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Abstract. This paper is devoted to the computation of the index of a critical point
for nonlinear operators with strong coefficient growth. These operators are associated
with boundary value problems of the type

Z T p* () D u+ a,(x, 2'u)} = dag(x,u, 2'u), xeQ,
Jo|=1

u(x) =0, xedQ,

where Q = R" is open, bounded and such that dQ e C?, while p: R — R, can have
exponential growth. An index formula is given for such densely defined operators acting
from the Sobolev space Wol‘m(Q) into its dual space. We consider different sets of
assumptions for m > 2 (the case of a real Banach space) and m =2 (the case of a real
Hilbert space). The computation of the index is important for various problems con-
cerning nonlinear equations: solvability, estimates for the number of solutions, branching
of solutions, etc. The results of this paper are based upon recent results of the authors
involving the computation of the index of a critical point for densely defined abstract
operators of type (S;). The latter are based in turn upon a new degree theory for
densely defined (S, )-mappings, which has also been developed by the authors in a recent
paper. Applications of the index formula to the relevant bifurcation problems are also
included.

1. Introduction and preliminaries.

This paper is devoted to the computation of the index of a critical point for
nonlinear elliptic operators with strong coefficient growth. It is well known [3], [10],
that the formula for the index plays a key role in problems of solvability, estimates
for the number of solutions and branching of solutions of nonlinear equations. An
application of this formula to the relevant bifurcation problem is also given herein. The
simplest example of the type of equations included in the applications of this work is the
following:

n

(1.1) Zi{[e”-l—a(x)]%} — Aq(x)u =0,

1 6x,- 6x,~

where a(x) is a positive, bounded and measurable function and g € L,/»(2), for some
n>2.
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In what follows, X is a real separable reflexive Banach space with dual space X *.
The norm of the space X (X *) will be denoted by || - || (]| -]|,). We let R" denote the
Euclidean space of dimension n and set R = R'. For xpe X and r > 0, we let B, (x0)
denote the open ball {xe X : ||x —xo|| <r} of X. We use the same symbol for the
open ball, with center at xy, and radius r, of any other real Banach space. Unless
otherwise stated, N is the set of natural numbers. An operator 4: X > D(A4) — X* is
“bounded” if it maps bounded subsets of its domain onto bounded sets in X*. It is
“compact” if it is strongly continuous and maps bounded subsets of D(A4) onto relatively
compact sets in X*. In what follows, the single term “continuous” means ‘‘strongly
continuous”. We denote by “—” (“—7) strong (weak) convergence. For ue X, he
X*, we denote by <(h,u) the value of the functional / at the element u.

Let o = (ap,...,0,) be a multi-index with nonnegative integer components. We let
lo| =01 +--- 4o, and set y*=py"---y¥ for a multi-index » = (y,...,1,) € R".

Analogously, we define

ol

PP =
o oy 0
ox{"---0xy"

T*u=1{9% : o] =k},
where k 1s a nonnegative integer.

In Sections 1-5, Q denotes a bounded open subset of R" with boundary 6Q e C>.
We consider the boundary value problem

(1.2) Z D> () D u + ay(x, 2'u)} = dag(x,u, 2'u), xeQ,
Joe|=1

(1.3) u(x) =0, xeodQ.

From we see that this problem can be reduced to an operator equation with a
densely defined operator of type (S.) if the following conditions are satisfied.

i) the real-valued functions a,(x,&") (Jo| = 1), ao(x,&), p(u) are defined for x € Q,
E={&:y=1}eR", E={& |yl <1} eR"™'. They are continuous with respect to
& & and u, respectively, while the functions a,(x,¢’),ao(x,&) are measurable with
respect to Xx;

ii) there exist positive numbers vy, v,, u such that, for x € ,&. 4" € R", ¢ € R"™! and
u € R, the following inequalities

(1.4) Y lau(x, &) = anlx (& — ) = il —n'|",
lo|=1
(1.5) > " an(x, €|+ lao(x, €)] < va(f(x) + [&™ + )",
Jor]=1
(1.6) 0 < p(u) s,u{ J(:lp(s)ds +1}

hold, where 2 <m <n, 0 <m; <n/(n—m), f € L,(Q).

DeriNTION 1.1, We say that the pair {4o,up} € R X Wol’m is a “solution” of the
problem ((1.2), (1.3)) if
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(1.7) p* () Z%uy € L, (Q), for |o| =1, m' = %,

and, for every function ¢ e Wol’m(.Q), the integral identity
(1.8) > J {p* ()2 uo + ay(x, D' uo) y 2" ¢ dx + ioJ ao(x, uo, 7' ug) ¢ dx = 0
jri=17€ ¢

holds.
Under the further assumptions

(1.9) ay(x,0) =0, for |a| =1, ap(x,0,0) =0, for xeQ,
we study the bifurcation points for the problem ((1.2), (1.3)).

DerINITION 1.2. We say that a real number Ay is a bifurcation point for the
problem ((1.2), (1.3)) if there exists a sequence {/;,u;} of solutions of the problem ((1.2),
(1.3)) such that

ij — /1(), Uj — 0e Wol’m(Q) and Uj # 0.

We study the bifurcation problem by using our recent development of a new degree
theory for densely defined operators of type (S, ) and an index theory for such
operators in [6].

We recall some definitions connected with densely defined (S )-operators. Consider
an operator 4: X o D(A) — X* with D(A4) dense in some open set Dy < X. We
assume that there exists a subspace L of X such that

(1.10) DyNLcD(A4), L=2X.

DeriniTION 1.3, We say that the operator A4 satisfies Condition (S+)0’ , 1f for every
sequence {u;} = D(A) such that

(1.11) uj — up, limsup {Auj,u;) <0, lim {(Au;,v) =0,
J— o0

J—®©
for some uy € X and every ve L, we have
(1.12) up — ug, up € D(A), Auy=0.

We say that the operator A4 satisfies Condition (S, ), if the operator 4, : D(4) — X*,
Apu = Au — h, satisfies Condition (S+)0’ ; for every he X*. We say that the operator 4
satisfies Condition (S,) if it satisfies Condition (S;), with L = X.

In we introduced the degree Deg(4, D,0) of the operator A4 with respect to an
arbitrary open bounded subset D of X provided that

(1.13) Au #0, for ue D(A)NéD, D < Dy,

and the operator A satisfies the following conditions:
Ay) there exists a subspace L of X satisfying and such that the operator A
satisfies Condition (Sy);;
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A;) for every ve L and every finite-dimensional subspace F of L the mapping
a(F,v) : F — R, defined by a(F,v)(u) = {Au,v), is continuous.

We define a nonlinear operator 4 : W, " (2) > D(4) — [W,""(Q)]", associated with
the problem ((1.2), (1.3)), by

(1.14) gy = 3 | (W7 0+ a7} 7" (x)
la|=1" €
for ue 2(A4), ¢e WOI’m(Q), where
(1.15)  D(4) = {u e WS™(Q) : pP2(W)T*u € Ly (Q), for |o] = 1,m' = %}

From in we obtain the following result.

THEOREM 1.1. Assume that Conditions 1), ii) are satisfied. Then the operator A,
defined by (1.14), satisfies Condition (S;), with respect to the space L = Ci°(Q).

We introduce a nonlinear operator C: W,"(Q) — [W,"(2)]* by the equality

(1.16) (Cu, > = J ao(x, u, Z1u)g(x) dx.

Q
Using Conditions i), ii) and the compactness of the embedding WOL’”(Q) < L,(Q), we
obtain that the operator C is compact. Then [Theorem 1.1 implies that the operator
A+ /C satisfies Condition (S,), for every A. Therefore, for every open and bounded
set D < WOI””(Q), we can define Deg(4 + 2C, D,0) if

Au+ ACu #0, for ue D(A)NaD,

where Deg is the degree function introduced in [5].

Using the degree of the operator 4 + AC we can define and evaluate the index of a
critical point of it. This index computation allows us to study the bifurcation problem
by using a topological approach.

In Section 2 we recall the conditions of the result in [6] concerning the computation
of the index of a critical point for abstract operators. In that section we also formulate
a result about the index of a critical point for the operator A which is associated with
the nonlinear elliptic boundary value problem. In Sections 2, 4 and 5 we consider the
case of the Banach space W, (Q), m > 2.

The index theorem for nonlinear elliptic operators is proved in Section 4. This
proof is essentially based upon the regularity of solutions of linear and nonlinear elliptic
equations. Some auxiliary results connected with the regularity of solutions are given in
Section 3.

In Section 5 we establish necessary conditions for the existence of a bifurcation point
for the problem ((1.2), (1.3)) (Theorem 5.2). We also establish sufficient conditions in
terms of the degree function (Theorem 5.1) and the characteristic values of some linear
operator connected with a special linearization of the unbounded operator A4 ([Theoreml|
5.3). We show that every characteristic value of odd multiplicity is a point of
bifurcation.
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In the case of the Hilbert space WOI’2 (2) we establish in Sections 6, 7 analogous
results with weaker assumptions about the smoothness of the coefficients of the equation
1.2) than those of Section 5. In the particular case of the problem ((1.1), (1.3)) the
associated linear equation is

(1.17) > {1 +a(x))|2°u} — ig(x)u=0, xeQ.
Joe|=1

Denote by 4;,i =1,2,..., the eigenvalues of the problem ((1.17), (1.3)) and let v(4;) be
the multiplicity of the eigenvalue 4;. If Ay is not an eigenvalue of the problem ((1.17),
1.3)) then the index Ind(A4 + 4oC,0) of the operator A + 4oC with respect to zero is
defined by

(1.18) Ind(4 + 4C,0) = [ (~1)"™),

/‘L,‘</l()

where the product on the right-hand side of is taken over all A; satisfying the
inequality 4; < Ag. The operators 4, C in are defined for the equation as in
the case of the equalities (1.14), [(1.16).

Formula implies that 4; is a bifurcation point of the problem ((1.1), (1.3)) if
v(4;) is an odd number.

Bifurcation problems have been studied with different assumptions than ours by
many authors. The reader is referred, for example, to [2], [3], [4]. [6], [10], [11], [12].
where conditions for the existence of bifurcation points have been established via
linearization or asymptotic behavior of nonlinear boundary value problems. All these
results involve nonlinear operators which are defined everywhere on some neighborhood
of the critical point. Such assumptions generate corresponding growth conditions for
the coefficients of the relevant differential equations. We are not aware of studies of
bifurcation problems with strong coefficient growth.

2. Index of a critical point for m > 2.

We first recall some definitions involving the index of a critical point of densely
defined operators. We also state the theorem for the computation of the index from [6].
Let 4: X o D(4) — X* satisty Conditions A;), A4,) of Section 1.

DEerFINITION 2.1. A point uy € D(A) N Dy is called a “critical point” of the operator
A if Aup =0. A critical point u is called ““isolated” if there exists a ball B,(uy) < X
which does not contain any other critical point of A.

DEerINITION 2.2, The number Ind(A4,u), defined by
(2.1) Ind(4,up) = lim Deg(A4, B,(up),0)
p— 0

is called the “index” of the isolated critical point #y of the operator A.

We formulate below a particular case of the general theorem from [6] which
corresponds to the case of a bounded operator of linearization. We may assume that
Uy = 0.
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We first introduce some classes of operators. We consider a linear operator A4’ :
X — X satisfying the following condition:

A') the equation 4’'u = 0 has only the zero solution. There exists a compact linear
operator I": X — X* such that

(2.2) A"+ IMu,uy >0, forueX, u#0,

and the operator T = (4’ + ') 'I": X — X is well defined and compact.
We consider an operator A4, : Dy — X* which satisfies the following condition:
Ap) Ao is nonlinear, bounded, satisfies Conditions A4;), A,) and is such that

(2.3) 0, asu—0, A0)=0.

—_—
[Jul
We assume that there exist a linear operator A’ : X — X satisfying Condition 4')
and a nonlinear operator Ay: Dy — X* satisfying Condition A4j) and such that the
following condition holds:
) there exists a positive number ¢ such that

Au— A’
(2.4) %40 as u—0, ueZ,
where
(2.5) Z = |) {ueD(A): tAu+ (1 — t)(Aou+ A'u) = 0,0 < ||ul| < &}

tel0,1]

We note that for the case of a bounded operator A, which is Fréchet differentiable at 0,
Condition ) is satisfied with 4" = 4’(0), where A’(0) is the Fréchet derivative of A4 at
0. In the general case of an unbounded, or non-differentiable, operator 4 Condition w)
introduces a new and workable linear approximation to the operator A.

We denote by F the direct sum of all invariant subspaces of the operator 7, from
Condition A'), corresponding to the characteristic values of it lying in the interval
(0,1). Let R be the closure of the direct sum of all those invariant subspaces of the
operator T which are not included in F. Then F and R are invariant subspaces of the
operator T, F is finite-dimensional and the splitting

(2.6) X=F+R
holds true. We introduce a projection /7 : X — F as follows:
(2.7) I(f+r)=f, for feF,reR
THEOREM 2.1 [6]. Let A: X o D(A) — X* satisfy Conditions Ay), A) and be such
that 0 € D(A)N Dy, A(0) =0 and
(2.8) CAu,u — vy = —c(v),

for every u, ve L with ||u|| < ro, where ry, c(v) are positive numbers with c(v) depending
only on v. Assume that there exist operators Ay: Dy — X*, A" : X — X* satisfying
Ay), A'), w), and such that the following conditions hold:
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1) the operator II(A' +T')"" : (A' + I''X — X is bounded, where the operators II, T
are defined by (2.7) and Condition A’), respectively;
2) the weak closure of the set

(2.9) agz{v:ﬁ:ueZ&fUZ:}

does not contain zero for a sufficiently small positive &, where Z! is defined by (2.5) and

(2.10) Z!'= |J {ueX:tdu+ Au=0,0 < |lu|| <e}.
te0,1]

Then zero is an isolated critical point of the operator A and its index is equal to (—1)",
where v is the sum of the multiplicities of the characteristic values of the operator T lying
in the interval (0,1).

We are now going to formulate our result about the index of the critical point of the
operator A : Wy "™ (Q) o D(A) — [W,"(Q)]" defined by

(2.11) (Au, ¢ = J PP Tu- D+ ay(x,u, 7'w) 7% p dx,

Q |a|=1 o] <1

where D(A) is defined by (1.15).

We assume that the following conditions are satisfied:

p) p: R — R is continuously differentiable on R and satisfies [1.6);

ar) the real valued functions a,(x,¢), |« <1, are defined for xe 2, ¢e R™' and
are continuously differentiable with respect to & moreover, a,(x,0) =0 for xe Q,
o < 1

ay) there exist positive constants vy, v, such that for all xe Q, &e R™"!, 5’ e R" the
inequalities

(2.12) ST an(x, Emp = i1+ E)" '),
j2/=1=1
and
213) D 1aggCe O+ ED 3D  fan(x, )I(1+ 1) < wa(1 +1E])”
lo, [B] <1 o<1 i=1

hold with some integer m from the interval (2,n). In [2.12), (2.13)

0 0
2.14 o y = Az o\ A G ), oaf — 7 o\ Ay G )y 5 —1; ':17"'7'
RH) gl = ). = e LA L =

We introduce a linear operator A’ : W, "(Q) — [W, " (2)]* by
0 a
(2.15) Audy= > ljg[p%om + %) (WP d.
o, |Bl <

where ai%) (X) = a,p(x,0), dyp =1 for |a| = |f| =1 and « = f, and J,5 = 0 for the rest of

the values of «,f.
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Using Condition a;) we have the following estimate for u € Wol’m(Q):
(2.16) (A'uyuy > J (112" u* = ca|ul*) dx,
Q

where the positive constants c¢j,c, depend only on vy,v, and pu.
We define an operator I": W,""(Q) — [W,"(Q)]" by

(2.17) (Tu, ¢ = ngu<x>¢<x> &, y=c +o,

where c¢j,c; are the constants from (2.16). From [2.16) and [2.17) we have

(2.18) (A" + Du,ud > ¢ JQ[|@1L42 +ul*dx, ue W, "(Q).

Using regularity results for linear elliptic equations (see [Theorem 3.2 in Section 3)
we will establish that the operator

(2.19) T=A"+I)"T:Wy™Q) — W, "™(R)

is well defined and compact.
We will formulate the index theorem in terms of the characteristic values of the
equation

(2.20) ST (=020 + ) (0] 2Pu} + dyu = 0.
A<

We say that the pair {4, u} € R X Wol’m(Q) is a “solution” of the problem ((2.20),
13) if A'uy + Aol uy = 0.

DEerINITION 2.3. A number Jy € R is a “characteristic value” of the problem ((2.20),
(1.3)) if there exists a solution {Ag,up} of this problem with uy # 0.

It is clear that Ay is a characteristic value of the problem ((2.20), (1.3)) if and only if
1 — 4o is a characteristic value of the operator 7.

DerINTION 2.4, The “multiplicity” of the characteristic value 4y of the problem
((2.20), (1.3)) is the multiplicity of the characteristic value 1 — 4y of the operator T
defined by (2.19).

REMARK 2.1. If the equality

(2.21) A'u, ¢y = (A", u)

1s satisfied for every u, ¢ e Wol’m(Q), then the multiplicity of the characteristic value A
of the problem ((2.20), (1.3)) coincides with the dimension of the space of solutions of
the problem ((2.20), (1.3)) for A = J.

THEOREM 2.2.  Assume that Conditions p), a1), ay) are satisfied, ag%) e CY(Q), for

|| = || =1, and the equation
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(2.22) ST (=DM G [p2(0)0, + aly (x)]ZPu} = 0

la, 1Bl <1

has only the zero solution in Wol’m(Q). Then the index of the operator A defined by
(2.11) is computed by the formula

(2.23) Ind(4,0) = (-1)",
where v is the sum of the multiplicities of the characteristic values of the problem ((2.20),
(1.3)) lying in the interval (0,1).

The proof of this theorem is given in Section 4, where we verify that the operator 4
defined by (2.11) satisfies all the conditions of [Theorem 2.1l.

3. Auxiliary regularity results.

In this section we state some auxiliary results about the regularity of solutions of
linear and nonlinear elliptic equations.

LEMMA 3.1. Let ge W' (Q)N L (Q), 1 < p < n, be nonnegative and assume that
for every number r >0 the inequality

3.1) J, o129 v < et 1) | o)

holds for some positive number g, where the constant ¢ is independent of r. Then the
estimate

(3.2) esssup{g(x) : x e Q} < M, {Jg[g(x)]"p/("_p) dx}

holds, where the constant M, depends only on n, p, q, ¢, Q.

The proof of this lemma can be found in [11, Chapter 8§, Section 1].
We now formulate a regularity result for the solutions of the differential equation

(3.3) —Z P°*{p*(u)D*u} + Z W 2%y (x,u,2'u) =0, xeQ.
er|=1 lo] <1

We understand that a solution u € D(A) of Equation (3.3) is in the sense of an integral
identity analogous to that of [1.8), where D(A4) is defined by (1.15).

THEOREM 3.1.  Assume that Conditions p), a1), ay) are satisfied and let uy € D(A) be
a solution of the equation (3.3). Then

(3.4) up € Wr(Q)N C2(Q),
for some 0 € (0,1), and the estimate

(3:5) o]l 220y + [luoll c1.0(g) < M2

holds with a constant M depending only on vy, v, ,m,n,Q and the norm of the function
up € Wy "(Q).
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The assertions of this theorem follow from the results of Chapter 4, Sections 3-7, of

the monograph [8].
We are also going to use a result concerning the regularity of solutions of linear

elliptic equations. This result is for the equation

(3.6) Yo Do a2} = Y (-7 f(x),

|, 1Bl <1 o] <1

with coefficients a,s satisfying the inequalities

(3.7) Y ap(x)&g =y g,
lof=If1=1 j2/=1

(3.8) max |a,p(x)| < v, o, 1Bl < 1,
xeQ

for xe Q, &, € R and positive constants v, v(2).

THEOREM 3.2.  Assume that a,p € C(Q), for |o| = || = 1, and the conditions (3.7) and
(3.8) are satisfied. Assume that the equation

(3.9) > ()" ay(x)7Pu} =0

lod, 181 <1
has only the zero solution in WOI’Z(Q). Then for every p > 1 and f, € L,(Q), |o| <1, the
equation (3.6) has a unique solution u € Wol’p (2) and the following estimate holds:

(3.10) > J |2 u(x)|" dx < M3 > J £, (x)|? dx,

o <1 o] <1

where the constant M depends only on n, p,v\V) v?) Q and the moduli of continuity of the
functions ayg, o = |f] = 1.

The assertions of this theorem follow from (see also [9, Theorem 6.21]).

4. Proof of the index theorem for m > 2.

We need to show that all the assumptions of [Theorem 2.1 are satisfied for the
operator 4 which is defined in (2.11).

We denote the norms of the spaces W, " (2), L.(Q), [W, " (2)]" by || - OV |
|11}, respectively. Choosing Dy = W,"(RQ), L= CP(Q) we see that Condition
(1.10) is clearly satisfied.

The proof of Condition A4;) for the operator A is contained in [S]. The condition
Ay) follows immediately from the assumptions p), a;). Let us prove the inequality
(2.8).

LemMA 4.1. Assume that the conditions of Theorem 2.2 are satisfied. Then the
inequality (2.8) holds for u,ve C°(Q2), |lull; , <1, and the operator A defined in
(2.11).
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Proor. Taking into account the condition a;) we need to prove only the inequality
(4.1) 3 J P2 T UG (4 — v) dx > — (1),
|a|=1"2

where ¢’(v) depends only on v and u(x), v(x) satisfy the conditions of the lemma. Using
the condition p), we estimate the left-hand side of as follows:

(4.2) Z JQ P ()2 uD* (u — v) dx > %JQ PP W) 2 u|* dx — " (v) JQ p*(u) dx,

=1

where

Let
(4.3) ) = | ots)as
By the embedding theorem, we have
5 p/2 n
(44) [oracsal | pugual . p=2
Q Q n— 2

where ¢y depends only on n.
For a function u e Cy°(22) and any positive number N we define

(4.5) Enx(u) ={xeQ:|u(x)| > N}.
From |[jul|; ,, <1 we have

1
(4.6) meas Ey(u) < N

We estimate the second integral in the right-hand side of (4.2) by using [1.6), [4.4), (4.6)
and Holder’s inequality. We set py = max{p(s) : |s| < N} to obtain

(4.7) JQ P2(1) dx LN(M) P2 () dx + JQ\EN@ P2 () dx

:| (n—=2)/n

< 2(p* + p3) meas Q + 244 U |5(u)|? dx {meas Ey (u)}*/"
Q

B 1 2/}’1
< 2(4% + p}) meas Q + 242" (Nm> J P2 ()| 2 ul? dx.
Q

Inequality (2.8) follows now from (4.2) and (4.7) with N defined by

2
4¢" (v) 2, n=2)/n (l> M/n—l

This completes the proof of [Lemma 4.1. O
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We define the operator Ay : Wol’m(Q) — [Wol’m(Q)]* by the equality

(4.8) (Ao, ¢y = JQ 12" u|" 2D uD ™ dx.

lo]=1
LEMMA 4.2. The operator Ay defined by (4.8) satisfies Condition Ay) of Section 2.
ProoF. From we obtain

m—1
I,m

1 4oully ,, = llull

and, consequently, Condition (2.3) is satisfied. It is well known that the operator A4 is
continuous and satisfies Condition (S, ) (see, e.g., [11, Chapter 1, Theorem 2.1]. This
completes the proof. O

LemMA 4.3.  Assume that the conditions of Theorem 2.2 are satisfied. Then the
operator A', defined by (2.15), satisfies Condition A') of Section 2.

Proor. Taking into account the fact that the equation has only the zero
solution in W,'*(2) and [Theorem 3.2, we obtain that the equation 4’u =0 has also
only the zero solution. The operator I', which satisfies the relevant assumptions in
Condition A’), is defined now by [2.17). The compactness of this operator follows from
the compactness of the embedding WO1 ?(Q) = L,(2). The inequality (2.2) is a con-
sequence of [2.18).

We need to prove only the fact that the operator T = (A’ +I')"'T": Wol’m(Q) -
W, "(Q) is well defined and compact. For ve W,"(Q), we define ue W, (Q) as a
solution of the equation

o 0
(4.9) D (DM [p(0)0 + oy (X)) 2 u} + yu = .
|, 1Bl <1
From we have the uniqueness of u(x) and the a priori estimate
(4.10) ully < Ki[Jol],

where the constant K; is independent of v. Taking into account the definition of
the operators A’, I', we obtain (4" + I')u = I'v. This means that u = Tv. We have
established that the operator T is defined on the space WO1 "(Q). The compactness of T
follows from the estimate and the compactness of the embedding W,"(Q) <
L,,(Q). The proof is complete. O

LemMA 4.4. Assume that the conditions of Theorem 2.2 are satisfied. Then the
operators A, A', Ay, defined by (2.11), (2.15) and (4.8), respectively, satisfy Condition ®) of
Section 2.

Proor. We will prove that the set Z/, defined in [2.5), is empty for sufficiently
small ¢. Assume that the contrary is true. Then Z, # ¥ for every ¢ > 0. Thus, there
exist sequences {¢},{u;} such that

1
{Zj}c [071]5 {uj} CD<A)v 0< “uj”l,m<}’ L=
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and
(4.11) tiAuy + (1 — 1) (Aou; + A'uy) = 0.

This means that the function u; € Wol’m(Q) is the solution of the equation

(4.12) "2 p w2 u + Y (1) D%a; ,(x,u, 7'u) = 0,

|e|=1 lo] <1

where

p; () = p* (u) + (1 = )p*(0),

(4.13)
(%, &) = iy (x, &) + (1 — ) [&"2E,+ Y ) ()&
1Bl <1

and & =&, for |u| =1, & =0 for « = 0. It is easy to check that the functions p;(u),
aj .(x, &) satisfy Conditions p), a1), a»), with some positive constants vy, v, i, instead of
vi, v, 4, respectively. These constants vy, v,, i are independent of j. Thus, by
3.1, we have the a priori estimate

(414) ||ujHC1,,s(_Q) < M,

where the positive numbers J, M are independent of j. By the compactness of the
embedding C'°(Q) = C'(Q) and |[|u, ,, — o we get

We rewrite g ,(x,¢) in the form

a./‘,oc(%é) = Z a(%)(x,f)fﬂ + (1 _ lj)“f/”n_zfolw
1Bl <1

where

‘ 1
o 5.8) =1 | aptonseyds + (1= ghaly ()

with a,p(x, &) defined in |2.14). By the definition of a solution of the equation (4.12) we
have the following integral identity for u;(x):

(4.16) 3 j (P2 )0+ 12" wy|" 20, + aiy) (x, 3, ') 21,7 dox = 0
o, 1Bl <174

for an arbitrary ¢ € Wol’m(Q) and the same J,; as in (2.15). From with ¢(x) =
uj(x), the estimate and Conditions [1.6), [2.12], (2.13) we obtain the estimate

(4.17) ]y 2 < el

with a positive constant ¢ independent of ;.
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The sequence v;(x) = u;j(x)/|ujll,’ is bounded in W'"“2(Q). By passing to a
subsequence, if necessary, we may assume that v;(x) converges to some function vy(x)
weakly in WOI’Z(Q) and strongly in L,(Q). Since |[vj||, =1, we have vy # 0.

Dividing by |luj||, and then taking the limit as j — oo we obtain by virtue of

| 12003+ a1 07 par =0, ge wim (@)
o, [f] <1742

The last equality is obviously true for every ¢ € WOI’Z(Q), which establishes the fact that
vo(x) is a solution of the equation in Wol’z(Q). Since vy # 0, we obtain a

contradiction with the assumption of [Theorem 2.2, Consequently, Z/ = & for a
sufficiently small ¢ and the assertion of has been proved. O

We consider the splitting
(4.18) W,"(Q)=F+R

as we did in for the operator T defined by [2.19). Let IT be the projection of
W, " (2) onto F associated with the splitting [4.18].

LemMA 4.5. Assume that the conditions of Theorem 2.2 are satisfied. Then the
operator TI(A'+ )" : (A" + )W, " (Q) — W, ""(Q) is bounded.

Proor. Let Ay,...,4; be the characteristic values of the operator 7 defined by
(2.19), and let v; be the multiplicity of the characteristic value ;. Define, for the
natural number N, the space

(4.19) Fi(N)={ue W,"(Q): (I - 4T)"u=0}.

It is well known that F;(N) is a finite-dimensional subspace of W, () and there
exists a number N; such that

(420) E(N) = E(Nz); for N > N[, dlmF,(Nl) =V;.

Now, the space F corresponding to the operator 7 is the direct sum of the spaces F;(;),
i=1,...,1, and F can be defined (see [13, p. 317]) by

(4.21) F={ueWw,"™(Q):(I-Tu=0}
where
(4.22) f[ 1—4T)N

Analogously, the space R from the splitting can be given by
(4.23) R={(1-Tu:uew,"(Q)},

where the operator T is defined by [4.22).



Index of a critical point for nonlinear elliptic operators 123

Let f;(x),j =1,...,v, be a basis for the space F. The projection I7 : WOL’”(Q) —F
can be defined by

(4.24) Mu =", upfix),
i=1

where (; e [W,""(Q)]" and satisfies
(425) <Cj7fi>:5ija <Cj7r>:O>

for i,j=1,...,v, and any function r(x) from R. In o0; 1s the Kronecker delta
symbol.

Using the representation of a functional from [WOI’"(Q)]* we can find functions
Zy,j € Ly (2), such that, for |«| =1 and m’' =m/(m — 1), we have

(4.26) Gpy=3 JQ (D) dx,  de WE(Q).
o] =1

Define a function v e Wol’m' as the solution of the equation

(4.27) Avy(x) =Y D7z, 4(x),
Joe|=1

where A4 is the Laplace operator. The existence of such a function v;(x) follows from

Mheorem 3.2, From [4.26], we obtain
(4.28) Gty =3 jg Ty ()T ) dx, pe WiM(Q).

lo|=1

We will prove that for every p > 1 we have

(4.29) v € W, P(Q).

Using and the second equality in we obtain

(4.30) 3 J Ty DY) dx = 3 J 9%0,(x) 2 Tp(x) db,
|a|=1" la|=17 €

for every ¢ € W, "(Q).
Inclusion (4.29) is certainly true for p =m’. Let us assume that it is true for some
p=p; =m'. Consider the functional

(431) b =3 | 7o) Tox)ax,
|e|=1
for ¢ € C(L2). By Hoélder’s inequality and we have the estimate
a / D1
(4.32) (@) < allTelly . P o1

for some constant ¢; independent of ¢.
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As in (4.10), we have the estimate

with a constant ¢, independent of ¢. From [4.22), (4.33) we have the analogous
inequality for the operator T:

(4.34) 1791l 0 < sl .
Using the estimates (4.32), we obtain
(4.35) 11(#)] < callll s

which says that the functional I(¢) can be extended to a continuous functional I :
L, (2) — R. From the representation of such a functional follows the existence of a
function #; € £, (£2) such that

(4.36) M@:L@mwmw,

for e L, (Q).
Froml, (4.31) and we obtain that v;(x) is a solution to the equation
(4.37) —Avj(x) = hj(x).

Thus, from (4.29), (4.37) and a priori estimates for solutions of linear elliptic equations
we have v; e W27 (Q). By the embedding theorem,

(4.38) v e W, 7(Q),

where p is an arbitrary number if p; > n and p = p;n/(n — p;) if p; <n. Starting from
with p = m’ and using we can establish after finitely many steps that the
final value of p satisfies p > n. Thus, holds for every p > 1.

We are now able to estimate the operator I1(A’ + I')"'. Let g= (A’ + I')w be a
functional in [W, " (Q)]*, for some we W,"(Q). Using the representation of the
functional g we can define functions g, € L,/(2), |«| =1, such that

(4.39) Gy =3 JQ ()PP dx, pe WE(Q),
lo|=1

and

(4.40) > N gallr < esliglly s

|o=1

where cs is some positive constant independent of g. Using [4.39), (4.40) and [Theorem
3.2 we have the estimate

(4.41) bwlly e < Collglly

where the function w e W, " () satisfies the equation (4’ + I')w = g.
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Using (4.24), we obtain

A"+ 1) g—ZZJ D*0j(x)2"w(x) dx - f;(x).

J=1al=1
From with p =m, (4.41) and Holder’s inequality we get the estimate
-1 *
(A" + 1) g1y 0 < crllglly s

where the positive constant ¢; is independent of g. This ends the proof. O]

LEMMA 4.6. Assume that the conditions of Theorem 2.2 are satisfied. Then there
exists a positive number ¢ such that for t € |0,1] the equation

(4.42) 0> 72" "9}

|| =1

= Y (=D)MDH[pP(0)04s + aly) ()] ZPu} = 0

lad, [B<1
has only the zero solution in the ball B;(0).

Proor. Denote by N;(¢) the set of solutions of in the ball B;(0) and let N| =
U ze[o.l]Nl( ). At first, we are going to establish a priori estimates for an arbitrary
ue Ny. There exists a constant M® independent of u such that

(4.43) max |u(x)| < MY, ueNy.
xeQ

Taking into account the fact that the equation [(4.42) with ¢ =0 has only the zero
solution in B;(0) we consider heretofore only the case where u € N;(¢) for t > 0. By

ue W22(Q)N CH9(Q) with 6 > 0.
In the integral identity

m— o o 0 o
(444) JQ l|z|:l |@1u| 2@ ugy ¢—|—| %; l[pz(o)édﬁ + aéﬁ)(x)]@/fu@ ¢ dx =0,
o= o, <

which is valid for ¢ € Wol’m(Q), we let ¢ be the test function

$(x) = [1+ Ju(x)]]"u(x),

where r is an arbitrary positive number. After some standard calculations we obtain
the inequality

Jg{t@lu\’“ +12 U} + Ju(x)]) dx < es(1 +7) JQ[I + ()] dx,

and the estimate from it and with ¢ =0. By ¢;,j=38,..., we denote
constants independent of the function u.
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Now, we will show the estimate

(4.45) max |2'u(x)| < MY wue Ny,

xeQ
under the assumption that u € N;(¢),z > 0. As in the proof of Lemma 2.1 [8, Chapter
6], we can establish the estimate

(4.46) max |2 'u(x)| < M', ue Ny,
xeo

with a constant M’ independent of u.
Letting in (4.44) ¢(x) = (0/0x;)¥(x), with € C;°(£2), we obtain the equality

(4.47) L {z > % (12 )" > 5" u) D™y

|o=1

0 0 0\
+—2}aﬂwwmww$mmuww}wzu
lof, |Bl<1 77
It is easy to verify that this equality is also true for an arbitrary function € WO1 2(Q)
We will now obtain an L,-estimate for the second derivatives of u € Ni. Namely,
we are going to establish the following inequality

(4.48) L[ﬂ@lul’”‘z 1|2 %P2 (x) dx

< | (191" 0|2 P00 + |99 d

Q

for |¢| =2 and some function ¢ € C*(Q). Letting y(x) = (8/0x;)u(x)p3(x), with ¢, €
Cy(Q), in we obtain after a simple calculation the inequality with ¢(x) =
$o(x). If in some neighborhood % (Xx) of a point X € 02 the equation of % (X)NdQ is
given by the equality x, = 0, then we let in Y (x) = (0/0x;)u(x)d(x), with i < n,
¢ e CF((x)), to obtain the inequality with |a| =2, o, # 2, ¢(x) = #(x). Using
this estimate and the equation we get the inequality with |o| =2, o, = 2,
¢(x) = ¢(x). Passing to local coordinates near the boundary 02 and choosing a
corresponding partition of unity, we derive the estimate with ¢(x) = 1. Thus, we
have proved the inequality

(4.49) J 12 " + 1)) 9% dx < MP, ue Ny,
Q

where the constant M® > 0 is independent of u, .
We define the function w as follows:

(4.50) w(x) = max{|Z"u(x)|* — (M')?,0},
where M’ is the number from the estimate (4.46), and let in

r+1
au(x)7 where w,(s) = > , 1>0.
axi

Y (x) = or(w(x))
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After some standard calculations we derive the inequality

(4.51) JQ{Z|@1u(x)|'"_2 + 1o, (w(x))|22u(x)|* dx

< Cloj {o (w(x)(12"ul® + 1) + & (w(x)(|2"ul* + 1)} dx,
Q
where /(s) = (d/ds)w,(s). Define

w(x) = max{\/w(x),1}, E={xeQ;w(x)>1}

and note that the following estimates hold:
(4.52) o, (w(x)) = en|Z'u(x)[”, wx) = en|2'u(x)]’, xek,

|2 u(x)] < enwlx), @, (w(x)) < enw(x)]”,
(4.53)
o'/(w(x)) < cn(r+ D))" 2, xeQ.

r

Using the inequalities (4.51)—(4.53) we deduce

(4.54) Jg[wx)f"@l ()| dx = jE[wx)]z"@l ()| d
<cp JE w0, (w(x))|Zu(x)|* dx

< en(r+1) L[W(x)]zr+2 dx.

From the estimates [4.49), (4.53) we have the following inequality:
(4.55) J |2 (X)) dx < cmj 122u(x)|* dx < c1aM®@.
Q Q

The estimate follows immediately from [4.54), and Lemma 3.1.

Let us now show that N, = {0} for sufficiently small ¢&. Assume that this is not
true. Then there exist sequences {#}, {u;j(x)} such that u; € Ni(t;),u; # 0, [|w]|, ,, — O.
From (4.44) with = ¢;, u(x) = u;(x), ¢(x) = u;(x) we obtain the estimate |

(4.56) willy 2 < crsllull

with a constant c;s independent of ;.

Taking into account we may assume that the sequence v;(x) = u;(x)/||u,
converges weakly in Wol’2 (2) to some function vy(x) such that vy # 0. Dividing the
equality (4.44), with ¢ = t;,u(x) = u;(x), by ||uj||, and passing to the limit at j — oo we

obtain by virtue of [4.45)

|| 1700 + aff 17 w07 95 dx =0, pe Wy (@)
lof, 18] <1
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This contradicts with our assumptions of and completes the proof of the
lemma.

We have verified that the operator 4, defined by (2.11) satisfies all the assumptions

of Mheorem 2.1. Consequently, (2.23) follows from [Theorem 2.1. This is the end of
the proof of [Theorem 2.2, O

5. Bifurcation of solutions for m > 2.

We consider in this section the bifurcation of solutions of the problem ((1.2), (1.3))
for the case of the Banach space WOI’m(Q),m > 2. We first assume that the functions
p(u), a,(x,&") (la| = 1), ao(x, &) satisfy (1.9) and Conditions i), ii) of Section 1. Let the
operators A, C be defined by (1.14), (1.16) and let /4y be some real number. We assume
that, for some Jy > 0, zero is an isolated critical point of the operator 4 + AC for every
A from the interval (49 —dg, Ao +3Jp). If this is not the case, then 4y would be a
bifurcation point. Taking into account [Iheorem 1.1 and [Definition 2.2l we can define
the index Ind(A + AC,0) of the operator A4 + AC at zero for |41 — Ag| < Jo.

Let

(5.1) i+ () = limsup Ind(4 + AC,0), iT (i) = ljm}irif Ind(4 + 4C,0).
P s
THEOREM 5.1.  Assume that Conditions 1), ii) of Section 1 and (1.9) are satisfied and
assume that at least two of the numbers

(52) 1‘7(10)7 z+(}~0)7 l:—uv())? l:-l-(j*O)? Ind(A + j*()Ca O)

are distinct for the operators A, C defined by (1.14), (1.16), respectively. Then 1y is a
bifurcation point of the problem ((1.2), (1.3)).

The assertion of follows immediately from of the paper
[6].

Now, we will establish a necessary condition for the bifurcation point in terms of the
linearized boundary value problem. We assume that the coefficients of the equation
1.2) satisfy Conditions p), a;), a;) of Section 2 and introduce the operators A':
WE(@) — [WEM(@)), € W (@) — W (@) by

(5.3) (A'u, ¢ = u;ﬁ:l Jg[pz(())é“/; + () 2P g
(5.4) (Clu, ¢y = a'zd JQ al) ()2 ug(x) dx,
where

G0 = aglx0). ap(vd) = 5z a(vd)

O, = 1 for o= f and J,p = 0 otherwise.
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From (2.12) we have
(5.5) A'wuy = wollul),, ue Wy"(Q),

where v is a positive constant independent of u. As in the proof of Lemma 4.3, we see
that the operator

(5.6) T=—4N"'C: W) — W "(Q)

is well defined and compact.
We introduce the linearized equation

(5.7) ST P00+ dly) ()] ZPu} — 1Y ay) ()T, xeQ,
lo=| pl=1 o <1

and define a pair {4, uo} € R x W,"(2) to be a “solution” of the problem ((5.7), (1.3))
if A'ug+ AC'uy =0.

DEFINITION 5.1. A number Ay € R is said to be a ‘‘characteristic value’ of the
problem ((5.7), (1.3)) if there exists a solution {Ag,uy} of this problem such that u, # 0.

DerINTION 5.2, The “multiplicity” of the characteristic value 4y of the problem
((5.7), (1.3)) is the multiplicity of the characteristic value 4y of the operator 7 defined by
(5.6).

We note that the characteristic values of the problem ((5.7), (1.3)) and the operator
T coincide.

LEMMA 5.1. Assume that the coefficients p(u), ay(x,&") (Ja| =1), ao(x,&) of the
equation (1.2) satisfy the relevant conditions p), ay), az) of Section 2. Let [A,7;] be a
closed interval which does not contain any characteristic values of the problem ((5.7),
(1.3)). Then there exists a positive number &, depending only on Ay, Jy, such that for every
L € [A1,42] the boundary value problem ((1.2), (1.3)) has only the zero solution in the ball
B.(0) W, "™(Q).

The proof of this lemma is similar to that of [Lemma 4.4 It is therefore omitted.

THEOREM 5.2. Assume that Conditions p), ay), a;) of Section 2 are satisfied by the
coefficients of the equation (1.2). A necessary condition that Jy be a bifurcation point of
the problem ((1.2), (1.3)) is that Ay is a characteristic value of the problem ((5.7), (1.3)).

PrOOF. Assume that Jy is not a characteristic value of the problem ((5.7), (1.3)).
We need to show that 4y is not a bifurcation point of the problem ((1.2), (1.3)). We
know that the characteristic values of the problem ([5.7), [1.3]) and the operator T
coincide and that the set of characteristic values of the compact operator 7 is discrete.
Consequently, there exists d; > 0 such that some interval (49 —d1, 49 + 1) contains no
characteristic values of the problem ((1.2), (1.3)). Thus, by [Lemma 3.1, there is some
ball B, (0) Wol"m(.Q) which contains only the zero solution of the boundary value
problem ((1.2), (1.3)) for |4 — 49| <J;. This says that 4y is not a bifurcation point of
the problem ((1.2), (1.3)) and completes the proof of Mheorem 3.2. H
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THEOREM 5.3. Assume that the conditions of Theorem 5.2 are satisfied and let i
be a characteristic value of the problem ((5.7), (1.3)) of odd multiplicity. Then Ay is a
bifurcation point of the problem ((1.2), (1.3)).

ProOF. Choose a positive number J; such that the interval (g — 1,40 + 1)
contains only one characteristic value of the operator T which is defined by [5.6). Let
J—, A4 be arbitrary numbers from the intervals (1o —di, do), (Lo, 4o + 1), respectively.
Then the operators 4 = A+ 41_C, A, = A+ A, C satisfy all the assumptions on A4 of
Theorem 2.2 Thus, by that theorem,

(5.8) Ind(4_,0) = (=1)"~, Ind(44,0) = (=1)",

where v, is the sum of the multiplicities of the characteristic values of the operator 7" on
the interval (0,44). If vy is the multiplicity of the characteristic value Ay, then v, =
v_ + vy and, by the condition of the theorem, we have from (5.8)

(5.9) Ind(A + 4_C,0) = —Ind(4 + 1, C,0),
for any A_€ (/10 —51,10), 14_ € (ﬂo,ﬂ.o +51).

From (5.9) we have

lim Ind(4 + AC,0) = — lim Ind(4 + AC,0)

A—2o— A— Ao+

and the assertion of follows from [Theorem 35.1. ]

6. Bifurcation of solutions for m = 2.

We formulate first a result about the computation of the index of a critical point for
abstract operators in the case of a real separable Hilbert space H instead of the Banach
space X. We denote by {-,-> the scalar product in the space H. The conditions A4;),
Ay), A, Ap), w), C), which we will use below, are given in Sections 1, 2.

THEOREM 6.1. Let H be a real separable Hilbert space and let A: H > D(A) — H
satisfy (2.8), Conditions Ay), A2) and be such that 0 € D(A) N Dy, A(0) =0. Assume that

there exist a bounded linear operator A’ : H — H and compact linear operators I'y : H —
H, I': H— H such that

A+ Toyuuy > clul®, weD(A), |u] <1,

(A" + Du,uy = clull®, ueH,

where ¢ is a positive constant. Assume that the equation A'u =0 has only the zero
solution and the condition ) is satisfied with Aou = ||u||A'u. Then zero is an isolated
critical point of the operator A and its index equals (—1)", where v is the sum of the
multiplicities of the characteristic values of the operator T = (A" + T )_IF lying in the
interval (0,1).

ProOF. We note that from the second inequality in (6.1) it follows that the
operator (A’ 4+ I')"'I" is well defined on all of H and compact. Similarly, the operator
Ay : H— H, defined by Agu = ||u||A'u, satisfies the condition 4;). We are going to
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verify that the conclusion of follows from that of [Theorem 2.1. From
(6.1) we have the boundedness of the operator (4’ + I')™' : H — H and, consequently,
Condition 1) of is satisfied.

Let us verify that Condition 2) of is satisfied. From the choice of A
and the conditions for the operator 4’ we have that the set Z|, defined by [2.10), is
empty. Let {t}, {u;} be two sequences such that ¢ € [0,1], uj € D(A4) and

(62) IjAUj + (1 - lj)(A()uj + A’uj) =0, 0< Hu]H <1

We may assume that the sequence v; = u;/||u;|| converges weakly to some vy. From

(6.1), we have
ety + (1= )l + Dl > < 6<Touy 17 + (1= 1) ([l ]| + D)<y, 17,

which says that vy # 0. This establishes the validity of Condition 2) of
and finishes the proof of Mheorem 6.1. O

Throughout this and the following sections we assume that £ is an open and
bounded subset of R"”. Before we state and prove the index result of this section, we go
over some auxiliary facts and assumptions. The operator A4 : Wol’z(Q) > D(A) —
Wol’z(Q) is defined by

(6.3) {Au, ¢y = J p*(u) Z D uD*p + Z ay(x,u, 2'u)2%¢ 3 dx,
Q lo|=1 o] <1

where

(6.4) D(A) = {ue W, *(Q) : p*(u)Z*u € Ly(Q) for |u| = 1}.

We assume the following conditions.

p) p: R— R is continuous and satisfies 1.6);

d;) the real valued functions a,(x,¢), |¢| <1, are defined on Q x R""! and are
measurable with respect to x and continuously differentiable with respect to &; moreover,
ay(x,0) =0, for xe Q, |a| =1;

dy) there exist positive constants vi, v, such that for xe Q, £ e R"™, 5, e R the
inequalities

(6.5) Y ap(x g =w Yy s,

|| =Ipl=1 |o|=1

and

S Jag(x. o)l < v

|, 1Bl <1

hold, where a,g(x,&) = (0/0&p)a.(x,&).
We introduce a linear operator A4’ : WOI’2 (Q) — Wol’z(Q) by [2.15). As in Section
2, we define an operator I : WOI"Z(Q) — Wol’z(Q) by (2.17) and then establish 2.18).
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Using Condition @), it is easy to verify the estimate
(6.6) {(A+Tou,uy = xil|ulf 5, ue D(A),
where x; > 0 and

Ty =0 | ulo)pl)

with the constant y, sufficiently large. From the compactness of the embedding
WOI’Z(Q) < L,(Q2) we have that the operators I', Iy are compact. As in Lemma 5.3,
we can verify that the operator

(6.7) T=(A+I)"T:W2Q) — W Q)

is well defined and compact.
We consider the linearized equation

(6.8) > DD (90005 + dyg (x)] 2P u} + Ay =0
|, |1 <1

with the same dyp, ai%) as in [2.15). In view of Definitions 2.3, 2.4, we define anal-
ogously the characteristic value and the multiplicity of the characteristic value of the

problem ((6.8), (1.3)).

THEOREM 6.2. Assume that Conditions p), ay), ay) are satisfied and that the equation
(6.8) has only the zero solution in Wol’z(Q) for 2. =0. Then the index of the operator A,
defined by (6.3), is computed by the formula

(69) Ind(4,0) = (~1)",

where v is the sum of the multiplicities of the characteristic values of the problem ((6.8),
(1.3)) lying in the interval (0,1).

Proor. We need to prove that the operator A, defined by (6.3), satisfies all the
conditions of [Theorem 6.1. The inequality (2.8) follows immediately from [Cemma 4.1,
while the inequalities (6.1) follow from and [6.6).

We need to check only Condition w). Let {u;} = D(A4), {t;} =[0,1] be such that

1
(610) leuj + (1 — lj)[A()uj + A’uj] =0, 0< ||Llj||172 < j, t; — lo,

for some ) €[0,1]. The function u;(x) satisfies the following integral identity:

(6.11) Jg{zj

Z ay(x, u],glu] x)+ Zp u)2uj(x)2°(x) | d

lo] <1

+ =)+l ) Y [p2(0)04s + aly) ()] 2P, 2% g (x >}

o, 1p1<1
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for every ¢ € WOI’Z(Q). It is well known that Condition a,) guarantees the boundedness
of the function u;(x) (see [8, Chapter 4, Section 7]). We estimate the maximum
of |u;(x)|. Letting ¢(x) = |u;(x)|"u;j(x) in (6.11) with r >0 and repeating standard
calculations we obtain the inequality

(6.12) JQ 15(x)|*2 "y (x) Pdlx < e (1 + ) JQ u(x)| " dx,

where the constant x; is independent of j, r. Thus, from {(6.10), (6.12) and [Lemma 3.1
we have

(6.13) max{|u;(x)] : xe 2} -0 as j— oo.
For ¢ € Wol’z(Q) we have

(6.14)  Cluglly 2[Aw; — A'wj], > = JQ { > 17 (w) = p*(0)]7%0(x) 2% ¢ (x)
|

a|=1

1
+ D J[aaﬂ(xawi,sgl“j)—aoc/f(xa0)]9/}12;‘(96)9“?5(96)&}dxa
o, 1B <170

where vj(x) = u;(x) /||u]|]f12, and the convergence of the right-hand side of (6.14) to zero
follows from [6.10), (6.13), Conditions ), d;), @) and the continuity of the Nemytskii
operator. We have shown the convergence in (2.4) and the proof is complete.  []

Now, we consider the bifurcation of the solutions of the boundary value problem
((1.2), (1.3)) when the coefficients of the equation satisfy the conditions p), a;),
a). We introduce the operators A’ : WOI’Z(Q) — Wo’z(Q), C': Wol’z(Q) — Wol’2(Q)
and T : WOI’Z(Q) — W01’2(Q) by 5.3), (5.4) and [5.6), respectively, and define a line-
arized equation in accordance with [5.7). Note that the inequality for the operator
A’ is satisfied. We maintain the validity of Definitions 5.1, for the boundary value
problem ((5.7), (1.3)) under consideration.

THEOREM 6.3.  Assume that the coefficients p(u), a,(x,&") (Jo| = 1), ao(x,&) of the
equation (1.2) satisfy the relevant conditions p), ay), a,) and let Jy be a bifurcation point of
the problem ((1.2), (1.3)). Then Ay is a characteristic value of the problem (5.7), (1.3).

Proor. Let {4;,u;} be a sequence of solutions of the problem ((1.2), (1.3)) with
(6.15) A= o5 ujlly , =0, u; #0.

The function u;(x) satisfies the following integral identity:

(6.16) > | (w7 + afa, ")) 79(x) d
|a|=1"

—|—/IJ~J ao(u, u;, 7'u;) ¢ dx = 0, ¢GW0172(Q)-
Q

We let ¢ =u; above and obtain, after some standard calculations,
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(6.17) [4il]1,2 < 3w,

with the constant k3 independent of j. We may thus assume that the sequence v;(x) =
uj(x)/||u;|, converges weakly in W, *(€2) to vp(x) and v # 0 by virtue of [6.17]. As in
the proof of [Theorem 6.2 we can establish that (6.13) holds for the sequence u;j(x).
From (6.16) we have

(6.18) ZL q+2ij@%mqm9w)

|o]=1 pl=1

+ 4 Z J J aoy (X, 51, $9 " ;) D *v;(x)(x) dsdx = 0.

o] <1

Using (6.13) and (6.15) we can pass to the limit in (6.18) to obtain that {lo,vo} is a
solution of the problem ((5.7), (1.3)). Taking into account that vy # 0, we see that the
proof of the theorem is complete. O

THEOREM 6.4. Assume that the conditions of Theorem 6.3 are satisfied and let A
be a characteristic value of the problem ((5.7), (1.3)) of odd multiplicity. Then Ay is a
bifurcation point of the problem ((1.2), (1.3)).

The proof follows from [Theorem 6.2 by repeating the arguments of the proof of
Theorem 5.3.

7. Bifurcation of unbounded solutions.

In this section we demonstrate the possibility to study the bifurcation problem for
the equation even if the solutions of the problem ((1.2), (1.3)) are unbounded. We
consider the case of the Hilbert space WOI’2 (2) and let, for simplicity, ay(a,&) be the
linear function defined by

(7.1) = 4.(x)&,,

o] <1
where
(7.2) qx € Ly(Q) for |af =1, qo(x) € L,2(Q).

It is known that the solutions of the problem ((1.2), (1.3)) can be unbounded under the
assumptions (7.1), (7.2) (see, e.g., [8, Chapter 1, Section 2]).

In order to study the bifurcation problem with the function ao(x, &), defined by
(7.1), (7.2), we will use a weak variant of Condition ®) that is suggested from a careful
examination of the proof of in [6].

REmMARK 7.1. Assume that all the conditions of are satisfied, except
Condition w). Then the conclusion of this theorem is true if the following modified
condition @ 1is satisfied:
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@) there exists a positive number ¢ such that for every sequence {u;} such that u; €
Z/(t;), uy — 0 we have
l.
7.3 lim —L— (Au; — A'u;, 0> =0,
= e
for each ve L, where, for ¢ € (0,1],
(7.4) Z/(t)={ueD(A) : tAu+ (1 — t)(Aou+ A'u) = 0, 0 < ||lu|| < &}.

Define a linear operator C : Wol’z(Q) — WOI’Z(Q) by

(75) Cudy= 3 | a7 uxp(

o] <1

where ¢,(x) satisfies (7.2).

LEmMMA 7.1.  Assume that n > 2 and (7.2) is satisfied. Then the operator C, defined
by (7.5), is compact.

Proor. We only check that if {u}, {¢;} = Wol’z(Q) converge weakly to up, ¢,
respectively, then we have

(7.6) lim <Cuj. ;> = <Cuo, do>.

By Holder’s inequality, we estimate

(7.7) [<Cuj, §; = dodl < K4||uj||1,z{ > “Q 1) [;(x) = do ()| dX]

|| =1

|| 0o ) — oo /}

where p, =2n/(n+2) and x4 is a constant independent of j. From the embedding
theorem we have that the sequences {g,(x)[#;(x) — ¢o(x)]}, |¢| < 1, converge to zero in
measure as j — oo. Using (7.2) and Hélder’s inequality we obtain that the integrals in
the right-hand side of are uniformly absolutely continuous. Consequently, the
right-hand side of tends to zero as j — oo. Thus, is true and the proof is
complete. O

LEMMA 7.2, Assume that n > 2 and that the functions p(u), a,(x,&) (|a| = 1) satisfy
the conditions p), ay), a,) of Section 6. Assume that the function ay(x,&) satisfies
Conditions (7.1), (7.2). Let A, A’, C be the operators defined by (1.14), (5.3) and (7.5),
respectively. Then for every A€ R the operators A=A+ ).C, A' = A" +\C and Ay
(defined by Agu = lull, ,A'u) satisfy Condition @) with &= 1.

Proor. Let {u;} < Wol’z(.Q) be such that
78 |, g s < vl =0, 0<fulln <1

and, for some ¢ €[0,1] and every ¢ € WOI"Z(Q),
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(7.9) JQ {fj > (PP w) 2" + ay(x, 7' wy)) 9"

lor|=1
F(=1) S (1wl ) (P*0)0ys + aly) (x) 2P w779
|| =[B]=1

+ 4 Z qa(x)@“ujqﬁ} dx = 0.

o] <1
From with ¢ =u; we have

(7.10) | rPla P < sl
Using the notation and the inequalities and we have

b -
(7.11) ¢ | 1) < ksl

For ¢ e C;°(£2) we have
(7.12) Gl 5 <Aw; — A'wy, 6

— gl jg S [0 () — A0 F (x) T () + bl
Jor|=1

I
1y _ (0 B, o
X 042,;“ Jo Jg[aaﬁ(x,s@ u) — a5 (X)| 2" u;(x) 2% $(x) dx.

The convergence to zero of the second summand above follows from and the
continuity of the Nemytskii operator.
We see that the first summand of is bounded above by

lj

2
H”j“l,z

1/2
(7.13) kil fller g {J 0 (1) —p2<o>\|@1u,-|2}

[ ot - e

The first integral in is bounded above by virtue of [7.10). The integrand in the
second integral of converges to zero in measure by virtue of and the
embedding theorem. The sequence of the second integrals in satisfies the
condition of uniform absolute continuity. This follows from the condition p), (7.8) and
(7.11). Consequently, the right-hand side of tends to zero and the proof of the
lemma is complete. ]

We consider the linearized equation

(7.14) ST [P0+ dly (N)]ZPu} — 1Y u(x)Z2'u =0, xeQ.
2| =T8I=1 =1
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Using Lemmas [7.1], and Remark 7.1 we establish the following results in a manner
analogous to that of Theorems and 6.4,

THEOREM 7.1.  Assume that n > 2 and the functions p(u), a,(x,&) (Ja| = 1), ao(x, &)
satisfy the conditions of Lemma 7.2. Let Jy be a bifurcation point of the problem ((1.2),
(1.3)). Then Ay is a characteristic value of the problem ((7.14), (1.3)).

THEOREM 7.2.  Assume that n > 2 and the functions p(u), a,(x,&) (Jo| = 1), ao(x, &)
satisfy the conditions of Lemma 7.2. Let Ly be a characteristic value of the problem
((7.14), (1.3)) of odd multiplicity. Then Ay is a bifurcation point of the problem ((1.2),

(1.3)).

References

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial
differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623—
727.

[2] M. A. Del Pino and R. F. Manasevich, Global bifurcation from the eigenvalue of the p-Laplacian, J.
Differential Equations 92 (1991), 226-251.

[3] P. Drabek, Solvability and bifurcation of Nonlinear Equations, Pitman Res. Notes Math. Ser., #264,
Longman, Harlow, 1992.

[4] N. Fukagai, M. Ito and K. Narukawa, A bifurcation problem of some nonlinear degenerate equa-
tions, Adv. Differential Equations 2 (1997), 895-926.

[5] A. G. Kartsatos and 1. V. Skrypnik, Topological degree theories for densely defined mappings involving
operators of type (S;), Adv. Differential Equations 4 (1999), 413-456.

[6] A. G. Kartsatos and I. V. Skrypnik, The index of a critical point for densely defined operators of type
(S;) in Banach spaces (to appear).

[7] M. Krasnoselskij, Topological methods in the theory of nonlinear integral equations, Pergamon Press,
Oxford, 1964.

[8] O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and quasilinear elliptic equations, Academic Press,
New York-London, 1968.

[9] E. Magenes, Interpolation spaces and partial differential equations, Uspekhi Math. Nauk 21 (1966),
169-218.

[10] I. V. Skrypnik, Nonlinear higher order elliptic equations, Naukova Dumka, Kiev, 1973.
I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Amer. Math. Soc.
Transl. Ser. II, # 139, Providence, Rhode Island, 1994.

[12] K. Taira and K. Umezh, Bifurcation for nonlinear elliptic boundary value problems III, Adv.
Differential Equations 1 (1996), 709-727.

[13] A. E. Taylor, Introduction to functional analysis, John Wiley, New York, 1967.

Athanassios G. KARTSATOS

Department of Mathematics
University of South Florida
Tampa, Florida 33620-5700
USA

Igor V. SKRYPNIK

Institute for Applied Mathematics and Mechanics
R. Luxemburg Str. 74

Donetsk 340114

Ukraine

E-mail: hermes@math.usf.edu, skrypnik@iamm.ac.donetsk.ua



	1. Introduction and preliminaries.
	THEOREM 1.1. ...

	2. Index of a critical ...
	THEOREM 2.1 ...
	THEOREM 2.2. ...

	3. Auxiliary regularity ...
	THEOREM 3.1. ...
	THEOREM 3.2. ...

	4. Proof of the index ...
	5. Bifurcation of solutions ...
	THEOREM 5.1. ...
	THEOREM 5.2. ...
	THEOREM 5.3. ...

	6. Bifurcation of solutions ...
	THEOREM 6.1. ...
	THEOREM 6.2. ...
	THEOREM 6.3. ...
	THEOREM 6.4. ...

	7. Bifurcation of unbounded ...
	THEOREM 7.1. ...
	THEOREM 7.2. ...

	References

