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Abstract. Let M n
HR

n�2, nV 7, be a conformally deformable submanifold of

euclidean space in codimension two. In this paper we show that if the submanifold has

su½ciently low conformal nullity, a generic conformal condition, then it can be realized as

a hypersurface of a conformally deformable hypersurface. The latter have been classi®ed

by Cartan early this century. Furthermore, it turns out that all deformations of the

former are induced by deformations of the latter.

Early in this century, E. Cartan ([Ca], see also [Da]) proved that a hypersurface

f : M n ! R
n�1 of dimension nV 5 in euclidean space is conformally rigid if its con-

formal nullity, that is, the maximal dimension of an umbilical subspace, satis®es ncf U

nÿ 3 everywhere. Being conformally rigid means that any other conformal immersion

of M n into R
n�1 must be conformally congruent to f, i.e., a composition of f with

a conformal di¨eomorphism of the ambient space. Moreover, Cartan (cf. [DT ]) also

gave a complete parametric description of all conformally deformable hypersurfaces.

These will be referred to hereafter as Cartan hypersurfaces.

Cartan's rigidity theorem was extended by do Carmo and the ®rst author ([CD]) to

conformal immersions f : M n ! R
n�p with dimension nV 7 and codimension pU 4.

For codimension p � 2, their result states that f is conformally rigid if everywhere

i) ncf U nÿ 5 and ii) the second fundamental form Ax in any normal direction x has no

principal curvatures with multiplicity greater than nÿ 3. On the other hand, a large set

of conformally deformable submanifolds in codimension 2 arises from Cartan hyper-

surfaces N n�1
HR

n�2 simply by considering M n to be an arbitrary hypersurface of

N n�1.

In this paper we show that, if only condition i) in do Carmo±Dajczer's rigidity

theorem is assumed, then any conformally deformable submanifold M n in R
n�2, nV 7,

can be realized as a hypersurface of a Cartan hypersurface. Furthermore, all de-

formations of the former are induced by deformations of the latter. More precisely, we

prove the following conformal version of a result in [DG ] on isometric immersions.

Theorem. Let f ; g : M n ! R
n�2, nV 7, be conformal immersions. Suppose that

ncf �x�U nÿ 5 everywhere. Then, there exists an open dense subset of M n such that on

any connected component U either f and g are conformally congruent or there exist

conformal but nowhere conformally congruent Cartan hypersurfaces F;G : N n�1 ! R
n�2

and an isometric embedding i : U ! N n�1 such that f jU � F � i and gjU � G � i:
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Finally, we should point out that the classi®cations of all possible deformations

when condition i) in do Carmo±Dajczer's result is not assumed remain an open problem

even in the case of isometric deformations.

The light cone V
m is the degenerate totally umbilical hypersurface of nonzero null

vectors in standard ¯at Lorentzian space L
m�1, that is,

V
m � fX A L

m�1
: hX ;Xi � 0;X 0 0g:

Given an isometric immersion f : M ! V
m
HL

m�1, the position vector f is a null

normal vector ®eld along the immersion f which is parallel in the normal connection.

Moreover, the second fundamental form Af : TM ! TM in the normal direction f

satis®es

Af � ÿId: �1�

Take the intersection Hw VV
m in L

m�1 of the a½ne hyperplane orthogonal to w A

V
m given by

Hw � fX A L
m�1

: hX ;wi � 1g

with the light cone. Observe that the normal bundle to Hw VV
m in L

m�1 is the

Lorentzian plane bundle spanned by w and the position vector. In particular, the

metric induced on Hw VV
m is riemannian. Moreover, its second fundamental form

with values in the normal bundle is given by a�X ;Y� � ÿhX ;Yiw. Hence, Hw VV
m

is ¯at by the Gauss equation and is, in fact, the image of an isometric embedding

jw : R
mÿ1 ! V

m.

The light cone turns out to be a useful tool in the study of conformal immersions.

Namely, any conformal immersion g : M ! R
N can be made into an isometric im-

mersion G : M ! V
N�1

HL
N�2 by setting

G �
1

jg
jw � g; �2�

where w A V
N�1 is arbitrary and jg > 0 is the conformal factor given by hg�X ; g�Yi �

j2
ghX ;Yi. Conversely, any isometric immersion G : M ! V

N�1 arises this way. For

w A V
N�1 chosen so that hG;wi > 0, the immersion g : M ! R

N de®ned by

jw � g �
1

hG;wi
G �3�

is conformal with conformal factor 1=hG;wi.

The proof of our theorem will make use of the lemma below on ¯at bilinear forms.

We denote by S�b� the subspace spanned by the image of a symmetric bilinear form

b : V � V ! W . The kernel of b is de®ned as

N�b� � fX A V : b�X ;Y� � 0 for all Y A Vg:

Also, we denote by W r; s an �r� s�-dimensional vector space with an inner product of

type �r; s�, being r the maximal dimension of a negative-de®nite subspace.
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Lemma 1 ([CD]). Let b : V � V ! W 3;3 be a nonzero symmetric bilinear form.

Assume that dimN�b� < dimV ÿ 6 and that b is ¯at, that is,

hb�X ;Z�; b�Y ;T�i � hb�X ;T�; b�Y ;Z�i for all X ;Y ;Z;T A V :

Then W 3;3 � W
r; r
1 lW

3ÿr;3ÿr
2 , 1U rU 3, admits an orthogonal direct sum decomposition

such that the Wj-component bj of b, j � 1; 2, satis®es

(i) b1 is null and dimS�b1� � r,

(ii) b2 is ¯at and dimN�b2�V dimV � 2rÿ 6.

Proof of the Theorem. We may assume that M n is endowed with the metric

induced by f and that

rankA
f
d V 3 for all non-zero element d in T?

f M: �4�

This follows easily from our hypothesis on ncf and the fact that composing f with an

inversion in R
n�2 changes A

f
d by a multiple of the identity map. Notice that this fact

is what makes ncf a conformal invariant.

Let G : M n ! V
n�3

HL
n�4 be given by (2). Clearly, the normal vector bundle

T?
g M can be identi®ed via jw� to a vector subbundle of T?

GM. Moreover, the T?
g M-

component a�
G of aG is given by

a�
G �

1

jg
jw� � ag: �5�

Since G is null and belongs to the Lorentzian plane-bundle L
2 in T?

GM orthogonal

to T?
g M, one can easily see that there exists a unique orthonormal frame fx; hg of L

2

with kxk � ÿ1 such that G � x� h. By (1), we then have

haG; hi� haG; xi � ÿh ; i: �6�

At x A M n, let

W � T?
f Ml spanfxgl spanfhglT?

g M

be endowed with the metric of signature �3; 3� which is negative-de®nite on the ®rst two

summands. For simplicity of notation we omit the ``x '' on pointwise computations.

De®ne a symmetric bilinear form b : TM � TM ! W by b � af l aG, i.e.,

b�X ;Y � � af �X ;Y� ÿ haG�X ;Y �; xix� haG�X ;Y �; hih� a�
G�X ;Y �:

The Gauss equations for f and G imply that b is ¯at. Moreover, we have that

nÿ 6 > 0 by assumption and that N�b� � f0g, since b�X ;X �0 0 for X 0 0 by (6). It

follows from Lemma 1 that b � b1 l b2, where b1 is null with dimS�b1� � r, 1U rU 3,

and b2 is ¯at with dimN�b2�V n� 2rÿ 6.

Our ®rst main step is to determine the pointwise structure of the second funda-

mental form of G on each subset

Uj � fx A M n
: r�x� � jg; 1U jU 3:
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Lemma 2. i) U1 is empty.

At any x A M n there is a plane LHT?
GM and a linear isometry t : T?

f M ! L

such that:

ii) When x A U2, then

pL � aG � t � af

where pL (pL?� denotes orthogonal projection onto L (L?). Furthermore, there

exists 00 g1 A T?
f M such that

A f
g1
jV0

� l Id; l0 0; �7�

where V0 :� N�pL? � aG� satis®es dimV0 V nÿ 2.

iii) If x A U3, then

aG � t � af ÿ h ; iQ;

where Q is a null vector in the orthogonal complement of L in T?
GM.

Proof. Suppose x A U1. Then, there are unit vectors g A T?
f M, d A T?

g M and a

symmetric bilinear form f : TM � TM ! R such that

b1 � f�a1h� a2d� b1x� b2g�

where a21 � a22 � b21 � b22 . For any Z A N�b2� and X A TM, we have b�X ;Z� �

b1�X ;Z�. Using (6), we get

af �X ;Z� � b2f�X ;Z�g; haG�X ;Z�; hi � a1f�X ;Z�

and

haG�X ;Z�; hi� hX ;Zi � b1f�X ;Z�:

We conclude that b1 ÿ a1 0 0, and that

af �X ;Z� �
b2

b1 ÿ a1
hX ;Zig for all Z A N�b2�:

Hence, N�b2� is an umbilical subspace for f. Since dimN�b2�V nÿ 4, this contradicts

our assumption on ncf and proves that U1 is empty.

At x A U2 there exist vectors of unit length h1; h2 A T?
f M, z1; z2 A T?

g M and

symmetric bilinear forms f; f 0
: TM � TM ! R such that

b1 � f�c1h� a1h1 � b1z1� � f 0�c2x� a2h2 � b2z2�

where

c21 ÿ a21 � b21 � 0 � c22 � a22 ÿ b22 and b1b2hz1; z2i � a1a2hh1; h2i: �8�

Using (6), we get

af �X ;Z� � a1f�X ;Z�h1 � a2f
0�X ;Z�h2;

haG�X ;Z�; hi� hX ;Zi � c2f
0�X ;Z�;

haG�X ;Z�; hi � c1f�X ;Z�

a�
G�X ;Z� � b1f�X ;Z�z1 � b2f

0�X ;Z�z2
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for Z A N�b2� and X A TM. In particular,

c2f
0�X ;Z� � c1f�X ;Z� � hX ;Zi:

We obtain that

af �X ;Z� � r�X ;Z�m1 � hX ;Zim2; aG�X ;Z� � r�X ;Z�d1 � hX ;Zid2; �9�

where

m1 � a1h1 � a2c1h2; m2 � a2h2; d1 � c1�x� h� b2z2� � b1z1; d2 � x� b2z2

and r � f when c2 0 0 (say c2 � 1) and

m1 � h2; m2 � ÿa1h1; d1 � b2z2; d2 � ÿhÿ b1z1

and r � f 0 when c2 � 0. Here, we took a2 � c1 � 1.

Notice that in any of the two cases above the vector m1 is nonzero. Let g1 A T?
f M

be a unit vector orthogonal to m1 and set V0 :� N�b2�. By the ®rst of equations (9), we

get that A f
g1
jV0

� l Id for l � hg1; m2i. It follows from (4) that l0 0 and that L �

spanfm1; m2g has dimension two.

By (8) we have that

kmjk � kdjk for 1U jU 2; and hm1; m2i � hd1; d2i:

Hence,

haG�X ;Z�; aG�Y ;Z�i � haf �X ;Z�; af �Y ;Z�i for all Z A V0:

We conclude from the Gauss equations for f and G that

haG�X ;Y �; aG�Z;Z�i � haf �X ;Y�; af �Z;Z�i:

Using (9), we get for Z A V0 of unit length that

r�Z;Z��haG; d1iÿ haf ; m1i� � ÿhaG; d2i� haf ; m2i: �10�

De®ne t : T?
f ! L by t�mj� � dj, j � 1; 2. Then, the claim of the lemma follows

unless r�Z;Z� � k for all unit Z A V0. But if this is the case, since dimV0 V nÿ 2, we

conclude that there exists a subspace HHV0 with dimHV nÿ 4 such that

r�X ;Z� � khX ;Zi for all Z A H:

This and the ®rst equation in (9) yield a contradiction with our assumption on ncf .

Now take x A U3 and set

~b � ÿhaG; xixl af and b � haG; hihl a�
G:

Since b � ~bl b is null, we have

hb�X ;Y�; b�Z;T�i � h~b�X ;Y�; ~b�Z;T�i for all X ;Y ;Z;T A TM:

Thus, there is a linear isometry ~T : spanfxglT?
f M ! spanfhglT?

g M such that
~T � ~b � b. Consider orthonormal vectors fg1; g2g in T?

f M and fz1; z2g in T?
g M such
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that

~T�x� � a1h� a2z1; ~T�g1� � ÿa2h� a1z1 and ~T�g2� � z2

where a21 � a22 � 1. We get,

haG; hi � ÿa1haG; xiÿ a2haf ; g1i �11�

and

haG; z1i � ÿa2haG; xi� a1haf ; g1i; haG; z2i � haf ; g2i: �12�

From (6) and (11) we obtain that

haG; hi�1ÿ a1� � a1h ; iÿ a2haf ; g1i:

Hence a1 0 1 and a straightforward computation using (12) yields

aG � haf ; g1id1 � haf ; g2id2 ÿ h ; iQ;

where

d1 �
a2

a1 ÿ 1
�x� h� ÿ z1; d2 � z2 and Q �

1

a1 ÿ 1
�a1h� x� a2z1�:

Observe that kd1k � 1; kQk � 0 and hd1; Qi � 0 � hd2; Qi. To conclude the proof, set

L � spanfd1; d2g and de®ne t : T?
f M ! L by t�gj� � dj, j � 1; 2. r

We show next that f and g are conformally congruent on any connected component

U of the interior of U3. The second fundamental form of F :� jw � f jU : U ! V
n�3

H

L
n�4 is

aF � jw� � af ÿ h ; iw:

Let t and Q be given pointwise by part iii) of Lemma 2. Then, since aG�X ;Y� �

t�af �X ;Y�� if X?Y , we easily obtain that t and Q are smooth.

Choose a smooth orthonormal frame fg1; g2g in T?
f M and set dj � t�gj�, j � 1; 2.

Then, the Codazzi equations of F and G for AF
gj
� A f

gj
� AG

dj
yield

�h`?
X di; djiÿ h`?

X gi; gji�A
f
gj
Y ÿ �h`?

Y di; djiÿ h`?
Y gi; gji�A

f
gj
X

� h`?
X di; QiY ÿ h`?

Y di; QiX ; i0 j: �13�

Suppose that the linear functional X 7! h`?
X d1; d2iÿ h`?

X g1; g2i does not vanish. Let

H1 be its kernel and let Vj; j � 1; 2; be the kernels of the linear functionals X 7!

h`?
X dj; Qi. Applying (13) for X � X0 A H?

1 and Y A H � H1 VV1 VV2, we obtain that

H is an umbilical subspace for f. Since dimHV nÿ 3, this contradicts our assumption

on ncf . It follows that

h`?
X d2; d1i � h`?

X g2; g1i; and h`?
X d2; Qi � 0 � h`?

X d1; Qi for all X A TM:

Therefore, the vector bundle isometry ~t : T?
F U ! T?

GU de®ned by

~t�gj� � dj for j � 1; 2; and ~t�w� � Q
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preserves the second fundamental forms and normal connections. By the fundamental

theorem for submanifolds in Lorentzian space, there exists an isometry T of L
n�4

preserving the light cone such that GjU � T � F .

De®ne T : R
n�2 ! R

n�2 by

jw � T �
1

hT � jw;wi
T � jw:

Then T is conformal with conformal factor 1=hT � jw;wi. Moreover, using that

hG;wi �
1

jg
jw � g;w

* +

�
1

jg
;

we obtain that along U

jw � T � f �
T � jw � f

hT � jw � f ;wi
�

T � F

hT � F ;wi
�

G

hG;wi
� jw � g:

Being jw an embedding, this implies that gjU � T � f jU .

Let U
�
2 be the open dense subset of U2 where the dimension of the tangent

subspaces V0 is locally constant, and take a connected component U HU
�
2 . Then,

the linear isometry t and the subspaces V0 in part ii) of Lemma 2 are easily seen to be

smooth on U. We claim that also g1 is smooth. In fact, since ncf U nÿ 5, we can

choose smooth orthogonal vector ®elds Z;T A V0 such that the smooth vector ®eld

af �Z;T� does not vanish. By (7), g1 is orthogonal to af �Z;T� and the claim follows.

Extend g1 to an orthonormal basis g1; g2 of T?
f M and set dj � t�gj�, j � 1; 2.

Comparing the Codazzi equations of f and G for A f
g2
� AG

d2
, we get

h`?
X d2; d1iA

G
d1
Y � AG

�`?
X d2�L?

Y ÿ h`?
Y d2; d1iA

G
d1
X ÿ AG

�`?
Y d2�L?

X

� h`?
X g2; g1iA

f
g1
Y ÿ h`?

Y g2; g1iA
f
g1
X : �14�

Applying (14) for X ;Y A V0, we obtain

l�h`?
X d2; d1iÿ h`?

X g2; g1i�Y � l�h`?
Y d2; d1iÿ h`?

Y g2; g1i�X ;

hence

h`?
Y d2; d1i � h`?

Y g2; g1i for all Y A V0: �15�

Now take Y A V0, X A V?
0 . Then (14) and (15) yield

l�h`?
X d2; d1iÿ h`?

X g2; g1i�Y � AG
�`?

Y d2�L?
X :

Since the left-hand side belongs to V0 and the right hand side to V?
0 , we conclude that

h`?
X d2; d1i � h`?

X g2; g1i for all X A TM; �16�

and that AG
�`?

Y d2�L?
X � 0. Thus,

�`?
Y d2�L?VN1

� 0 for all Y A V0; �17�
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where N1 stands for the ®rst normal space of G, that is, the subspace of the normal space

spanned by the image of aG. Comparing the Codazzi equations of f and G for A f
g1
�

AG
d1

and using (16), we get

AG
�`?

Y d1�L?
X � 0 for all X A TM and Y A V0;

hence,

�`?
Y d1�L? VN1

� 0 for all Y A V0: �18�

Now, take z A L? VN?
1 . Then, the Codazzi equation for AG

z �� 0� yields

AG
`?
X z
Y � AG

`?
Y z
X for all X ;Y A TM:

For X ;Y A V0, this gives

l�h`?
X z; d1iY ÿ h`?

Y z; d1iX � � h`?
Y z; d2iA

G
d2
X ÿ h`?

X z; d2iA
G
d2
Y : �19�

If h`?
Y z; d2i � 0 for all Y A V0, then also h`?

Y z; d1i � 0 by (19). Otherwise, let Hj be

the kernel of the linear functional Y A V0 7! h`?
Y z; dji; j � 1; 2. Applying (19) for

X � Y0 A H?
2 VV0 and Y A H1 VH2, we get

AG
d2
Y �

ÿlh`?
Y0
z; d1i

h`?
Y0
z; d2i

Y for all Y A H1 VH2:

Since AG
d2
� A f

g2
and A f

g1
Y � lY for all Y A V0, we obtain that H1 VH2 is an umbilical

subspace for f. Being dimH1 VH2 V dimV0 ÿ 2V nÿ 4, this contradicts our assump-

tion on ncf . Therefore,

h`?
Y z; d2i � 0 � h`?

Y z; d1i for all Y A V0 and z A L? VN?
1 : �20�

We conclude from (17), (18) and (20) that

�`?
Y x�L � 0 for all Y A V0; and x A L?

: �21�

The Codazzi equation for x A L?
;Y A V0 and X A TM yields

`YA
G
x X � AG

`?
X x
Y � AG

x �X ;Y � ÿ AG
`?
Y x
X � 0: �22�

Taking the inner product of (22) with Z A V0 and using (21), we get in terms of the

derivative in L
n�4 that

h ~̀YZ; � ~̀Xx�TMlLi � 0 for all X A TM; Y ;Z A V0 and x A L?
: �23�

For each point x A U , de®ne

W � spanf� ~̀Xx�TMlL : X A TM; x A L?g:

Clearly, W has codimension at most 2 in V?
0 lL. We claim that, in fact, the co-

dimension equals 2 everywhere on U. If W � V?
0 lL at some point in U, then we
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have by (23) that

lhY ;Zi � h ~̀ZY ; d1i � 0 for all Y ;Z A V0;

a contradiction. Suppose now that W has codimension 1 at some point in U. Then

there exist X A TM and a; b A R such that the orthogonal complement of W in V?
0 lL

is spanned by X � ad1 � bd2. By (23), we have for all Y ;Z A V0 that h ~̀YZ;ÿbd1 �

ad2i � 0; hence h�aAG
d2
ÿ bl Id�Y ;Zi � 0; which implies that h�aA f

g2
ÿ bl Id�Y ;Zi � 0.

Since A f
g1
� l Id on V0; we conclude that there exists an umbilical subspace of V0 for f

with dimension at least nÿ 4. This contradicts our assumption on ncf and proves the

claim.

Let G be the vector subbundle of V?
0 lL orthogonal to W and consider the vector

bundle isometry

T � Idl t : TU lT?
f U ! TU lL:

Being W � T
ÿ1�G� transversal to TU , the maps ~F : W ! R

n�2, ~G : W ! L
n�4 de®ned by

~F �Q�x�� � f �x� � Q�x� and ~G�Q�x�� � G�x� �T�Q�x��

are immersions if restricted to a neighborhood ~U of the 0-section of W. We claim that
~F and ~G are isometric on ~U . Given a local section Q A W, write Q � X � d, for X A TU

and d A T?
f U . Since 0 � h� ~̀XQ�TMlL;X � tdi � ÿhx; aG�X ;Z� � `?

Z tdi for Q A L?

and Z A TM, we have that aG�X ;Z� � `?
Z td A L. Moreover, it follows from (16) that

t is parallel with respect to the connection on L induced by G`?. Therefore, we have

~G��Q�x��Z � G��x�Z � ~̀
ZT�X � d�

� G��x��Z � Z̀X ÿ AG
t�d�Z� � aG�X ;Z� � G`?

Z t�d�

� G��x��Z � Z̀X ÿ A
f
d Z� � t�af �X ;Z� � f`?

Z d�:

Since

~F��Q�x��Z � f��x��Z � Z̀X ÿ A
f
d Z� � af �X ;Z� � f`?

Z d;

the claim follows. Now, let N n�1 be the hypersurface of ~U de®ned by ~G�N n�1� �
~G� ~U�VV

n�3 and let i : U ! N n�1 denote the inclusion map. Set F � ~F jN n�1 and let

G : N n�1 ! R
n�2 be the conformal immersion correspondent to ~GjN n�1 as in (3). Then,

F and G are conformal and f jU � F � i, gjU � G � i, as we wished. Clearly, if F and

G are conformally congruent, then the same holds for f and g. r
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