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Abstract. As an application of the generalized Pontrjagin±Thom construction (see

[5 ]) here we prove some results on the orientability of singularity submanifolds. Our

approach is based on the computation of symmetries of singularities and is di¨erent from

the one based on the fundamental work of Boardman ([3]) which involves the high intrinsic

derivatives. As an example we apply our method to all the S1r and S2; 0 singularities.

The integer k > 0 will be ®xed throughout the paper. Let h : �Rn
; 0� ! �Rn�k

; 0�

be a smooth map germ. From now on, we will restrict ourselves to simple singularities.

By a suspension of h we mean a germ Sh : �Rn�v
; 0� ! �R�n�k��v

; 0� de®ned by �x; u� 7!

�h�x�; u�Ðotherwise we will use the standard notations of singularity theory, see e.g. [2].

For a Cy-stable map f : N ! P between smooth manifolds we de®ne the singularity

submanifold

h� f � � fy A P j f ÿ1�y� has only one element and the germ of f

at f ÿ1�y� is A-equivalent to a suspension of hg:

We may think of h� f � either as an abstract manifold (not necessarily closed), or a

submanifold of P, or a submanifold f ÿ1�h� f �� of N.

Now let h be a Cy-stable germ, and suppose that it is not A-equivalent to the

suspension of any other germÐgerms having this property will be called ``isolated''.

Another description of an isolated stable germ h is that de�h;K� � its target dimension

(see [2; p. 166] for the de®nition of de� ;K�). According to Mather's classi®cation

theorem: A-equivalence classes of isolated stable singularities are in one-to-one cor-

respondence with ®nite dimensional local R-algebras. In [5 ] the maximal compact

subgroup G of h's automorphism group

AutAh � f�j; f� A Diff�Rn
; 0� �Diff�Rn�k

; 0� j f � h � jÿ1 � hg

is considered. We can assume it is linear, and its representation on the source and

target spaces will be denoted by l1 and l2. The vector bundle associated to the

universal principal G-bundle using the representation li will be denoted by Eli ! BG.

The following two theorems are byproducts of the mail lemma in [5]. The letters N

and P will always denote closed smooth manifolds, and the letter n will refer to normal

bundles.
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Theorem 1. For any stable smooth map f : Nm ! Pm�k there exists a continuous

map g : h� f � ! BG, such that

n�h� f �HN� � g�El1; n�h� f �HP� � g�El2:

Theorem 2. For any closed manifold K and any continuous map g : K ! BG there

exist smooth manifolds Nm, Pm�k and a stable smooth map f : N ! P, such that K is a

component of h� f � and

n�K HN� � g�El1; n�KHP� � g�El2:

Remark. Observe that these two theorems together completely describe the normal

bundles of the singularity submanifolds h� f � in the source and in the target manifolds.

Namely, these normal bundles can be any pull-back bundles (so any ®nite dimensional

approximations) of El1 and El2 using the same map into BG.

The smooth map f : N ! P will be called k-codimensional if dimPÿ dimN � k.

The following two statements are easy consequences.

Theorem 3. The following two conditions are equivalent:

(1) for every k-codimensional map f : N ! P, where P is orientable, the manifold

h� f � is orientable;

(2) det l2�g� > 0 for all g A G.

Theorem 4. The following two conditions are equivalent:

(3) for every k-codimensional map f : N ! P, where N is orientable, the manifold

h� f � is orientable;

(4) det l1�g� > 0 for all g A G.

Proof. Condition (1) is equivalent to the following: for every k-codimensional

map f : N ! P, where P is orientable, n�h� f �HP� is an orientable bundle. Because of

Theorem 2 it implies that for all K and g : K ! BG the bundle g�El2 is orientable.

Then it follows that El2 is orientable, which is equivalent to condition (2).

Conversely, if El2 is orientable, then (using Theorem 1) for any f : Nm ! Pm�k the

bundle n�h� f �HP� is orientable. If P is orientable, then this implies that h� f � is also

orientable.

The proof of Theorem 4 goes the same way. r

Now we turn to the investigation of conditions (2) and (4). First we recall from [5 ]

some results about the maximal compact automorphism group of h : R
n ! R

n�k. If h

is a miniversal unfolding of z : Ra ! R
a�k, where dz�0� � 0, and V is a complement of

the subspace tz�ya� � z�m�a� k�yz in the vector space yz, then h is A-equivalent to

R
a � V ! R

a�k � V

�x; f� 7! �x� f�x�; f�:

Now let G be the maximal compact subgroup of the K-equivalence group AutKz. If z

is well chosen from its K-equivalence class then we can suppose G acting linearly

on R
a � R

a�k. Then, in particular, G acts as an A automorphism group, so it has

representations a and b on R
a and R

a�k respectively. The group G also acts on yz by
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�a; b� � f � b � f � aÿ1Ðleaving tz�ya� � z�m�a� k�yz invariant. If V is chosen to be

G-invariant (G compact, so it is possible) then G also acts on V. Let this action be g.

A theorem in [5 ] proves that the maximal compact subgroup of AutAh is G with the

representations l1 :� al g, l2 :� bl g on the source (Ra � V ) and target (Ra�k � V )

spaces, respectively. This reduces the problem of ®nding MC AutAh to ®nding MC

AutKz and the representations a, b. (MC stands for `maximal compact subgroup of '.)

This latter problem is also essentially solved (reduced to a ®nite dimensional one) in [5 ],

we will come back to these results in concrete examples.

Notation. In what follows rr will always mean the standard r-dimensional

representation of O�r�. If rr is written as a representation of O�r� �H then it really

means rr � prO�r�.

Example 1. For all rV 0 there is a unique isolated germ h1r (in codimension k)

corresponding to the local algebra R��t��=�tr�1�. This germ is called the isolated

Morin singularity type of S1r . This is the miniversal unfolding of z1r : R ! R
k�1, x 7!

�x r�1; 0; . . . ; 0�. It is clear that MC AutKz1r � O�1� �O�k�, and the representations

a; b are as follows:

a � r1; b � rr�1
1 l rk:

Indeed, O�1� �O�k�UMC AutAz1r UMC AutKz1r , as the representations a and

b show. On the other handÐby Theorem 7 in [5]ÐMC AutKz1r UMC AutQz1r �

O�k ÿ d� � O�1� �O�k� where Qz1r is the local algebra of z1r and d is its defect.

The space V can be chosen to be spanned by the vectors

x 7! �x i; 0; . . . ; 0� i � 1; . . . ; rÿ 1

x 7! �0; 0; . . . ; 0; x j ; 0; . . . ; 0� j � 1; . . . ; r

the coordinate of x j is from 2; . . . ; k � 1

and (using the de®nition of g above) the action of O�1� �O�k� on V can be computed:

g �
rÿ 1

2

� �

1l
rÿ 1

2

� �

r1 l
r

2

� �

rk l
r

2

� �

r1 n rk:

As an application of this example and Theorem 3 and 4 we can prove the following two

theorems about the orientability of the Morin-singularity submanifolds.

Theorem 5. Let h1r be as in the example above. Then the following two conditions

are equivalent:

(5) for every k-codimensional map f : N ! P, where P is orientable, the manifold

h1r� f � is orientable;

(6) k is even and r1 1 mod 4.

Theorem 6. Let h1r be as in the example above. Then the following two conditions

are equivalent:

(7) for every k-codimensional map f : N ! P, where N is orientable, the manifold

h1r� f � is orientable;

(8) either k is odd and r is even, or k is even and r1 0 mod 4.
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Proofs. According to the Theorems 3 and 4 we only have to analyse the sign of

the determinants of l1�g�, l2�g�. Since explicit formulae are given for l1 � al g and

l2 � bl g, easy computation gives the proofs. r

Example 2. Let hr be the miniversal unfolding of zr : R
r ! R

r�k,

�x1; . . . ; xr� 7! �x2
1 ; . . . ; x

2
r ; x1x2; x1x3; . . . ; xrÿ1xr; 0; . . . ; 0�;

(where there are t � k ÿ
r

2

� �

0's at the end). This hr is the ``simplest'' singularity

of Thom±Boardman type S r;0. The group MC AutKzr is O�r� �O�t�. Indeed,

O�r� �O�t� clearly acts as a K-symmetry (in fact as an A-symmetry) group of

zr, so O�r� �O�t�UMC AutKzr. On the other hand MC AutKzr UMC AutQzr �

O�k ÿ d� � O�r� �O�t�, where Qzr is zr's local algebra, and d is its defect. The

representation a � rr, but we will not need to determine b explicitly.

If we choose V to be spanned by

�x1; . . . ; xr� 7! �0; . . . ; 0; xi; 0; . . . ; 0� i � 1; . . . ; r

the coordinate is j � 1; . . . ; r; i0 j

�x1; . . . ; xr� 7! �0; . . . ; 0; xi; 0; . . . ; 0� i � 1; . . . ; r

the coordinate is j � r� 1; . . . ; r� k;

then V will be O�r� �O�t�-invariant.

Although we have not written up explicit formulae for b and g, we will need some

information on the sign of det b�g�, det g�g� (g A MC AutAhr). Let g1; g2 A O�r� �O�t�

be given by

g1 :�

ÿ1

1
.
.

.

1

0

B

B

B

@

1

C

C

C

A

; It�t

0

B

B

B

@

1

C

C

C

A

; g2 :� Ir�r;

ÿ1

1
.
.

.

1

0

B

B

B

@

1

C

C

C

A

0

B

B

B

@

1

C

C

C

A

:

Easy computation shows that

det a�g1� � ÿ1; det b�g1� � �ÿ1�rÿ1
; det g�g1� � �ÿ1�kÿr�1

;

det a�g2� � 1; det b�g2� � ÿ1; det g�g2� � �ÿ1�r:

Theorem 7. Let hr be as in the example above. Then the following two conditions

are equivalent:

(9) for every k-codimensional map f : N ! P, where P is orientable, the manifold

hr� f � is orientable;

(10) k is even and r is odd.

Theorem 8. Let hr be as in the example above. Then the following two conditions

are equivalent:

(11) for every k-codimensional map f : N ! P, where N is orientable, the manifold

hr� f � is orientable;

(12) k is even and r is even.
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Proof. According to Theorem 3 condition (9) is equivalent to det b�g� � det g�g� >

0 for every g A O�r� �O�t�. This latter is equivalent to det b�g1� � det g�g1� > 0 and

det b�g2� � det g�g2� > 0, that is (using the computation above): rÿ 1� k ÿ r� 11

0 mod 2 and 1� r1 0 mod 2. This is exactly condition (10). The proof of Theorem 8

is similar. r

For a stable map f : N ! P we can de®ne the submanifold

S r� f � � fx A N j the germ of f at x is of ThomÿBoardman type S r:g:

Clearly f ÿ1�hr� f ��HS r� f �, and the di¨erence is a union of submanifolds all of co-

dimension Vk. Since a manifold of codimension V2 can not alter orientability,

we have the following two corollaries.

Corollary 9. Let k; r > 1. The condition

(13) for every k-codimensional map f : N ! P, where P is orientable, the manifold

S r� f � is orientable

is equivalent to condition (9) (and therefore to condition (10)).

Corollary 10. Let k; r > 1. The condition

(14) for every k-codimensional map f : N ! P, where N is orientable, the manifold

S r� f � is orientable

is equivalent to condition (11) (and therefore to condition (12)).

Example 3. We turn to S2;0 germs, which isÐaccording to the authors know-

ledgeÐthe last Thom±Boardman type for which the A-classi®cation is complete.

Mather proved that there are ®ve in®nite sequences of algebras corresponding to S2;0

singularity types:

Ia;b R��x; y��=�xy; xa � yb� 2U a; b

IIa;b R��x; y��=�xy; xa ÿ yb� 2U a; b both even

IIIa;b R��x; y��=�xy; xa; yb� 2U a; 3U b

IVa R��x; y��=�x2 � y2; xa� 3U a

Va R��x; y��=�x2 � y2; xa; yxaÿ1� 2U a

Here the only coincidenses are Ia;b � Ib;a, etc. (For convenience III2;2 of Mather is

renamed as V2 here, sinceÐconsidering symmetriesÐIII2;2 is closer to the Va sequence.)

Using the method descibed above we can compute their maximal compact symmetry

groups (some more details in [4]), in which we will use the following notations: for the

groups O�2� and Dn (dihedral group) rw
2 means the two-dimensional representation

which maps

cos a ÿsin a

sin a cos a

� �

to
coswa ÿsinwa

sinwa coswa

� �

and
1 0

0 ÿ1

� �

to itself. Three one-dimensional representations of the dihedral groups
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will also be used. Let the dihedral group D2a (of order 4a) be presented as h f ; tj f 2a �

t2 � 1; t f t � f 2aÿ1i. The following de®ne 1-dimensional representations of D2a:

l : f 7! ÿ1; t 7! ÿ1 k : f 7! ÿ1; t 7! 1 t : f 7! 1; t 7! ÿ1:

Moreover, e and y will mean the non-trivial 1-dimensional representation of Z2 (two

letters are needed when Z2 � Z2 is concerned). If one of the de®ned representations are

written as a representation of a group O�l � �H, D2a �H, Z2 �H then they really

mean to be a composition of that representation with the projection to O�l �;D2a or Z2.

Theorem 11. If h is an isolated singularity of type S2;0 then MC AutAh and its

representations l1 � al g, l2 � bl g are given by

h MC Aut h a b

Ia;b; IIa;b 2U a < b both even D2 �O�k� r2 tl 1l rk

Ia;b 2 < a odd, 2U b even Z2 �O�k� 1l e el 1l rk

Ia;b 2 < a < b both odd Z2 �O�k� 2e 1l el rk

Ia;a 2 < a odd D2 �O�k� r2 1l kl rk

Ia;a 2U a even D4 �O�k� r2 ll 1l rk

IIa;a 2 < a even D4 �O�k� r2 ll kl rk

II2;2 O�2� �O�k� r2 r22 l rk

IIIa;a 2 < a even D4 �O�k ÿ 1� r2 ll 1l kl rkÿ1

IIIa;a 2 < a odd D4 �O�k ÿ 1� r2 ll r2 l rkÿ1

IIIa;b 2U a < b Z2 � Z2 �O�k ÿ 1� el y �en y�l en a l yn b
l rkÿ1

IVa 3U a D2a �O�k� r2 1l kl rk

Va 2U a O�2� �O�k ÿ 1� r2 1l ra
2 l rkÿ1

h g

Ia;b; IIa;b 2U a < b both even
a

2
r2 l

bÿ a

2
ll

a� bÿ 4

2
1

� �

n �1l rk�l rk

Ia;b 2 < a odd, 2U b even
b

2
el

2a� bÿ 4

2
1

� �

n �1l rk�l rk

Ia;b 2 < a < b both odd
a� bÿ 2

2
�1l e�n �1l rk�l �en rk�

Ia;a 2 < a odd
aÿ 1

2
�r2 l r22�n �1l rk�l �ln rk�

Ia;a 2U a even
a

2
r2 l

aÿ 2

2
�1l k�

� �

n �1l rk�l �kn rk�
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IIa;a 2 < a even
a

2
r2 l

aÿ 2

2
�1l k�

� �

n �1l rk�l �rk�

II2;2 r32 l �r2 l 1�n rk

IIIa;a 2 < a even
a

2
r2 l

aÿ 2

2
�1l k�

� �

n �1l 1l rkÿ1�

IIIa;a 2 < a odd
aÿ 1

2
�2r2 l r22 l r42 l �r2 l 1l k�n rkÿ1�

IIIa;b 2U a < b 0aÿ1

j�1
�en a�j l en j n �yn b

l rkÿ1�
�

l

l0bÿ1

j�1
�yn b�j

l yn j
n �en a l rkÿ1��

IVa 3U a �0aÿ1

j�1
r
j
2�n �1l rk�l �ln rk�

Va 2U a 0aÿ1

j�1
�raÿj

2 l r
a�j
2 �l �0aÿ1

j�1
r
j
2�n rkÿ1

As an application of this theorem and Theorems 3 and 4 we have the following

characterization of the orientability of S2;0-singularity submanifolds.

Theorem 12. In the next tableÐfor some singularities of Thom±Boardman type

S2;0Ðequivalent conditions are given to condition (2) (and therefore to condition (1)):

h � Ia;b: a1 b1 2 mod 4 a0 b k is even

h � IIa;b: a1 b1 2 mod 4 k is even

h � Ia;b: a1 b1 1 mod 2 a0 b k is odd

h � Ia;b; Ib;a: a1 1, b1 3 mod 4

h � IIIa;b; IIIb;a: a1 2, b1 3 mod 4 k is even

h � IVa: k is odd.

Moreover, for the S2;0 singularities above these are the only values of a, b, k for which

condition (2) holds.

Theorem 13. In the next tableÐfor some singularities of Thom±Boardman type

S2;0Ðequivalent conditions are given to condition (4) (and therefore to condition (3)):

h � Ia;b; Ib;a: a1 1mod 2, b1 2 mod 4 k is even

h � IIIa;b: a1 b1 3 mod 4 a0 b k is even

h � IIIa;b: a1 b1 2 mod 4 k is even

h � Va: a1 0 mod 2 k is even.

Moreover, for the S2;0 singularities above these are the only values of a, b, k for which

condition (4) holds.

Besides Theorems 3 and 4 there is a third type of results we can prove about the

orientability of singularity submanifolds h� f �, this time in case both the source N and
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the target P manifolds are oriented. The arguments follows the same line with the only

di¨erence that now we must start with the ``universal singular map'' Y SOt �!
ft

X SOt in

[5]. The only change in this case is that we have to replace the group G � MC AutAh

to

G� � GV �Diff��Rn
; 0� �Diff��Rn�k

; 0�UDiffÿ�Rn
; 0� �Diff��Rn�k

; 0��

for any map germ h : �Rn
; 0� ! �Rn�k

; 0�. Otherwise all the proofs goes the same way,

so we will restrict ourselves to only stating the results.

Theorem 14. The following conditions are equivalent:

(15) for every f : N ! P, where N and P are orientable, the manifold h� f � is

orientable;

(16) det l1�G
�� > 0;

(17) det l1�G
ÿ� > 0;

(18) there is no g A G such that det l1�g� < 0 and det l2�g� < 0;

(19) either det l1�g� > 0 for all g A G or det l2�g� > 0 for all g A G (, (2) or (4)).

In case h � h1r of Example 1 condition (19) is equivalent to the condition: (6) or

(8). In case h � hr of Example 2 condition (19) reads: (10) or (12), that is

(20) k is even.

Just like above, we can use that if k > 0 then the orientability of hr is equivalent to

the orientability of S r� f � therefore we have the following corollary.

Corollary 15. Let k > 1. The condition

(21) for every k-codimensional map f : N ! P, where N and P are orientable, the

manifold S r� f � is orientable;

is equivalent to condition (20).

This last corollary can also be derived from a result of Ando [1, Proposition 4.1].
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