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Abstract. We construct a number of analytic cycles on the moduli space of
stable curves by using three moduli spaces: the moduli space of tori with one
marked point, that of spheres with four marked points, and that of tori with
two marked points. We then prove the linear independence of the cycles in the
rational homology groups in order to improve Wolpert’s estimates for even
degree Betti numbers of the moduli space of stable curves.

\S 1. Introduction and results.

We shall denote by $\overline{\mathscr{M}}_{g}$ the moduli space of stable curves of genus $g$ and assume
$g\geq 3$ . It is known that $\overline{\mathscr{M}}_{g}$ is a compactification of the classical moduli space $\mathscr{M}_{g}$ of

Riemann surfaces of genus $g$ and that $\overline{\mathscr{M}}_{g}$ is a complex $V$-manifold of dimension $3g-$ $3$

[D-M]. It is also known that the compactification locus $?=\overline{\mathscr{M}}_{g}-\mathscr{M}_{g}$ , which is the
set of points in $\overline{\mathscr{M}}_{g}$ represented by stable curves with nodes, is a divisor on $\overline{\mathscr{M}}_{g}$ stratified
by the number of nodes which representing stable curves have, and that the closure of

a component of the stratum of $\mathscr{D}$ with $k$ nodes is a subvariety of $\overline{\mathscr{M}}_{g}$ of complex
dimension $3g-3-k$ .

Wolpert [W] constructed $2+[g/2]$ analytic 2-cycles on $\overline{\mathscr{M}}_{g}$ and showed by using
a result of Harer [H] that they span $H_{2}(\overline{\mathscr{M}}_{g}; Q)$ . He further constructed analytic 2k-

cycles on $\overline{\mathscr{M}}_{g}$ for $k<g$ and verified the non-degeneracy of the intersection pairing of

the $2k$-cycles and certain components of the strata of $\mathscr{D}$ with $k$ nodes so as to prove the
linear independence of the $2k$-cycles in $H_{2k}(\overline{\mathscr{M}}_{g}; Q)$ , thereby obtaining the following

estimate for the Betti number $b_{2k}(\overline{\mathscr{M}}_{g})$ of $\overline{\mathscr{M}}_{g}$ :

(1.1) $b_{2k}(\overline{\mathscr{M}}_{g})=b_{6g-6-2k}(\overline{\mathscr{M}}_{g})\geq\frac{1}{2}\left(\begin{array}{ll}g & -l\\ & k\end{array}\right)$ .
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His estimate (1.1) is available only for $k<g$ , and his method to give (1.1) unfortunately

does not apply to $b_{2k}(\overline{\mathscr{M}}_{g}),$ $2g-2<2k<4g-$ $4$ .

The purpose of this paper is to give a better estimate for each Betti number of $\overline{\mathscr{M}}_{g}$

of even degree so as to improve Wolpert’s estimate (1.1).

We fix a Riemann surface $S$ of genus $g$ and a set of $3g-$ $3$ cutting curves

$d_{1},$
$c_{1},$

$d_{2},$ $d_{2}^{\prime},$

$c_{2},$
$\ldots,$

$d_{g-1},$ $d_{g-1}^{\prime},$ $c_{g-1},$ $d_{g}$

on $S$ for a certain pants decomposition of $S$ (\S 2, Figure 2). For $k\leq 2g-$ $2$ , we define
a $k$-selection to be a selection $\sigma$ of $k$ from the $3g-$ $3$ cutting curves above satisfying the
following two conditions: (1) $ d_{i}^{\prime}\in\sigma$ if and only if $ d_{i}\in\sigma$;(2) if $d_{i}$ , $ d_{i}^{\prime}\in\sigma$ , then $c_{i-1}$ ,
$ c_{i}\not\in\sigma$ . We call two $k$-selections $\sigma,$

$\tau$ conjugate if there exists an orientation-preserving
self-homeomorphism of $S$ which permutes the $3g-$ $3$ cutting curves on $S$ and transforms
$\sigma$ to $\tau$ . We shall show that two $k$-selections $\sigma,$

$\tau$ are conjugate if and only if $\tau$ is equal
either to $\sigma$ itself or to the $k$-selection $\overline{\sigma}$ such that $d_{i}\in\overline{\sigma}$ if and only if $ d_{g-i+1}\in\sigma$ and that
$c_{j}\in\overline{\sigma}$ if and only if $ c_{g-j}\in\sigma$ . We denote by $\alpha_{g,k}$ the number of conjugacy classes of k-

selections.
Our main result is

THEOREM A. When $k\geq 2$ ,

(1.2) $b_{2k}(\overline{\mathscr{M}}_{g})=b_{6g-6-2k}(\overline{\mathscr{M}}_{g})\geq\max(\alpha_{g,k}, \alpha_{g,3g-3-k})$ .

One of our additional results to supplement Theorem A is

(1.3) $\alpha_{g,k}>\frac{1}{2}\left(\begin{array}{ll}g & -l\\ & k\end{array}\right)+\frac{1}{2}\sum_{k^{\prime},l}\left(k^{\prime} & -ll\right)\cdot\left(k & -2k^{\prime}l+l & +l\right)\cdot\left(\begin{array}{ll}g & -l-2\\ & k-k^{\prime}\end{array}\right)$ .

This inequality (1.3) indicates that, for most of the pairs $(g, k)$ , our estimate (1.2)

is more than the square of Wolpert’s one (1.1).

We have to remark here that for $g=3$ or 4 Faber [F] constructed many more
linearly independent analytic cycles on $\overline{\mathscr{M}}_{g}$ and that for $g=3$ he completely computed
the Chow ring of $\overline{\mathscr{M}}_{3}$ .

Our proof of (1.2) is outlined as follows.
For each $k$-selection $\sigma$, we construct an analytic $2k$-cycle $[\mathscr{A}_{\sigma}]$ on $\overline{\mathscr{M}}_{g}$ as follows.

We collapse to nodes the cutting curves on $S$ adjacent to selected curves in $\sigma$ to obtain
a stable curve $S_{\sigma}$ of genus $g$ . It turns out that each component of $S_{\sigma}-$ {nodes}
containing selected curves is a torus with one puncture, a sphere with four punctures,

or a torus with two punctures. There exist analytic fiber spaces $\mathscr{D}_{\ell},$ $\mathscr{U}_{2}$ , and $\tilde{\mathscr{D}}_{\ell}$ which
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contain as ‘fibers minus sections’ all stable curves of genus 10 and 1 with one, four,

and two punctures respectively. We deform $S_{\sigma}$ to obtain another stable curve of genus
$g$ by replacing each component of $S_{\sigma}-$ {nodes} containing selected curves with an
arbitrary ‘fiber minus sections’ of $\mathscr{D}_{\ell},$ $\mathscr{U}_{2}$ , or $\tilde{\mathscr{D}}_{\ell}$ in accordance with the number of

punctures on the component. Let $\mathscr{A}_{\sigma}$ be the family of such deformed stable curves.
$\mathscr{A}_{\sigma}$ turns out to be an analytic fiber space whose fibers are stable curves of genus $g$ and
whose base space is a compact complex manifold of dimension $k$ . $\mathscr{A}_{\sigma}$ hence determines
a classifying map from its base space to $\overline{\mathscr{M}}_{g}$ , which is an analytic $2k$-cycle $[\mathscr{A}_{\sigma}]$ on $\overline{\mathscr{M}}_{g}$ .

For each $k$-selection $\sigma$, we further construct an analytic $(6g-6-2k)$ -cycle $[\mathscr{V}_{\sigma}]$

on $\overline{\mathscr{M}}_{g}$ as follows. We collapse to nodes the selected cutting curves themselves in $\sigma$ to

obtain a stable curve $S_{\sigma}^{\prime}$ of genus $g$ with $k$ nodes. The set of points in $\overline{\mathscr{M}}_{g}$ represented
by stable curves homeomorphic to $S_{\sigma}^{\prime}$ forms a component of the stratum of $\mathscr{D}$ with $k$

nodes. Let $\mathscr{V}_{\sigma}$ be the closure of the component. $\mathscr{V}_{\sigma}$ hence is a subvariety of $\overline{\mathscr{M}}_{g}$ of

complex dimension $3g-3-k$ , which itself is an analytic $(6g-6-2k)$ -cycle $[\mathscr{V}_{\sigma}]$ on
$\overline{\mathscr{M}}_{g}$ .

We then see that if $\sigma$ and $\tau$ are conjugate, then $[\mathscr{A}_{\tau}]$ is homologous to $[\mathscr{A}_{\sigma}]$ and $[\mathscr{V}_{\tau}]$

is equal to $[\mathscr{V}_{\sigma}]$ . We thus obtain, for each $k\leq 2g-$ $2$ , $\alpha_{g,k}2k$-cycles $[\mathscr{A}_{\sigma}]’ s$ and as many
$(6g-6-2k)$ -cycles $[\mathscr{V}_{\sigma}]’ s$ on $\overline{\mathscr{M}}_{g}$ .

In conclusion, we verify by calculation that the intersection pairing of $[\mathscr{A}_{\sigma}]’ s$ and
$[\mathscr{V}_{\sigma}]’ s$ is non-degenerate, hence (1.2).

This paper is organized as follows. In \S 2 we construct the cycles $[\mathscr{A}_{\sigma}]’ s$ and $[\mathscr{V}_{\sigma}]’ s$

on $\overline{\mathscr{M}}_{g}$ assuming the existence of the three analytic fiber spaces $\mathscr{D}_{\ell},$ $\mathscr{U}_{2}$ , and $\tilde{\mathscr{D}}_{\ell}$ . In \S 3

we construct $\mathscr{D}_{\ell},$ $\mathscr{U}_{2}$ , and $\tilde{\mathscr{D}}_{\ell}$ to prove their existence. In \S 4 we show that the cycles
$[\mathscr{A}_{\sigma}]’ s$ and $[\mathscr{V}_{\sigma}]’ s$ represent linearly independent classes in $H_{*}$ $(\overline{\mathscr{M}}_{g}; Q)$ by verifying that
the intersection pairing of $[\mathscr{A}_{\sigma}]’ s$ and $[\mathscr{V}_{\sigma}]’ s$ is non-degenerate, thereby proving Theorem
A. In \S 5 we give algorithm to compute $\alpha_{g,k}$ and in particular prove (1.3).

The author wishes to express his deepest gratitude to Professor Yukio Matsumoto

for continuous advice and encouragement, and to Professor Kazushi Ahara and
Professor Kazunori Kikuchi for their excellent proofreading of the author’s manuscript.
He is also grateful to the referee for many useful suggestions and helpful comments.

\S 2. Construction of cycles.

Let $\overline{\mathscr{M}}_{g}$ denote the moduli space of stable curves of genus $g$ and assume $g\geq 3$ . $\overline{\mathscr{M}}_{g}$

is a compactification of the classical moduli space $\mathscr{M}_{g}$ of Riemann surfaces of genus
$g$ , and is a complex $V$-manifold of dimension $3g-$ $3$ . The compactification locus $\mathscr{D}=$

$\overline{\mathscr{M}}_{g}-\mathscr{M}_{g}$ , which is the set of points in $\overline{\mathscr{M}}_{g}$ represented by stable curves with nodes,
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is a divisor on $\overline{\mathscr{M}}_{g}$ , the sum of l+[g/2] irreducible ones $\mathscr{D}_{0},$

$\ldots$ , $\mathscr{D}_{[g/2]}$ . $\mathscr{D}$ is stratified
by the number of nodes which representing stable curves have: the $k$-stratum of $\mathscr{D}$ is
the set of points in $\overline{\mathscr{M}}_{g}$ represented by stable curves with $k$ nodes. The closure of a
component of the $k$-stratum of $\mathscr{D}$ is a subvariety of $\overline{\mathscr{M}}_{g}$ of dimension $3g-3-k$ , which
itself is a cycle on $\overline{\mathscr{M}}_{g}$ of degree $6g-6-2k$ . For example, the 1-stratum of $\mathscr{D}$ has
exactly l+[g/2] components, which correspond to the irreducible divisors $\mathscr{D}_{0}$ , . . . , $\mathscr{D}_{[g/2]}$ ,

and determines as many cycles on $\overline{\mathscr{M}}_{g}$ of degree $6g-$ $8$ .

Wolpert [W] showed that the l+[g/2] classes represented by the $(6g-8)$ -cycles

above and the Poincare’ dual $[\omega]$ of the Weil-Petersson K\"ahler form $\omega$ on $\overline{\mathscr{M}}_{g}$ span
$H_{6g-8}(\overline{\mathscr{M}}_{g}; Q)$ . For $k<g$ , he further showed that many components of the $k$-stratum of
$\mathscr{D}$ become linearly independent classes in $H_{6g-6-2k}(\overline{\mathscr{M}}_{g}; Q)$ and that as many analytic
$2k$-cycles on $\overline{\mathscr{M}}_{g}$ which he constructed represent linearly independent classes in
$H_{2k}(\overline{\mathscr{M}}_{g}; Q)$ . He at the same time proved the two facts above by actually showing that
the intersection pairing of those components of the $k$-stratum of $\mathscr{D}$ and those analytic
$2k$-cycles on $\overline{\mathscr{M}}_{g}$ is non-degenerate. The number of those analytic $2k$-cycles on $\overline{\mathscr{M}}_{g}$

which he constructed was equal to the number of choices, counted up to symmetry, of
$k$ from such a specific set of $g-1$ curves $c_{1},$

$\ldots,$ $c_{g-1}$ on a Riemann surface of genus $g$

as illustrated in Figure 1.
In this section, we construct many more analytic cycles on $\overline{\mathscr{M}}_{g}$ than Wolpert did,

and moreover, we work for all even degrees while he did only for even degrees $\leq 2g-2$

or $\geq 4g-4$ .

We begin by taking a larger set of curves on a Riemann surface. We fix a
Riemann surface $S$ of genus $g$ and such a set of $3g-$ $3$ cutting curves

$d_{1},$
$c_{1},$

$d_{2},$ $d_{2}^{\prime},$

$c_{2},$
$\ldots,$

$d_{g-1},$ $d_{g-1}^{\prime},$ $c_{g-1},$ $d_{g}$

on $S$ for a pants decomposition of $S$ as in Figure 2 (cf. Figure 1).

$c_{1}$ $c_{2}$ $c_{3}$ $c_{4}$ $c_{g-1}$

Figure 1. The $g-1$ cutting curves used by Wolpert
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$d_{2}^{/}$ $d_{3}^{/}$ $d_{4}^{/}$

$d_{1}$ $d_{g}$

$c_{1}$ $d_{2}$ $c_{2}$ $d_{3}$ $c_{3}$ $d_{4}$ $c_{4}$ $c_{g-1}$

Figure 2. The $3g-$ $3$ cutting curves on $S$ for k-selections

$d_{4}^{/}$

$d_{1}$ $d_{g}$

$c_{2}$ $d_{4}$ $c_{g-1}$

Figure 3. A 6-selection $\sigma=\{d_{1}, c_{2}, d_{4}, d_{4}^{\prime}, c_{g-1}, d_{g}\}$

DEFINITION 2.1. A $k$-selection is a selection $\sigma$ of $k$ from the $3g-$ $3$ cutting curves

$d_{1},$
$c_{1},$

$d_{2},$ $d_{2}^{\prime},$

$c_{2},$
$\ldots,$

$d_{g-1},$ $d_{g-1}^{\prime},$ $c_{g-1},$ $d_{g}$

above on $S$ satisfying the following two conditions.
(1) $d_{i}$ is in $\sigma$ if and only if $d_{i}^{\prime}$ is in $\sigma$ .

(2) If $d_{i}$ and $d_{i}^{\prime}$ are in $\sigma$ , then neither $c_{i-1}$ nor $c_{i}$ is in $\sigma$ (for $2\leq i\leq g-1$ ).

The selection $\sigma=\{d_{1}, c_{2}, d_{4}, d_{4}^{\prime}, c_{g-1}, d_{g}\}$ in Figure 3 $(g\geq 6)$ is an example of a
6-selection. (In Figures 48 and 9 we take the same selection $\sigma$ as in Figure 3.)

For each $k$-selection $\sigma$ , we construct an analytic fiber space $\mathscr{A}_{\sigma}$ whose fibers are
stable curves of genus $g$ and whose base space is a compact complex manifold of

dimension $k$ . Since such an analytic fiber space $\mathscr{A}_{\sigma}$ determines a classifying map from

its base space to $\overline{\mathscr{M}}_{g}$ , we shall obtain an analytic $2k$-cycle $[\mathscr{A}_{\sigma}]$ on $\overline{\mathscr{M}}_{g}$ .

We collapse to nodes the cutting curves on $S$ adjacent to selected curves in $\sigma$ to

obtain a stable curve $S_{\sigma}$ of genus $g$ . It is easy to see that each component of $S_{\sigma}-$

{nodes} containing selected curves is a torus with one puncture, a sphere with four

punctures, or a torus with two punctures, while a component of $S_{\sigma}-$ {nodes} not

containing selected curves is not necessarily one of the three above (Figure 4).
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$d_{4}^{\prime}$

$d_{1}$

$d_{g}$

$c_{2}$ $d_{4}$
$c_{g-1}$

Figure 4. $S_{\sigma}$ for $\sigma=\{d_{1}, c_{2}, d_{4}, d_{4}^{\prime}, c_{g-1}, d_{g}\}$

$s$
$s$

a general fiber a singular fiber
Figure 5. Fibers of $9_{\ell}$

We wish to make the conformal structures of the components of $S_{\sigma}-$ {nodes}
containing selected curves vary over all the possible ones while keeping those of the
other components fixed. The analytic fiber space we are constructing shall be the family

of all the stable curves made from $S_{\sigma}$ in this way.
We therefore prepare three analytic fiber spaces

$\pi_{\ell}^{\prime}$ : $\mathscr{D}_{\ell}\rightarrow H\overline{/\Gamma}_{\ell}$ , $\pi_{2}$ : $\mathscr{U}_{2}\rightarrow H\overline{/\Gamma}_{2}$ , $\tilde{\pi}_{\ell}$ : $\tilde{\mathscr{D}}_{\ell}\rightarrow \mathscr{U}_{\ell}$

which contain as ‘fibers minus sections’ all stable curves of genus 10 and 1 with one,
four, two punctures respectively. Indeed such analytic fiber spaces exist, but we only

make a sketch of these fiber spaces in this section, assuming their existence; we shall
construct these fiber spaces in the next section, proving their existence.

The base space $H/\Gamma_{\ell}$ of $\mathscr{D}_{\ell}$ is a closed Riemann surface. A general fiber of $\mathscr{D}_{\ell}$ is
an elliptic curve. $\mathscr{D}_{\ell}$ has finitely many singular fibers each of which is a projective line
which intersects itself at a double point. $\mathscr{D}_{\ell}$ has one analytic section $s$ which does not

attain as a value the node on any singular fiber (Figure 5). The classifying map from
$H\overline{/\Gamma}_{\ell}$ to the moduli space $\overline{\mathscr{M}}_{1,1}$ of stable curves of genus 1 with 1 marked point is
surjective.

The base space $H\overline{/\Gamma}_{2}$ of V2 is a projective line. A general fiber of V2 is also a
projective line. V2 has three singular fibers each of which is a union of two projective
lines which intersect at a double point. $\mathscr{U}_{2}$ has four disjoint analytic sections $s_{1},$ $s_{2},$ $s_{3},$ $s_{4}$
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$s_{3}$

$s_{4}$

a general fiber

the singular fibers
Figure 6. Fibers of V2

each of which does not attain as a value the node on any singular fiber (Figure 6). The
classifying map from $H\overline{/\Gamma}_{2}$ to the moduli space $\overline{\mathscr{M}}_{0,4}$ of stable curves of genus 0 with 4
marked points is surjective.

The base space $\mathscr{U}_{\ell}$ of $\tilde{\mathscr{D}}_{\ell}$ is a compact elliptic surface with several singular fibers
with only nodes as singularities, which has some disjoint analytic sections each of which
does not attain as a value any node on any singular fiber. A general fiber of $\tilde{\mathscr{D}}_{\ell}$ is
an elliptic curve. Let $\mathscr{S},$

$\swarrow V$, and $\Sigma$ denote the union of singular fibers of $\mathscr{U}_{\ell}$ , the set

of nodes of singular fibers of $\mathscr{U}_{\ell}$ , and the union of sections of $\mathscr{U}_{\ell}$ respectively. The
singular fibers of $\tilde{\mathscr{D}}_{\ell}$ then lie over $\mathscr{S}\cup\Sigma$ , and are classified into the following four types

(Figure 7):

(1) each singular fiber of $\tilde{\mathscr{D}}_{\ell}$ over $\mathscr{S}-\swarrow V-$ I is a projective line which intersects
itself at a double point;

(2) each singular fiber of $\tilde{\mathscr{D}}_{\ell}$ over $\Sigma-\mathscr{S}$ is a union of a projective line and an
elliptic curve which intersect at a double point;

(3) each singular fiber of $\tilde{\mathscr{D}}_{\ell}$ over $\mathscr{S}\cap\Sigma$ is a union of a projective line and a
singular fiber of type (1) which intersect at a double point;

(4) each singular fiber of $\tilde{\mathscr{D}}_{\ell}$ over $\Lambda^{r}$ is a union of two projective lines which
intersect at two double points.
$\tilde{\mathscr{D}}_{\ell}$ has two disjoint analytic sections $\tilde{s}_{1},\tilde{s}_{2}$ either of which does not attain as a value
any node on any singular fiber (Figure 7). The classifying map from $\mathscr{U}_{\ell}$ to the moduli
space $\overline{\mathscr{M}}_{1,2}$ of stable curves of genus 1 with 2 marked points is surjective.
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a general fiber

$\tilde{s}_{1}$

$\tilde{s}_{2}$

a singular fiber of type (1)

$\tilde{s}_{1}$
$\tilde{s}_{2}$

a singular fiber of type (2)

$\tilde{s}_{1}$ $\tilde{s}_{2}$

a singular fiber of type (3)

$\tilde{s}_{1}$ $\tilde{s}_{2}$

a singular fiber of type (4)

$\tilde{s}_{1}$ $\tilde{s}_{2}$

Figure 7. Fibers of $\tilde{9}_{\ell}$
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We now replace each of the components of $S_{\sigma}$ containing selected curves in the k-

selection $\sigma$ with a fiber of $\mathscr{D}_{\ell},$ $\mathscr{U}_{2}$ , or $\tilde{\mathscr{D}}_{\ell}$ as follows.
Case 1. If $d_{j},$ $ d_{j}^{\prime}\in\sigma$, then the component of $S_{\sigma}$ containing $d_{j},$ $d_{j}^{\prime}$ is a torus with two

marked points, which is homeomorphic to a general fiber of $\tilde{\mathscr{D}}_{\ell}$ , an elliptic curve with
two sections; replace the component with an arbitrary fiber of $\tilde{\mathscr{D}}_{\ell}$ identifying the nodes
to which $c_{j-1},$ $c_{j}$ collapse with the sections $\tilde{s}_{1}$ , $\tilde{s}_{2}$ respectively.

Case 2. If $c_{j}\in\sigma(2\leq j\leq g-2)$ , then the component of $S_{\sigma}$ containing $c_{j}$ is a
sphere with four marked points, which is homeomorphic to a general fiber of V2, a
projective line with four sections; replace the component with an arbitrary fiber of
$\mathscr{U}_{2}$ identifying the nodes to which $d_{j},$ $d_{j}^{\prime},$ $d_{j+1},$ $d_{j+1}^{\prime}$ collapse with the sections $s_{1},$ $s_{2},$ $s_{3},$ $s_{4}$

respectively.
Case 3. If $d_{1}$ , $ c_{1}\in\sigma$, then the component of $S_{\sigma}$ containing $d_{1}$ , $c_{1}$ is a torus with two

marked points, which is homeomorphic to a general fiber of $\tilde{\mathscr{D}}_{\ell}$ , an elliptic curve with
two sections; replace the component with an arbitrary fiber of $\tilde{\mathscr{D}}_{\ell}$ identifying the nodes
to which $d_{2},$ $d_{2}^{\prime}$ collapse with the sections $\tilde{s}_{1},\tilde{s}_{2}$ respectively.

Case 4. If $c_{g-1}$ , $ d_{g}\in\sigma$, then as in Case 3 replace the component of $S_{\sigma}$ containing
$c_{g-1},$ $d_{g}$ with an arbitrary fiber of $\tilde{\mathscr{D}}_{\ell}$ identifying the nodes to which $d_{g-1},$ $d_{g-1}^{\prime}$ collapse
with the sections $\tilde{s}_{1},\tilde{s}_{2}$ respectively.

Case 5. If $ c_{1}\in\sigma$ but $ d_{1}\not\in\sigma$, then the component of $S_{\sigma}-\{nodes\}$ containing $c_{1}$ is
a sphere with four punctures, which is homeomorphic to a general fiber of $\mathscr{U}_{2}-$

{sections}, a projective line with four sections deleted; replace the component of $S_{\sigma}$

containing $c_{1}$ with an arbitrary fiber of $\mathscr{U}_{2}$ identifying the nodes to which $d_{2},$ $d_{2}^{\prime}$ collapse
with the sections $s_{3},$ $s_{4}$ respectively and identifying $s_{1}$ with $s_{2}$ to form a double point.

Case 6. If $ c_{g-1}\in\sigma$ but $ d_{g}\not\in\sigma$, then as in Case 5 replace the component of $S_{\sigma}$

containing $c_{g-1}$ with an arbitrary fiber of V2 identifying the nodes to which $d_{g-1},$ $d_{g-1}^{\prime}$

collapse with the sections $s_{1}$ , $s_{2}$ respectively and identifying $s_{3}$ with $s_{4}$ to form a double
point.

Case 7. If $ d_{1}\in\sigma$ but $ c_{1}\not\in\sigma$, then the component of $S_{\sigma}$ containing $d_{1}$ is a torus with
one marked point, which is homeomorphic to a general fiber of $\mathscr{D}_{\ell}$ , an elliptic curve with
one section; replace the component with an arbitrary fiber of $\mathscr{D}_{\ell}$ identifying the node to

which $c_{1}$ collapses with the section $s$ .

Case 8. If $ d_{g}\in\sigma$ but $ c_{g-1}\not\in\sigma$, then as in Case 7 replace the component of $S_{\sigma}$

containing $d_{g}$ with an arbitrary fiber of $\mathscr{D}_{\ell}$ identifying the node to which $c_{g-1}$ collapses
with the section $s$ . (Figure 8).

The curve constructed from $S_{\sigma}$ i1nn this wwaayy $1S$ again astable curve of genus $g$ .

Let $\mathscr{A}_{\sigma}$ be the family of such stable curves. $\mathscr{A}_{\sigma}$ is an analytic fiber space which
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$ Q_{l}\uparrow$ $\mathcal{U}_{2}\uparrow$ $\frac{\uparrow}{Q}l$ $\frac{\uparrow}{Q}p$

1

$(\mathcal{U}_{l})^{2}\times(\overline{H/\Gamma_{l}})\times(\overline{H/\Gamma_{2}})$

Figure 8. $\mathscr{A}_{\sigma}$ for $\sigma=\{d_{1}, c_{2}, d_{4}, d_{4}^{\prime}, c_{g-1}, d_{g}\}$

fibers over the Cartesian product $(H\overline{/\Gamma}_{\ell})^{a}\times(H\overline{/\Gamma}_{2})^{b}\times(\mathscr{U}_{\ell})^{c}$ for some non-negative
integers $a,$ $b,$ $c$ . Note that the complex dimension $a+b+2c$ of the base space of $\mathscr{A}_{\sigma}$

is equal to $k$ if $\sigma$ is a $k$-selection. $\mathscr{A}_{\sigma}$ is also regarded as the collection of conformal
structures of $S_{\sigma}$ which are the same as those of $S_{\sigma}$ on the components not containing
selected curves in the $k$-selection $\sigma$ . In this sense, $\mathscr{A}_{\sigma}$ contains all the possible conformal
structures of the components of $S_{\sigma}$ containing selected curves in $\sigma$, since the classifying

maps

$H\overline{/\Gamma}_{\ell}\rightarrow\overline{\mathscr{M}}_{1,1}$ , $H\overline{/\Gamma}_{2}\rightarrow\overline{\mathscr{M}}_{0,4}$ , $\mathscr{U}_{\ell}\rightarrow\overline{\mathscr{M}}_{1,2}$

are surjective.
Since each fiber of $\mathscr{A}_{\sigma}$ is a stable curve of genus $g$ , the analytic fiber space $\mathscr{A}_{\sigma}$

determines a classifying map from $(H\overline{/\Gamma}_{\ell})^{a}\times(H\overline{/\Gamma}_{2})^{b}\times(\mathscr{U}_{\ell})^{c}$ to $\overline{\mathscr{M}}_{g}$ . Let $[\mathscr{A}_{\sigma}]$ be the
$2k$-cycle of $\overline{\mathscr{M}}_{g}$ represented by this classifying map. In this way, we have constructed an
analytic $2k$-cycle $[\mathscr{A}_{\sigma}]$ on $\overline{\mathscr{M}}_{g}$ for each $k$-selection $\sigma$ (Figure 8).

For each $k$-selection $\sigma$ , we further construct a subvariety 2 of $\overline{\mathscr{M}}_{g}$ of complex
dimension $3g-3-k$ , which itself is an analytic $(6g-6-2k)$ -cycle $[\mathscr{V}_{\sigma}]$ on $\overline{\mathscr{M}}_{g}$ .

We collapse to nodes the selected cutting curves themselves in the $k$-selection $\sigma$ to

obtain a stable curve $S_{\sigma}^{\prime}$ of genus $g$ with $k$ nodes (Figure 9). The set of points in $\overline{\mathscr{M}}_{g}$

represented by stable curves homeomorphic to $S_{\sigma}^{\prime}$ forms a component of the k-stratum

of the compactification locus $\mathscr{D}$ of $\overline{\mathscr{M}}_{g}$ . Let $\mathscr{V}_{\sigma}$ be the closure in $\overline{\mathscr{M}}_{g}$ of the component.
$\mathscr{V}_{\sigma}$ hence is a subvariety of $\overline{\mathscr{M}}_{g}$ of complex dimension $3g-3-k$ . $\mathscr{V}_{\sigma}$ itself is an
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Figure 9. $S_{\sigma}^{\prime}$ for $\sigma=\{d_{1}, c_{2}, d_{4}, d_{4}^{\prime}, c_{g-1}, d_{g}\}$

analytic $(6g-6-2k)$ -cycle $[\mathscr{V}_{\sigma}]$ on $\overline{\mathscr{M}}_{g}$ . In this way, we have constructed an analytic
$(6g-6-2k)$ -cycle $[\mathscr{V}_{\sigma}]$ on $\overline{\mathscr{M}}_{g}$ for each $k$-selection $\sigma$ .

To conclude this section, we consider when two of the analytic cycles on $\overline{\mathscr{M}}_{g}$ we
have constructed represent the same homology class of $\overline{\mathscr{M}}_{g}$ . We remark that there exist
orientation-preserving self-homeomorphisms of $S$ which permute the $3g-$ $3$ cutting
curves

$d_{1},$
$c_{1},$

$d_{2},$ $d_{2}^{\prime},$

$c_{2},$
$\ldots,$

$d_{g-1},$ $d_{g-1}^{\prime},$ $c_{g-1},$ $d_{g}$

on $S$ . Let $G$ be the group of such self-homeomorphisms of $S$ . It is easy to see that
$G$ acts on the set of $k$-selections, and that if a $k$-selection $\tau$ is in the $G$-orbit of a k-

selection $\sigma$, then the cycle $[\mathscr{A}_{\tau}]$ is homologous to the cycle $[\mathscr{A}_{\sigma}]$ and the subvariety $\mathscr{V}_{\tau}$ is
the same as the subvariety $\mathscr{V}_{\sigma}$ . We thus call two $k$-selections $\sigma,$

$\tau$ conjugate if a self-
homeomorphism of $S$ in $G$ transforms $\sigma$ to $\tau$ . We further observe that $G$ acts on the
set of $c_{j}’ s$ since the cutting curves $c_{j}’ s$ separate the surface $S$ while the other cutting
curves do not, and that, similarly, $G$ acts on the set of pairs $\{d_{i}, d_{i}^{\prime}\}’ s$ : more precisely, an
orientation-preserving self-homeomorphism of $S$ in $G$ transforms $\{c_{j}, d_{i}, d_{i}^{\prime}\}$ either to
$\{c_{j}, d_{i}, d_{i}^{\prime}\}$ or to $\{c_{g-j}, d_{g-i+1}, d_{g-i+1}^{\prime}\}$ .

That is why we give

DEFINITION 2.2. (1) For a $k$-selection $\sigma$, let $\overline{\sigma}$ denote the $k$-selection which contains
$d_{i}$ and $c_{j}$ if and only if $\sigma$ contains $d_{g-i+1}$ and $c_{g-j}$ respectively.

(2) A $k$-selection $\sigma$ is called symmetric if and only if $\overline{\sigma}=\sigma$ .

Note that two $k$-selections $\sigma,$
$\tau$ are conjugate if and only if $\tau$ is equal either to $\sigma$

itself or to $\overline{\sigma}$, and that the conjugacy class of a $k$-selection is composed of one k-selection
or two according as the $k$-selection is symmetric or not.

NOTATION 2.3. Let $\alpha_{g,k}$ denote the number of conjugacy classes of k-selections.

Note that $\alpha_{g,k}$ is the number of distinct $k$-selections modulo the action of $G$ .

We have thus constructed $\alpha_{g,k}2k$-homology classes of $\overline{\mathscr{M}}_{g}$ represented by $[\mathscr{A}_{\sigma}]’ s$ and
$\alpha_{g,k}(6g-6-2k)$ -homology classes of $\overline{\mathscr{M}}_{g}$ represented by $[\mathscr{V}_{\sigma}]’ s$ . In \S 4 we shall show
their linear independence in $H_{*}$ $(\overline{\mathscr{M}}_{g}; Q)$ .
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\S 3. Construction of fiber spaces of stable curves.

In the previous section, we introduced, and made a sketch of, three fiber spaces $\mathscr{D}_{\ell}$ ,

V2, and $\tilde{\mathscr{D}}_{\ell}$ , assuming their existence, to construct an analytic $2k$-cycle $[\mathscr{A}_{\sigma}]$ on $\overline{\mathscr{M}}_{g}$ for

each $k$-selection $\sigma$ . In this section, we actually construct $\mathscr{D}_{\ell},$ $\mathscr{U}_{2}$ , and $\tilde{\mathscr{D}}_{\ell}$ , demonstrating

their existence.
We begin by reviewing the construction of $\mathscr{D}_{\ell}$ and $\mathscr{U}_{2}$ by Wolpert [W].

The construction of $\mathscr{D}_{\ell}$ is divided into three steps as follows.
The first step to construct $\mathscr{D}_{\ell}$ is to construct a fiber bundle of elliptic curves.

Assume $\ell$ $\geq 3$ . Let $H$ be the upper half plane, and $\Gamma_{\ell}$ the principal congruence
subgroup of $SL(2;Z)$ of level ?:

$\Gamma_{\ell}=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL(2;Z)|\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\equiv\left(\begin{array}{ll}l & 0\\0 & l\end{array}\right)mod \ell\}$ .

$\Gamma_{\ell}$ freely acts on $H$ as linear fractional transformations:

$z\mapsto g(z)=\frac{az+b}{cz+d}$ for $g=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma_{\ell}$ , $z\in H$ .

$\Gamma_{\ell}$ also acts on $Z^{2}$ as right linear transformations:

$(m, n)\mapsto(m, n)g=(am +cn, bm+dn)$ for $g=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma_{\ell}$ , $(m, n)\in Z^{2}$ .

Let $\Gamma_{\ell}L$ be the semiproduct $\Gamma_{\ell}\ltimes Z^{2}$ determined by the action above. $\Gamma_{\ell}L$ freely and
discontinuously acts on the product $H\times C$ as follows:

for $(z, \xi)\in H\times C$ .$[\left(\begin{array}{ll}a & b\\c & d\end{array}\right)(m, n)](z, \xi)=(\frac{az+b}{cz+d}$ $\frac{\xi+mz+n}{cz+d})$

Since the projection $H\times C\rightarrow H$ is equivariant with respect to the two actions above, of
$\Gamma_{\ell}L$ on $H\times C$ and of $\Gamma_{\ell}$ on $H$ , the quotient

$H\times C/\Gamma_{\ell}L\rightarrow H/\Gamma_{\ell}$

$[(z, \xi)]\mapsto[z]$

is a well-defined analytic fiber bundle of elliptic curves, called the universal elliptic curve
with level 1 structure. The base space $H/\Gamma_{\ell}$ is a Riemann surface with $ i/\ell$ punctures,

where $i$ is a multiple of 1 equal to the index [PSL(2; $Z$) : $\Gamma_{\ell}$ ].

The second step to construct $\mathscr{D}_{\ell}$ is to compactify the fiber bundle above. In order
to compactify the base space $H/\Gamma_{\ell}$ , it is natural to fill in each of the $ i/\ell$ punctures
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in $H/\Gamma_{\ell}$ with a point. Let $H\overline{/\Gamma}_{\ell}$ be the compact Riemann surface thus compactified.

Each filled-in puncture in $H\overline{/\Gamma}_{\ell}$ shall be called a cusp. The analytic fiber bundle
$H\times C/\Gamma_{\ell}L\rightarrow H/\Gamma_{\ell}$ of elliptic curves then is extended to an analytic fiber space

$\pi_{\ell}$ : $\mathscr{U}_{\ell}\rightarrow H\overline{/\Gamma}_{\ell}$ .

where $(m, n)\in Z/\ell Z\times Z/\ell Z$ .

The total space $\mathscr{U}_{\ell}$ is a complex surface, called an elliptic surface: a general fiber of $\mathscr{U}_{\ell}$

is an elliptic curve; $\mathscr{U}_{\ell}$ has $ i/\ell$ singular fibers each of which is an $\ell$-gon of projective

lines over a cusp in $H/\Gamma_{\ell}$ . $\mathscr{U}_{\ell}$ has $\ell^{2}$ disjoint natural analytic sections $s_{1}$ , . . . , $s_{\ell^{2}}$ each
of which does not attain as a value any node on any singular fiber, described as

$[z]\mapsto[(z,$ $\frac{mz+n}{\ell})]$

These sections form a group identified with $Z/\ell Z\times Z/\ell Z$ , which analytically acts on
$\mathscr{U}_{\ell}$ as translation along fiber. This action is the extension of the following action of
$Z/\ell Z\times Z/\ell Z$ on $H\times C/\Gamma_{\ell}L$ :

where $(m, n)\in Z/\ell Z\times Z/\ell Z$ .$E,$ $\xi)]\mapsto[(z,$ $\xi+\frac{mz+n}{\ell})]$

The last step to construct $\mathscr{D}_{\ell}$ is to take the quotient of $\mathscr{U}_{\ell}$ by the action above of
$Z/\ell Z\times Z/\ell Z$ on $\mathscr{U}_{\ell}$ . Let $\mathscr{D}_{\ell},$ $\pi_{\ell}^{\prime}$ be the quotients of $\mathscr{U}_{\ell},$

$\pi_{\ell}$ by the action respectively.
The quotient

$\pi_{\ell}^{\prime}$ : $\mathscr{D}_{\ell}\rightarrow H\overline{/\Gamma}_{\ell}$

is an analytic fiber space over the compact Riemann surface $H\overline{/\Gamma}_{\ell}$ again. A general

fiber of $\mathscr{D}_{\ell}$ is an elliptic curve. $\mathscr{D}_{\ell}$ has $ i/\ell$ singular fibers each of which, lying over a
cusp in $H/\Gamma_{\ell}$ , is a projective line which intersects itself at a double point; the double
point of a singular fiber of $\mathscr{D}_{\ell}$ comes from the 1 double points of a singular fiber of
$\mathscr{U}_{\ell}$ , an $\ell$-gon of projective lines. $\mathscr{D}_{\ell}$ has an analytic section $s$ which comes from the
$\ell^{2}$ sections $s_{1}$ , . . . , $s_{\ell^{2}}$ of $\mathscr{U}_{\ell}$ . The section $s$ does not attain as a value the double point of
any singular fiber of $\mathscr{D}_{\ell}$ (Figure 5 in \S 2). It turns out that the classifying map from the
base space $H\overline{/\Gamma}_{\ell}$ of $\mathscr{D}_{\ell}$ to the moduli space $\overline{\mathscr{M}}_{1}$

, 1 of stable curves of genus 1 with 1
marked point is surjective.

The construction of V2 is almost parallel to that of $\mathscr{U}_{\ell}$ as follows.
Consider the case when $\ell=2$ in the construction of $\mathscr{U}_{\ell},$ $\ell\geq 3$ , i.e. the first and

second steps of the construction of $\mathscr{D}_{\ell}$ . In a way similar to the first step to construct $\mathscr{D}_{\ell}$ ,

an analytic fiber bundle $H\times C/\Gamma_{2}L\rightarrow H/\Gamma_{2}$ is constructed. The fibers of $ H\times$
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$C/\Gamma_{2}L$ , however, are not elliptic curves but projective lines, since the principal con-

gruence subgroup f2 of $SL(2;Z)$ of level 2 contains the torsion element $\left(\begin{array}{ll}-1 & 0\\0 & -l\end{array}\right)$ .

(The action of f2 on $H$ is not free.) In a way similar to the second step to construct
$\mathscr{D}_{\ell}$ , the fiber bundle $H\times C/\Gamma_{2}L\rightarrow H/\Gamma_{2}$ extends to an analytic fiber space $\pi_{2}$ : $\mathscr{U}_{2}\rightarrow$

$H/\Gamma_{2}$ . The base space $H/\Gamma_{2}$ of V2 is a projective line with three cusps 01 and $\infty$ . A
general fiber of $\mathscr{U}_{2}$ is a projective line. $\mathscr{U}_{2}$ has three singular fibers each of which, lying

over a cusp in $H/\Gamma_{2}$ , is a union of two projective lines which intersect at a double point.
$\mathscr{U}_{2}$ has four disjoint analytic sections $s_{1},$ $s_{2},$ $s_{3},$ $s_{4}$ , called the Weierstrass points, each of

which does not attain as a value the node of any singular fiber (Figure 6 in \S 2). It turns

out that the classifying map from the base space $H\overline{/\Gamma}_{2}$ of $\mathscr{U}_{2}$ to the moduli space $\overline{\mathscr{M}}_{0,4}$

of stable curves of genus 0 with 4 marked points is surjective.

REMARK 3.1. Wolpert [W] further showed the following. Let $\mathscr{S}$ be either $\mathscr{D}_{\ell}$

or $\mathscr{U}_{2}$ . Let $T^{\prime}$ be the line bundle over $\mathscr{S}-$ {double points} which consists of all the
vectors tangent to fibers of $\mathscr{S}$ . Then $c_{1}(s^{*}T^{\prime})=-i/12$ for $\mathscr{S}=\mathscr{D}_{\ell}(i=$ [PSL $($ 2; $Z)$ :
$\Gamma_{\ell}]);c_{1}(s_{v}^{*}T^{\prime})=-1$ for all $v=1,2,3,4$ for $\mathscr{S}=\mathscr{U}_{2}$ . We shall need these facts in the
next section.

As for the details of $\mathscr{U}_{\ell}(\ell\geq 2)$ and $\mathscr{D}_{\ell}(\ell\geq 3)$ , refer to [W].

Using the fiber spaces $\mathscr{U}_{\ell}$ and $\mathscr{D}_{\ell}$ above, we construct the last fiber space

$\tilde{\pi}_{\ell}$ : $\tilde{\mathscr{D}}_{\ell}\rightarrow \mathscr{U}_{\ell}$ .

We first take the pull-back of $\pi_{\ell}^{\prime}$ : $\mathscr{D}_{\ell}\rightarrow H\overline{/\Gamma}_{\ell}$ by $\pi_{\ell}$ : $\mathscr{U}_{\ell}\rightarrow H\overline{/\Gamma}_{\ell}$ , which we denote
by $\hat{\pi}_{\ell}$ : $\hat{\mathscr{D}}_{\ell}\rightarrow \mathscr{U}_{\ell}$ : $\hat{\mathscr{D}}_{\ell}=\{(x, \xi)\in \mathscr{U}_{\ell}\times \mathscr{D}_{\ell}|\pi_{\ell}(x)=\pi_{\ell}^{\prime}(\xi)\},\hat{\pi}_{\ell}(x, \xi)=x$ , and

$\hat{\pi}_{\ell\downarrow}\hat{\mathscr{D}}_{\ell}$

$\rightarrow$

$\mathscr{D}_{\ell}\downarrow\pi_{\acute{\ell}}$

$\mathscr{U}_{\ell}$ $\vec{\pi_{\ell}}H\overline{/\Gamma}_{\ell}$ .

Note that the space $\hat{\mathscr{D}}_{\ell}$ inherits the following from $\mathscr{D}_{\ell}$ : $\hat{\mathscr{D}}_{\ell}$ is an analytic fiber space;
the base space $\mathscr{U}_{\ell}$ of $\hat{\mathscr{D}}_{\ell}$ is an elliptic surface, explained in the second step of the
construction of $\mathscr{D}_{\ell}$ ; a general fiber of $\hat{\mathscr{D}}_{\ell}$ is an elliptic curve; the singular fibers of $\hat{\mathscr{D}}_{\ell}$ lie
over the singular fibers of $\mathscr{U}_{\ell}$ . Moreover, $\hat{\mathscr{D}}_{\ell}$ has two analytic sections

$\hat{s}_{1}$ : $X\mapsto(x, s(\pi_{\ell}(x)))$ ,

$\hat{s}_{2}$ : $X\mapsto(x, p(x))$ ,
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where $p$ is a natural projection from $\mathscr{U}_{\ell}$ to $\mathscr{D}_{\ell}=\mathscr{U}_{\ell}/Z_{\ell}\times Z_{\ell}$ . Unfortunately, at any
point in the subset $\bigcup_{j}s_{j}(H/\Gamma_{\ell})$ of $\mathscr{U}_{\ell}$ the sections $\hat{s}_{1}$ and $\hat{s}_{2}$ attain the same value, and
at any node of any singular fiber of $\mathscr{U}_{\ell}\hat{s}_{2}$ attains as a value the node of a singular fiber
of $\hat{\mathscr{D}}_{\ell}$ : accordingly, we need to modify the fiber space $\hat{\mathscr{D}}_{\ell}$ in order to have two disjoint

analytic sections each of which does not attain as a value the node of any singular fiber
of $\hat{\mathscr{D}}_{\ell}$ .

We then blow up the fiber space $\hat{\mathscr{D}}_{\ell}$ along the divisor $\hat{s}_{1}$ $(\bigcup_{j}s_{j}(H\overline{/\Gamma}_{\ell}))$ and at each
of the points $\hat{s}_{2}$ (nodes), and denote by $\tilde{\mathscr{D}}_{\ell}$ (resp. $\tilde{\pi}_{\ell}$ ) the resulting fiber space (resp.

projection map). It is easy to blow up $\hat{\mathscr{D}}_{\ell}$ along the divisor $\hat{s}_{1}(\bigcup_{j}s_{j}(H\overline{/\Gamma}_{\ell}))$ , since
$\hat{s}_{1}$ $(\bigcup_{j}s_{j}(H/\Gamma_{\ell}))$ itself is smooth and does not intersect any singlarity of $\hat{\mathscr{D}}_{\ell}$ . It is not

so easy to blow up $\hat{\mathscr{D}}_{\ell}$ at each of the points $\hat{s}_{2}$ (nodes), since $\hat{s}_{2}(nodes)$ are singular. In

fact, a neighborhood of a point $\hat{s}_{2}$ (a node) in $\hat{\mathscr{D}}_{\ell}$ is identified with the analytic space

$U^{\prime}=\{(u, v, u^{\prime}, v^{\prime})\in C^{4};|u|<1, |v|<1, |u^{\prime}|<1, |v^{\prime}|<1, u^{\ell}v^{\ell}=u^{\prime}v^{\prime}\}$ ,

where the point $\hat{s}_{2}$ (a node) is identified with (0, 0, 0, 0). In this neighborhood $U^{\prime},\hat{\pi}_{\ell}$

and $\hat{s}_{2}$ are described as

$\hat{\pi}_{\ell}(u, v, u^{\prime}, v^{\prime})=(u, v)$ ,

$\hat{s}_{2}(u, v)=(u, v, u^{\ell}, v^{\ell})$ ,

where $(u, v)$ is a point in the neighborhood $U=\hat{\pi}_{\ell}(U^{\prime})\subset \mathscr{U}_{\ell}$ of the node on a singular

fiber of $\mathscr{U}_{\ell}$ . We define an analytic map $f$ from $U^{\prime}-\{(0,0,0,0)\}$ to $P^{1}$ as

$f$ : $U^{\prime}-\{(0,0,0,0)\}\rightarrow P^{1}$ ,

$(u, v, u^{\prime}, v^{\prime})\mapsto\{$

$(v^{\ell} : v^{\prime})$ if $v\neq 0$ or $v^{\prime}\neq 0$ ,
$(u^{\prime} : u^{\ell})$ if $u\neq 0$ or $u^{\prime}\neq 0$ .

The well-definedness of this map is easy to see. We denote by $\tilde{U}^{\prime}$ the closure of the
graph of $f$ in $U^{\prime}\times P^{1}$ . That is to say, $\tilde{U}^{\prime}$ is an analytic space obtained by blowing up
$U^{\prime}$ at the point (0, 0, 0, 0). In this way, we blow up the fiber space $\hat{\mathscr{D}}_{\ell}$ , so as to obtain

$\tilde{\pi}_{\ell}$ : $\tilde{\mathscr{D}}_{\ell}\rightarrow \mathscr{U}_{\ell}$ .

Note that the space $\tilde{\mathscr{D}}_{\ell}$ inherits the following from $\hat{\mathscr{D}}_{\ell}$ : $\tilde{\mathscr{D}}_{\ell}$ is an analytic fiber space;
the base space $\mathscr{U}_{\ell}$ of $\tilde{\mathscr{D}}_{\ell}$ is the same elliptic surface as that of $\hat{\mathscr{D}}_{\ell}$ ; a general fiber of $\tilde{\mathscr{D}}_{\ell}$

is an elliptic curve. It is easy to check that the singular fibers of $\tilde{\mathscr{D}}_{\ell}$ lie over the union of

the singular fibers of $\mathscr{U}_{\ell}$ and the sections $s_{1},$
$\ldots,$

$s_{\ell^{2}}$ of $\mathscr{U}_{\ell}$ , and are classified into the
four types mentioned in \S 2 (Figure 7 in \S 2). As a result of blowing up, $\tilde{\mathscr{D}}_{\ell}$ has two

disjoint analytic sections $\tilde{s}_{1}$ and $\tilde{s}_{2}$ coming from $\hat{s}_{1}$ and $\hat{s}_{2}$ , either of which does not attain
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as a value any node of any singular fiber of $\tilde{\mathscr{D}}_{\ell}$ . It turns out that the classifying map
from the base space $\mathscr{U}_{\ell}$ of $\tilde{\mathscr{D}}_{\ell}$ to the moduli space $\overline{\mathscr{M}}_{1,2}$ of stable curves of genus 1 with
2 marked points is surjective.

\S 4. Proof of linear independence of cycles.

In this section we prove that the cycles $[\mathscr{A}_{\sigma}]’ s,$ $[\mathscr{V}_{\sigma}]’ s$ we construct in \S 2 represent

linearly independent classes in $H_{*}$ $(\overline{\mathscr{M}}_{g}; Q)$ by showing that the intersection pairing of
$[\mathscr{A}_{\sigma}]’ s$ and $[\mathscr{V}_{\sigma}]’ s$ is non-degenerate.

In order to calculate the intersection number of $[\mathscr{A}_{\sigma}]$ and [G] for $k$-selections $\sigma$ and
$\tau$ , we slightly push $[\mathscr{A}_{\sigma}]$ off the compactification locus $\mathscr{D}$ of $\overline{\mathscr{M}}_{g}$ , which contains $[\mathscr{V}_{\tau}]$ , by

opening up those nodes of the fibers of $\mathscr{A}_{\sigma}$ which correspond to the collapsed curves on
$S_{\sigma}$ , as illustrated in Figure 10.

Recall that in the construction (\S 2) of $\mathscr{A}_{\sigma}$ the collapsed curves on $S_{\sigma}$ were identified
with the sections

$s:H\overline{/\Gamma}_{\ell}\rightarrow \mathscr{D}_{\ell}$ ,

$s_{j}$ : $H\overline{/\Gamma}_{2}\rightarrow \mathscr{U}_{2}$ ,

$\tilde{s}_{1},\tilde{s}_{2}$ : $\mathscr{U}_{\ell}\rightarrow\tilde{\mathscr{D}}_{\ell}$ .

1

1

Figure 10. Opening up a node of a fiber of $\mathscr{A}_{\sigma}$
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To open up the nodes of the fibers of $\mathscr{A}_{\sigma}$ corresponding to collapsed curves on $S_{\sigma}$ , we
smoothly and slightly perturb the sections above.

We construct perturbations of $s,$ $s_{j}$ as in [W]. Since $c_{1}(s^{*}T^{\prime})=-i/12$ , we choose a
smooth perturbation $s^{\prime}$ of $s$ such that at only one point $p\in \mathscr{D}_{\ell}s^{\prime}$ intersects $s$ as

$\{$

$s(z)=(z, 0)$ ,
$s^{\prime}(z)=(z,\overline{z}^{i/12})$ ,

where $z$ is a coordinate around $\pi_{\ell}^{\prime}(p)$ in $H\overline{/\Gamma}_{\ell}$ and $(z, \xi)$ are coordinates around $p$ in
$\mathscr{D}_{\ell}$ such that $\pi_{\ell}^{\prime}(z, \xi)=z$ . Since $c_{1}(s_{j}^{*}T^{\prime})=-1$ , we choose a smooth perturbation $s_{j}^{\prime}$ of
$s_{j}$ such that at only one point $q_{j}\in \mathscr{U}_{2}s_{j}^{\prime}$ intersects $s_{j}$ as

$\{$

$s_{j}(z)=(z, 0)$ ,
$s_{j}^{\prime}(z)=(z,\overline{z})$ ,

where $z$ is a coordinate around $\pi_{2}(q_{j})$ in $H\overline{/\Gamma}_{2}$ and $(z, \xi)$ are coordinates around $q_{j}$ in

V2 such that i2 $(z, \xi)=z$ . The points $q_{1},$
$\ldots,$

$q_{4}$ are on mutually distinct general fibers.
(See Remark 3.1 in \S 3.)

Next, we construct perturbations of $\tilde{s}_{1},\tilde{s}_{2}$ as follows. Let $\overline{T^{\prime}}$ be a line bundle over
$\tilde{\mathscr{D}}_{\ell}-$ {nodes} which consists of all the tangent vectors of the fibers. The Poincare’ dual
of the Euler class of $\tilde{s}_{k}^{*}\overline{T^{\prime}}$ then is equal to $-i/12$ [$general$ fiber] $-\sum_{j}[s_{j}(H\overline{/\Gamma}_{\ell})]$ for $k=$

$1,2$ . We choose a smooth perturbation $\tilde{s}_{1}^{\prime}$ of $\tilde{s}_{1}$ as follows. Let $\hat{s}_{1}^{\prime}$ be the pull back
of the section $s_{1}^{\prime}$ . $\hat{s}_{1}^{\prime}$ is a smooth perturbation of $\hat{s}_{1}$ , and intersects $\hat{s}_{1}$ over a general fiber
of $\mathscr{U}_{\ell}$ with multiplicity $-i/12$ . Since we may assume that $\hat{s}_{1}^{\prime}$ does not attain as a value
the node of any singular fiber of $\hat{\mathscr{D}}_{\ell}$ , we choose $\tilde{s}_{1}^{\prime}$ such that only over the union of a
general fiber and $\bigcup_{j}s_{j}(H\overline{/\Gamma}_{\ell})$

$\tilde{s}_{1}^{\prime}$ intersects $\tilde{s}_{1}$ subject to the class $-i/12$ [$general$ fiber]-
$\sum_{j}[s_{j}(H\overline{/\Gamma}_{\ell})]$ . (Recall that $\tilde{\mathscr{D}}_{\ell}$ is constructed from $\hat{\mathscr{D}}_{\ell}$ by blowing up $\hat{\mathscr{D}}_{\ell}$ along
$\hat{s}_{1}$ $(\bigcup_{j}s_{j}(H\overline{/\Gamma}_{\ell}))$ and at $\hat{s}_{2}$ (nodes).) We similarly choose $\tilde{s}_{2}^{\prime}$ such that only over the union

of a general fiber and $\bigcup_{j}s_{j}(H/\Gamma_{\ell})$ $\tilde{s}_{2}^{\prime}$ intersects $\tilde{s}_{2}$ subject to the class $-i/12$ [$general$ fiber]
$-\sum_{j}[s_{j}(H\overline{/\Gamma}_{\ell})]$ .

Using the perturbed sections $s^{\prime}$ , $s_{1}^{\prime}$ , . . . , $s_{4}^{\prime}$ , $\tilde{s}_{1}^{\prime}$ and $\tilde{s}_{2}^{\prime}$ , we open up the nodes of the
fibers of $\mathscr{A}_{\sigma}$ corresponding to collapsed curves on $S_{\sigma}$ , as follows. We shall describe only

the case of opening up such nodes using $\tilde{s}_{1}^{\prime}$ and $\tilde{s}_{2}^{\prime}$ . (We similarly open up such nodes
using $s^{\prime},$

$s_{1}^{\prime}$ , . . . , $s_{4}^{\prime}$ .)

Case 1: $d_{j},$ $ d_{j}^{\prime}\in\sigma$ but $d_{j-1},$ $ d_{j-1}^{\prime}\not\in\sigma$ . Recall that in the construction of $\mathscr{A}_{\sigma}$ the
collapsed curve $c_{j-1}$ is identified with the section $\tilde{s}_{1}$ . We thus open up the node to

which $c_{j-1}$ collapses by using $\tilde{s}_{1}^{\prime}$ instead of $\tilde{s}_{1}$ . Fix a metric $||\cdot||$ on the line bundle
$\tilde{s}_{k}^{*}\overline{T^{\prime}}$ . Choose a neighborhood $\mathscr{U}$ of the zero section of $\tilde{s}_{k}^{*}\overline{T^{\prime}}$ which is injectively mapped
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into the fiber space $\tilde{\mathscr{D}}_{\ell}$ . Identifying $\mathscr{U}$ with its image in $\tilde{\mathscr{D}}_{\ell}$ , we assume that $\mathscr{U}$ intersects
each fiber of $\tilde{\mathscr{D}}_{\ell}$ in a unit disk centered at the origin, that the section $\tilde{s}_{1}^{\prime}$ is contained in
$\mathscr{U}$ , and that $||\tilde{s}_{1}^{\prime}||<1$ . Choose a local coordinate chart $(z_{1}, z_{2}, \zeta)$ of $\mathscr{U}$ in $\tilde{\mathscr{D}}_{\ell}$ such that
$|\zeta|=||\zeta||$ . The section $\tilde{s}_{1}^{\prime}$ is described with $(z_{1}, z_{2}, \zeta)$ as $\zeta=\tilde{s}_{1}^{\prime}(z_{1}, z_{2})$ . Let $w$ be a
coordinate of a neighborhood of the node to which $c_{j-1}$ collapses in the fixed component

of $S_{\sigma}$ containing the node. We assume that $w$ maps this neighborhood to the unit disk
in C. If $\tilde{s}_{1}^{\prime}(z_{1}, z_{2})\neq\tilde{s}_{1}(z_{1}, z_{2})$ (i.e. if $\tilde{s}_{1}^{\prime}(z_{1},$ $z_{2})\neq 0$), remove the disk $\{|w|\leq||\tilde{s}_{1}^{\prime}(z_{1}, z_{2})||\}$

from $S_{\sigma}$ , remove the disk $\{||\zeta||\leq||\tilde{s}_{1}^{\prime}(z_{1}, z_{2})||\}$ from the fiber $F_{(z_{1}}$ , $z_{2}$ ) of $\tilde{\mathscr{D}}_{\ell}$ over the
point $(z_{1}, z_{2})$ , and form a connected sum of the resulting surfaces by identifying
$\{||\tilde{s}_{1}^{\prime}(z_{1}, z_{2})||<|w|<1\}$ with $\{||\tilde{s}_{1}^{\prime}(z_{1}, z_{2})||<|\zeta|<1\}$ subject to $w\zeta=\tilde{s}_{1}^{\prime}(z_{1} , z_{2})$ . If

$\tilde{s}_{1}^{\prime}$ $(z_{1} , z_{2})=\tilde{s}_{1}(z_{1} , z_{2})$ (i.e. if $\tilde{s}_{1}^{\prime}(z_{1},$ $z_{2})=0$), we do not open up the node.
Case 2: $d_{j},$ $ d_{j}^{\prime}\in\sigma$ but $d_{j+1}$ , $ d_{j+1}^{\prime}\not\in\sigma$ . We similarly open up the node to which $c_{j+1}$

collapses by using $\tilde{s}_{2}^{\prime}$ instead of $\tilde{s}_{2}$ .

Case 3: $d_{j},$ $ d_{j}^{\prime}\in\sigma$ and $d_{j+1},$ $ d_{j+1}^{\prime}\in\sigma$ . Choose local coordinates $(z_{1}, z_{2}, \zeta_{1})$ around

the section $\tilde{s}_{1}$ in $\tilde{\mathscr{D}}_{\ell}$ with which we replaced the $d_{j+1}$ -component, $(x_{1} , x_{2}, \zeta_{2})$ around the
section $\tilde{s}_{2}$ in $\tilde{\mathscr{D}}_{\ell}$ with which we replaced the $d_{j}$ -component. As in Case 1 if $||\tilde{s}_{1}^{\prime}(z_{1}, z_{2})||$ .

$||\tilde{s}_{2}^{\prime}$ $(x_{1}, x_{2})$ $||$ is not equal to zero, remove the disk neighborhoods $\{|\zeta_{1}|\leq||\tilde{s}_{1}^{\prime}(z_{1}, z_{2})||$ .

$||\tilde{s}_{2}^{\prime}(x_{1}, x_{2})||\}$ and $\{|\zeta_{2}|\leq||\tilde{s}_{2}^{\prime}(x_{1}, x_{2})||||\tilde{s}_{1}^{\prime}(z_{1}, z_{2})||\}$ of the sections $\tilde{s}_{1}$ and $\tilde{s}_{2}$ , and forrn a
connected sum of the resulting surfaces by identifying $\{||\tilde{s}_{1}^{\prime}||||\tilde{s}_{2}^{\prime}||<|\zeta_{1}|<1\}$ with $\{||\tilde{s}_{2}^{\prime}||$ .

$||\tilde{s}_{1}^{\prime}||<|\zeta_{2}|<1\}$ subject to $\zeta_{1}\zeta_{2}=\tilde{s}_{1}^{\prime}\tilde{s}_{2}^{\prime}$ . If $||\tilde{s}_{1}^{\prime}(z_{1}, z_{2})||||\tilde{s}_{2}^{\prime}(x_{1}, x_{2})||$ is equal to zero, we do
not open up the node.

It is easy to check that each of the procedures above of opening up a node does
not depend on the choice of coordinates around the node. In this way we open up
the nodes of the fibers of $\mathscr{A}_{\sigma}$ corresponding to collapsed curves on $S_{\sigma}$ , and denote by
$\mathscr{A}_{\sigma}^{I}$ the resulting smooth fiber space of stable curves of genus $g$ . Each fiber of $\mathscr{A}_{\sigma}^{I}$ is
assumed to have at most $k$ nodes. It is obvious that $\mathscr{A}_{\sigma}^{I}$ determines a cycle $[\mathscr{A}_{\sigma}^{I}]$ on $\overline{\mathscr{M}}_{g}$

homotopic to the cycle $[\mathscr{A}_{\sigma}]$ .

We shall consider the intersection pairing of $[\mathscr{A}_{\sigma}^{I}]’ s$ and $[\mathscr{V}_{\sigma}]’ s$ , instead of that of
$[\mathscr{A}_{\sigma}]’ s$ and $[\mathscr{V}_{\sigma}]’ s$ .

Before calculating the intersection pairing of $[\mathscr{A}_{\sigma}^{I}]’ s$ and $[\mathscr{V}_{\sigma}]’ s$ , we give some
remarks according to Wolpert [W].

A $V$-manifold such as $\overline{\mathscr{M}}_{g}$ is a rational homology manifold. If two cycles on a V-

manifold intersect at manifold points, then the intersection number of the two cycles

is calculated in the standard intuitive way. However, if two cycles on a V-manifold
intersect at some non-manifold points, then it is necessary to perturb them so that they

intersect at manifold points, in order to calculate the intersection number of them. To
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perturb a cycle on a $V$-manifold around a non-manifold point, it is necessary to consider
a local manifold cover of the $V$-manifold around the non-manifold point.

We describe coordinates for the local manifold cover of $\overline{\mathscr{M}}_{g}$ around a point in
$?=\overline{\mathscr{M}}_{g}-\mathscr{M}_{g}$ . Let $S$ be a Riemann surface of genus $g$ with nodes $p_{1},$

$\ldots,$
$p_{m}$ such

that each component of $S-\{p_{1}, \ldots, p_{m}\}$ is hyperbolic. Let $a_{i},$
$b_{i}$ be the two punctures

of $S-\{p_{i}\}$ which correspond to the node $p_{i}$ of $S$ . Choose disjoint neighborhoods $D_{i}^{1}$ ,

$D_{i}^{2}(i=1,2, \ldots, m)$ of the punctures $a_{i}$ and $b_{i}$ respectively, and let $z_{i}$ ; $D_{i}^{1}\rightarrow D=$

$\{u\in C;|u|<1\}$ and $w_{i}$ : $D_{i}^{2}\rightarrow D$ be local coordinates with $z_{i}(a_{i})=w_{i}(b_{i})=0$ . Fixing
an suitable open set fl disjoint from $D_{i}^{1}$ and $D_{i}^{2}$ , choose Beltrami differentials $\mu_{j}$ with
support in fl spanning the Teichm\"uller space of $S-\{p_{1}, \ldots, p_{m}\}$ (of dimension
$3g-3-m)$ . If $t=(t_{1}, \ldots, t_{3g-3-m})\in C^{3g-3-m}$ is sufficiently close to the origin, the sum
$\mu(t)=\sum_{j}t_{j}\mu_{j}$ satisfies $||\mu(t)||_{\infty}<1$ and thus a $\mu$-conformal solution $\omega^{\mu(t)}$ of the Beltrami
equation exists. The Riemann surface $\omega^{\mu(t)}(S)=S_{t}$ is a quasiconformal deformation of
$S$ . The map $\omega^{\mu(t)}$ is conformal on $D_{i}^{1}$ a$n$d $D_{i}^{2}$ ; therefore $z_{i}$ and $w_{i}$ serve as coordinates
for $\omega^{\mu(t)}(D_{i}^{1})$ and $\omega^{\mu(t)}(D_{i}^{2})\subset S_{t}$ respectively. Given $\tau=(\tau_{1}, \ldots, \tau_{m})\in D^{m}$ , we construct

a surface $S_{\tau,t}$ as follows. Remove the disks $\{z_{i};|z_{i}|\leq|\tau_{i}|\}$ and $\{w_{i};|w_{i}|\leq|\tau_{i}|\}$ from $S_{\tau}$ .

Attach $\{z_{i};|\tau_{i}|<|z_{i}|<1\}$ to $\{w_{i};|\tau_{i}|<|w_{i}|<1\}$ by identifying $z_{i}$ and $\tau_{i}/w_{i}$ to obtain
$S_{\tau,t}$ . The couple $(\tau, t)$ gives holomorphic coordinates for the local manifold cover of $\overline{\mathscr{M}}_{g}$

around the point represented by $S$ . The automorphism group Aut $(S)$ locally acts on
these coordinates (see also [B]).

To calculate the intersection number of $[\mathscr{A}_{\tau}^{I}]$ and $[\mathscr{V}_{\sigma}]$ for $k$-selections $\tau$ and $\sigma$, we
begin with giving a sufficient condition for $[\mathscr{A}_{\tau}^{I}]$ and $[\mathscr{V}_{\sigma}]$ to intersect at manifold points
of $\overline{\mathscr{M}}_{g}$ .

LEMMA 4.1. Let $\sigma$ be a $k$-selection. Assume that if $g\geq 4$, not all of $d_{2},$ $d_{2}^{\prime}$ , . . . , $d_{g-1}$ ,
$d_{g-1}^{\prime}$ are selected in $\sigma$ simultaneously. Then, for any $k$-selection cycle $[\mathscr{A}_{\tau}]$ , the cycle
$[\mathscr{A}_{\tau}^{I}]$ can be chosen to intersect the $k$-selection subvariety cycle $[\mathscr{V}_{\sigma}]$ at manifold points

of $\overline{\mathscr{M}}_{g}$ .

PROOF. Let $S_{\infty}$ be a fiber of $\mathscr{A}_{\tau}^{I}$ over an intersection point of $[\mathscr{A}_{\tau}^{I}]$ and $[\mathscr{V}_{\sigma}]$ . We

consider the automorphism group Aut(S\infty ) of $S_{\infty}$ .

Assume that, in the complement of those nodes of $S_{\infty}$ which correspond to the
curves selected in $\sigma,$

$S_{\infty}$ has $m$ connected components: $S_{1},$
$\ldots,$

$S_{m}$ . We divide $S_{j}’ s$ into
the following three types:

i) those $S_{j}’ s$ each of which is either of an elliptic curve with one puncture and
a projective line with one puncture which intersects itself at a double point;

$ii)$ those $S_{j}’ s$ each of which is one of an elliptic curve with two punctures, a
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projective line with two punctures which intersects itself at a double point, and a
projective line with four punctures;

$iii)$ those $S_{j}’ s$ each of which is one of a curve of genus at least 2 with one puncture,

a curve of genus at least 2 with two punctures, a curve of genus at least 1 with three
punctures, and a curve of genus at least 1 with four punctures.

Since we can arbitrarily vary each component $S_{j}$ in an open set of its Teichm\"uller

space, we may assume Aut $(S_{j})$ as follows:
I) if $S_{j}$ is of type $i$), then Aut $(S_{j})$ is generated by an elliptic involution;

$II)$ if $S_{j}$ is of type $ii$), then Aut $(S_{j})$ is not trivial but the group $Aut_{f}(S_{j})$ of

automorphisms of $S_{j}$ fixing the punctures of $S_{j}$ is trivial;

III) if $S_{j}$ is of type $iii$), then Aut $(S_{j})$ is trivial.
As a result of topological consideration, we see that the only homeomorphism of

$S_{\infty}$ which may permute the components $S_{1}$ , . . . , $S_{m}$ is the left-right switch map. Since
we may assume that the conformal structures for $S_{1},$

$\ldots,$
$S_{m}$ are distinct, we hence

observe that the left-right switch map cannot be isotopic to any element in Aut(S $\infty$ ).

We therefore conclude that any element in Aut(S\infty ) does not permute the components
$S_{1},$

$\ldots,$
$S_{m}$ .

When $g\geq 4$ , since at least one of the curves $d_{2},$ $d_{2}^{\prime},$

$\ldots,$
$d_{g-1},$ $d_{g-1}^{\prime}$ is not selected in

$\sigma$ , there exists a component $S_{j}$ of type $iii$) in $S_{\infty}$ . Thus, any element of Aut(S\infty ) fixes

all the punctures and Aut(S\infty ) $=\Pi_{j}Aut_{f}(S_{j})$ . Hence, we have only to consider
components $S_{j}$ of type $i$). There are three possibilities for Aut(S\infty ):

a) Aut(S\infty ) is trivial;

b) Aut(S\infty ) $=Z/2Z$ ;

c) Aut(S\infty ) $=(Z/2Z)^{2}$ .

These three possibilities correspond to the following cases respectively:
A) none of $c_{1},$ $c_{g-1}$ are selected in $\sigma$ ;

B) exactly one of $c_{1},$ $c_{g-1}$ is selected in $\sigma$ ;

C) both of $c_{1},$ $c_{g-1}$ are selected in $\sigma$ .

In case A) $S_{\infty}$ certainly represents a manifold point. In case B) assume that $c_{1}$ is
selected in $\sigma$ ; since the non-trivial element $k\in Aut(S_{\infty})$ is an elliptic involution, in-
troduce coordinates $(\tau_{1}, t)$ of a local manifold cover of $\overline{\mathscr{M}}_{g}$ around the intersection point,
where $\tau_{1}$ is, say, for the $c_{1}$ node; since the elliptic involution $k$ is assumed to be generic
for the elliptic curve $S_{j}$ corresponding to the component of $S_{\sigma}^{\prime}$ with $d_{1}$ so that $k$ acts

as $k(\tau_{1}, t)=$ $(-\tau_{1} , t),$ $(\tau_{1}^{2}, t)$ give coordinates of $\overline{\mathscr{M}}_{g}$ around the intersection point. In

case C) introduce coordinates $(\tau_{1}, \tau_{g-1}, t)$ of a local manifold cover of $\overline{\mathscr{M}}_{g}$ around the
intersection point, where $\tau_{1}$ is for the $c_{1}$ node and $\tau_{g-1}$ is for the $c_{g-1}$ node; since
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Aut $(S_{\infty})$ has two generators

$(\tau_{1}, \tau_{g-1}, t)\mapsto(-\tau_{1}, \tau_{g-1}, t)$ ,

$(\tau_{1}, \tau_{g-1}, t)\mapsto(\tau_{1}, -\tau_{g-1}, t)$ .

$(\tau_{1}^{2}, \tau_{g-1}^{2}, t)$ give coordinates of $\overline{\mathscr{M}}_{g}$ around the intersection point.
When $g=3$ and $d_{2},$ $d_{2}^{\prime}$ are not selected in $\sigma$, we can define coordinates around the

intersection point as above.
When $g=3$ and $d_{2},$ $d_{2}^{\prime}$ are selected in $\sigma$, each component $S_{j}$ is either an elliptic

curve with two punctures or a projective line with two punctures which intersects itself
at a double point; it follows that Aut(S\infty ) $=Z/2Z$ ; introduce coordinates $(\tau_{1} , \tau_{2}, t)$ of a
local manifold cover of $\overline{\mathscr{M}}_{g}$ around the intersection point, where $\tau_{1}$ is for the $d_{2}$ node
and $\tau_{2}$ is for the $d_{2}^{\prime}$ node; since the non-trivial element $k\in Aut(S_{\infty})$ acts as

$k(\tau_{1}, \tau_{2}, t)=(\tau_{2}, \tau_{1}, t)$ ,

$(\tau_{1}+\tau_{2}, (\tau_{1}-\tau_{2})^{2},$ $t)$ give coordinates of $\overline{\mathscr{M}}_{g}$ around the intersection point. This
completes the proof of Lemma 4.1. $[$

When $g\geq 4$ and all of $d_{2},$ $d_{2}^{\prime},$

$\ldots,$
$d_{g-1},$ $d_{g-1}^{\prime}$ occur in a $k$-selection $\sigma$, the k-selection

cycle $[\mathscr{A}_{\tau}^{I}]$ cannot be chosen not to intersect the $k$-selection subvariety cycle $[\mathscr{V}_{\sigma}]$ at any
non-manifold point of $\overline{\mathscr{M}}_{g}$ . We thus need to construct a smooth perturbation $\mathscr{V}_{\sigma}^{I}$ of $\mathscr{V}_{\sigma}$

so that $[\mathscr{A}_{\tau}^{I}]$ and $[\mathscr{V}_{\sigma}^{I}]$ intersect only at manifold points of $\overline{\mathscr{M}}_{g}$ .

We describe a perturbation $\mathscr{V}_{\sigma}^{I}$ of $\mathscr{V}_{\sigma}$ only in the case when

$\sigma=\{d_{2}, d_{2}^{\prime}, \ldots, d_{g-1}, d_{g-1}^{\prime}\}$ .

(We can similarly perturb $\mathscr{V}_{\sigma}$ in other cases.) Let $S_{\infty}$ be a fiber of $\mathscr{A}_{\tau}^{I}$ over an
intersection point with $[\mathscr{V}_{\sigma}]$ . We may assume Aut(S\infty ) $=Z/2Z$ . We introduce a local
manifold cover

$(V, \psi : V\rightarrow\overline{\mathscr{M}}_{g}, \psi(V))$

and coordinates

$(\tau_{2}, \tau_{2}^{\prime}, \ldots, \tau_{g-1}, \tau_{g-1}^{\prime}, t_{1}, \ldots, t_{m})$

for $V$ around the intersection point in $\overline{\mathscr{M}}_{g}$ , where $\tau_{j}$ is for the $d_{j}$ node and $\tau_{j}^{\prime}$ is for the
$d_{j}^{\prime}$ node. The non-trivial element $k\in Aut(S_{\infty})$ acts as

$k(\tau_{2}, \tau_{2}^{\prime}, \ldots, \tau_{g-1}, \tau_{g-1}^{\prime}, t_{1}, \ldots, t_{m})=(\tau_{2}^{\prime}, \tau_{2}, \ldots, \tau_{g-1}^{\prime}, \tau_{g-1}, t_{1}, \ldots, t_{m})$ .
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In this local manifold cover, $\mathscr{V}_{\sigma}$ is given as the locus

$\{\tau_{2}=\tau_{2}^{\prime}=\cdots=\tau_{g-1}=\tau_{g-1}^{\prime}=0\}$ ,

and mapped injectively to $\overline{\mathscr{M}}_{g}$ . We introduce a local neighborhood $V^{\prime}\subset \mathscr{V}_{\sigma}$ and
coordinates $(x_{1}, \ldots, x_{m})$ for $V^{\prime}$ around the point in $\mathscr{V}_{\sigma}$ represented by $S_{\infty}$ . $(x_{1}$ , . . . , $x_{m})$

is mapped to $(0, \ldots, 0, x_{1}, \ldots, x_{m})$ in the local manifold cover. Let $\epsilon(x)$ be a function
on $\mathscr{V}_{\sigma}$ such that $V^{\prime}$ contains the support of $\epsilon(x)$ and $\epsilon(x)=\epsilon$ in a smaller neighborhood

of $S_{\infty}$ , where $\epsilon$ is a small constant. We perturb $\mathscr{V}_{\sigma}$ in $\psi(V)$ to obtain $\mathscr{V}_{\sigma}^{I}$ subject to

$(x_{1}, \ldots, x_{m})\rightarrow\psi(\epsilon(x), 0, \ldots, 0, x_{1}, \ldots, x_{m})\in\psi(V)$ .

$\mathscr{V}_{\sigma}^{I}$ is homotopic to 6 and we may assume that $[\mathscr{A}_{\tau}^{I}]$ intersects $[\mathscr{V}_{\sigma}^{I}]$ only at manifold
points.

In order to prove that the intersection pairing is non-degenerate, we introduce the
concept of

$\wedge$

-intersection number.

Before we define $\wedge$

-intersection numbers, we remark the following. If a k-selection
$\sigma$ is not symmetric and $\sigma$ is neither $\{d_{1}\}$ nor $\{d_{g}\}$ , the intersection points of $[\mathscr{A}_{\tau}^{I}]$ and
[G] are divided into two types for any $k$-selection $\tau$ . For example, if $c_{i}$ is in $\sigma$ but $c_{g-i}$

is not in $\sigma$ , the intersection points are divided into the following two types:

(1) points corresponding to the fibers of $\mathscr{A}_{\tau}^{I}$ where $c_{i}$ is collapsed to a node and $c_{g-i}$

is not collapsed to a node.
(2) points corresponding to the fibers of $\mathscr{A}_{\tau}^{I}$ where $c_{g-i}$ is collapsed to a node and

$c_{i}$ is not collapsed to a node.
We thus define $\wedge$

-intersection numbers when $\sigma$ is neither $\{d_{1}\}$ nor $\{d_{g}\}$ .

DEFINITION 4.2. (1) When a $k$-selection $\sigma$ is not symmetric and $\sigma$ is neither $\{d_{1}\}$

nor $\{d_{g}\}$ , we define a $\wedge$

-xntersection number $[\overline{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}]$ for any $k$-selection $\tau$ as follows:

(a) If $c_{i}$ is in $\sigma$ but $c_{g-i}$ is not in $\sigma$, we define $[\overline{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}]$ as the sum of the in-
tersection numbers only on the intersection points corresponding to the fibers of $\mathscr{A}_{\tau}^{I}$ each
of which has the $c_{i}$ node but does not have the $c_{g-i}$ node.

(b) If $d_{i},$ $d_{i}^{\prime}$ are in $\sigma$ but $d_{g-i+1},$ $d_{g-i+1}^{\prime}$ are not in $\sigma$, we define $[\overline{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}]$ as the sum
of the intersection numbers only on the intersection points corresponding to the fibers
of $\mathscr{A}_{\tau}^{I}$ each of which has both the $d_{i}$ node and the $d_{i}^{\prime}$ node but does not have either the
$d_{g-i+1}$ node or the $d_{g-i+1}^{\prime}$ node.

(2) When a $k$-selection $\sigma$ is symmetric, we define a $\wedge$

-xntersection number $[\overline{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}]$

for any $k$-selection $\tau$ as the usual intersection number $[\mathscr{A}_{\tau}]\cdot[\mathscr{V}_{\sigma}]$ in $\overline{\mathscr{M}}_{g}$ .

The well-definedness of
$\wedge$ -intersection numbers follows from the fact that $c_{j}$ , $d_{i}$ , $d_{i}^{\prime}$

are mapped to $c_{j}$ , $d_{i}$ , $d_{i}^{\prime}$ or $c_{g-j},$ $d_{g-i+1},$ $d_{g-i+1}^{\prime}$ by a homeomorphism of $S$ .
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We cannot naturally define $\wedge$

-intersection numbers when $\sigma$ is either $\{d_{1}\}$ or $\{d_{g}\}$ ,

since each of these curves may be mapped to any $d$-curve by some homeomorphism of
$S$ . However, for convenience, we will also define $\wedge$

-intersection numbers in this case
later (Definition 4.6).

LEMMA 4.3. (1) $[\overline{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}]=[\overline{\mathscr{A}_{\overline{\tau}}]\cdot[\mathscr{V}}_{\sigma}$

- $]$ .

(2) If $\sigma$ is not symmetric and $\sigma$ is neither $\{d_{1}\}$ nor $\{d_{g}\}$ , then

$[\mathscr{A}_{\tau}]$ . $[\mathscr{V}_{\sigma}]=[\mathscr{A}_{\overline{\tau}}]$ . $[\mathscr{V}_{\sigma}]=[\overline{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}]+[\overline{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\overline{\sigma}}]$ .

(3) If $\sigma$ is symmetric, then

$[\mathscr{A}_{\tau}]$ . $EG1$ $=[\mathscr{A}_{\overline{\tau}}]$ . $EG1$ $=[\mathscr{A}_{\tau}]$ . $EG$].

PROOF. As mentioned in \S 2, the cycle $[\mathscr{A}_{\tau}]$ is homologous to $[\mathscr{A}_{\tau}$- $]$ ; hence (3) is
immediate from the definition. If $\sigma$ is not symmetric and $\sigma$ is neither $\{d_{1}\}$ nor $\{d_{g}\}$ ,

the intersection points of $[\mathscr{A}_{\tau}^{I}]$ and [G] are divided into the two types mentioned above
just before Definition 4.2: the one associated with $[\mathscr{A}_{\tau}]\cdot[\mathscr{V}_{\sigma}]$ , and the other associated
with $[\overline{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}$

- $]$ ; hence (2) follows. If $\sigma$ is symmetric, (1) is obvious; if not, (1) follows

from the fact that the intersection points associated with $[\mathscr{A}_{\tau}]\cdot[\mathscr{V}_{\sigma}]$ correspond to the
intersection points associated with $[\mathscr{A}_{\overline{\tau}}]\cdot[\mathscr{V}_{\sigma}$- $]$ . $\square $

LEMMA 4.4. If the
$\wedge$

-intersection pairing matrix is non-degenerate, then the in-

tersection pairing matrix is non-degenerate.

PROOF. Let $\sigma_{1},$

$\ldots,$
$\sigma_{m}$ be all the symmetric $k$-selections, and $\tau_{1},$

$\ldots,$
$\tau_{n},\overline{\tau}_{1},$ $\ldots,\overline{\tau}_{n}$ all

the non-symmetric $k$-selections. By Lemma 4.3 (3), the $\wedge$ -intersection pairing matrix is

$($ $)$

By Lemma 4.3, elementary column operations transform it to

( ).
Moreover, elementary row operations transform it to
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( ).
Note that the intersection pairing matrix is

( ).
Hence, the assertion follows. $\square $

By Lemma 4.4, it is sufficient to show that the $\wedge$ -intersection pairing matrix is non-
degenerate. We prove this by induction.

We first compute the $\wedge$ -intersection pairing matrix for the two 2-selections $D=$

$\{d_{j}, d_{j}^{\prime}\}$ and $C=\{c_{j-1}, c_{j}\}$ .

LEMMA 4.5.

$1/m[\mathscr{V}_{D}]$ $1/n[\mathscr{V}_{C}]$

$1/i\ell^{2}[\mathscr{A}_{D}][\mathscr{A}_{C}]\left(\begin{array}{ll}l & l/l2\\2 & l\end{array}\right)$ ,

where

$i=$ [PSL(2, $Z$ ) : $\Gamma_{\ell}$ ],

$m=\{$
2if $g=3$ ,

1if $g\neq 3$ ,

$n=\{$

4 if $g=3$ ,

2if $C$ contains exactly one of $c_{1},$ $c_{g-1}$ ,
1 $o$ therwise.

PROOF. The $\wedge$ -intersection points of $[\mathscr{A}_{D}^{I}]$ and $[\mathscr{V}_{D}]$ correspond to the nodes of

the singular fibers of $\mathscr{U}_{\ell}$ . Let $(z_{1}, z_{2})$ be coordinates of $\mathscr{U}_{\ell}$ around such a node, and
let $(\tau, \tau^{\prime}, t\in C^{3g-5})$ be local coordinates of a local manifold cover of $\overline{\mathscr{M}}_{g}$ over the $\wedge-$

intersection point $p$ which corresponds to the node $(z_{1} , z_{2})=(0,0)$ . Then, $[\mathscr{A}_{D}^{I}]$ is
locally written as

$[\mathscr{A}_{D}^{I}]$ : $\mathscr{U}_{\ell}\rightarrow\overline{\mathscr{M}}_{g}$

$(z_{1}, z_{2})\mapsto[(\tau=z_{1}^{\ell}, \tau^{\prime}=z_{2}^{\ell}, t=f(z_{1}, z_{2}))]$
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for some smooth function $f$ When $g\geq 4,$ $(\tau, \tau^{\prime}, t)$ are coordinates of $\overline{\mathscr{M}}_{g}$ and $\mathscr{V}_{D}$ is
locally given as the locus $\{\tau=\tau^{\prime}=0\}$ . The $\wedge$ -intersection number at $p$ is $\ell^{2},$

$\mathscr{U}_{\ell}$ has
$ i/\ell$ singular fibers, and each singular fiber of $\mathscr{U}_{\ell}$ has 1 nodes. Hence, the $\wedge$ -intersection
number of $[\mathscr{A}_{D}]$ and $[\mathscr{V}_{D}]$ is equal to $\ell^{2}\times i/\ell\times\ell=i\ell^{2}$ . When $g=3,$ $(\sigma_{1}, \sigma_{2}, t)$ $:=$

$(\tau+\tau^{\prime}, (\tau-\tau^{\prime})^{2}$ , $t)$ give coordinates of $\overline{\mathscr{M}}_{g}$ around $p$ and the $\wedge$ -intersection number of
$[\mathscr{A}_{D}]$ and $[\mathscr{V}_{D}]$ is equal to $2i\ell^{2}$ .

We calculate the $\wedge$ -intersection number of $[\mathscr{A}_{D}]$ and $[\mathscr{V}_{C}]$ as follows. The Poincare’
dual of the Euler class of $\tilde{s}_{k}^{*}\overline{T^{\prime}}(k=1,2)$ is equal to

$-\frac{i}{12}$ [general fiber] $-\sum_{j}[s_{j}(H\overline{/\Gamma}_{\ell})]$
.

We remark here that we later use the following computation in [W]:

$[s_{j}(H\overline{/\Gamma}_{\ell})]\cdot[s_{k}(H\overline{/\Gamma}_{\ell})]=\{$

$-\frac{i}{12}$ $(j=k)$ ,

0 $(j\neq k)$ .

The $\wedge$ -intersection points of $[\mathscr{A}_{D}^{I}]$ and $[\mathscr{V}_{C}]$ correspond to the intersection of the zero
points of $\tilde{s}_{1}^{\prime}$ and those of $\tilde{s}_{2}^{\prime}$ in $\mathscr{U}_{\ell}$ . Let $(z_{1}, z_{2})$ be coordinates of $\mathscr{U}_{\ell}$ around such an
intersection point, and $(\tau_{1}, \tau_{2}, t)$ coordinates of a local manifold cover of $\overline{\mathscr{M}}_{g}$ over the
$\wedge$ -intersection point $p$ which corresponds to the point $(z_{1} , z_{2})=(0,0)$ . Then, $[\mathscr{A}_{D}^{I}]$ is
locally written as

$[\mathscr{A}_{D}^{I}]$ : $\mathscr{U}_{\ell}\rightarrow\overline{\mathscr{M}}_{g}$

$(z_{1}, z_{2})\mapsto[(\tau_{1}=\tilde{s}_{1}^{\prime}(z_{1}, z_{2}), \tau_{2}=\tilde{s}_{2}^{\prime}(z_{1}, z_{2}), t=f(z_{1}, z_{2}))]$

for some smooth function $f(z_{1} , z_{2})$ . When neither of $c_{1},$ $c_{g-1}$ is contained in $C$, the
$\wedge$ -intersection number of $[\mathscr{A}_{D}]$ and $[\mathscr{V}_{C}]$ is equal to the self-intersection number of

$-i/12$ [general fiber] $-\sum[s_{j}(H\overline{/\Gamma}_{\ell})]$ in $\mathscr{U}_{\ell}$ , since $(\tau_{1} , \tau_{2}, t)$ give coordinates of $\overline{\mathscr{M}}_{g}$ :

$(-\frac{i}{12}$ [general fiber] $-\sum_{j}[s_{j}(H\overline{/\Gamma}_{\ell})])^{2}$

$=\frac{i}{6}\sum_{j}$ [[general fiber] .
$[s_{j}(H\overline{/\Gamma}_{\ell})]+\sum_{j}[s_{j}(H\overline{/\Gamma}_{\ell})]^{2}$

$=\frac{i}{6}\ell^{2}-\frac{i}{12}\ell^{2}=\frac{i}{12}\ell^{2}$ .
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Similar computations give $[\mathscr{A}_{D}]$ . $[\mathscr{V}_{C}]=$ xl2/6 when exactly one of $c_{1},$ $c_{g-1}$ is contained
in $C$, and [4] . $[\mathscr{V}_{C}]=$ xl2/3 when both of $c_{1},$ $c_{g-1}$ are contained in $C$ .

We calculate the $\wedge$ -intersection number of $[\mathscr{A}_{C}]$ and $[\mathscr{V}_{D}]$ by using $c_{1}(s_{j}^{*}T^{\prime})=-1$ .

The following is easily obtained:

$[\hat{\mathscr{A}_{C}]\cdot[V}_{D}]=\{$

2 $(g\geq 4)$ ,
4 $(g=3)$ .

Since $[\mathscr{A}_{C}^{I}]$ and $[\mathscr{V}_{C}]$ intersect at one point corresponding to $(\infty, \infty)$ in $(H\overline{/\Gamma}_{2})^{2}$ , we
have

$[\hat{\mathscr{A}_{C}]\cdot[\mathscr{V}}_{C}]=\{$

1when neither of $c_{1},$ $c_{g-1}$ is contained in $C$,
2when exactly one of $c_{1},$ $c_{g-1}$ is contained in $C$ ,

4when both of $c_{1},$ $c_{g-1}$ are contained in $C$ .

This completes the proof of Lemma 4.5. $\square $

We have so far dealt with $\wedge$ -intersection numbers $[\hat{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}]$ only when $\sigma$ is neither
$\{d_{1}\}$ nor $\{d_{g}\}$ ; we now define, for convenience, $\wedge$ -intersection numbers $[\hat{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}]$ even
when $\sigma$ is either $\{d_{1}\}$ or $\{d_{g}\}$ .

DEFINITION 4.6. When $\sigma$ is either $\{d_{1}\}$ or $\{d_{g}\}$ , we define $[\hat{\mathscr{A}_{\tau}]\cdot[\mathscr{V}}_{\sigma}]$ as

$[\mathscr{A}_{\tau}\hat{]\cdot[\mathscr{V}_{d_{1}}}]=\{$

$[\mathscr{A}_{\tau}]\cdot[\mathscr{V}_{d_{1}}]$ $(\tau\neq d_{g})$ ,

0 $(\tau=d_{g})$ ,

$[\mathscr{A}_{\tau}\hat{]\cdot[\mathscr{V}_{d_{g}}}]=\{$

0 $(\tau\neq d_{g})$ ,

$[\mathscr{A}_{\tau}]\cdot[\mathscr{V}_{d_{g}}]$ $(\tau=d_{g})$ .

Let $A_{k,d_{j}}(1\leq j\leq g)$ denote the $\wedge$ -intersection matrix of all $k$-selections from $d_{1}$ ,

$c_{1},$
$d_{2},$ $d_{2}^{\prime},$

$c_{2},$
$\ldots,$

$d_{j},$ $d_{j}^{\prime}$ , and $A_{k,c_{j}}(1\leq j\leq g-1)$ that of all $k$-selections from $d_{1}$ , $c_{1}$ , $d_{2}$ ,
$d_{2}^{\prime}$ , . . . , $c_{j}$ . In the following series of Lemmas, we inductively prove that $A_{k,d_{j}}$ and $A_{k}$ , $c_{j}$

are all non-degenerate.

LEMMA 4.7. $A_{1,d_{j}},$ $A_{1,c_{j}}$ are all non-degenerate.

Lemma 4.7 is immediate from the consequences of \S 5 in [W], from which we can
easily calculate the $\wedge$ -intersection number of any 1-selection cycle $[\mathscr{A}_{\sigma}]$ and any 1-
selection variety cycle $[\mathscr{V}_{\sigma}]$ .

LEMMA 4.8. $A_{2,d_{j}},$ $A_{2,c_{j}}$ are all non-degenerate.
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PROOF. The $\wedge$ -intersection number of $[\mathscr{A}_{\sigma}]$ and [G] for $\sigma=\{d_{1}, c_{1}\}$ is equal to

2 $[\sum_{j}s_{j}(H\overline{/\Gamma}_{\ell})]\cdot$ [ $\ell$ singular fibers] $=2i\ell^{2}$ ,

thus

$A_{2,c_{1}}=(2i\ell^{2})$ ,

and hence 12, $c_{1}$
is non-degenerate.

Computation for $\sigma=\{d_{1} , c_{1} \}$ and $\tau=\{d_{2}, d_{2}^{\prime}\}$ gives

$A_{2,d_{2}}=\{$

$\left(\begin{array}{ll}2i\ell^{2} & i\ell^{2}/l2\\0 & i\ell^{2}\end{array}\right)$ $(g\geq 4)$ ,

$\left(\begin{array}{ll}2i\ell^{2} & i\ell^{2}/6\\0 & 2i\ell^{2}\end{array}\right)$ $(g=3)$ .

Computation for $\eta_{1}=\{c_{1}, c_{2}\}$ and $\eta_{2}=\{d_{1}, c_{2}\}$ and Lemma 4.5 give

A2, $c_{2}=($ ) where $m=\{$
1 $(g\geq 4)$ ,
2 $(g=3)$ ,

$=\{$

$\left(\begin{array}{llll}2i\ell^{2} & i\ell^{2}/l2 & 0 & 0\\0 & i\ell^{2} & i\ell^{2}/6 & 0\\0 & 2 & 2 & -2\\0 & 0 & -i/6 & i\end{array}\right)$ $(g\geq 4)$ ,

$\left(\begin{array}{llll}2i\ell^{2} & \dot{x}\ell^{2}/6 & 0 & 0\\0 & 2i\ell^{2} & i\ell^{2}/3 & 0\\0 & 4 & 4 & -4\\0 & 0 & -i/3 & 2i\end{array}\right)$ $(g=3)$ .

It is easy to check that $A_{2,d_{2}}$ and $A_{2,c_{2}}$ are non-degenerate.

Consider the case when $g\geq 4$ for some time.
Assume that the assertion holds up to A2,

$c_{j}$

$(2\leq j\leq g- 2)$ . $A_{2,d_{j+1}}$ is given by

$A_{2,d_{j+1}}=\left(\begin{array}{lll}A_{2}, & c_{j} & 0\\0 & & i\ell^{2}\end{array}\right)$ ,

which then is also non-degenerate.

Assume that the assertion holds up to $A_{2,d_{j}}(3\leq j\leq g-1)$ . It follows from
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Lemma 4.5 that

$A_{2,c_{j}}=($ $)$

$=\{$

( ) $..\cdot.\cdot.\sigma\tau$ $(j\neq g-1)$ ,

$(_{00}A_{2,c_{j-1}}0+_{2A_{1,d_{j-1}}}00i\ell^{2}i\ell_{0}^{2}00)22/60*\cdot.\cdot.\cdot.\sigma\tau$ $(j=g-1)$ ,

where $\sigma=$ $\{d_{j}, d_{j}^{\prime}\}$ and $\tau=\{c_{j-1} , c_{j}\}$ : A2, $c_{j}$
then is also non-degenerate.

Let A2, $d_{\acute{g}}$
be the $\wedge$ -intersection matrix of all 2-selections except $\eta=\{c_{g-1}, d_{g}\}$ .

Let $\sim$ denote the equivalent relation by elementary $row/column$ transformations. It

follows that

$A_{2,d_{\acute{g}}}=($ $)$

$=($ $)$

$=\{$

. $\wedge$ - - $\backslash $

. . . . y- . y- /

. . . $d_{g-1}$

. . . $c_{g-2},$ $c_{g-1}$
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$\sim($ $)$

$=($ $)$

$\sim($ $)$

which is non-degenerate: hence, A2, $d_{\acute{g}}$
is also non-degenerate. A2, $d_{g}$ is given by

$A_{2,d_{g}}=$ ( $2i\ell^{2}0$ ),
which is also non-degenerate.

In the case when $g=3$ , the assertion is proved in a similar way. This completes
the proof of Lemma 4.8. $[$

LEMMA 4.9. $A_{k,c_{j}}$ and $A_{k,d_{j}}$ are all non-degenerate for all $k,$ $j$ .

PROOF. The assertion holds for $k=1,2$ by Lemma 4.7 and Lemma 4.8.
Assume that the assertion holds for $k\leq p-1(p\geq 3)$ .

If $\{d_{1}, c_{1}, d_{2}, d_{2}^{\prime}, \ldots, c_{j-1}\}$ does not have any $p$-selection but $\{d_{1},$ $c_{1},$ $d_{2},$ $d_{2}^{\prime},$

$\ldots,$ $c_{j-1}$ ,
$d_{j},$ $d_{j}^{\prime}\}$ has $p$-selections, then

$A_{p,d_{j}}=i\ell^{2}A_{p-2,d_{j- 1}}$ ,

and hence $A_{p,d_{j}}$ is non-degenerate.

If $\{d_{1}, c_{1}, d_{2}, d_{2}^{\prime}, \ldots , d_{j}, d_{j}^{\prime}\}$ does not have any $p$-selection but $\{d_{1},$ $c_{1},$
$d_{2},$ $d_{2}^{\prime},$

$\ldots,$
$d_{j},$ $d_{j}^{\prime}$ ,

$c_{j}\}$ has $p$-selections, then
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$A_{p,c_{j}}=A_{p-1,c_{j- 1}}$ ,

and hence $A_{p}$ , $c_{j}$
is non-degenerate.

$A_{p,d_{j}}$ is non-degenerate if $A_{p,c_{j- 1}}$ is non-degenerate for $j\leq g-1$ , since $A_{p,d_{j}}$ is
written as

$A_{p,d_{j}}=\left(\begin{array}{ll}A_{p,c_{j- 1}} & 0\\0 & i\ell^{2}A_{p-2,d_{j- 1}}\end{array}\right)$ .

$A_{p}$ , $c_{j}$
is non-degenerate if $A_{p,d_{j}}$ is non-degenerate for $j\leq g-1$ , as follows. Assume

that $A_{p,d_{j}}$ is non-degenerate for some time. If there exist no $p$-selections containing both
$c_{j-1}$ and $c_{j}$ , then

$A_{p,c_{j}}=\left(\begin{array}{lll}A_{p}, & d_{j} & 0\\0 & & A_{p-1,c_{j}}\end{array}\right)$ ,

and hence $A_{p}$ , $c_{j}$
is non-degenerate. Otherwise,

$A_{p,c_{j}}=$ ( $A_{p-1,c_{j- 1}}*$ ),
which by Lemma 4.5 is written as

$\left(\begin{array}{llll}B & 0 & 0 & 0\\ & 0 \dot{x}\ell^{2}A_{p-2,c_{j- 2}} & (i\ell^{2}/l2)A_{p-2,c_{j- 2}} & 0\\ & 0 2A_{p-2,c_{j- 2}} & A_{p-2,c_{j- 2}} & C\\ & 0 0 & D & A_{p-1,d_{j- 1}}\end{array}\right)$

for some $B,$ $C,$ $D$ . Note that $B$ is non-degenerate, since

$\left(\begin{array}{ll}B & 0\\0 & i\ell^{2}A_{p-2,c_{j- 2}}\end{array}\right)=A_{p,d_{j}}$ .

(Note that the two partitioning above of $A_{p,d_{j}}$ are different.) More elementary op-
erations transform $A_{p}$ , $c_{j}$

to

$\left(\begin{array}{llll}B & 0 & 0 & 0\\0 & A_{p-2,c_{j- 2}} & 0 & 0\\0 & 0 & (5/6)A_{p-2,c_{j- 2}} & C\\0 & 0 & D & A_{p-1,d_{j- 1}}\end{array}\right)$

If there exist no $p$-selections containing all of $c_{j-2},$ $c_{j-1},$ $c_{j}$ , then $C=D=0$ , and hence



Higher cycles on the moduli space of stable curves 261

$A_{p}$ , $c_{j}$
is non-degenerate. Otherwise,

$\left(\begin{array}{ll}(5/6)A_{p-2,c_{j- 2}} & C\\D & A_{p-1,d_{j- 1}}\end{array}\right)$

$=\left(\begin{array}{lll}(5/6)A_{p-2,d_{j- 2}} & (5/6)E 0 & 0\\(5/6)F & (5/6)A_{p-3,c_{j- 3}} 2A_{p-3,c_{j- 3}} & 0\\0 & (_{\dot{l}}\ell^{2}/l2)A_{p-3,c_{j-3}} \dot{x}\ell^{2}A_{p-3,c_{j- 3}} & 0\\0 & 0 0 & G\end{array}\right)$

for some $E,$ $F,$ $G$, which is transformed by elementary operations to

$\left(\begin{array}{llll}(5/6)A_{p-2,d_{j- 2}} & (5/6)E & 0 & 0\\(5/6)F & (4/6)A_{p-3,c_{j- 3}} & 0 & 0\\0 & 0 & A_{p-3,c_{j- 3}} & 0\\0 & 0 & 0 & G\end{array}\right)$

Note that $G$ is non-degenerate, since

$A_{p-1,d_{j- 1}}=\left(\begin{array}{ll}i\ell^{2}A_{p-3,c_{j- 3}} & 0\\0 & G\end{array}\right)$ .

If there exist no $p$-selections containing all of $c_{j-3},$ $c_{j-2},$ $c_{j-1},$ $c_{j}$ , then $E=F=0$ , and
hence $A_{p}$ , $c_{j}$

is non-degenerate. Otherwise, (with $rows/columns$ reordered)

$\left(\begin{array}{ll}A_{p-2,d_{j- 2}} & E\\F & (4/5)A_{p-3,c_{j- 3}}\end{array}\right)$

$=\left(\begin{array}{llll}H & 0 & 0 & 0\\0 & i\ell^{2}A_{p-4,c_{j- 4}} & (\dot{x}\ell^{2}/l2)A_{p-4,c_{j- 4}} & 0\\0 & 2A_{p-4,c_{j- 4}} & (4/5)A_{p-4,c_{j- 4}} & (4/5)I\\0 & 0 & (4/5)J & (4/5)A_{p-3,d_{j- 3}}\end{array}\right)$

$\sim\left(\begin{array}{llll}H & 0 & 0 & 0\\0 & A_{p-4,c_{j- 4}} & 0 & 0\\0 & 0 & (l9/24)A_{p-4,c_{j- 4}} & I\\0 & 0 & J & A_{p-3,d_{j- 3}}\end{array}\right)$

for some $H,$ $I,$ $J$ with $H$ non-degenerate. If there exist no $p$-selections containing all of

$c_{j-4},$ $c_{j-3},$ $c_{j-2},$ $c_{j-1},$ $c_{j}$ , then $I=J=0$ , and hence $A_{p}$ , $c_{j}$
is non-degenerate. Otherwise, . . .
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The steps above can be repeated since the sequence $\{a_{n}\}_{n=1,2},\ldots$ such that

$a_{1}=1$ , $a_{n+1}=1-\frac{1}{6a_{n}}$

has no zeros; the steps must be terminated because of the finiteness of the number
of $rows/columns$ of $A_{p,c_{j}}$ : hence $A_{p}$ , $c_{j}$

is non-degenerate.

To show that $A_{p,d_{g}}$ is non-degenerate, let $A_{p}$ , $d_{\acute{g}}$
be the $\wedge$ -intersection matrix of p-

selections not containing both $c_{g-1}$ and $d_{g}$ .

$A_{p,d_{\acute{g}}}=(_{*}^{A_{p,c_{g- 1}}}$ $iA_{p-1,d_{g- 1}}*)$

$=($ $)$

$\sim\left(\begin{array}{lllll}A_{p,c_{g- 2}} & & & & \\ & A_{p-2,c_{g- 3}} & & iA_{p-1,c_{g- 2}}* & \\ & & (5/3)A_{p-1,c_{g- 2}} & & \\ & 0 & & & \\ & & & & i^{2}\ell^{2}A_{p-3,d_{g- 2}}\end{array}\right)$ ,

and hence $A_{p}$ , $d_{\acute{g}}$
is non-degenerate. $A_{p,d_{g}}$ is written as

$A_{p,d_{g}}=$ ( $2i\ell^{2}A_{p-2,c_{g- 2}}0$ ),
and hence $A_{p,d_{g}}$ is non-degenerate. This completes the proof of Lemma 4.9. $\square $

Lemma 4.9 together with Lemma 4.4 completes the proof of

THEOREM A. When $k\geq 2$ ,

$b_{2k}(\overline{\mathscr{M}}_{g})=b_{6g-6-2k}(\overline{\mathscr{M}}_{g})\geq\max(\alpha_{g,k}, \alpha_{3g-3-k})$ .

REMARK. When $k=1$ , Harer’s result shows the following equality.

$b_{2}(\overline{\mathscr{M}}_{g})=b_{6g-8}(\overline{\mathscr{M}}_{g})=2+[\frac{g}{2}]$ $(=\alpha_{g,1}+1)$
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\S 5. Computation of the number of cycles.

We constructed in \S 2 $\alpha_{g,k}$ cycles of degree $2k$ on $\overline{\mathscr{M}}_{g}$ and showed in \S 4 that they

represent linearly independent homology classes in $H_{2k}(\overline{\mathscr{M}}_{g}; Q)$ . In this concluding
section, we give algorithm to compute the number $\alpha_{g,k}$ of the $2k$-cycles we constructed.

Recall that a $k$-selection is a selection $\sigma$ of $k$ from the set

$\{d_{1}, c_{1}, d_{2}, d_{2}^{\prime}, c_{2}, \ldots, c_{g-2}, d_{g-1}, d_{g-1}^{\prime}, c_{g-1}, d_{g}\}$

of $3g-$ $3$ elements $(g\geq 3)$ satisfying the following two conditions: (1) $ d_{i}^{\prime}\in\sigma$ if and only

if $d_{i}\in\sigma;(2)$ if $d_{i},$ $ d_{i}^{\prime}\in\sigma$, then $c_{i-1},$ $ c_{i}\not\in\sigma$ (Definition 2.1). Note that $k$ of a k-selection
can be any non-negative integer $\leq 2g-2$ . Recall that two $k$-selections $\sigma,$

$\tau$ are called
conjugate if and only if $\tau$ is equal either to $\sigma$ itself or to the $k$-selection $\overline{\sigma}$ such that $d_{i}\in\overline{\sigma}$

if and only if $ d_{g-i+1}\in\sigma$ and $c_{j}\in\overline{\sigma}$ if and only if $ c_{g-j}\in\sigma$, and that a $k$-selection $\sigma$ is
called symmetric if $\overline{\sigma}=\sigma$ (Definition 2.2). Recall that $\alpha_{g,k}$ is the number of conjugacy
classes of $k$-selections (Notation 2.3).

Note that the conjugacy class of a $k$-selection $\sigma$ is composed of one $k$-selection or
two according as $\sigma$ is symmetric or not. Let $\beta_{g,k}$ be the number of $k$-selections and $\beta_{g,k}^{s}$

the number of symmetric $k$-selections. The number $\alpha_{g,k}$ then is equal to half of the sum
$\beta_{g,k}+\beta_{g,k}^{s}$ .

We shall give an explicit method to calculate polynomials $\sum_{k}\beta_{g,k}t^{k},$ $\sum_{k}\beta_{g,k}^{s}t^{k}$

in $Z[t]$ of degree $2g-$ $2$ , and hence $\sum_{k}\alpha_{g,k}t^{k}\in Z[t]$ , where we naturally assume $\beta_{g,0}=$

$\beta_{g,0}^{s}=\alpha_{g,0}=1$ .

Let $C,$ $D$ , and $Q$ be the following matrices in $M_{2}(Z[t])$ :

$C=\left(\begin{array}{ll}0 & t\\l & l\end{array}\right)$ , $D=\left(\begin{array}{ll}0 & t^{2}\\l & l\end{array}\right)$ , $D^{\prime}=\left(\begin{array}{ll}0 & 0\\0 & t^{2}\end{array}\right)$ , $Q=\left(\begin{array}{ll}0 & t^{4}\\l & l\end{array}\right)$ .

Note that $C,$ $D$ , and $Q$ are in $GL_{2}(Z(t))$ . $D^{\prime}$ shall be used in Lemma 5.3.
Let $h_{g}(t),$ $h_{g}^{s}(t)$ be the second component of

$(1, 1)$ $\cdot(C(CD)^{g-2}C^{2}+t^{2}(CD)^{g-3}C^{2}+t^{2}C(CD)^{g-3}C+t^{4}(CD)^{g-4}C)$ ,

$(1, 1)$ $\cdot\{$

$(D(DQ)^{g/2-1}C+t^{4}(DQ)^{g/2-2}C)$ if $n$ is even,

$(D(DQ)^{(g-3)/2}D^{2}+t^{4}(DQ)^{(g-5)/2}D^{2})$ if $n$ is odd,

respectively, where, for a matrix $A\in GL_{2}(Z(t))$ and a negative integer $q,$
$A^{q}$ denotes

$(A^{-1})^{(-q)},$ $A^{-1}$ being the inverse matrix of $A$ in $GL_{2}(Z(t))$ . It is easily verified that both
$h_{g}(t)$ and $h_{g}^{s}(t)$ are polynomials in $Z[t]$ . Let $f_{g}(t)=1/2(h_{g}(t)+h_{g}^{s}(t))$ .
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Our goal then is to prove

PROPOSITION B. It follows that

$h_{g}(t)=\sum_{k=0}^{2g-2}\beta_{g,k}t^{k}$ , $h_{g}^{s}(t)=\sum_{k=0}^{2g-2}\beta_{g,k}^{s}t^{k}$ , hence $f_{g}(t)=\sum_{k=0}^{2g-2}\alpha_{g,k}t^{k}\in Z[t]$ .

We prepare some more denotations for our proof of Proposition B. Let $\gamma_{i,k},$
$\delta_{j,k}$ ,

$\delta_{g,k}$ be the numbers of the $k$-selections included in

$\{d_{1}, c_{1}, d_{2}, \ldots, c_{i}\}$ , $\{d_{1}, c_{1}, \ldots, d_{j}, d_{j}^{\prime}\}$ , $\{d_{1}, c_{1}, d_{2}, \ldots, c_{g-1}, d_{g}\}$

respectively, and $\gamma_{i,k}^{s},$ $\delta_{j,k}^{s}$ the numbers of the symmetric $k$-selections included in

$\{d_{1}, c_{1}, d_{2}, \ldots, c_{i}\}\cup\{c_{g-i}, \ldots, d_{g-1}^{\prime}, c_{g-1}, d_{g}\}$ ,

$\{d_{1}, c_{1}, \ldots, d_{j}, d_{j}^{\prime}\}\cup\{d_{g-j+1}, d_{g-j+1}^{\prime}, \ldots, c_{g-1}, d_{g}\}$

respectively. Let

$c_{i}(t)=\sum_{k}\gamma_{i,k}t^{k}$ , $d_{j}(t)=\sum_{k}\delta_{j,k}t^{k}$ ,

$c_{i}^{s}(t)=\sum_{k}\gamma_{i,k}^{s}t^{k}$
,

$d_{j}^{s}(t)=\sum_{k}\delta_{j,k}^{s}t^{k}$
.

Note that

$\sum_{k}\beta_{g,k}t^{k}=d_{g}(t)$ , $\sum_{k}\beta_{g,k}^{s}t^{k}=\{$

$c_{g/2}^{s}(t)$ if $g$ is even,
$d_{(g+1)/2}^{s}(t)$ if $g$ is odd.

We draw three lemmas to establish recurrence formulae among $c_{i}(t)’ s,$ $d_{j}(t)’ s$ and
among $c_{i}^{s}(t)’ s,$ $d_{j}^{s}(t)’ s$ . We omit all the proofs of the lemmas since they are immediate
from the definition of k-selections.

LEMMA 5.1.

(1) $(c_{1}(t), d_{2}(t))=(1,1)$ . $(C^{2}D+t^{2})$ .

(2) $(c_{1}^{s}(t), d_{2}^{s}(t))=(1,1)\cdot(D^{2}Q+t^{4})$ if $g>3$ .

LEMMA 5.2.

(1) $\{$

$(c_{i-1}(t), d_{i}(t))C=(d_{i}(t), c_{i}(t))$ if $2\leq i\leq g-1$ ,
$(d_{j-1}(t), c_{j-1}(t))D=(c_{j-1}(t), d_{j}(t))$ if $2\leq j\leq g-1$ .
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(2) $\{$ $(d_{j-1}^{s}(t),c_{j-1}^{s}(t))Q=(c_{j-1}^{s}(t),d_{j}^{s}(t))(c_{i-1}^{s}(t),d_{i}^{s}(t))D=(d_{i}^{s}(t),c_{i}^{s}(t))$

if $2\leq j\leq g/2$ .
if $2\leq i<g/2$ ,

LEMMA 5.3.

(1) $(d_{g-2}(t), c_{g-2}(t))\cdot(DC^{2}+D^{\prime})=(c_{g-1}(t), d_{g}(t))$ .

(2) $\{$

$(c_{g/2-1}^{s}(t), d_{g/2}^{s}(t))C=(d_{g/2}^{s}(t), c_{g/2}^{s}(t))$ if $g$ is even,

$(d_{(g-1)/2}^{s}(t), c_{(g-1)/2}^{s}(t))D=(c_{(g-1)/2}^{s}(t), d_{(g+1)/2}^{s}(t))$ if $g$ is odd.

PROOF 0F PROPOSITION B. On one hand, it follows from (1) of Lemmas 5.1-5.3 that

$(1, 1)$ $\cdot(C^{2}D+t^{2})(CD)^{g-4}C(DC^{2}+D^{\prime})=(c_{g-1}(t), d_{g}(t))$ .

The second component of the left side is equal to $h_{g}(t)$ ; the second component of

the right side is equal to $\sum_{k}\beta_{g,k}t^{k}$ . Hence, $h_{g}(t)=\sum_{k}\beta_{g,k}t^{k}$ . On the other hand, it
follows from (2) of Lemmas 5.1-5.3 that

$\{$

$(1, 1)$ $\cdot(D^{2}Q+t^{4})(DQ)^{(g/2)-2}C=(d_{g/2}^{s}(t), c_{g/2}^{s}(t))$ if $g$ is even,

$(1, 1)$ $\cdot(D^{2}Q+t^{4})(DQ)^{(g-5)/2}D^{2}=(c_{(g-1)/2}^{s}(t), d_{(g+1)/2}^{s}(t))$ if $g$ is odd.

The second component of the left side is equal to $h_{g}^{s}(t)$ ; the second component of the
right side is equal to $\sum_{k}\beta_{g,k}^{s}t^{k}$ . Hence, $h_{g}^{s}(t)=\sum_{k}\beta_{g,k}^{s}t^{k}$ . $\square $

Instead of computing the number $\alpha_{g,k}$ accurately, we can roughly estimate $\alpha_{g,k}$

from below as follows. Let $\beta_{g,k}^{\prime}$ be the number of the $k$-selections without $d_{1},$ $d_{g}$ . We

see in light of Lemma 5.2 (2) that $\sum_{k}\beta_{g,k}^{\prime}t^{k}$ is equal to the second component of
$(1, 1)$ $(CD)^{g-2}C$ . We actually compute $\sum_{k}\beta_{g,k}^{\prime}t^{k}$ as follows by induction:

$\sum_{k}\beta_{g,k}^{\prime}t^{k}=\sum_{k}\{\left(\begin{array}{ll}g & -l\\ & k\end{array}\right)+\sum_{k^{\prime},l}$ ( $l1$ ) . $\left(k & -2k^{\prime}l+ & l & +l\right)$ . $\left(\begin{array}{ll}g & -l-2\\ & k-k^{\prime}\end{array}\right)\}t^{k}$ .

We thus obtain the following estimate for $\alpha_{g,k}$ :

$\alpha_{g,k}>\frac{1}{2}\left(\begin{array}{ll}g & -l\\ & k\end{array}\right)+\frac{1}{2}\sum_{k^{\prime},l}\left(k^{\prime} & -ll\right)\cdot\left(k & -2k^{\prime}l+l & +l\right)\cdot\left(\begin{array}{ll}g & -l-2\\ & k-k^{\prime}\end{array}\right)$ .

We finally give some of our concrete computations of the polynomial $f_{g}(t)$ and the
resulting estimates for the Betti numbers of $\overline{\mathscr{M}}_{g}$ for genus $g\leq 6$ .

$(g=3)$ $f_{3}(t)=1+2t+5t^{2}+3t^{3}+2t^{4}$ :

$b_{2}=b_{10}=3$ ,

$b_{4}=b_{8}\geq 5$ ,

$b_{6}\geq 3$ .
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$(g=4)$ $f_{4}(t)=1+3t+7t^{2}+9t^{3}+7t^{4}+3t^{5}+t^{6}$ :

$b_{2}=b_{16}=4$ ,

$b_{4}=b_{14}\geq 7$ ,

$b_{6}=b_{12}\geq 9$ ,

$b_{8}=b_{10}\geq 7$ .

$(g=5)$ $f_{5}(t)=1+3t+11t^{2}+16t^{3}+21t^{4}+13t^{5}+8t^{6}+2t^{7}+t^{8}$ :

$b_{2}=b_{22}=4$ ,

$b_{4}=b_{20}\geq 11$ ,

$b_{6}=b_{18}\geq 16$ ,

$b_{8}=b_{16}\geq 21$ ,

$b_{10}=b_{14}\geq 13$ ,

$b_{12}\geq 8$ .

$(g=6)$ $f_{6}(t)=1+4t+14t^{2}+29t^{3}+43t^{4}+43t^{5}$

$+31t^{6}+16t^{7}+7t^{8}+2t^{9}+t^{10}$ :

$b_{2}=b_{28}=5$ ,

$b_{4}=b_{26}\geq 14$ ,

$b_{6}=b_{24}\geq 29$ ,

$b_{8}=b_{22}\geq 43$ ,

$b_{10}=b_{20}\geq 43$ ,

$b_{12}=b_{18}\geq 31$ ,

$b_{14}=b_{16}\geq 16$ .

References

[Ab] W. Abikoff, Topics in the Real Analytic Theory of Teichm\"uller Space, L.N.M.820 Springer-Verlag,
1980.



Higher cycles on the moduli space of stable curves 267

[Ah] L. V. Ahlfors, Some remarks on Teichm\"uller’s space of Riemann surfaces, Ann. of Math. 74 (1961),
171-191.

[As] A. et al. Ash, Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Mass.,
1975.

[B] L. Bers, Spaces of Degenerating Riemann surfaces, Ann. of Math. Studies 79, Princeton Univ.
Press, 1974, pp. 43-55.

[D-M P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math.
I.H.E.S. 36, 75-109 (1969).

[F] C. Faber, Chow rings of moduli spaces of curves, Ann. of Math. 132, 331-449 (1990).
[H] J. Harer, The second homology group of the mapping class group of an orientable surface, Invent.

Math. 72 (1982), 221-239.
[P] D. Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke

Math. J. 34 (1967), 375-386.
[S] I. Satake, On a generalization of the notion of manifold, Proc. N.A.S. 42 (1956), 359-363.
[W] S. Wolpert, On the homology of the moduli space of stable curves, Ann. of Math. 118 (1983), 491-

523.

Kiyoshi OHBA
Department of Mathematics
Faculty of Science
Ochanomizu University
1-1, Otsuka 2, Bunkyo, Tokyo 112-8610
Japan


	\S 1. Introduction and ...
	THEOREM A. ...

	\S 2. Construction of ...
	\S 3. Construction of ...
	\S 4. Proof of linear ...
	THEOREM A. ...

	\S 5. Computation of the ...
	References

