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Abstract. Let M" = R"?, n>7, be a conformally deformable submanifold of
euclidean space in codimension two. In this paper we show that if the submanifold has
sufficiently low conformal nullity, a generic conformal condition, then it can be realized as
a hypersurface of a conformally deformable hypersurface. The latter have been classified
by Cartan early this century. Furthermore, it turns out that all deformations of the
former are induced by deformations of the latter.

Early in this century, E. Cartan ([Ca], see also [Da]) proved that a hypersurface
f:M" — R""! of dimension n > 5 in euclidean space is conformally rigid if its con-
formal nullity, that is, the maximal dimension of an umbilical subspace, satisfies vf <
n — 3 everywhere. Being conformally rigid means that any other conformal immersion
of M" into R™' must be conformally congruent to f, i.e., a composition of f with
a conformal diffeomorphism of the ambient space. Moreover, Cartan (cf. [DT]) also
gave a complete parametric description of all conformally deformable hypersurfaces.
These will be referred to hereafter as Cartan hypersurfaces.

Cartan’s rigidity theorem was extended by do Carmo and the first author ((CD]) to
conformal immersions f : M" — R™? with dimension n > 7 and codimension p < 4.
For codimension p = 2, their result states that f is conformally rigid if everywhere
i) vf <n—5 and ii) the second fundamental form A; in any normal direction £ has no
principal curvatures with multiplicity greater than n — 3. On the other hand, a large set
of conformally deformable submanifolds in codimension 2 arises from Cartan hyper-
surfaces N"t!' < R"™? simply by considering M" to be an arbitrary hypersurface of
Nn—&-l.

In this paper we show that, if only condition i) in do Carmo—Dajczer’s rigidity
theorem is assumed, then any conformally deformable submanifold M” in R"*, n > 17,
can be realized as a hypersurface of a Cartan hypersurface. Furthermore, all de-
formations of the former are induced by deformations of the latter. More precisely, we
prove the following conformal version of a result in [DG] on isometric immersions.

THEOREM. Let f,g: M" — R"™>, n>17, be conformal immersions. Suppose that
vi(x) <n—5 everywhere. Then, there exists an open dense subset of M" such that on
any connected component U either f and g are conformally congruent or there exist
conformal but nowhere conformally congruent Cartan hypersurfaces F,% : N"*1 — R"t?
and an isometric embedding i: U — N"™ such that f|, =% oi and g|, =% oi.
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Finally, we should point out that the classifications of all possible deformations
when condition i) in do Carmo—Dajczer’s result is not assumed remain an open problem
even in the case of isometric deformations.

The light cone V™ is the degenerate totally umbilical hypersurface of nonzero null
vectors in standard flat Lorentzian space L™!, that is,

yn={XeL™! . (X, X>=0,X #0}.

Given an isometric immersion f: M — V™ < L™ the position vector f is a null
normal vector field along the immersion f which is parallel in the normal connection.
Moreover, the second fundamental form A, :TM — TM in the normal direction f
satisfies

Ay = —1d. (1)

Take the intersection H,, N ¥™ in L™*! of the affine hyperplane orthogonal to w e
V™ given by

H,={XeL"": (X, w)=1}

with the light cone. Observe that the normal bundle to H,, N V"™ in L™ is the
Lorentzian plane bundle spanned by w and the position vector. In particular, the
metric induced on H, N V" is riemannian. Moreover, its second fundamental form
with values in the normal bundle is given by a(X,Y) = —<X, Y)w. Hence, H,N V"
is flat by the Gauss equation and is, in fact, the image of an isometric embedding
j, RSy,

The light cone turns out to be a useful tool in the study of conformal immersions.
Namely, any conformal immersion ¢g: M — R" can be made into an isometric im-
mersion G : M — V¥ < LN*2 by setting

1
G:_jwog7 2
Py (2)

where w e VV*! is arbitrary and ¢, > 0 is the conformal factor given by {g.X,g.Y) =
(p§<X ,Y>. Conversely, any isometric immersion G : M — V™! arises this way. For
we VN chosen so that (G,w) > 0, the immersion ¢g: M — R" defined by

1
(G, w)

is conformal with conformal factor 1/{G,w).

The proof of our theorem will make use of the lemma below on flat bilinear forms.
We denote by S(f) the subspace spanned by the image of a symmetric bilinear form
p:VxV— W. The kernel of f is defined as

Jwog= G (3)

Np)={XeV:p(X,Y)=0 for all Y eV}.

Also, we denote by W"* an (r 4 s)-dimensional vector space with an inner product of
type (r,s), being r the maximal dimension of a negative-definite subspace.
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LemMA 1 ([CD]). Let B:V x V — W33 be a nonzero symmetric bilinear form.
Assume that dim N(f) < dim V — 6 and that f is flat, that is,

BX,Z),B(Y,T)) = <BX,T),p(Y,2)) forall X,Y,Z,TeV.

Then W33 = W' @ W, "> 1 <r < 3, admits an orthogonal direct sum decomposition
such that the Wj-component 3; of f, j=1,2, satisfies

(i) By is null and dim S(f,) =r,

(ii) B, is flat and dim N(f,) > dim V + 2r — 6.

PrROOF OF THE THEOREM. We may assume that M”" is endowed with the metric
induced by f and that

rankA({' >3 for all non-zero element J in TflM . (4)

This follows easily from our hypothesis on vy and the fact that composing f with an
inversion in R"* changes Ag by a multiple of the identity map. Notice that this fact
is what makes vi a conformal invariant.

Let G: M" — V"3 < L™ be given by (2). Clearly, the normal vector bundle
T, M can be identified via j,, to a vector subbundle of 75 M. Moreover, the T, M-
component o of og is given by

OCé;:—jw*OO(g. (5)

Since G is null and belongs to the Lorentzian plane-bundle L? in T;: M orthogonal
to T gLM , one can easily see that there exists a unique orthonormal frame {¢,#} of L*
with ||¢]| = —1 such that G=¢+#. By (1), we then have

<Olc;,7’]> + <OCG7 £> = _< ) > (6)
At xe M", let

W= TfM @ span{¢} @ span{n} @ TjM

be endowed with the metric of signature (3, 3) which is negative-definite on the first two

summands. For simplicity of notation we omit the “x” on pointwise computations.
Define a symmetric bilinear form f: TM x TM — W by f = oy @ ag, 1.e.,

ﬁ(X, Y) = O(f(X7 Y) - <(XG(X7 Y)7f>€+ <OCG<X7 Y)7”>77+ (xg(Xa Y)

The Gauss equations for f and G imply that f is flat. Moreover, we have that
n— 6> 0 by assumption and that N(f) = {0}, since f(X,X) # 0 for X # 0 by (6). It
follows from Lemma 1 that f = 8, @ f3,, where f, is null with dimS(f,) =r, 1 <r <3,
and f, is flat with dim N(f,) > n+ 2r — 6.

Our first main step is to determine the pointwise structure of the second funda-
mental form of G on each subset

U ={xeM":r(x)=j}, 1<;j<3.
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LEMMA 2. 1) %, is empty.
At any x € M" there is a plane L = T¢ M and a linear isometry ©: TF M — L
such that:
i) When x €U, then
T O0Gg =TOUr

where mp (mp.) denotes orthogonal projection onto L (L*Y).  Furthermore, there
exists 0 #y, € Ti M such that

Al |y, =21d, %#0, (7)

where Vi := N(np. oo0g) satisfies dim Vy > n — 2.
i) If x €U, then
OCG:TOOCf_<a>‘97

where 3 is a null vector in the orthogonal complement of L in TgzM.

PROOF. Suppose x € %;. Then, there are unit vectors ye 77 M, d € T, M and a
symmetric bilinear form ¢ : TM x TM — R such that

By = dlain + a0 + bi& + bay)
where a? + a3 =b} +b5. For any ZeN(f,) and X e TM, we have B(X,Z)=
pi1(X,Z). Using (6), we get
o (X, Z) = bap(X, Z)p, <ag(X,Z), 1) = ap(X, Z)
and
Cag(X, Z),n) + <X, Z) =bi$p(X,Z).
We conclude that b; —a; # 0, and that

(X, Z) = b1b—2a1 (X,ZYy for all Ze N(p,).

Hence, N(f,) is an umbilical subspace for f. Since dim N(f,) > n — 4, this contradicts
our assumption on vy and proves that %, is empty.

At x e, there exist vectors of unit length ny,n, e T/ M, {;,(, €T, M and
symmetric bilinear forms ¢, ¢’ : TM x TM — R such that

By = dlein + aimy +b18y) + ¢'(e2é + aon, + baly)
where
(i—ai+bi=0=c3+a—b; and bibr(ly, &) = mar(, ). (8)

Using (6), we get

(X, Z) = aip(X, Z)ny + axp' (X, Z),,

(G(X, Z),m) +<{X,Z) = 2¢'(X, Z),
Ca6(X, Z),m) = e1p(X, Z)
0G(X,Z) = big(X, Z)(y + bag (X, Z2)(
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for Ze N(f,) and X € TM. In particular,
ad (X,Z) =cd(X,Z) +<{X,Z).
We obtain that
0 (X, Z) = p(X, 2y + <X, Dops,  36(X. Z) = p(X,2)01 + <X, 2505, (9)
where
= ainy +axciny,  py = ay, o1 =c(S+n+bl) +bi1l, =<+ b,
and p=¢ when ¢; #0 (say ¢; = 1) and
My =Myt =—aiy, 01 =bl, 0=-n-b

and p = ¢’ when ¢, =0. Here, we took a, = ¢ = 1.

Notice that in any of the two cases above the vector g, is nonzero. Let y, €T fLM
be a unit vector orthogonal to y; and set V := N(f,). By the first of equations (9), we
get that A/ |, = AId for 2= (yj,u,>. Tt follows from (4) that 2 # 0 and that L =
span{ x4, 1,} has dimension two.

By (8) we have that

Il = 110;]] for 1 <j<2, and <{uy,uy) = <1,62).
Hence,
(ag(X,Z2),06(Y,2)) =y (X, Z),00(Y,Z)) for all Ze V.
We conclude from the Gauss equations for f and G that
(ag(X,Y),06(Z,2)) =y (X, Y),00(Z,Z)).
Using (9), we get for Z € Vy of unit length that
P(Z, Z)({aG,01) — {op, py ) = —<0G,02) + o, ). (10)

Define 7 : TfL — L by t(y;) =9, j=1,2. Then, the claim of the lemma follows
unless p(Z,Z) =k for all unit Z € V. But if this is the case, since dim V) >n — 2, we
conclude that there exists a subspace H < V, with dim H > n — 4 such that

p(X,Z2)=k{X,Z) for all ZeH.

This and the first equation in (9) yield a contradiction with our assumption on vy.
Now take x € %z and set

f=—<0G,E¢ @y and B = {ug,ndn @ o
Since f = ﬁ~ @ f is null, we have
BX,Y),BZ,T)y =<B(X,Y),p(Z,T)y forall X,Y,Z,TeTM.

Thus, there is a linear isometry 7 :span{¢}@® T+ M — span{y} @ T M such that
Tofi=f. Consider orthonormal vectors {y;,7,} in T} M and {{;,(5} in T, M such
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that
T(¢)=am+aly, Tn)=-an+al and T(p) =0
where a} +a5 =1. We get,
oG, 1y = —arog, &) — aaloy, y1» (11)

and

Cag, (1) = —aolog, &) +aroy,yy ), oG, () = or, yy)- (12)
From (6) and we obtain that

(g, (1 —ar) = ar s ) — anloy, yy ).

Hence a; # 1 and a straightforward computation using yields

oG = <OCf, yl>51 + <O€f, V2>52 - <7>‘97

where
a
S=—"r(E+n) =0, =0 and 9= (an+ &+ aly).
ay — 1 a; — 1
Observe that |0,]| =1,[|¥|| =0 and <;,3) =0 = <>, 3). To conclude the proof, set
L =span{d;,d»} and define v: T/ M — L by w(y;) =9;, j=1,2. ]

We show next that f and g are conformally congruent on any connected component
U of the interior of #3. The second fundamental form of F := j, o f|,: U — V"7 c
L™ is
oF = jw* OOCf - <7>W

Let 7 and § be given pointwise by part iii) of Lemma 2. Then, since ag(X,Y) =
t(ap(X,Y)) if XL1Y, we easily obtain that r and 3 are smooth.
Choose a smooth orthonormal frame {y,y,} in T/}M and set 6; = ©(y;), j=1,2.
Then, the Codazzi equations of F' and G for Af = A{ = A(g yield
(Vi 0,0;> = Vi p ) ALY = (Vy 01,05 = Vi p0) AL X
= Vy 0, HY —<Vy i, HX, i#]. (13)
Suppose that the linear functional X + (V3d1,62> — {Vy7,,7,» does not vanish. Let
H; be its kernel and let V;, j=1,2, be the kernels of the linear functionals X —
Vi 6, 9. Applying for X = Xoe Hit and Y € H= H; NV, N V,, we obtain that

H is an umbilical subspace for f. Since dim H > n — 3, this contradicts our assumption
on vi. It follows that

V62,01 = Vi, 71>, and (Vydy, 9y =0=(Vy 1,9y for all X e TM.
Therefore, the vector bundle isometry 7: T#U — Tz U defined by

i(y;) =¢; for j=1,2, and 7(w)=3J
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preserves the second fundamental forms and normal connections. By the fundamental
theorem for submanifolds in Lorentzian space, there exists an isometry T of L"**
preserving the light cone such that G|, =T o F.

Define T : R""* — R""? by

T
(T 0 jiy Wy

Then T is conformal with conformal factor 1/{T o j ,w). Moreover, using that

1 1
<G7W>: _jwogaw =
Py Py

Toj,of  ToF G
(Toj,of,wy (ToF,wy <(Gwy

jwo Tojw‘

we obtain that along U

JwoTof =

Jwog-

Being j,, an embedding, this implies that g|,; = T o f|.

Let %; be the open dense subset of %, where the dimension of the tangent
subspaces V) is locally constant, and take a connected component U < %;. Then,
the linear isometry 7 and the subspaces V{ in part ii) of are easily seen to be
smooth on U. We claim that also y; is smooth. In fact, since Vi <n—35, we can
choose smooth orthogonal vector fields Z, T € V,, such that the smooth vector field
ar(Z,T) does not vanish. By (7), y, is orthogonal to oy(Z,T) and the claim follows.

Extend y, to an orthonormal basis y,,y, of TfLM and set 6; =7(y;), j=1,2.
Comparing the Codazzi equations of f and G for Ayf2 =A 502 , we get

L G G L G G
<VX 52761>A()‘1 Y + A(V)?52)LL Y - <VY 52,5] >A0‘1X - A(V)%éZ)LLX

= (Vyrp 11 0AL Y = Vipy, 1 0A4] X (14)
Applying (14) for X, Y € V), we obtain
/1(<V)% 02,01) — <V§Vz; n))Y = /1(<V¢ 02,01) — <V)Lf72» n2)X,

hence

V362,61 = Vyyy, 7> for all Y e V. (15)
Now take Y e ¥y, X € V5. Then (14) and (15) yield

MV 02,00 = Vypay))Y = AGs) X,
Since the left-hand side belongs to Vj and the right hand side to V-, we conclude that

<V§52,51> = <V§y2,y1> for all X e TM, (16)

and that 4¢

(V#éz)Ll X - 0. Thus,

(Vy62)piny, =0 for all Y e Vg, (17)
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where N; stands for the first normal space of G, that is, the subspace of the normal space
spanned by the image of a;. Comparing the Codazzi equations of f and G for A{l =
A§ and using (16), we get

AG, X =0 forall XeTM and Y eV,
(Vyor), L

hence,
(Vyoi)iay, =0 forall Ye . (18)
Now, take (e L*NN}. Then, the Codazzi equation for AZ (=0) yields
Ay, Y = A7, X for all X,YeTM.
For X, Y e V), this gives
MVRE010Y = Vil 010X) = (Vi 00 ASX — V(62045 Y. (19)

If V{6, =0 for all Y € Vy, then also <Vy{,61> =0 by (19). Otherwise, let H; be
the kernel of the linear functional Y e Vo +— <Vy(,6;», j=1,2. Applying (19) for
X=YyeHyNVy and Y € H N H,, we get

LA
gy = VRSO0 ol Y e i i,

V30,02

Since A(SG2 = A;/fz and A~yfl Y =Y for all Y € V;, we obtain that H, N H, is an umbilical
subspace for f. Being dim H} N H, > dim V) —2 > n — 4, this contradicts our assump-
tion on Vi Therefore,

Vy(, 0> =0=<Vy{,01> for all YeV, and (eL*-NNi. (20)
We conclude from (17), (18) and (20) that
(Vyé), =0 forall YeV,, and ¢el*. (21)
The Codazzi equation for (e L+, Y e Vy and X € TM yields
VyAgX+A%éY+Ag[X, Y] —A‘E#X:O. (22)

Taking the inner product of (22) with Z € V, and using (21), we get in terms of the
derivative in L"™* that

VyZ, (ﬁXé)TM®L> =0 forall XeTM, Y,ZeV, and &EelLt. (23)
For each point x € U, define
W = span{(Vx&)py o : X € TM,Ee L},

Clearly, W has codimension at most 2 in Vi @ L. We claim that, in fact, the co-
dimension equals 2 everywhere on U. If W = Vy @ L at some point in U, then we
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have by (23) that
WY, ZY=VzY,0,>=0 forall Y,ZeV,,

a contradiction. Suppose now that W has codimension 1 at some point in U. Then
there exist X € TM and a,b € R such that the orthogonal complement of W in Vi @ L
is spanned by X + ad; + bd,. By (23), we have for all Y, Z eV} that VyZ,—bo, +
ao,» = 0, hence <(aA§2" —b21d)Y,Z» =0, which implies that <(aA{2 —b21d)Y,Z)=0.
Since A{ll = A1d on V), we conclude that there exists an umbilical subspace of V, for f
with dimension at least n — 4. This contradicts our assumption on Ve and proves the
claim.

Let I" be the vector subbundle of VOL @ L orthogonal to W and consider the vector
bundle isometry

T =d@®t:TUST; U—-TUDL.
Being Q = 7 ~!(I') transversal to TU, the maps F : @ — R""?, G : Q — L"** defined by
F(3(x)) = f(x) +8(x) and  G(8(x)) = G(x) + 7 (8(x))

are immersions if restricted to a neighborhood U of the 0-section of 2. We claim that
F and G are isometric on U. Given a local section $ € Q, write $ = X +6, for X € TU
and 0 € TfL U. Since 0= <(VX8)TM@L,X—|— 0y = —{&a6(X,Z)+Vz6y for $e Lt
and Z e TM, we have that ag(X,Z) + V716 € L. Moreover, it follows from (16) that
7 is parallel with respect to the connection on L induced by “V*. Therefore, we have

G.(Hx))Z = G.(x)Z + V2T (X +9)
= G.(xX)(Z+VzX — AJ5Z) + a6(X, Z) + “V51(9)
= G.(X)(Z+VzX — AL Z) +1(o (X, Z) + 7V} 0).
Since
F(8(N))Z = f.(XNZ +VzX — AL Z) + 04(X, Z) + V50,

the claim follows. Now, let N"*! be the hypersurface of U defined by G(N"t!) =
G(U)N V" and let i: U — N"! denote the inclusion map. Set # = F|,.., and let
@ : N™!' — R"*? be the conformal immersion correspondent to G|y,.; as in (3). Then,
Z and ¥ are conformal and f|, = Z o1, g|, = 9 o, as we wished. Clearly, if 7 and
% are conformally congruent, then the same holds for f and g. O
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