([19]), we have (ii).

In the exact sequence

p2n�1�Y ;S nÿ1� �!
q

p2n�S
nÿ1� �!

i 0�
p2n�Y� �!

j�
p2n�Y ;S nÿ1�;

we have p2n�1�Y ;S nÿ1� � Z8fn̂2nÿ3g and p2n�Y ;S nÿ1� � Z2fĥ2nÿ3ĥ
0
2nÿ2g. Since qn̂2nÿ3 �

2�inÿ1; nnÿ1� and qĥ2nÿ3ĥ
0
2nÿ2 � 0, we have (iii).

In the exact sequence

p2n�2�Y ;S nÿ1� �!
q

p2n�1�S
nÿ1� �!

i 0�
p2n�1�Y� �!

j�
p2n�1�Y ;S nÿ1�;

we have p2n�2�Y ;S nÿ1� � 0. If �inÿ1; nnÿ1� is of order 4, we can de®ne a coextension of

2n2nÿ3 by an element of fi 0; 2wnÿ1; 2n2nÿ3gH p2n�1�Y �. �inÿ1; nnÿ1� is of order 4 for
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n1 3 mod 4 ([19]). If �inÿ1; nnÿ1� is of order 8, we can de®ne a coextension of h32nÿ3 by

fi 0; 2wnÿ1; h
3
2nÿ3g. To determine the orders of these coextensions, we de®ne a coex-

tension ~h 0
2nÿ3 of h2nÿ3 by an element of fi 0�inÿ1; inÿ1�; 2i2nÿ3; h2nÿ3gH fi 0; 2wnÿ1; h2nÿ3gH

p2nÿ1�Y �. Since 2n2nÿ3 A fh2nÿ3; 2i2nÿ2; h2nÿ2g mod 4n2nÿ3, any element of the bracket

f~h 0
2nÿ3; 2i2nÿ1; h2nÿ1g is taken as a coextension of 2n2nÿ3 if n1 3 mod 4. We have

2f~h 0
2nÿ3; 2i2nÿ1; h2nÿ1g C ~h 0

2nÿ3 � h
2
2nÿ1 mod 0. Therefore any element of the bracket

f~h 0
2nÿ3; 2i2nÿ1; h2nÿ1g is of order 4 if n1 3 mod 4.

If �inÿ1; nnÿ1� is of order 8, then a coextension of h32nÿ3 is taken as ~h 0
2nÿ3h

2
2nÿ1 of

order 2. Hence we have a split exact sequence

0 �! p2n�1�S
nÿ1� �!

i�
p2n�1�Y � �!

p�
Z2b�n� �! 0

and we have (iv). This completes the proof. r

We denote by i 00 : Y ,! M n the inclusion. We show

Lemma 3.3. Let n be odd and nV 7. Then

(i) ji 00~h 0
2nÿ3 � �gn; hnÿ1�. Furthermore, for a suitable choice of ~h 0

2nÿ3, i 00~h 0
2nÿ3 �

�~hnÿ1; in�0 0 and i 00~h 0
2nÿ3h

2
2nÿ1 0 0.

(ii) Let n1 3 mod 4. Then Dd 0n A i 0�Sp2nÿ2�S
nÿ2� � h2nÿ1.

Proof. We consider the natural map between exact sequences for k � 2nÿ 1:

pk�S
nÿ1� ���!

i 0�
pk�Y� ���!

j 0�
pk�Y ;S nÿ1� ���!

q
� � �

?
?
?
y

�

?
?
?
y

i 00�

?
?
?
y

i 0�

pk�S
nÿ1� ���!

i�
pk�M

n� ���!
j�

pk�M
n
;S nÿ1� ���!

q
� � �

?
?
?
y

p 0
�

pk�M
n
;Y �;

where the vertical sequence is the exact one induced from a triple �M n
;Y ;S nÿ1�. We

have p2nÿ1�Y ;S nÿ1� � Z2fĥ2nÿ3g, qĥ2nÿ3 � 2wn � h2nÿ3 � 0 and j 0~h 0
2nÿ3 � ĥ2nÿ3. Remark

that p2nÿ1�M
n
;Y �G p2nÿ1�S

n� and so p 0
� : p2nÿ1�M

n
;S nÿ1� ! p2nÿ1�M

n
;Y � is regarded

as the map induced from the collapsing p 0
: �M n

;S nÿ1� ! �S n
; ��. So we have j�i

00
� ~h

0
2nÿ3

� �gn; hnÿ1�. By [2] and [14], we have

j��~hnÿ1; in� � �gnĥ
0
nÿ1; inÿ1� � �gn; inÿ1�ĥ

0
2nÿ3 � �gn; hnÿ1�: �3�

Therefore there exists an element a A p2nÿ1�S
nÿ1� satisfying i 00� ~h

0
2nÿ3 1 �~hnÿ1; in� mod i�a.

Hence, by a suitable choice of ~h 0
2nÿ3, we have the second assertion of (i). Since
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�gn; h
3
n � � 4�gn; nnÿ1�0 0 by Lemma 2.3.(i), we have the third of (i). This leads to (i).

The assertion of (ii) for n � 7 is true since d 07 � s 0h14 has a lift. Hereafter we

assume that nV 11. We consider the exact sequence:

p2n�1�M
n� �!

pn�
p2n�1�S

n� �!
D

p2n�Y� �!
i 00�

p2n�M
n�:

By use of the EHP-sequence, we have p2n�1�S
n� � Z2fd

0
nglSp2n�S

nÿ1� ([19]). By

Theorem 5.2 of [11] and by Lemma 3.1, we have

Dd 0n A DfS2t 0; 2i2nÿ1; h2nÿ1g1

H fDS2t 0; 2i2nÿ2; h2nÿ2g

� f2i 0St 0; 2i2nÿ2; h2nÿ2g

I i 0f2St 0; 2i2nÿ2; h2nÿ2g

� i 0f�inÿ1; hnÿ1�; 2i2nÿ2; h2nÿ2g

I i 0�inÿ1; inÿ1�fh2nÿ3; 2i2nÿ2; h2nÿ2g

� 2i 0�inÿ1; inÿ1�n2nÿ3

� 0 mod p2nÿ1�Y � � h2nÿ1:

So we have Dd 0n A p2nÿ1�Y� � h2nÿ1. By Lemma 3.3.(ii), we have p2nÿ1�Y� � h2nÿ1 �

f~h 0
2nÿ3h2nÿ1g � i 0�p2nÿ1�S

nÿ1� � h2nÿ1. Since �inÿ2; h
2
nÿ2�0 0 ([19]), we have p2nÿ1�S

nÿ1� �

Sp2nÿ2�S
nÿ2�. This and (i) lead to (ii) and complete the proof. r

We show

Lemma 3.4. in�inÿ1; nnÿ1�0 0 in p2n�M
n� if n is odd and nV 5.

Proof. Let n1 1 mod 4. For n � 5, we have �i4; n4� � �i4; i4�n7. So we have the

assertion. Since �inÿ1; h
2
nÿ1�0 0 for n1 1 mod 4 and nV 9 ([19]), we have p2n�1�S

n� �

Sp2n�S
nÿ1� in this case. Assume that in�inÿ1; nnÿ1� � 0. Then we have i 0�inÿ1; nnÿ1� A

D�p2n�1�S
n��. So there exists an element b A p2n�S

nÿ1� satisfying i 0�inÿ1; nnÿ1� �

i 0�2inÿ1 � b�. We know p2n�1�Y ;S nÿ1� � Z24fn̂2nÿ3g and qn̂2nÿ3 � 2�inÿ1; nnÿ1�. So, by

the homotopy exact sequence of a pair �Y ;S nÿ1�, we have the relation G�inÿ1; nnÿ1� �

2inÿ1 � b. Apply the Hopf homomorphism to this relation, we have G2n2nÿ3 � 4H�b�.

This is a contadiction and leads to the assertion in the case n1 1 mod 4.

Next we consider the case n1 3 mod 4. By [19], we have p2n�1�S
n� � Z2fd

0
ngl

Sp2n�S
nÿ1�. Suppose that in�inÿ1; nnÿ1� � 0. Then we have i 0�inÿ1; nnÿ1� A Dp2n�1�S

n�.

Lifting to mod2 Moore spaces 527



So, by Lemma 3.3.(ii), we have i 0�inÿ1; nnÿ1� � i 0�Sa � h2nÿ1 � 2inÿ1 � b�, where a A

p2nÿ2�S
nÿ2�, b A p2n�S

nÿ1�. So, by the parallel argument to the preceding case, we

have G�inÿ1; nnÿ1� � Sa 0 � h2nÿ1 � 2inÿ1 � b. Apply the Hopf homomorphism to this

relation, we have G2n2nÿ3 � 4H�b�. This is a contadiction and completes the

proof. r

Here we recall the methods to determine the metastable homotopy groups of

spheres ([22]). By use of (11.10) and Theorem 11.7 of [22], we have the following exact

sequence for iU 4mÿ 5:

pi�1�S
m� �!

S k

pi�k�1�S
m�k� �!

I
pi�S

mÿ1Pm�kÿ1
m � �!

D 0

pi�S
m��!� � � ; �4�

where P j � RP j and Pm�kÿ1
m � Pm�kÿ1=Pmÿ1.

Now we show

Lemma 3.5. d 0n has a lift if n1 3 mod 4.

Proof. It su½ces to assume that nV 11. We apply (4) for i � 2n� 1, m � nÿ 1

and k �y. Then we have an exact sequence

0 �! pS
n�2�Pnÿ1� �!

D 0

p2n�S
nÿ1� �!

Sy

pS
n�1�S

0� �!
I

pS
n�1�Pnÿ1�;

where Pnÿ1 � Py=Pnÿ1. As is easily seen ([8]), pS
n�1�Pnÿ1� � 0, pS

n�2�Pnÿ1�GZ4 and this

group is generated by n. So the sequence becomes the exact sequence

0 �! Z4f�inÿ1; nnÿ1�g �! p2n�S
nÿ1� �!

Sy

pS
n�1�S

0� �! 0:

By Lemma 1.2, there exists a lift d 00 A p2n�1�M
n;S nÿ1� of d 0n. Consider the following

diagram:

0
?
?
?
y

pn�2�S
nÿ1� Z4f�inÿ1; nnÿ1�g

�gn; �

?
?
?
y

2�inÿ1; �
?
?
?
y

p2n�1�M
n� ���!

j�
p2n�1�M

n;S nÿ1� ���!
q

p2n�S
nÿ1� ���!

i�
p2n�M

n�

p�
p 0�

?
?
?
y

Sy

?
?
?
y

?
?
?
y

Sy

p2n�1�S
n� p s

n�1�S
0� ���!

i�
ps
n�1�M

1�

H2

?
?
?
y

?
?
?
y

pn�1�S
nÿ1� 0:

 �
��

��
��

��
��

 �
��

��
��

��
��
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From the diagram, we see Sy�qd 00�1 0 mod 2pS
n�1�S

0�. Since Sy is epimorphic,

there exists an element a A p2n�S
nÿ1� such that Sy�qd 00� � 2Sy�a� � Sy�2inÿ1 � a�. So

q�d 00 ÿ â� � qd 00 ÿ 2inÿ1 � a belongs to KerSy. Therefore q�d 00 ÿ â� � k�inÿ1; nnÿ1� for

some k A Z. By Lemma 3.4, we see that k is even. Thus we can choose d 00 as

q�d 00 ÿ â� � 0. Then p 0�d 00 ÿ â� � d 0n ÿ Sa has a lift and 0 � 2in � �d
0
n ÿ Sa� � 2Sa, so

Sy�qd 00� � 0. We see that qd 00 � l�inÿ1; nnÿ1� for some l A Z. Again, by Lemma 3.4, we

get that l is even. Therefore we can choose d 00 so that qd 00 � 0. Thus we have

D�d 0n� � 0. This completes the proof. r

4. Proof of Theorem 3 and some results.

First we show Theorem 3.

Theorem 4.1. (i) ~hnÿ1�in�1; in�1� is of order 4 if n is odd.

(ii) If n1 3 mod 4 and nV 11, a lift bn of d 0n satis®es a relation

2bn 1 ~hnÿ1�in�1; in�1� modSp2n�M
nÿ1�

and the order of bn is 8.

Proof. For n � 3 and 5, ~hnÿ1�in�1; in�1� is of order 4 ([25]). Hereafter we assume

nV 7.

In the exact sequence

p2n�2�M
n� �!

pn�
p2n�2�S

n� �!
D

p2n�1�Y� �!
i 00�

p2n�1�M
n�;

p2n�2�S
n� � Z2fd

0
nh2n�1glSp2n�1�S

nÿ1� if n1 3 mod 4 and p2n�2�S
n� � Sp2n�1�S

nÿ1�

if n1 1 mod 4. So, by Lemma 3.3, Dp2n�2�S
n�H i 0�p2n�1�S

nÿ1� and i 00� is

a monomorphism on the direct summand Z2b�n�. By Lemmas 1.6 and 3.3.(i), we

have

i 00~h 0
2nÿ3 � h

2
2nÿ1 � �~hnÿ1; in�h

2
2nÿ1

� �i 0n; in�~h2nÿ3h
2
2nÿ1

� 2�i 0n; i
0
n� � S�~hnÿ25~hnÿ2�

� 2�~hnÿ1�in�1; in�1��:

Therefore ~hnÿ1�in�1; in�1� is of order 4 if n is odd and nV 7. This leads to (i).
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We consider the commutative diagram �p � pn�:

p2n�1�M
n� ���!

H
p2n�1�S�M

nÿ15M nÿ1��
?
?
?
y

S p�

?
?
?
y

S�p5p��

p2n�1�S
n� ���!

H
p2n�1�S

2nÿ1�:

By Lemma 1.6, we have

H�bn�1S�~hnÿ25~hnÿ2� mod~{2nÿ2n2nÿ2: �5�

We have

H�~hnÿ1�in�1; in�1�� � S�~hnÿ25~hnÿ2�H��in�1; in�1�� � 2S�~hnÿ25~hnÿ2�:

Thus we have the equation (ii). Since the identity class i 0n is of order 4 for nV 3, we

have 4Sp2n�M
nÿ1� � 0. This implies that 8bn � 0.

Now suppose that 4bn � 0. Then the equation (ii) implies that there exists an

element a A p2n�M
n� such that

2~hnÿ1�in�1; in�1� � 2Sa:

Thus we have the equation

i 00~h 0
2nÿ3 � h

2
2nÿ1 � 2Sa:

Applying j� : p2n�1�M
n� ! p2n�1�M

n
;S nÿ1� to this equation, we get

j�i
00
~h 0
2nÿ3 � h

2
2nÿ1 � 4�gn; nnÿ1�0 0:

On the other hand, since

2Sa � 2i 0n � Sa � in � hnÿ1 � pn � Sa A p2n�1�S
nÿ1�;

we have j��2Sa� � 0. This is a contradiction. This completes the proof. r

Remark. Wu [25] obtained the groups p2n�1�M
n� for n � 3, 5 and 7. For n � 3, a

lift ~h2n4 A p7�M
3� of h3n4 is of order 8. We have relations 2~h2n4 �G~h2�i4; i4� � ~h2Sn

0

and 4~h2n4 � i3h
2
2n4 � ~h2Sn

0 in p7�M
3� ([15]).

We know p15�S
6� � Z2fn

3
6glZ2fm6glZ2fh6e7g and Sy

: p15�S
6� ! pS

9 �S
0� is an

isomorphism ([22]). We denote by ~n6 a lift of n7 and by ~e6 a lift of e7. Note that

2~n6 � i7n
3
6 and 2~e6 � i7h6e7. We show

Proposition 4.2. ~h6Ss
0 � 2�~h6�i8; i8� � ~n6 � ~e6�, 2�~h6s8 � ~n6 � ~e6� �G~h6�i8; i8� and

4~h6s8 � ~h6Ss
0 � 2�~n6 � ~e6� � 2~h6�i8; i8�0 0.
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Proof. By use of the fact h6s
0 � 4n6 � 2�i6; n6�, we have

~h6Ss
0
A fi7; 2i6; h6gSs

0

H fi7; 2i6; h6s
0g

� fi7; 2i6; 2�i6; n6�g

H fi7; 2i6 � �i6; i6�; 2n11g

� fi7; 4�i6; i6�; 2n11g

I i 00fi 0; 2�i6; i6�; 4n11g

C i 00~h 0
11h

2
13 � 2~h6�i8; i8�

mod i7�p15�S
6� � p12�M

7� � 2n12:

In the exact sequence

p13�S
7� �!

D
p12�Y � �!

i 00�
p12�M

7� �!
p7�

p12�S
7� � 0;

we have ImD � 0 since D�n27� � 2i 0n26 � 0. So, by Lemma 3.2.(i), we have p12�M
7� �

Z2fi7n
2
6g. Hence we have

~h6Ss
0
1 2~h6�i8; i8� mod i7�p15�S

6�:

Since h2s � n3 � he in pS
9 �S

0� ([22]), we have a relation

2~hs � 2~n� 2~e:

We have Sy�~h6Ss
0� � 2~hs � ih2s in pS

10�M
2�. Hence we have the ®rst relation.

Since G�i8; i8� � 2s8 ÿ Ss 0, we have G~h6�i8; i8� � �2~h6s8 ÿ ~h6Ss
0�. This leads to the

second relation.

The last relation is a direct consequence of the ®rst two relations and Theorem

4.1.(i) for n � 7. This completes the proof. r

Remark. Since h2n�i2n�1; i2n�1� � �h2n; h2n� � �i2n; h
2
2n�0 0 for n even ([19]),

~h2nÿ1�i2n�1; i2n�1� is of order 2 for n even.

We have to show

Lemma 4.3. (i) p23�M
11� � Z8fb2glZ2fi11s10n

2
17g, where b2 is a lift of y 0.

(ii) p22�M
10� � Z2faglZ2fi10s9n

2
16g, where a is a lift of 2�i10; n10� and Sa � 4b2.
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Proof. First we know the following ([22]):

p24�S
11� � Z2fy

0h23glZ2fs11n
2
18g; p23�S

11� � Z2fy
0g

and pn�13�S
n� � Z2fsnn

2
n�7g for n � 9 and 10. In the exact sequence

p24�S
11� �!

D
p23�Y� �!

i 00�
p23�M

11� �!
p11�

p23�S
11�;

we have D�y 0h23� � 0, D�s11n
2
18� � 2i 0s10n

2
17 � 0 and D�y 0� � 0 by Lemma 3.5. By

Lemma 3.2.(iv), we have p23�Y �GZ4 l p23�S
10�. Hence, by Theorem 4.1, we have (i).

We know p21�S
9� � 0 and p22�S

10� � Z4f�i10; n10�g ([22]). In the exact sequence

p23�M
10
;S9� �!

q
p22�S

9� �!
i10�

p22�M
10� �!

j�
p22�M

10
;S9� �! 0;

we have p22�M
10
;S9�G p22�S

10� and p23�M
10
;S9�G p23�S

10� by use of Lemma 1.2.

So there exists a lift a of 2�i10; n10� and p22�M
10� is generated by a and i10s9n

2
16. The

assumption 2a � i10s9n
2
16 induces a relation 2Sa � i11s10n

2
17. This contradicts the result

of (i), obtaining the group p22�M
10�.

Next we consider the exact sequence

p24�S�M
10
5M 10�� �!

D
p22�M

10� �!
S

p23�M
11�:

By use of the fact �i11; i11� � s11n18, by Lemmas 1.3 and 1.6.(iii), we have

D�S�~h95~h9� � h23� � ~h9�i11; i11�h21 � 0. So S is a monomorphism. Hence, by (i), we

have the relation of (ii). This completes the proof. r

Problem 4.4. (i) Dd4n � i 0d 04nÿ1?

(ii) Do the elements e3, m3, e3, m3 and s7 have lifts?
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Added in proof.

In the proof of Lemma 3.1 on p. 10, the statement of lines 21 and 22 is false. This

part should be revised as follows. The statement of the last paragraph of the proof

becomes unnecessary.

Since p 0
2nq

0
2n � 0 for the projection map p 0

2n : SO�2n� 1� ! S2n, we have

p 0
2n � fq

0
2n; 2i2n; h2ng � ÿfp 0

2n; q
0
2n; 2i2ng � h2n�1 � h22n because fp

0
2n; q

0
2n; 2i2ng � h2n for n odd,

which is obtained by Lemma 4.1.(ii).a) of Mukai (Even maps from spheres to spheres,

Proc. Japan Acad. 47(1971), 1±5). So we have H�d 02n�1� � HJfq 0
2n; 2i2n; h2ng � h24n�1:

Let i : SO�2n� 1� ! SO�2n� 2� be the inclusion. We know p2n�1�SO�2n� 2��G

ZlZ ([7]). We denote by p 0
2n�1 : SO�2n� 2� ! S2n�1 and q 0

2n�1 : S
2n�1 ! SO�2n� 2�

the corresponding elements to p 0
2n and q 0

2n, respectively. Since p 0
2n�1q

0
2n�1 � 2i2n�1, q

0
2n�1

is taken as a representative of a Toda bracket fi; q 0
2n; 2i2ng. Hence we have

Sd02n�1 � J�ifq 0
2n; 2i2n; h2ng� � J�ÿfi; q02n; 2i2ng � h2n� � �i2n�2; i2n�2� � h4n�3 � �i2n�2; h2n�2�

because Jq 0
2n�1 � �i2n�2; i2n�2�. This completes the proof.
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