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Abstract. Generalizing the transfer maps concerned with the projective

spaces, we study some fundamental properties of transfer maps for sphere

bundles. We show that their co®bers are represented by Thom spectra, which

enables us to calculate the e-invariants of the transfer maps. We give some

concrete formula for the e-invariants of them and its application.

1. Introduction.

In this paper, we treat the transfer maps of sphere bundles, and give some formulas

for their e-invariants. Our results generalize the study of the S1-transfer map de®ned for

the principal S1-bundle over the complex projective space (cf. [11], [12], [13]).

Let �S�V�; p;B� be the sphere bundle associated with a vector bundle �V ; p;B� of

®ber dimension v > 0 over a ®nite complex B. Then, for each vector bundle W over B,

we have a map tW �p� : BVlW ! SS�V�p
�W called an umkehr map as in [5] (see (2.1)).

tW �p� is a stable map between the Thom spaces, and it also has a meaning as a map

between the Thom spectra when W is a virtual vector bundle. Throughout the paper,

X a denotes the Thom space (resp. spectrum) of a (resp. virtual) vector bundle a over X.

We impose an assumption on W in the above. Let jV : B ! BV be the map de®ned

by the zero section of V, and assume that there exists a virtual vector bundle ~W over

BV with

j �V
~WGW over B;�1:1�

where G means an equivalence of virtual vector bundles. We also assume that the

virtual ®ber dimension of W is equal to that of ~W , and denote it by an integer b. Since

S�V� �!
p

B �!
jV

BV is a co®ber sequence, the equivalence of (1.1) gives a trivialization

f : p�WGR
b, where R

b denotes the trivial vector bundle of dimension b.
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Let q : SS�V�p
�W

��!
T�f�

SS�V�R
b

��!
c

S b�1 be the composition of the stable ho-

motopy equivalence T�f� de®ned by f and the map c de®ned by the collapsing map

S�V� ! f�g. Then, we de®ne a transfer map of the sphere bundle S�V�, which depends

on ~W of (1.1) and a trivialization f, to be

tW � q � tW �p� : BVlW ! S b�1:�1:2�

Then, it turns out that the transfer map is closely related with a map appearing in the

James co®ber sequence [10], and we show that the co®ber C�tW � of tW is represented as

follows:

Theorem 1. C�tW � is stably homotopy equivalent to S�BV �
~W .

This theorem is based on a result in [11]. Let x be the canonical complex line

bundle over the complex projective space CPn. Then, the co®ber of p is CPn�1, and the

total space of the sphere bundle S�x� is S2n�1. For any virtual complex vector bundle W

over CPn there exists a virtual vector bundle ~W over CPn�1 satisfying the condition

(1.1). The co®ber of the transfer map tW of S�x� for W � ÿx has played an important

role in [11], [12], [6], [4], [8]. Thus, the following corollary is the source of Theorem 1.

Corollary 2. �CPn�xlW
�!
tW

S b�1
�!
i

S�CPn�1�
~W
is a co®ber sequence, where i is

the inclusion to the bottom sphere.

Theorem 1 establishes a stable co®ber sequence S b
�!
i

�BV �
~W
�!
j

BVlW
�!
tW

S b�1,

which can be used several ways (see Corollary 6 for an example). If ~W is orientable

with respect to a generalized cohomology theory E ��ÿ�, then it is immediately shown,

by making use of the co®ber sequence, that �tW �� � 0 : E ��S b�1� ! E ��BVlW �, that is,

the Adams±Novikov ®ltration of tW with respect to E ��ÿ� is more than or equal to 1.

But, a crucial use of the co®ber sequence enables us to calculate the e-invariant of tW ,

which is a starting point to apply the transfer maps and to generalize various results of

[11], [4] and so on. In order to state it, we ®rst recall the de®nition of the e-invariant of

the transfer map (see [11]).

Let E be a ring spectrum with unit iE , and put E kG � SkE5SG, where SG is the

Moore spectrum for a group G (cf. [3, Part III]). Then, associated to the exact sequence

Z ! Q ! Q=Z for the ring Z of the integers and the ®eld Q of the rational numbers,

we have a co®ber sequence S k
�!
iQ

S kQ �!
rZ

S kQ=Z �!
b

S k�1 of the Moore spectra.

Assume that ~W is orientable. Then, tW is a torsion element of the stable cohomotopy

group pb�1
s �BVlW �, that is, �iQ���tW � � 0 A pb�1

s �BVlW ;Q�. Therefore, there is an

element tW A pb
s �B

VlW ;Q=Z� with b��tW � � tW . tW is uniquely de®ned by tW since
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p
b
s �B

VlW ;Q� � 0. Then, the E-theory e-invariant eE�tW � of the transfer map tW is

de®ned by

eE�tW � � hE�tW � A E b�BVlW ;Q=Z�;�1:3�

where hE is the E-theory Hurewicz homomorphism induced from iE . When E � K ,

the complex K-spectrum, the slant product eK�tW �nhK�x� A Q=Z for an element

x A p
s
2n�b�B

VlW � is equal to the classical e-invariant [2] eC��tW ���x�� of the transfer

image �tW ���x� A p
s
2nÿ1�S

0�.

Now, assume further that ~W and V are E-orientable (cf. [3, Part III, 10]), and

choose Thom classes U E
~W
A E b��BV �

~W � and U E
V A E v�BV � to satisfy �i1�

��U E
~W
� � iE and

�i2�
��U E

V � � iE for the inclusions i1 : S
b ! �BV �

~W and i2 : S
v ! BV respectively. Let

UH
~W
A H b��BV �

~W
;Z� be the Thom class of ~W in ordinary cohomology, and de®ne

shE�ÿ ~W� A E0�BV
� ;Q� by the equality

U H
~W
� U E

~W
shE�ÿ ~W� in E b��BV �

~W
;Q�:�1:4�

Here, we identify U E
~W

and U H
~W

with �iQ���U
E
~W
� and �i���U

H
~W
� for i : H 0Z �!

iQ
H 0Q �

S0Q �!
iE

E0Q respectively.

Let FV : E i�B�� ! E i�v�BV � be the Thom isomorphism given by the Thom class

U E
V , and FVlW : E i�B�� ! E i�b�v�BVlW � the Thom isomorphism given by an ap-

propriately chosen Thom class of V lW . Then, under those assumptions on ~W and V,

the E-theory e-invariant of tW is represented as follows:

Theorem 3. Assume that p1�E;Q� � p1�E;Q=Z� � 0. Then, we have

eE�tW � � FVlW F
ÿ1
V �shE�ÿ ~W� ÿ 1�:

Let eE�V� � j �V �U
E
V � be the E-theory Euler class of V, where jV is the map as in

(1.1). Then, applying j �VFVF
ÿ1
VlW on the equality of Theorem 3, we have

eE�V�Fÿ1
VlW �eE�tW �� � shE�ÿW� ÿ 1

in E0�B�;Q=Z�. Thus, the formula for eE�tW � becomes simpler than the one in

Theorem 3 under the following conditions: There exists a map f : B ! C for a ®nite

complex C; V is the induced bundle f �V 0 of a vector bundle V 0 over C; ~W � T� f �� ~W 0

for a virtual vector bundle ~W 0 over CV 0
and the map T� f � : BV ! CV 0

induced from f;

f ��Ann�eE�V 0����0 for the annihilator Ann�eE�V 0���fx A E0�C�;Q=Z� j xeE�V 0��0g

of eE�V 0�. Under these conditions we have the following:
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Corollary 4.

eE�tW � � FVlW

shE�ÿW� ÿ 1

eE�V�

� �

:

According these formulas, we give some concrete calculation for the e-invariants of

generalized S1-transfer maps in §4.

The paper is organized as follows: In §2, we give the de®nition of transfer maps to

be discussed, and prove Theorem 1. Some related properties of the transfer maps are

also commented. In §3, we study the e-invariants of the transfer maps, and prove

Theorem 3. In §4, we extend the classical calculation for the e-invariant of the

S1-transfer map by applying the results in §3.

2. Transfer maps of sphere bundles.

First, we recall the de®nition of an umkehr map. Let �V ; p;B;F n;G� be a vector

bundle over a ®nite complex B, where F is the ®eld of the real, complex or quaternionic

numbers and G � O�n�, U�n� or Sp�n� accordingly, and � ~E; p;B;G;G� the principal G-

bundle associated with V. Then, the sphere bundle �S�V�; p;B;S�F n�;G� associated to

V is given by S�V� � ~E �G S�F n� for the unit sphere S�F n� in F n. Let t : �F n�� !

SS�F n�� be the Thom construction for the inclusion S�F n�HF n, and put ~t � 1�G

t : ~E �G �F n�� ! ~E �G SS�F n��, where fÿg� denotes the one point compacti®cation of

fÿg. We denote by ÿV an inverse vector bundle of V, that is Vl �ÿV� � R
N for

some integer N, which actually exists since B is a ®nite complex. a denotes the ®berwise

one point compacti®cation of a vector bundle a. a and ~E �G Y for a space Y with

G-invariant base point are sectioned bundles in the sense of [9], and a=B � Ba. We

also denote by b5B g the ®berwise wedge sum of sectioned bundles b and g. Then we

have

� ~E �G �F n���5B W

B
FSNBVlW and

� ~E �G SS�F n���5B W

B
FSN�1S�V�p

�W :

Then, through these identi®cation, the umkehr map tW �p� is de®ned to be the following

stable map:

tW �p� �
~t5B 1

B
: BVlW ! SS�V�p

�W :�2:1�

Then, the transfer map tW of S�V� is de®ned as tW � q � tW �p� for the map q :

SS�V�p
�W ! S b�1 as de®ned in (1.2).

M. Imaoka and K. Knapp366



On the other hand, applying the construction �� ~E �G fÿg�5B W�=B on each space

in the co®ber sequence S�F n�� ! D�F n�� ! �F n�� ! SS�F n��, we get the James

co®ber sequence

S�V�p
�W

�!
p̂

BW
�!
î

BVlW
�!
q

SS�V�p
�W :

Then, by the constructions of tW �p� and q, they are equivalent as follows:

Lemma 5 ([11, Lemma 2.12]). tW �p� is stably homotopic to q up to sign.

Proof of Theorem 1. In the de®nition of tW , we have used a stable homotopy

equivalence T�f� : S�V�p
�W ! S�V�R

b

FSbS�V��. By Lemma 5, tW � q � tW �p�F

q � q, and thus we have a map f : BW ! Sÿ1C�tW � which makes the following diagram

stably homotopy commutative up to sign:

S�V�p
�W

���!
p̂

BW
���!

î
BVlW

���!
q

SS�V�p
�W

?
?
?
y
q

?
?
?
y

f










?
?
?
y
q

S b
���!

i
Sÿ1C�tW � ���!

j
BVlW

���!
tW

S b�1:

Then, the co®ber spectrum C� f � of f is stably homotopy equivalent to the co®ber

spectrum C�q� of q, and C�q�FSS�V� by the equivalence T�f�. Put h � p̂ � T�f�ÿ1 �

i 0 : SbS�V� ! BW for the inclusion i 0 : SbS�V� ! SbS�V��. In Held-Sjerve [7, The-

orem 3.4], it is shown that there is a co®ber sequence SbS�V� �!
h

BW
�!
j 0

�BV �
~W .

Then, we have a diagram

Sb�1S�V� ���!
h

SBW
���!

j 0

S�BV �
~W

?
?
?
y
F










C� f � ���! SBW
���!

f
C�tW �;

where two horizontal sequences are the co®ber sequences and the square is stably

homotopy commutative. Hence, there is a stable equivalence S�BV �
~W
FC�tW �, which

is the required result of Theorem 1.

By de®nition, the transfer maps are natural in the following sense. Let X be a ®nite

complex, and g : X ! B be a map. g induces vector bundles V 0 � �g�V ; q;X� and

W 0 � g�W , and also de®nes maps T�g� : X V 0
! BV and T�g� : X V 0 lW 0

! BVlW . Let

~W 0 � T�g�� ~W . Then, a trivialization f 0
: q��W 0�GR

b is induced from the trivialization

f given by (1.1), and thus we have a transfer map tW 0 : X V 0lW 0
! S b�1 of S�V 0�.
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Then, it is obvious that

tW 0G tWT�g� : X V 0lW 0

! S b�1:�2:2�

When V � V1 lR for some vector bundle V1 over B, tW can be interpreted as a

J-map in the following sense. In this case, BV � SBV1 , and the classifying map of ~W has

the adjoint map BV1 ! SO. Thus, composing with the J-map J : SO ! WySy and

taking its adjoint, we get a stable map J� ~W� : BV ! S1. Then, as is well known, the

co®ber of J� ~W� is stably homotopy equivalent to S1ÿb�BV �
~W . Thus, S�BV �

~W
F

Sb�S1 [J� ~W � C�BV ��. Hence, we have the following corollary of Theorem 1:

Corollary 6. When V � V1 lR , there exists an equivalence h : BVlW ! SbBV

that satis®es tWF J� ~W�h.

3. e-invariants of transfer maps.

By Theorem 1, we get the stable co®ber sequence

S b ÿ!
i

�BV �
~W ÿ!

j
BVlW ÿ!

tW
S b�1:�3:1�

We shall apply this sequence to study the e-invariant of tW . As de®ned in (1.3), the

E-theory e-invariant eE�tW � of tW is de®ned for a ring spectrum E with unit iE if ~W is

orientable. When it is necessary, the Thom class UH
~W
A H b��BV �

~W
;Z� of ~W is regarded

as an element of pb
s ��B

V �
~W
;Q� through H ÿ!

iQ
H 0Q � p0Q, and also as E b��BV �

~W
;Q�

through iE : p0Q ! E0Q.

Now, assume further that E satis®es p1�E;Q� � p1�E;Q=Z� � 0 and that ~W is

E-oriented by a Thom class U E
~W
A E b��BV �

~W � satisfying i��U E
~W
� � iE for the inclusion

i : S b ! �BV �
~W . We denote �iQ���U

E
~W
� simply by U E

~W
. Then, under these assumptions,

the calculation of the eE�tW � is reduced to determine an element g in the following

lemma.

Lemma 7. There exists a unique element g A E b�BVlW ;Q� with j ��g� � UH
~W
ÿU E

~W

for j of (3.1), and eE�tW � � rZ�g� holds.

Proof. Let S b ÿ!
iQ

S bQ ÿ!
rZ

S bQ=Z ÿ!
b

S b�1 be the co®ber sequence of the Moore

spectra. Then, since i��UH
~W
� � iQ A pb�S b;Q� for i of (3.1), there is an element

tW A pb
s �B

VlW ;Q=Z� with b��tW � � tW and j �hE�tW � � �rZ���U
H
~W
�. Thus, tW is the

element of (1.3), and the E-theory e-invariant eE�tW � is given by

eE�tW � � hE�tW �:�3:2�
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Put u � UH
~W
ÿU E

~W
A E b��BV �

~W
;Q�. Since i��u� � 0 in E b�S b;Q�, we have an element

g A E b�BVlW ;Q� with j ��g� � u. The indeterminacy of g lies in E b�S b�1;Q� �

p1�E;Q� � 0, and thus g is unique. Furthermore, we have j ���rZ���g�� � �rZ���U
H
~W
� �

j ��hE�tW ��, and, since j � is injective by the assumption that p1�E;Q=Z� � 0, we get the

required equality �rZ���g� � eE�tW �.

We have introduced in (1.4) a class shE�ÿ ~W� A E0�BV
� ;Q� that satis®es UH

~W
�

U E
~W
shE�ÿ ~W�. Then, by Lemma 7, we have

j ��g� � U E
~W
�shE�ÿ ~W� ÿ 1�:�3:3�

Proof of Theorem 3. By assumption, V is E-oriented by a Thom class U E
V A

E v�BV �, where v is the ®ber dimension of V. Let k : BVlW ! �BV �
~W
5BV be the map

de®ned by k��x; �u;w��� � � jV �x�;w�5�x; u�. Here, we represent an element of a Thom

space Y a by �y; u� for y A Y and a vector u in the ®ber over y, and jV : B ! BV is the

map given by the zero section as in (1.1). Since k is of degree 1 when it is restricted on

the bottom spheres, we can de®ne a E-theory Thom class of V lW by U E
VlW �

k��U E
~W
nU E

V �. We denote by FV and FVlW the Thom isomorphisms associated to U E
V

and U E
VlW respectively. Then, using Lemma 7, the following lemma establishes

Theorem 3.

Lemma 8. g � FVlWFÿ1
V �shE�ÿ ~W� ÿ 1�.

Proof. Let d : X a ! X a5X� be the map de®ned by d�x; a� � �x; a�5x, and

F ~W : E ��BV
� � ! E��b��BV �

~W � the Thom isomorphism associated to the Thom class

U E
~W
. By the de®nition of k, the composition �k51� � d � j : �BV �

~W ! BVlW !

BVlW5B� ! �BV �
~W
5BV5B� is homotopic to the composition �15d � � �15c 0� � d :

�BV �
~W ! �BV �

~W
5BV

� ! �BV �
~W
5BV ! �BV �

~W
5BV5B�, where j is the map of (3.1)

and c 0 : BV
� ! BV is the projection. Taking E-cohomology, we obtain the following

commutative diagram:

E ��B�� ���!
FV

E��v�BV �
?
?
?
y
FVlW

?
?
?
y
F ~W � �c 0� �

E ��b�v�BVlW � ���!
j �

E��b�v��BV �
~W �:

Thus, j ��FV lW �x�� � F ~W �FV �x��. Hence, by Lemma 7, j ��g� � F ~W �shE�ÿ ~W� ÿ 1� �

j ��FVlWFÿ1
V �shE�ÿ ~W� ÿ 1��. Since j � : E b�BVlW ;Q� ! E b��BV �

~W
;Q� is injective, we

have completed the proof.

Corollary 4 follows from Theorem 3 by using the naturality (2.2) of the transfer

maps.
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In the case E � K , the complex K-theory, V and ~W are assumed to be the complex

vector bundles. Let ch : K !
Q

i H
2iQ be the Chern character. Then, ch : K 0�X ;Q� !

P
i H

2i�X ;Q� is an isomorphism if X is a ®nite complex. The class shK�ÿ ~W� is equal to

chÿ1�bh�ÿ ~W�� for the multiplicative characteristic class bh� ~W� A H ��BV ;Q� (cf. [1])

de®ned by the relation ch�U K
~W
� � UH

~W
bh� ~W�. In fact, we have UH

~W
� U K

~W
chÿ1bh�ÿ ~W�

by applying ch. Thus, in this case, Theorem 3 becomes

Corollary 9. eK�tW � � FVlWFÿ1
V �chÿ1bh�ÿ ~W� ÿ 1�.

4. Generalized S1-transfer maps.

In this section, we apply Corollary 4 to the transfer maps which generalize the S1-

transfer map. Let x be the canonical complex line bundle over the complex projective

space CPN . Then, S�x� is the principal S1-bundle, and �CPN�x � CPN�1.

Now, we take a virtual vector bundle ~W � f �x� � 0n

k�m
akx

k over CPN�1 for the

®nite Laurent series f �u� �
Pn

k�m aku
k A Z�u; uÿ1� with integer coe½cients. Here, xk

denotes the k-fold (resp. �ÿk�-fold) tensor product of x (resp. the conjugate bundle x of

x) if k is a positive (resp. negative) integer, and �x�0 � C . Then, we have the transfer

map

tf �x� : �CP
N�xl f �x� ! S a�1�4:1�

of S�x� for a � 2
Pn

k�m ak. The S1-transfer map mentioned in §1 is the transfer map tÿx

in the case of f �u� � ÿu. We shall calculate the e-invariant of tf �x�.

Let E be a ring spectrum as in the previous section, and assume further that x is E-

oriented with the E-theory Euler class xE � eE�x� A E2�CPy�. Then, we have a formal

group law F over E associated to xE (cf. [3, Part II], [14, Appendix 2]). We put

1F �z� � z, kF �z� � F�z; �k ÿ 1�F �z�� for a positive integer kV 2, 0F �z� � 0, and kF �z� �

�ÿk�F �c��z�� for k < 0, where c��z� is a power series of z in which the coe½cient of z i is

the same with that of �xE� i in c��xE� for the conjugation c : CPy ! CPy. Also, logF

denotes the logarithm series associated to F.

Let mk : CPy ÿ!
d Qk

CPy ÿ!
mk

CPy be the composition of the diagonal map d and

the multiplication mk de®ned by the Hopf space structure on CPy. Then, xk � m�
k�x�,

and thus xk is E-oriented with the E-theory Euler class eE�xk� � m�
k�x

E� � kF �xE�. For

the Thom class U E
k AE2��CPN�1�x

k

� of xk satisfying j �x �U
E
k ��eE�xk� and i��U E

k � � iE ,

the class shE�xk� with U E
k � UH

k shE�xk� is given as follows:
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Lemma 10. For an integer k0 0,

shE�xk� �
kF �xE�

k logF �xE�
in E0�CPN�1

� ;Q�:

Proof. We may assume k > 0, because shE�xÿk� � c��shE�xk�� for the negative

case. Then, S�xk� is homotopy equivalent to the standard mod p lens space L�k� of

dimension 2N � 3, and we have a co®ber sequence L�k� ÿ!
p

CPN�1 ÿ!
j

�CPN�1�x
k

,

where we put j � j
xk . Since E1�L�k�;Q� � 0, j � : E2��CPN�1�x

k

;Q� ! E2�CPN�1
;Q�

is injective (in fact, isomorphic). Recall that j ��U E
k � � eE�xk� � kF �xE�. On the

other hand, for the Thom class UH
k A H 2��CPN�1�x

k

;Z� of xk and the Euler class

x A H 2�CPN�1
;Z� of x, we have j ��UH

k � � kx and x � logF �xE�. Hence, j ��U E
k � �

j ��UH
k kF �xE�=kx� � j ��UH

k kF �xE�=k logF �xE��, and we have the required result since

j � is injective.

We notice that Corollary 4 is valid for eE�tf �x�� since tf �x� is de®ned and natural for

every N > 0. Thus, by Corollary 4 and Lemma 10, we get the following formula, in

which a � 2
Pn

k�m ak.

Proposition 11. Let F : E ��CPN
� ;Q=Z� ! E��a�2��CPN�xl f �x�

;Q=Z� be the

Thom isomorphism. Then,

�F�ÿ1�eE�tf �x��� �
1

xE

Y

n

k�m

k logF �xE�

kF �xE�

� �ak

ÿ 1

 !

in Eÿ2�CPN
� ;Q=Z�:

Example 12. For the case E � K , the complex K-theory, and f �u� � ÿuk, the

formula of Proposition 11 becomes

�F�ÿ1�eE�tÿxk �� �
1

X

�1ÿ tX�k ÿ 1

k log�1ÿ tX�
ÿ 1

 !

in Kÿ2�CPN
� ;Q=Z�;

where t A p2�K� is the Bott class, X � eK�x� � tÿ1�1ÿ x� A K 2�CPN
� � and log is the

power series expansion of the usual logarithm function.
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