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Abstract. We show that the real Seifert form determines the weights for

nondegenerate quasihomogeneous polynomials in C
3. Consequently the real

Seifert form determines the spectrum for semiquasihomogeneous hypersurface

singularities in C
3. As a corollary, we obtain the topological invariance of

weights for nondegenerate quasihomogeneous polynomials in C
3, which has

already been proved by the author [Sae1] and independently by Xu and Yau

[Ya1], [Ya2], [XY1], [XY2]. The method in this paper is totally di¨erent from

their approaches and gives some new results, as corollaries, about holomorphic

function germs in C
3 which are connected by m-constant deformations to

nondegenerate quasihomogeneous polynomials. For example, we show that two

semiquasihomogeneous functions of three complex variables have the same

topological type if and only if they are connected by a m-constant deformation.

1. Introduction.

Let f �z1; . . . ; zn�1� be a complex polynomial with f �0� � 0. We say that f is

quasihomogeneous if there exists a sequence �w1; . . . ;wn�1� of positive rational numbers,

called weights, such that for all monomials cza11 � � � zan�1

n�1 of f with c0 0, we have

a1=w1 � � � � � an�1=wn�1 � 1. We say that such a polynomial is nondegenerate if it has

an isolated critical point at the origin.

Saito [Sai ] has proved that for every nondegenerate quasihomogeneous polynomial,

we may assume that all the weights satisfy wj V 2 after a suitable coordinate trans-

formation. Furthermore, under this assumption, the weights are well-de®ned; i.e. the

weights are analytic invariants of the germ �C n�1; f ÿ1�0�� at the origin, provided that
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they are greater than or equal to two. Then it arises the question whether they are

topological invariants or not. The answer to this question has been shown to be

a½rmative for n � 1 by Yoshinaga and Suzuki [YS1] (see also [Ni ]) and for n � 2 by

the author [Sae1] and independently by Xu and Yau [Ya1], [Ya2], [XY1], [XY2]. The

result for n � 2 has been obtained by using the fundamental group of the link 3-

manifold Kf � f ÿ1�0�VS5
e
, where S2n�1

e
is a su½ciently small sphere in C n�1 centered at

the origin. This method cannot be applied to higher dimensions, since for nV 3, the

link manifold Kf � f ÿ1�0�VS2n�1
e

is always simply connected (see [M]). Note that an

a½rmative answer to the above question for n would imply an a½rmative answer to

Zariski's multiplicity problem [Z] for nondegenerate quasihomogeneous polynomials of

n� 1 variables (see [HR, §6] and [Sae1, Lemma 6]).

Note that for a nondegenerate quasihomogeneous polynomial f, the weights of f

determine and are determined by the spectrum of the hypersurface f ÿ1�0� (see [SSS,

Example 5.2]). Recall that the spectrum is de®ned by using the mixed Hodge structure

of the middle dimensional cohomology of the Milnor ®ber (for a precise de®nition, see

§2 of the present paper). Thus a priori it may not be a topological invariant of the

hypersurface. Recently NeÂmethi [Ne] has shown that the real Seifert form determines

and is determined by the modulo 2 spectral pairs for an isolated hypersurface singularity

in general. Note that in the case of nondegenerate quasihomogeneous polynomials,

giving the spectral pairs is equivalent to giving the spectrum (see §2).

Our main result of this paper is the following.

Theorem 1.1. Let f and g be nondegenerate quasihomogeneous polynomials in C 3. If

their Seifert forms are equivalent over the real numbers, then the spectra of f and g

coincide.

For a de®nition of the Seifert form of a holomorphic function germ with an isolated

critical point at the origin, see §2 or [D], [K], [AGVII ]. Note that the Seifert form over

the integers determines and is determined completely by the topology of the pair

�C n�1
; f ÿ1�0�� for all nV 3 (see [D], [K]). Thus our method is, in principle, applicable

to higher dimensions as well. In fact, in [Sae3], it is shown that the real Seifert form

determines the spectrum for a certain class of nondegenerate quasihomogeneous poly-

nomials in C
n�1 �nV 1�, by using the methods of the present paper.

In the following, for two holomorphic function germs f and g : �C n�1
; 0� ! �C ; 0�

with an isolated critical point at the origin, we say that they are topologically equivalent

(or they have the same topological type) if �C n�1
; f ÿ1�0�� is locally homeomorphic to

�C n�1
; gÿ1�0�� at the origin (as pairs). It has been known that this relation is equivalent
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to the topological right-left equivalence and that for nondegenerate quasihomogeneous

polynomials, it is also equivalent to the topological right equivalence (for details, see

[Sae2]).

Corollary 1.2 (Saeki [Sae1], Xu-Yau [Ya1], [Ya2], [XY1], [XY2]). Let

f �z1; z2; z3� (resp. g�z1; z2; z3�) be a nondegenerate quasihomogeneous polynomial with

weights �w1;w2;w3� (resp. �w 0
1;w

0
2;w

0
3�), where wj;w

0
k V 2. If f and g have the same topo-

logical type, then we have wj � w 0
j up to order.

Corollary 1.3. Let f and g : �C 3
; 0� ! �C ; 0� be holomorphic function germs with

an isolated critical point at the origin. Suppose that for each of them there exists a m-

constant deformation which connects it with a nondegenerate quasihomogeneous poly-

nomial. Then the following ®ve are equivalent.

(1) The Seifert forms of f and g are equivalent over the real numbers.

(2) The Seifert forms of f and g are equivalent over the integers.

(3) f and g have the same characteristic polynomial and the same equivariant

signatures.

(4) f and g have the same spectrum.

(5) f and g are connected by a m-constant deformation.

For a de®nition of a m-constant deformation, see [LR], [DG], [O2]. For de®nitions

of the characteristic polynomial and the equivariant signatures, see §2. Compare

Corollary 1.3 (1) and (4) with [Ne].

Corollary 1.4. Suppose that f and g are semiquasihomogeneous holomorphic

function germs in C 3. Then the seven conditions (1)±(7) (the ®ve conditions in Corollary

1.3 and the following two) are equivalent to each other.

(6) f and g have the same topological type.

(7) The link 3-manifolds Kf and Kg have isomorphic fundamental groups and f and g

have the same characteristic polynomial.

Furthermore, if one of the seven conditions is satis®ed, f and g have the same

multiplicity. In particular, for semiquasihomogeneous holomorphic function germs in C 3,

the spectrum and the multiplicity are topological invariants.

For a de®nition of a semiquasihomogeneous function germ, see [AGVI ].

Compare Corollary 1.4 with [Ya2]. Note that a m-constant deformation is to-

pologically constant for function germs in C n�1 with n0 2 ([LR]). For n � 2, this has

not been known to be true or not in general. Note also that it has been known that the

multiplicity is invariant under m-constant deformations for nondegenerate quasihomo-
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geneous polynomials (see [G ], [O'S ]). Furthermore, for quasihomogeneous polynomials

of three variables, it has been known that the multiplicity is a topological invariant (see

[Sae1], [Ya1], [Ya2], [XY1]). The new result contained in Corollary 1.4 is that for

nondegenerate quasihomogeneous polynomials of three variables, the multiplicity is

determined only by the (real) Seifert form.

Corollary 1.5. Suppose that f and g are semiquasihomogeneous holomor-

phic function germs in C
n�1 �nV 1�. Then they are topologically equivalent if and

only if their stabilizations ~f �z1; . . . ; zn�2� � f �z1; . . . ; zn�1� � z2n�2 and ~g�z1; . . . ; zn�2� �

g�z1; . . . ; zn�1� � z2n�2 are topologically equivalent.

For the biholomorphic equivalence, a result similar to the above corollary has been

known for all holomorphic function germs with an isolated critical point at the origin

(see [Ya3]). Note that Corollary 1.5 remains true even without the semiquasiho-

mogeneity condition, provided that nV 3. This follows from the facts that the Seifert

forms over the integers of f and g are equivalent if and only if those of their stabi-

lizations are equivalent (see Lemma 2.1) and that the Seifert form over the integers

completely determines the topological type of f, provided that nV 3 ([D], [K]). For

n � 1; 2, see Remark 3.11.

The paper is organized as follows. In §2, we recall the result of Steenbrink [St2]

about the equivariant signatures of a nondegenerate quasihomogeneous polynomial and

use it to obtain a necessary and su½cient condition for two such polynomials to have

equivalent real Seifert forms in terms of their weights. As a by-product, we give a new

proof of a result of Yoshinaga [Yo1] which gives a necessary and su½cient condition for

two such polynomials to have the same characteristic polynomial. In §3, we use the

results obtained in §2 to prove Theorem 1.1 and its corollaries. In §4, as an application

of our method, we give normal forms of real and complex Seifert matrices of non-

degenerate quasihomogeneous polynomials in terms of their weights.

The author deeply grieves over the death of Professor Etsuo Yoshinaga, who

encouraged him a lot during his study on the subject of the present paper. The author

would like to thank Takashi Nishimura for his invaluable comments. He would also

like to thank the referee for his useful suggestions.

2. Real Seifert form and weights.

Let f : �C n�1
; 0� ! �C ; 0� be a holomorphic function germ with an isolated critical

point at the origin. Denote by F the Milnor ®ber of f ; i.e. F � f ÿ1�d�VD2n�2
e

, where d

and e are su½ciently small positive real numbers with 0 < df e and D2n�2
e

is the closed
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�2n� 2�-dimensional disk in C
n�1 centered at the origin with radius e. We put E �

D2n�2
e

V f ÿ1�D2
d
�, which is homeomorphic to the �2n� 2�-dimensional disk ([M]). Then

we de®ne the Seifert form LZ : Hn�F ;Z� �Hn�F ;Z� ! Z of f over the integers by

LZ�x; y� � lk�i�x; y�, where i : F ! qE ÿ F is a parallel translation in the positive

normal direction to F in qE and lk denotes the linking number in qE (for details, see

[D]). Furthermore, we denote by LR � LZ nR : Hn�F ;R� �Hn�F ;R� ! R the real

Seifert form of f and by L : Hn�F ;C � �Hn�F ;C � ! C the sesquilinearized complex

Seifert form of f. We de®ne the cohomological monodromy operator T : H n�F ;C � !

H n�F ;C � by T � �h��ÿ1 and the homological monodromy operator H : Hn�F ;C � !

Hn�F ;C � by H � h�, where h : F ! F is the geometric monodromy of the Milnor

®bration f : D2n�2
e

V f ÿ1�qD2
d
� ! qD2

d
(see [AGVII, p. 30]). Furthermore, we denote the

sesquilinearized intersection form of F by S : H n�F ;C � �H n�F ;C � ! C .

In the following, we often abuse the notations L;T ;H and S to denote the matrix

representatives of the corresponding maps with respect to ®xed bases of H n�F ;C � and

Hn�F ;C � which are dual to each other. The following lemma can easily be proved (see

[D], [Sak], [K]).

Lemma 2.1. We have

S � L� �ÿ1�nL t
; H � �ÿ1�n�1

Lÿ1L t
; T � �ÿ1�n�1

L�Lÿ1� t; S � L�I ÿH �;

where I denotes the identity matrix and for a matrix X, X t denotes the transpose of X and

X the complex conjugate of X. Furthermore, if we denote the sesquilinearized complex

Seifert form of the stabilization ~f �z1; . . . ; zn�2� � f �z1; . . . ; zn�1� � z2n�2 by ~L, then we have

~L � �ÿ1�n�1
L.

We denote by Df �t� the characteristic polynomial of T. We also call Df �t� the

characteristic polynomial of f. Note that

H n�F ;C � � 0
l

H n�F ;C �
l
;

where l runs over all the eigenvalues of T (i.e. all the roots of Df �t�) and H n�F ;C �
l

is the eigenspace corresponding to the eigenvalue l. It is easy to see that the inter-

section form S decomposes as the orthogonal direct sum of Sl � SjH n�F ;C �
l

, since

S�T�x�;T�y�� � S�x; y� for all x; y A H n�F ;C �. Furthermore, we have similar de-

compositions for Hn�F ;C � and L with respect to H, since we have L�H�x�;H�y�� �

L�x; y� for all x; y A Hn�F ;C �.

Next we recall the de®nitions of the spectral pairs and the spectrum of f. The

mixed Hodge structure on H n�F ;C � consists of an increasing weight ®ltration W. and
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a decreasing Hodge ®ltration F
.
(for details, see [AGVII, Chapter 14]). We write

T � TsTu � TuTs with Ts semisimple and Tu unipotent. Then Ts preserves the ®ltrations

F
.
and W.. For each eigenvalue l of T, we de®ne

H
p;q
l � ker�Ts ÿ lI : GrWp�q GrpF H

n�F ;C �� and h
p;q
l � dimC H

p;q
l ;

where GrWi � Wi=Wiÿ1 and Gr
p
F � F p=F p�1. For a A Q and w A Z, we de®ne the

integers ma;w as follows. It is easy to see that there exist a unique p A Z and a unique

b A Q with 0U b < 1 such that a � nÿ pÿ b. Set l � exp�ÿ2pia�, where i �
�������

ÿ1
p

. If

l0 1, then we set ma;w � h
p;wÿp
l and if l � 1, then we set ma;w � h

p;w�1ÿp
1 . The spectral

pairs are collected in the invariant

Spp� f � �
X

a;w

ma;w�a;w�;

which is considered to be an element of the free abelian group on Q � Z. Forgetting the

second factor w, we get the spectrum Sp� f � of f de®ned by

Sp� f � �
X

a

ma�a�; ma �
X

w

ma;w;

which is considered to be an element of the free abelian group on Q (see [St3, (2.1)] or

[SSS, §1]. See also [St4]).

When the monodromy operator is semisimple (i.e. when T � Ts), the weight ®l-

tration W
.
degenerates as

f0g � Wnÿ1 HWn HWn�1 � H n�F ;C �;

where Wn � 0
l01

H n�F ;C �l (for example, see [AGVII, §13.2.3, Example 3 (p. 371)]).

Thus Spp� f � is of the form

X

a

ma;n�a; n�:

Hence, giving the spectral pairs is equivalent to giving the spectrum in this case.

Now suppose that n is even. In this case, S is hermitian by Lemma 2.1. Let m0� f �
be the dimension of the kernel of S, m� f ��l (resp. m� f �ÿl ) the number of positive (resp.

negative) eigenvalues of SjH n�F ;C �l . We call m� f ��l ÿ m� f �ÿl the equivariant signature of f

with respect to l. By Steenbrink [St1], m� f �0 and m� f �Gl can be calculated from the

Hodge numbers of f. Note that the Hodge numbers hp;q
l and the spectral pairs mutually

determine each other, and that when the monodromy operator T is semisimple, the

spectral pairs are equivalent to the spectrum Sp� f � of f, as has been seen above.
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Suppose that f is a nondegenerate quasihomogeneous polynomial of weights

�w1;w2; . . . ;wn�1�. In this case, the monodromy operator is always semisimple (for

example, see [M, §9] and [AGVII, §13.2.3, Example 3 (p. 371)]). We set

Pf �t� �
Yn�1

j�1

tÿ t1=wj

t1=wj ÿ 1
A Z�t1=m�;

where m is the least common multiple of the numerators uj of wj � uj=vj and uj and vj

are relatively prime positive integers. We write

Pf �t� �
X

a AQ

cat
a:

Note that ca is a nonnegative integer for each a A Q and that the spectrum Sp� f � of f

coincides with
P

a AQ ca�aÿ 1� (see [SSS, Example 5.2] or [St4, Examples in §1]). Using

the above mentioned result, Steenbrink has shown the following.

Theorem 2.2 (Steenbrink [St2]). Suppose that f is a nondegenerate quasihomogeneous

polynomial in C n�1. When n is even, we have the following.

m� f �0 �
X

a AZ

ca;

m� f ��l �
X

l�exp�ÿ2pia�; �a� : even

ca �l0 1�;

m� f �ÿl �
X

l�exp�ÿ2pia�; �a� :odd

ca �l0 1�;

where �a� denotes the integer part of a.

Note that, in the above situation, the kernel of S coincides with H n�F ;C �1. Using

the above theorem, we prove the following.

Lemma 2.3. Let f and g be nondegenerate quasihomogeneous polynomials in C n�1.

Then their Seifert forms are equivalent over the real numbers if and only if Pf �t�1

Pg�t� mod t2 ÿ 1.

Proof. By considering the stabilization as in Lemma 2.1 (see [AGVII, §2.8]) if

necessary, we may assume that n is even. First suppose that f and g have equivalent

real Seifert forms. Then their characteristic polynomials of the monodromy operator

coincide. This is because they are equal to
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det�t � I ÿ T� � det�t � I ÿ �ÿ1�n�1
L�Lÿ1� t�

� c � det�t � L t ÿ �ÿ1�n�1
L�

for some nonzero complex number c, since T � �ÿ1�n�1
L�Lÿ1� t by Lemma 2.1 and the

Seifert form LZ over the integers is always unimodular (see [D]). Thus the eigenvalues

of their monodromy operators are the same. Furthermore, m� f �0 � m�g�0 and m� f �Gl �

m�g�Gl for each eigenvalue l0 1. This follows from the facts that the sesquilinearized

complex Seifert form L splits into the orthogonal direct sum of Ll, where Ll is the

Seifert form restricted to the eigenspace corresponding to the eigenvalue l, and that

Sl � Ll � �ÿ1�nL t
l by Lemma 2.1.

Thus, by virtue of Theorem 2.2, we have

X

a AZ

ca �
X

b AZ

c 0b;

X

l�exp�ÿ2pia�; �a� : even

ca �
X

l�exp�ÿ2pib�; �b� : even

c 0b;�2:1�

X

l�exp�ÿ2pia�; �a� :odd

ca �
X

l�exp�ÿ2pib�; �b� :odd

c 0b�2:2�

for each l0 1, where Pf �t� �
P

a AQ cat
a and Pg�t� �

P
b AQ c 0bt

b. Furthermore, by the

symmetric property of the spectrum, we have

ca � cnÿ1ÿa and c 0b � c 0nÿ1ÿb

for every a and b (see [AGVII, p. 384 (i)] and [SSS, Theorem 1.1 (ii)]). In particular, we

have

X

a AZ;a : even

ca �
X

b AZ;b : even

c 0b;�2:3�

X

a AZ;a:odd

ca �
X

b AZ;b:odd

c 0b;�2:4�

since nÿ 1 is odd. Then by (2.1)±(2.4), it is not di½cult to see that for each l,

X

l�exp�ÿ2pia�

cat
a ÿ

X

l�exp�ÿ2pib�

c 0bt
b

is divisible by t2 ÿ 1 in Z�t1=m� for some positive integer m. Thus we have Pf �t�1

Pg�t� mod t2 ÿ 1.
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Conversely, suppose that Pf �t�1Pg�t� mod t2 ÿ 1. Then by the above argument,

we see that the eigenvalues of the monodromy operators are the same and that m� f �0 �

m�g�0 and m� f �Gl � m�g�Gl for each eigenvalue l0 1. Thus, it su½ces to show that the

characteristic polynomial of the monodromy operator and the equivariant signatures

determine the real Seifert form (when n is even).

Recall that Hn�F ;C � decomposes as 0
l
Hn�F ;C �l and that L decomposes as

the orthogonal direct sum of Ll � LjHn�F ;C �l
, where Hn�F ;C �l is the eigenspace of H

corresponding to the eigenvalue l. If we put Hl � HjHn�F ;C �l
, then we have Hl � l � id,

where id denotes the identity map. Thus if l0 1, then det�I ÿHl�0 0 and hence we

have Ll � Sl�I ÿHl�
ÿ1 by Lemma 2.1. Since the equivariant signatures determine Sl,

Ll is also determined up to isomorphism when l0 1. If l � 1, then by Lemma 2.1 we

have 0 � I ÿH1 � Lÿ1
1 S1, and hence S1 � 0. Thus we have L1 � �ÿ1�n�1

L t
1; i.e. L1 �

ÿL t
1 by Lemma 2.1. Since 1 A R, we may suppose that a matrix representative of L1 is

real. Then m0 � rankL1 must be even, since otherwise we have detL1 � det�ÿL t
1� �

ÿdet�L1� � 0, which is a contradiction. Then, it is easy to see that there exists a

nonsingular matrix P A GL�m0;R� such that

P tL1P �

J 0

J

.
.

.

0 J

0

B

B

B

@

1

C

C

C

A

;

where

J �
0 1

ÿ1 0

� �

:

Hence L1 is determined only by m0.

Thus we have shown that the characteristic polynomial of the monodromy operator

and the equivariant signatures completely determine the sesquilinearized complex Seifert

form L � 0
l
Ll. Since the characteristic polynomial is of real coe½cients, l is an

eigenvalue if and only if l is. Then for a ®xed l0, we see easily that �0
l�l0

Ll�l

�0
l�l0

Ll� comes from a real form and is determined over R only by the rank. Thus we

have shown that the characteristic polynomial of the monodromy operator and the

equivariant signatures completely determine the real Seifert form LR when n is even.

This completes the proof. r

We note that one can prove Lemma 2.3 by directly using the main theorem of

[Ne]. Here we have given a proof which is somewhat elementary.
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Yoshinaga [Yo1] has given a necessary and su½cient condition on the weights for

two nondegenerate quasihomogeneous polynomials to have the same characteristic

polynomial. He has used a result of Milnor and Orlik [MO]. Here we give an

alternative proof of Yoshinaga's result by using the argument in the proof of Lemma 2.3

as follows.

Proposition 2.4 (Yoshinaga [Yo1]). Let f and g be nondegenerate quasihomo-

geneous polynomials. Let the weights of f and g be denoted by �w1; . . . ;wn�1� �

�u1=v1; . . . ; un�1=vn�1� and �w 0
1; . . . ;w

0
n�1� � �u 0

1=v
0
1; . . . ; u

0
n�1=v

0
n�1� respectively, where uj

and vj (resp. u 0
j and v 0j ) are relatively prime positive integers and uj=vj ; u

0
j=v

0
j V 2. Then

Df �t� � Dg�t� if and only if for every integer u with uV 2, we have

Y

uj�u

1ÿ
uj

vj

� �

�
Y

u 0
j
�u

1ÿ
u 0
j

v 0j

 !

;

where a product over an empty set is equal to 1.

Remark 2.5. Yoshinaga [Yo] considers the condition that f2; u1; . . . ; un�1g �

f2; u 0
1; . . . ; u

0
n�1g as well. However, this condition is redundant, since, as is easily seen,

this is a consequence of the condition in Proposition 2.4.

Proof of Proposition 2.4. We see that Df �t� � Dg�t� if and only if the eigenvalues

of their monodromy operators coincide. If we write

Pf �t� �
X

a AQ

cat
a and Pg�t� �

X

b AQ

c 0bt
b;

then we have Sp� f � �
P

a AQ ca�aÿ 1� and Sp�g� �
P

b AQ c 0b�b ÿ 1�. Thus we have, by

the de®nition of the spectrum,

X

a1g mod 1

ca � dimC H n�Ff ;C �l;

X

b1g mod 1

c 0b � dimC H n�Fg;C �l

for each g A Q, where l � exp�ÿ2pig� and Ff and Fg are the Milnor ®bers of f and g

respectively. Thus if Df �t� � Dg�t�, then dimC H n�Ff ;C �l � dimC H n�Fg;C �l for each

l, and then

X

l�exp�ÿ2pia�

cat
a ÿ

X

l�exp�ÿ2pib�

c 0bt
b
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is divisible by tÿ 1 in Z�t1=m�, where m is a common multiple of u1; . . . ; un�1; u
0
1; . . . ;

u 0
n�1. Hence Pf �t�1Pg�t� mod tÿ 1. We can prove the converse similarly. Thus we

have proved that Df �t� � Dg�t� if and only if Pf �t�1Pg�t� mod tÿ 1. We note that this

fact is also observed in [Ne, §1].

Putting s � t1=m, we set

Qf �s� � Pf �t� �
Y

n�1

j�1

sm ÿ smvj=uj

smvj=uj ÿ 1
;

Qg�s� � Pg�t� �
Y

n�1

j�1

sm ÿ smv 0
j
=u 0

j

smv 0
j
=u 0

j ÿ 1
:

Note that Qf �s� and Qg�s� are polynomials in s with nonnegative integer coe½cients.

Then Pf �t�1Pg�t� mod tÿ 1 if and only if Qf �s�1Qg�s� mod sm ÿ 1, which in turn is

equivalent to that Qf �z
k� � Qg�z

k� for all k A Z, where z � exp�2pi=m�.

For h�s� � �sm ÿ s l�=�s l ÿ 1� with 0 < l < m, we have

h�x� �
mxmÿ1 ÿ lx lÿ1

lx lÿ1
�

m

l
ÿ 1

for x A C with x l � xm � 1 by the l'Hopital rule. Thus we have

Qf �z
k� �

Y

uj a k

1ÿ zkmvj=uj

zkmvj=uj ÿ 1

Y

uj jk

m

mvj=uj
ÿ 1

� �

�
Y

uj a k

�ÿ1�
Y

uj jk

uj

vj
ÿ 1

� �

�
Y

uj a k

�ÿ1�
Y

uj jk

�ÿ1�
Y

uj jk

1ÿ
uj

vj

� �

� �ÿ1�n�1
Y

uj jk

1ÿ
uj

vj

� �

:

Hence we see that Qf �z
k� � Qg�z

k� if and only if

Y

uj jk

1ÿ
uj

vj

� �

�
Y

u 0
j
jk

1ÿ
u 0
j

v 0j

 !

:

Thus we see that Qf �z
k� � Qg�z

k� for all k A Z if and only if for every integer u with
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uV 2, we have

Y

uj�u

1ÿ
uj

vj

� �

�
Y

u 0
j
�u

1ÿ
u 0
j

v 0j

 !

:

This completes the proof. r

As to the condition for two nondegenerate quasihomogeneous polynomials to have

equivalent real Seifert forms, we have the following.

Proposition 2.6. Let f and g be nondegenerate quasihomogeneous polynomials as in

Proposition 2.4. Then f and g have equivalent Seifert forms over the real numbers if and

only if the following three are satis®ed.

(1) For every integer u with uV 2, we have

Y

uj�u

1ÿ
uj

vj

� �

�
Y

u 0
j
�u

1ÿ
u 0
j

v 0j

 !

;

where a product over an empty set is equal to 1.

(2) For every odd integer k,

]f j : uj jk and vj is oddg � ]f j : ujjk and vj is eveng

if and only if

]f j : u 0
j jk and v 0j is oddg � ]f j : u 0

j jk and v 0j is eveng;

where ] denotes the number of elements in the set.

(3) For every odd integer k for which the equalities in (2) hold, we have

Y

uj a k

i cot
kvjp

2uj

Y

uj jk; vj :odd

vj

uj
ÿ 1

� �

Y

uj jk; vj : even

uj

vj

�
Y

u 0
j
a k

i cot
kv 0jp

2u 0
j

Y

u 0
j
jk; v 0

j
:odd

v 0j

u 0
j

ÿ 1

 !

Y

u 0
j
jk; v 0

j
: even

u 0
j

v 0j
:

The above proposition easily follows from Lemma 2.3, Proposition 2.4 and the

following lemma.

Lemma 2.7. Set

Ok � ]f j : ujjk and vj is oddg;

Ek � ]f j : ujjk and vj is eveng
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for every odd integer k. Then we have Ok VEk for every odd integer k. Furthermore,

under the same notation as in the proof of Proposition 2.4, we have

Qf �h
k� �

0 �if Ok > Ek�

Y

uj a k

i cot
kvjp

2uj

Y

uj jk; vj :odd

vj

uj
ÿ 1

� �

Y

uj jk; vj : even

uj

vj
�if Ok � Ek�,

8

>

>

<

>

>

:

for every odd integer k, where h � exp�pi=m�.

Proof. It is easy to see that for an odd integer k, �hk�mvj=uj ÿ 1 � 0 if and only if

uj jk and vj is even. Furthermore, �hk�m ÿ �hk�mvj=uj � 0 if and only if ujjk and vj is odd.

Then the ®rst assertion of the lemma follows from the fact that Qf �s� is a polynomial

in s and hence that Qf �h
k� is a complex number for each odd integer k. Further-

more, if ]f j : ujjk and vj is oddg > ]f j : ujjk and vj is eveng, then Qf �h
k� � 0. When

]f j : ujjk and vj is oddg � ]f j : ujjk and vj is eveng, we have

Qf �h
k� �

Y

uj a k

ÿ�hkmvj=uj � 1�

hkmvj=uj ÿ 1

Y

uj jk; vj :odd

ÿ�mÿmvj=uj�

hkmvj=uj ÿ 1

Y

uj jk; vj : even

ÿ�hkmvj=uj � 1�

mvj=uj

�
Y

uj a k

i cot
kvjp

2uj

Y

uj jk; vj :odd

vj

uj
ÿ 1

� �

Y

uj jk; vj : even

uj

vj
:

This completes the proof. r

3. Proof of Theorem 1.1 and its corollaries.

Let f and g be nondegenerate quasihomogeneous polynomials in C n�1. We denote

by �w1; . . . ;wn�1� � �u1=v1; . . . ; un�1=vn�1� and �w 0
1; . . . ;w

0
n�1� � �u 0

1=v
0
1; . . . ; u

0
n�1=v

0
n�1� the

weights of f and g respectively, where uj and vj (resp. u 0
j and v 0j ) are relatively prime

positive integers and wj;w
0
k V 2.

Lemma 3.1. Suppose that f and g have equivalent Seifert forms over the real

numbers. If

X

n�1

j�1

1

wj

�
X

n�1

j�1

1

w 0
j

ÿ 2min
1

w1
; . . . ;

1

wn�1
;
1

w 0
1

; . . . ;
1

w 0
n�1

� �

< 1;

then we have wj � w 0
j up to order.

Proof. Let m be a common multiple of u1; . . . ; un�1; u
0
1; . . . ; u

0
n�1. By Lemma 2.3

and the proof of Proposition 2.4, we have

Real Seifert form determines the spectrum 421



Y

n�1

j�1

�sm ÿ smvj=uj �
Y

n�1

j�1

�smv 0
j
=u 0

j ÿ 1� ÿ
Y

n�1

j�1

�sm ÿ smv 0
j
=u 0

j �
Y

n�1

j�1

�smvj=uj ÿ 1�

� R�s��s2m ÿ 1�
Y

n�1

j�1

�smvj=uj ÿ 1�
Y

n�1

j�1

�smv 0
j
=u 0

j ÿ 1�

for some R�s� A Z�s�. Substituting h with hm � ÿ1 for s, we have

�ÿ1�n�1
Y

n�1

j�1

�hmvj=uj � 1�
Y

n�1

j�1

�hmv 0
j
=u 0

j ÿ 1�

ÿ�ÿ1�n�1
Y

n�1

j�1

�hmv 0
j
=u 0

j � 1�
Y

n�1

j�1

�hmvj=uj ÿ 1� � 0:

Thus, putting

F �z� �
Y

n�1

j�1

�zmvj=uj � 1�
Y

n�1

j�1

�zmv 0
j
=u 0

j ÿ 1� ÿ
Y

n�1

j�1

�zmv 0
j
=u 0

j � 1�
Y

n�1

j�1

�zmvj=uj ÿ 1�;

we have F �h� � 0 for all h with hm � ÿ1. On the other hand, we have

F�z� �
X

n�1

j�0

pj

 !

X

n�1

k�0

�ÿ1�n�1ÿk
p 0
k

 !

ÿ
X

n�1

k�0

p 0
k

 !

X

n�1

j�0

�ÿ1�n�1ÿj
pj

 !

�
X

jÿk :odd

��ÿ1�n�1ÿk ÿ �ÿ1�n�1ÿj�pj p
0
k;

where pk and p 0
k are the k-th symmetric polynomials of fzmvj=ujgn�1

j�1 and fzmv 0
j
=u 0

j gn�1
j�1

respectively. Thus we have F�z� � zbV�z� for some nonnegative integer b and for some

V�z� A Z�z� whose degree is smaller than or equal to

m
X

n�1

j�1

vj

uj
�

v 0j

u 0
j

 !

ÿ 2a;

where a � minfmv1=u1; . . . ;mvn�1=un�1;mv 01=u
0
1; . . . ;mv 0n�1=u

0
n�1g. Note that V�z� has at

least m distinct zeros. By our hypothesis, we see that

m > m
X

n�1

j�1

vj

uj
�

v 0j

u 0
j

 !

ÿ 2aV degreeV�z�:

Thus the polynomial F�z� must be zero, and hence we have

O. Saeki422



X

jÿk:odd

��ÿ1�n�1ÿk ÿ �ÿ1�n�1ÿj�pj p
0
k � 0:

By looking at the lowest degree term, we see that

minf1=w1; . . . ; 1=wn�1g � minf1=w 0
1; . . . ; 1=w

0
n�1g:

Thus we may assume that wn�1 � w 0
n�1. Then we have

Y

n

j�1

�zmvj=uj � 1�
Y

n

j�1

�zmv 0
j
=u 0

j ÿ 1� ÿ
Y

n

j�1

�zmv 0
j
=u 0

j � 1�
Y

n

j�1

�zmvj=uj ÿ 1� � 0:

Looking at the lowest degree term, we obtain

minf1=w1; . . . ; 1=wng � minf1=w 0
1; . . . ; 1=w

0
ng:

Repeating this procedure, we have wj � w 0
j up to order. This completes the proof.

r

Lemma 3.2. Suppose that f and g have equivalent Seifert forms over the real

numbers. If

min
X

n�1

j�1

1

wj

;
X

n�1

j�1

1

w 0
j

( )

V
nÿ 1

2
;

then we have wj � w 0
j up to order.

Proof. It is easy to see that the lowest degree term of Pf �t� (resp. Pg�t�) is equal to

tg (resp. tg
0
) and the highest one is equal to tn�1ÿg (resp. tn�1ÿg

0
), where g �

Pn�1
j�1 1=wj

(resp. g 0 �
Pn�1

j�1 1=w 0
j ). Thus, by our hypothesis, we see that Pf �t� � tg � P 0

f �t� � tn�1ÿg

and Pg�t� � tg
0
� P 0

g�t� � tn�1ÿg
0
, where each monomial of P 0

f �t� and P 0
g�t� is of degree

in the interval ��nÿ 1�=2; �n� 3�=2� (when
Pn�1

j�1 1=wj � �n� 1�=2 (or
Pn�1

j�1 1=w 0
j �

�n� 1�=2), we have Pf �t� � t�n�1�=2 (resp. Pg�t� � t�n�1�=2)). Thus Pf �t�1Pg�t�mod t2 ÿ 1

if and only if Pf �t� � Pg�t�. Hence wj � w 0
j up to order (see [SSS, Example 5.2]).

This completes the proof. r

Lemma 3.3. Suppose that f and g have equivalent Seifert forms over the real

numbers. If n � 2, then the hypothesis of Lemma 3.1 or 3.2 is always satis®ed.

Proof. Suppose that

X

3

j�1

1

wj

�
X

3

j�1

1

w 0
j

ÿ 2min
1

w1
;
1

w2
;
1

w3
;
1

w 0
1

;
1

w 0
2

;
1

w 0
3

� �

V 1
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and g 0 �
P3

j�1 1=w
0
j < 1=2. Since

P3
j�1 1=wj �

P3
j�1 1=w

0
j > 1, we have

P3
j�1 1=wj >

P3
j�1 1=w

0
j and

P3
j�1 1=w

0
j � 2 > 3ÿ

P3
j�1 1=wj. Thus, putting Sp� f � �

P
a AQ ca�aÿ 1�

and Sp�g� �
P

b AQ c 0b�b ÿ 1�, we have cg 0 � 0, c 0g 0 � 1, cg 0�2 � 0. By Theorem 2.2, we

have cg 0 � cg 0�2 � c 0g 0 � c 0g 0�2, since f and g have equivalent real Seifert forms and hence

the same equivariant signatures. This implies that c 0g 0�2 � ÿ1, which is a contradiction.

This completes the proof. r

Proof of Theorem 1.1. Combining Lemmas 3.1, 3.2 and 3.3, we obtain Theorem

1.1, since the weights determine the spectrum (see [SSS, Example 5.2] and also §2 of the

present paper). r

Proof of Corollary 1.2. Since the Seifert form is a topological invariant (see

[Sae2], [D], [K]), we easily obtain Corollary 1.2. r

Example 3.4. In [Yo1, Example 3], Yoshinaga considers the nondegenerate

quasihomogeneous polynomials f �z1; z2; z3; z4� � f1�z2; z3; z4� � z21 � z21 � z22 � z23 � z134

of weights �2; 2; 2; 13� and g�z1; z2; z3; z4� � g1�z2; z3; z4� � z21 � z21 � z32z3 � z23z4 � z2z
2
4 of

weights �2; 13=3; 13=4; 13=5�. The two polynomials do not have equivalent real Seifert

forms, since the nondegenerate quasihomogeneous polynomials f1 and g1 of weights

�2; 2; 13� and �13=3; 13=4; 13=5� respectively do not have equivalent real Seifert forms by

Corollaries 1.2 and 1.4 and the Seifert forms of f and g are equivalent if and only

if those of f1 and g1 are equivalent (see Lemma 2.1). Note that the characteristic

polynomials of f and g coincide as is seen in [Yo1].

Lemma 3.5. Let f and g : �C n�1; 0� ! �C ; 0� be holomorphic function germs with an

isolated critical point at the origin. If f and g are connected by a m-constant deformation,

then their Seifert forms are equivalent over the integers.

Proof. As is shown in [LR, Proof of Theorem 2.1], we may assume that there exist

su½ciently small positive real numbers e; e 0; d with 0 < df e 0 f e satisfying the following

properties.

(1) S2n�1
e (resp. S2n�1

e 0 ) intersects f ÿ1�0� (resp. gÿ1�0�) transversely, where S2n�1
e �

qD2n�2
e (resp. S2n�1

e 0 � qD2n�2
e 0 ) and D2n�2

e (resp. D2n�2
e 0 ) is the closed �2n� 2�-

dimensional disk in C n�1 of radius e (resp. e 0) centered at the origin.

(2) The maps f : f ÿ1�S1
d �VD2n�2

e ! S1
d and g : gÿ1�S1

d �VD2n�2
e 0 ! S1

d are the

Milnor ®brations of f and g respectively (see [M]), where S1
d is the circle in C

of radius d centered at the origin.

(3) There exists an embedding j : gÿ1�S1
d �VD2n�2

e 0 ! f ÿ1�S1
d �VD2n�2

e such that

f � j � g.
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(4) On each Milnor ®ber gÿ1�a�VD2n�2
e 0 of g �a A S1

d �, the embedding j : gÿ1�a�V

D2n�2
e 0 ! f ÿ1�a�VD2n�2

e is a homotopy equivalence.

We warn the reader that the condition (3) does not necessarily imply that f and g are

topologically right equivalent. Recall that the Seifert form of g is de®ned by using the

linking numbers of n-cycles in gÿ1�a�VD2n�2
e 0 with their push-o¨s in q�gÿ1�D2

d �VD
2n�2
e 0 �,

where D2
d is the disk in C of radius d centered at the origin (see §2); i.e. the Seifert form

of g is de®ned by using the intersection numbers of certain chains in gÿ1�D2
d �VD2n�2

e 0 ,

which is homeomorphic to the �2n� 2�-dimensional disk. Since the embedding j

extends to an embedding of gÿ1�D2
d �VD2n�2

e 0 into f ÿ1�D2
d �VD2n�2

e , we see that the

Seifert forms of f and g are isomorphic via �jjgÿ1�a�VD2n�2
e 0

�� : Hn�g
ÿ1�a�VD2n�2

e 0 ;Z� !

Hn� f
ÿ1�a�VD2n�2

e ;Z�. This completes the proof. r

Proof of Corollary 1.3. Suppose that f (resp. g) is connected by a m-constant

deformation to a nondegenerate quasihomogeneous polynomial f0 (resp. g0). If f and g

have equivalent real Seifert forms, then so do f0 and g0 by Lemma 3.5. Thus the

spectra of f0 and g0 coincide by Theorem 1.1. On the other hand, it has been shown

that the spectrum is invariant under m-constant deformations by Varchenko [V1], [V2]

(see also [St3]). Thus the spectra of f and g also coincide. Thus (1) implies (4).

If f and g have the same spectrum, so do f0 and g0. Thus f0 and g0 have the same

weights (see [SSS, Example 5.2]). Then by [O1, §4], [DG, §6], or [XY1, Theorem 3.5], f0

and g0 are connected by a topologically constant and hence m-constant deformation (see

also Remark 3.8 below). Thus (4) implies (5).

By Lemma 3.5, (5) implies (2). Furthermore, (2) trivially implies (1). Finally, as

has been pointed out in the proof of Lemma 2.3, (1) and (3) are equivalent to each

other. This completes the proof. r

Remark 3.6. Let f and g be nondegenerate quasihomogeneous polynomials in C 3.

If they are connected by a m-constant deformation, then their Seifert forms are

equivalent by Lemma 3.5 and hence they have the same spectrum by Theorem 1.1.

Thus we have shown that if f and g are connected by a m-constant deformation, then

they have the same spectrum. In fact, this is always true for arbitrary holomorphic

function germs in C n�1 with an isolated critical point at the origin, which is a result of

Varchenko [V1], [V2]. Our proof above gives an alternative proof of this result in our

special case.

Proof of Corollary 1.4. By [DG, Corollary 5] (see also [O2], [O3], [Yo2] and

[LR, Remark 2.5]), we see that f and g can be connected to nondegenerate quasi-
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homogeneous polynomials f0 and g0 respectively by topologically trivial (and hence

m-constant) deformations. Thus we can apply Corollary 1.3. Furthermore, if one

of the conditions (1)±(5) is satis®ed, f0 and g0 are connected by a topologically constant

deformation. Thus f and g are also so connected and (6) holds. Conversely

(6) implies (2). Furthermore, by [Ya2], [Sae1], (6) and (7) are equivalent to each

other.

Note that f and f0 (resp. g and g0) have the same multiplicity. Since the multiplicity

is determined by the weights for nondegenerate quasihomogeneous polynomials (see

[Sae1]), we see that if one of the seven conditions is satis®ed, f0 and g0 have the

same multiplicity. Thus f and g have the same multiplicity. This completes the

proof. r

Remark 3.7. Let f and g be nondegenerate quasihomogeneous polynomials in

C
n�1 �nV 1�. Then the following four are equivalent.

(1) f and g are connected by a m-constant deformation.

(2) f and g are connected by a topologically constant deformation.

(3) f and g have the same weights.

(4) f and g have the same spectrum.

When f and g are semiquasihomogeneous holomorphic function germs in C n�1, (1),

(2) and (4) are equivalent to each other. Furthermore, if one of the conditions is

satis®ed, f and g have the same multiplicity.

The above facts can be proved by using a result of Varchenko [V1], [V2], an

observation given in [SSS, Example 5.2], and Remark 3.8 below. Furthermore, the

above facts imply that the ``weights'' of a semiquasihomogeneous holomorphic function

germ are well-de®ned.

Remark 3.8. For a nondegenerate quasihomogeneous polynomial, the weights

completely determine the topological type. This is a consequence of the fact that if two

nondegenerate quasihomogeneous polynomials have the same weights, then they can be

connected by a m-constant deformation which has a uniform stable radius (see [O1],

[O2], [O3]).

Remark 3.9. Note that in general the Seifert form (over the integers) does not

determine the topological type of a holomorphic function germ in C 3 with an isolated

critical point at the origin (see [AB1]). Furthermore, in Corollary 1.4, (7) does not

necessarily imply (6) for holomorphic function germs in C
3 in general. See [AB2,

Corollaire 5.6.6].
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Proof of Corollary 1.5. The assertion holds for all holomorphic function germs

in C n�1 with an isolated critical point at the origin for all nV 3, as has been pointed out

in §1. When n � 2, if f and g are topologically equivalent, then so are ~f and ~g, since

they have equivalent Seifert forms. Conversely, if ~f and ~g are topologically equivalent, f

and g have equivalent Seifert forms and hence they are topologically equivalent by

Theorem 1.1 and Remark 3.8 (or by Corollary 1.4). The case where n � 1 follows from

Remarks 3.8 and 3.10 below. This completes the proof. r

Remark 3.10. When n � 1, the hypothesis of Lemma 3.2 is always satis®ed. Thus

for nondegenerate quasihomogeneous polynomials in C 2, the weights are determined by

the real Seifert form. Then it is not di½cult to show that for nondegenerate quasi-

homogeneous polynomials f and g in C
2, the following six are equivalent.

(1) f and g have the same topological type.

(2) f and g have the same characteristic polynomial and their stabilizations ~f and

~g have the same equivariant signatures.

(3) f and g have the same spectrum.

(4) f and g have the same weights (we assume that all the weights are greater than

or equal to 2).

(5) f and g have equivalent Seifert forms over the real numbers.

(6) f and g have equivalent Seifert forms over the integers.

In fact, it has already been seen that �1� ) �6� ) �5� ) �4� , �3� and �4� ) �1�.

Furthermore, by using our argument, we can show that �2� , �5�.

Note that the above statement is true also for n � 2 (see Corollary 1.4). We do not

know if a corresponding statement of Theorem 1.1 for four variables is true or not.

Probably one can use the list of nondegenerate quasihomogeneous polynomials of four

variables obtained in [YS2] and can use the results obtained in §2 to attack this

problem. Note that we do not even know if the multiplicity is an invariant of the real

Seifert form for nondegenerate quasihomogeneous polynomials of four variables.

Remark 3.11. As is noted in §1, the consequence of Corollary 1.5 holds for all

holomorphic function germs in C
n�1 with an isolated critical point at the origin,

provided that nV 3. For n � 2, this is not true. For example, Artal-Bartolo [AB1] has

given two function germs of three variables which have equivalent Seifert forms over the

integers but which have di¨erent topological types. Then their stabilizations are to-

pologically equivalent, since they have equivalent Seifert forms over the integers (see [D],

[K]). For n � 1, the author does not know if the consequence of Corollary 1.5 holds for

all holomorphic function germs in C 2 with an isolated critical point at the origin. If the
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plane curve f ÿ1�0� is irreducible, then this is true. This can be proved by using the fact

that the topological type of such a function germ is determined by the characteristic

polynomial of the monodromy (see [B ], [Le]). For general function germs, Laufer [La]

obtains some results, although they are not enough to answer to the problem1.

4. Real and complex Seifert matrices.

In this section, using our method in the previous sections, we give normal forms of

real and complex Seifert matrices of a nondegenerate quasihomogeneous polynomial.

Proposition 4.1. Let f be a nondegenerate quasihomogeneous polynomial in C n�1.

We write Pf �t� �
P

a AQ cat
a. Then the sesquilinearized complex Seifert form L of f is

equivalent to

0
ca00

Ln
C �ca; a�

over the complex numbers, where Ln
C �c; a� is the c� c diagonal matrix each of whose

diagonal entries is equal to i exp�ÿpia� if n is even and is equal to exp�ÿpia� if n is odd

�i �
�������

ÿ1
p

�.

Proposition 4.2. Let f be a nondegenerate quasihomogeneous polynomial in C n�1.

We write Pf �t� �
P

a AQ cat
a. Then the real Seifert form LR of f is equivalent to

0
ca00;aU�n�1�=2

Ln
R�ca; a�

over the real numbers, where Ln
R�c; a� is de®ned as follows:

(1) When n is even:

Ln
R�c; a� �

0
c

sin pa cos pa

ÿcos pa sin pa

� �

if a <
n� 1

2

� �

0
c

�1� if a � n� 1

2
and n1 0 mod 4

� �

0
c

�ÿ1� if a � n� 1

2
and n1 2 mod 4

� �

.

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1The author is indebted to LeÃ DuÄng TraÂng for calling his attention to Laufer's work.
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(2) When n is odd:

Ln
R
�c; a� �

0
c

cos pa ÿsin pa

sin pa cos pa

� �

if a <
n� 1

2

� �

0
c

�1� if a �
n� 1

2
and n1 3 mod 4

� �

0
c

�ÿ1� if a �
n� 1

2
and n1 1 mod 4

� �

.

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Proof of Propositions 4.1 and 4.2. First suppose that n is even. We have shown

that the real and the complex Seifert forms of f are completely determined by the

characteristic polynomial and the equivariant signatures (see the proof of Lemma 2.3 in

§2). On the other hand, when n is even, we see that the matrices appearing in the

propositions have the same characteristic polynomial and the same equivariant sig-

natures as those of f by using Theorem 2.2. Thus we have the result. When n is odd,

consider the stabilization ~f of f as in Lemma 2.1. Then setting

Pf �t� �
X

a

cat
a and P~f �t� �

X

b

~cbt
b;

we have ~cb � cbÿ�1=2�, since

P ~f �t� � Pf �t�
tÿ t1=2

t1=2 ÿ 1
� Pf �t�t

1=2:

Thus by using Lemma 2.1, we have

L � ~L � 0
~cb00

Ln�1
C

�~cb; b�

� 0
ca00

Ln�1
C

ca; a�
1

2

� �

� 0
ca00

Ln
C
�ca; a�:

For the real Seifert forms, a similar argument can be applied. This completes the proof.

r

We note that Proposition 4.1 is equivalent to [Ne, Theorem 6.3], although the

formulations are di¨erent.
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