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Hardy's inequalities for Laguerre expansions

By Makoto Satake
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Abstract. For the real Hardy spaces, we shall establish Hardy's inequalities with

respect to Laguerre expansions. The inequalities for the Hardy spaces with exponents

smaller than one will be discussed.

1. Introduction.

The well-known Hardy inequality for the Fourier transforms says that

�
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j f̂ �x�jpjxjpÿ2
dxUCk f kp

H p�R�;�1�

0 < pU 1 (see Garcia-Cuerva and Rubio de Francia [3, ch. III, Corollary 7.23], Stein [7,

p. 128]). Here H p�R�, 0 < pU 1, is the real Hardy space of the boundary distributions

f �x� � RF�x�, where F �z� is an element of the Hardy space H p�R2
��, that is, F �z� is

analytic on the upper half plane R
2
� � fz � x� i y; y > 0g with the norm

k f kH p�R� � kFkH p�R2
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In this paper, we shall establish the Hardy inequalities with respect to the Laguerre

expansions.

The Laguerre function L
a
n �x�, a > ÿ1 is de®ned by

L
a
n �x� � tanL

a
n �x�e

ÿx=2xa=2;

where tan � �G�n� 1�=G�n� a� 1��1=2 and La
n �x� � �n!�ÿ1

xÿaex�d=dx�nfxn�aeÿxg is the

Laguerre polynomial of degree n and of order a. Then fLa
ng

y

n�0 is a complete

orthonormal system on the interval �0;y� with respect to dx (see SzegoÈ [8, 5.7]). We

have the formal expansion
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is the n-th Fourier-Laguerre coe½cient. The Hardy inequality was originally one of

inequalities with respect to the Fourier coe½cients (see Zygmund [9, ch. VII, (8.7)]), and

the inequality for the Fourier transforms followed. Recently, Kanjin [4] changed the

role of the Fourier transforms for that of the Laguerre coe½cients and got the Hardy

type inequality for H 1�R� by using Askey's transplantation theorem (see [1]) for the

Laguerre coe½cients. The aim of this paper is to extend the Hardy inequality of the

Laguerre expansions to H p�R� with p smaller than one by estimating the derivatives of

L
a

n �x� precisely.

Our theorem is as follows:

Theorem. Let aV 0. Suppose a=20 integer and �a=2� 1�ÿ1 < pU 1. Then for

f A H p�R� supported in �0;y�, the Fourier-Laguerre coe½cients can � f � are well-de®ned

and satisfy

X

y

n�0

jcan � f �j
p

�n� 1�2ÿp
UCak f k

p

H p�R��2�

with some constant Ca independent of f. If a=2 � 0; 1; 2; . . . ; then the above statement

holds for each p with 0 < pU 1.

Here and below constants (C; c1;Ca;Ca;p, etc.) may vary from inequality to in-

equality. They are always independent of f, n, etc. but may depend on a, p or other

explicitly indicated parameters.

We shall give two lemmas (Lemma 1 and Lemma 2) in §2, and a proof of Theorem

in §3, ®rst for �p;y�-atoms a�x� supported in �0;y� (Lemma 3), and next for f �x� A

H p�R� supported in �0;y�. The atomic decomposition characterization of H p�R�, 0 <

pU 1 will play an essential role. For convenience, we state the characterization. Let

0 < pU 1 and N � �1=pÿ 1�, where �u� denotes the greatest integer not exceeding u. A

�p;y�-atom is a real-valued function a�x� on R such that (i) a�x� is supported in an

interval �b; b� h�, (ii) ja�x�jU hÿ1=p a.e. x, and (iii)
�

R
xka�x� dx � 0 for all k � 0; 1;

2; . . . ;N. An element f �x� of H p�R� is characterized by the decomposition

f �x� �
X

y

j�1

ljaj�x�;

where each aj is a �p;y�-atom and
P

y

j�1 jljj
p < y, and

c1k f kH p�R� U inf
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jljj
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U c2k f kH p�R�

with two positive constants c1 and c2 independent of f (see Garcia-Cuerva and Rubio

de Francia [3, III.3], Stein [7, p. 107]). Further, the series
P

y

j�1 ljaj converges in H p

norm, consequently, also in the sense of tempered distributions. We shall deal with the

elements f A H p�R� supported in the interval �0;y�. These elements are also char-

acterized by f �x� �
P

y

j�1 ljaj�x� with �p;y�-atoms supported in �0;y� and

c1k f kH p�R� U inf
X

y

j�1

jljj
p

 !1=p

U c2k f kH p�R�
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where the in®mum is taken over all such decompositions of f (see Miyachi [5],

[6]).

2. Two Lemmas.

To prove Theorem we need orders of the m-th derivatives �La
n �

�m��x� with respect to

n. Lemma 1 will be assigned to estimate the derivatives �La
n �

�m��x� for mU a=2 if

a=20 integer and for all m if a=2 � 0; 1; 2; . . .. Further, if a=20 integer, M � �a=2�

and d � a=2ÿM, then the bounds of the Lipschitz d-norm of �La
n �

�M��x� are necessary,

which will be given in Lemma 2.

Lemma 1. Let aV 0. If we set M � �a=2�, then for each non-negative integer mU

M, the m-th derivative �La
n �

�m��x� of L
a
n �x� with respect to x has an estimate,

j�La
n �

�m��x�jUCa;mn
m; mUM:�3�

Furthermore, if a=2 � 0; 1; 2; . . . , then

j�La
n �

�m��x�jUCa;mn
m; m � 0; 1; 2; . . . :�4�

Here Ca;m are positive constants independent of n.

Proof. Let mUM. If we di¨erentiate �La
n �

�m��x� m-times with respect to x, then

we have an expression

�La
n �

�m��x� �
X

0Uj�kUm

cmj;kj
m
n; j;k�x�;�5�

where cmj;k are some constants and

jm
n; j;k�x� � tanL

a�j
nÿj �x�e

ÿx=2xa=2ÿk:�6�

Then it is enough to show jjm
n; j;k�x�jUCan

j�k. We divide the matter into two cases

nxV 1 and nx < 1. First we argue the case nxV 1. We have

jjm
n; j;k�x�j � tan �t

a�j
nÿj �

ÿ1
t
a�j
nÿj jL

a�j
nÿj �x�je

ÿx=2x�a�j�=2xÿj=2ÿk:

We use two estimates

c1l
ÿb=2

U t
b
l U c2l

ÿb=2�7�

and

jLb
l �x�jU c3; x > 0; bV 0�8�

(see the table on p. 699 of [2]) where c1, c2 and c3 are constants independent of l. It

follows that

jjm
n; j;k�x�jUCan

ÿa=2�nÿ j��a�j�=2
xÿj=2ÿk:

We have jjm
n; j;k�x�jUCan

j�k by xÿ1
U n.
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Let 0 < nx < 1. Since

jLb
l �x�jUCbl

b; 0 < lxU 1;�9�

(see [8, (7.6.8)]), it follows that

jjm
n; j;k�x�j � tan jL

a�j
nÿj �x�je

ÿx=2xa=2ÿk

UCan
ÿa=2�nÿ j�a�j

xa=2ÿk

UCan
a=2�jxa=2ÿk:

We have jjm
n; j;k�x�jUCan

j�k, by xU 1=n, which completes the proof of (3).

Next we deal with the case that a=2 � 0; 1; 2; . . . : Since �xa=2��l� � 0, l > a=2, we

see easily �La
n �

�m� has the same order, which completes the proof of Lemma 1.

If a=2 is not an integer, in order to prove Theorem, we need more precise estimates

which are given by the following lemma.

Lemma 2. Let aV 0 and let a=2 be not an integer. We put a=2 � M � d, 0 < d <

1. Then for the M-th derivative �La
n �

�M��x� of L
a
n �x� with respect to x, we have an

estimate

j�La
n �

�M��x� h� ÿ �La
n �

�M��x�jUCan
a=2hd;�10�

where Ca is a constant independent of n.

Proof. By (5), we see that it is enough to show

jjM
n; j;k�x� h� ÿ jM

n; j;k�x�jUCan
j�k�dhd�11�

with some constant Ca independent of n, x and h, where 0U j � kUM. If nhV 1 and

nxV 1, then

jjM
n; j;k�x� h�j � tan jL

a�j
nÿj �x� h�jeÿ�x�h�=2�x� h�a=2ÿk

� tan �t
a�j
nÿj �

ÿ1jLa�j
nÿj �x� h�j�x� h�ÿj=2ÿk:

Thus by (7) and (8), we have

jjM
n; j;k�x� h�jUCan

ÿa=2�nÿ j��a�j�=2�x� h�ÿj=2ÿk;

which is bounded by Can
j�k, since n�x� h�V 2. By nhV 1, we have jjM

n; j;k�x� h�jU

Can
j�k�dhd. Similarly, we have jjM

n; j;k�x�j U Ca nÿa=2�nÿ j��a�j�=2
xÿj=2ÿk. Since nxV

1 and nhV 1, it follows that jjM
n; j;k�x�j U Can

j�k�dhd. Therefore we have (11) for this

case.

If nhV 1 and nxU 1, then n�x� h�V 1, and as in the preceding case (nxV 1), we

have

jjM
n; j;k�x� h�jUCan

j�k�dhd:
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By (7) and (9), we have

jjM
n; j;k�x�j � tan jL

a�j
nÿj �x�je

ÿx=2xa=2ÿk

UCan
ÿa=2�nÿ j�a�j

xa=2ÿk

UCan
j�a=2xa=2ÿkÿdxd:

Since a=2ÿ k ÿ d > 0 and nxU 1, it follows that

jjM
n; j;k�x�jUCan

j�a=2nÿa=2�k�dxd � Can
j�k�dxd;�12�

which is bounded by Can
j�k�dhd since xU h. Therefore we have (11) for the case nhV

1 and nxU 1.

Let nhU 1. We divide the case into two cases xU h and xV h. We ®rst treat the

case xU h. Then we have nxU 1 and thus we have also (12) for this case. Further,

since n�x� h�U 2, we have (12) with x� h instead of x.

We shall treat the case nhU 1 and xV h. To get the inequality (11), we shall

estimate

In � tan jL
a�j
nÿj �x� h� ÿ L

a�j
nÿj �x�je

ÿ�x�h�=2�x� h�a=2ÿk�13�

and

Jn � tan jL
a�j
nÿj �x�j je

ÿ�x�h�=2�x� h�aÿk ÿ eÿx=2xa=2ÿkj:�14�

Let us ®rst deal with In. By the mean value theorem, we have

In � tan jL
a�j�1
nÿjÿ1 �x� yh�jheÿ�x�h�=2�x� h�ÿa=2ÿk�15�

� tan �t
a�j�1
nÿjÿ1 �

ÿ1jLa�j�1
nÿjÿ1 �x� yh�jeÿ�1ÿy�h=2

� h
x� h

x� yh

� �a=2

�x� yh�ÿ� j�1�=2�x� h�ÿk

where y is some constant with 0 < y < 1. Since xV h, it follows 1U �x� h�=�x� yh�

U 2. If nxV 1, then we have �x� yh�ÿ� j�1�=2
U n� j�1�=2 and �x� h�ÿk

U nk. Thus, by

(7) and (8) we have

In UCan
� j�1�=2n� j�1�=2nk � Can

j�k�nh�

UCan
j�k�dhd:

For the last inequality, we used nhU 1. If nxU 1, then applying (9) to (15) we get

In UCan
ÿa=2�nÿ j ÿ 1�a�j�1

heÿ�x�h�=2�x� h�a=2ÿk:�16�

Since xV h and nxU 1, it follows that �x� h�a=2ÿk
U �2=n�a=2ÿk. We have

In UCan
j�k�nh�UCan

j�k�dhd:�17�
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We shall estimate Jn. It follows

Jn U t
a

n jL
a�j
nÿj �x�jj�e

ÿ�x�h�=2 ÿ eÿx=2��x� h�ÿaÿkj

� t
a

n jL
a�j
nÿj �x�je

ÿx=2j�x� h�ÿa=2ÿk ÿ xÿa=2ÿkj

� J�1�
n � J�2�

n ; say:

For J
�1�
n , by (7) and the mean value theorem we have

J�1�
n � t

a

n jL
a�j
nÿj �x�je

ÿ�x�yh�=2h�x� h�ÿa=2ÿk�18�

UCan
ÿa=2jLa�j

nÿj �x�je
ÿyh=2h

x� h

x

� �a=2

xÿj=2�x� h�ÿk

for some y with 0 < y < 1. If nxV 1, then �x� h�ÿ1
U n. Since we have already

assumed hU x, the inequality 1U �x� h�=xU 2 holds. Thus by (8) we have J
�1�
n U

Can
j�k�nh�UCan

j�k�nh�d UCan
j�k�dhd. If nxU 1, then we apply (9) to (18) and get

J�1�
n UCan

a=2�jhxa=2ÿk
UCan

a=2�jhnÿa=2ÿk

UCan
j�knhUCan

n�j�dhd:

Last we estimate J
�2�
n . Let nxV 1. If a=2ÿ kV 1, then by the mean value

theorem

J�2�
n � t

a

n jL
a�j
nÿj �x�je

ÿx=2h�x� yh�a=2ÿkÿ1�19�

� jLa�j
nÿj �x�j

x� yh

x

� ��a�j�=2

�x� yh�a=2ÿkÿ1

UCan
j�k�dhd:

If 0 < a=2ÿ k < 1, then j � 0, d � a=2ÿ k, and

J�2�
n � jLa

n �x�jx
a=2j�x� h�a=2ÿk ÿ xa=2ÿkjUCan

a=2hd�20�

because xd is of Lip d �0 < d < 1�. Let nxU 1. If a=2ÿ kV 1, then we apply (9) to

(19) and obtain

J�2�
n UCan

ÿa=2�nÿ j�a�j
h

1

n

� �a=2ÿkÿ1

UCan
j�k�dhd:

If 0 < a=2ÿ k < 1, then j � 0, d � a=2ÿ k and by (9) and the fact xd is of Lip d we

have J
�2�
n UCan

k�dhd which completes the proof of Lemma 2.

3. Proof of Theorem.

Now we shall prove Theorem. Because ®nite linear combinations of �p;y�-atoms

are dense in H p�R�, the following lemma is essential, which will be proved by using the

lemmas in the previous section.
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Lemma 3. Suppose aV 0, a=20 integer and 1=pÿ 1 < a=2 �2=�a� 2� < pU 1�.

Then

X

y

n�0

jcan �a�j
p

�n� 1�2ÿp
UCa�21�

for all �p;y�-atoms a�x� supported in �0;y�.

If a=2 � 0; 1; 2; . . . , then the above inequality holds for all p with 0 < pU 1.

Proof. Let M � �a=2� and N � �1=pÿ 1�. We put a=2 � M � d. Let a=20

integer. We shall ®rst deal with the case N � M. Let I � �b; b� h� be an interval

de®ning a �p;y�-atom a�x�. The Taylor expansion of L
a

n �x� in x at x � b leads to

can �a� �
1

M!

� b�h

b

a�x��La

n �
�M��b� y�xÿ b���xÿ b�M dx�22�

�
1

M!

� b�h

b

a�x� � f�La

n �
�M��b� y�xÿ b�� ÿ �La

n �
�M��b�g�xÿ b�M dx

for some y with 0 < y < 1. The last equality follows from the cancellation property of

a �p;y�-atom a�x�. We have by (10)

jcan �a�jU
1

M!

� b�h

b

ja�x�j�xÿ b�M�d
dx

� �

nM�d;�23�

and thus we have

jcan �a�jUCa

1

M!
kak2

� b�h

b

�xÿ b�2�M�d�
dx

� �1=2

nM�d

UCan
M�dhM�d�1=2kak2:

Since �p;y�-atoms satisfy hU kak
ÿ2p=�2ÿp�
2 , it follows that

jcan �a�jUCan
M�dkak

1ÿ�2=�2ÿp���M�d�1=2�
2 :�24�

Let R � kak
2p=�2ÿp�
2 . It follows from the above inequality that

X

nUR

jcan �a�j
p

�n� 1�2ÿp
UC p

a
kak

pf1ÿ�2p=�2ÿp���M�d�1=2�g
2

X

nUR

np�M�d�ÿ2�p:�25�

Since 1=pÿ 1 < a=2 � M � d, it follows that p�M � d� ÿ 2� p > ÿ1. Thus, we have

X

nUR

jcan �a�j
p

�n� 1�2ÿp
UCa;p;�26�

where Ca;p depends only on a and p. For the sum over n > R, we have

X

n>R

jcan �a�j
p

�n� 1�2ÿp
UC

X

n>R

jcan �a�j
2

 !p=2
X

n>R

1

n2

 !�2ÿp�=2

�27�

UCkakp
2R

ÿ�2ÿp�=2
UC:

Therefore (26) and (27) give (21).
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Next we shall prove the case N < M. In this case, applying (3) to (22) with N � 1

instead of M, we have (23) with d � 0 and N � 1 instead of M, and thus (24) with d � 0

and N � 1 instead of M holds. Thus we have (21) in the same way.

For the case a=2 � 0; 1; 2; . . . , we apply (4) to (22) with N � 1 instead of M and

easily get the desired inequality (21). This completes the proof of Lemma 3.

Now we shall ®nish the proof of Theorem. Let f be a general element in H p�R�

such that supp f H �0;y�. Then there exist real numbers lj and �p;y�-atoms aj with

supp aj H �0;y�, j � 1; 2; . . . such that f �
P

y

j�1 ljaj and

Xy

j�1

jljj
p
UCpk f k

p
H p :�28�

We put fJ �
PJ

j�1 ljaj. Since 0 < pU 1, we have

Xy

n�0

jcan �fJ�j
p

�n� 1�2ÿp
�

Xy

n�0

j
PJ

j�1 ljc
a
n �aj�j

p

�n� 1�2ÿp
U

XJ

j�1

jlj j
p
Xy

n�0

jcan �aj�j
p

�n� 1�2ÿp
:�29�

Thus, Lemma 3 leads to

Xy

n�0

jcan �fJ�j
p

�n� 1�2ÿp
UCa;pk f k

p
H p :�30�

By the density arguement, we see that can � f � are well-de®ned and the inequality (2)

holds.
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