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Chern number formula for rami®ed coverings
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Abstract. For a rami®ed covering f : Y ! X between compact complex manifolds,

we establish a formula relating the Chern numbers of Y and X. We obtain the for-

mula by localizing characteristic classes via the CÏ ech-de Rham cohomology theory. As

corollaries, we deduce generalizations of such formulas as the Riemann-Hurwitz formula

and a formula of Hirzebruch for the signature, as well as formulas, for other invariants

such as the Todd genus.

1. Introduction.

Let f : Y ! X be a rami®ed covering between n-dimensional compact complex

manifolds with covering multiplicity m. Let Rf �
P

i riRi be the rami®cation divisor of

f, and Bf �
P

i biBi the branch locus of f. We set f �Bi �
P

t ritRit where nit denotes the

mapping degree of the induced map f jRit
: Rit ! Bi with bi �

P

t nitrit . We assume that

the rami®cation divisor and the irreducible component of the branch locus are all non-

singular. Our main result is

cN1

1 � � � cNn

n �Y� ÿ m � cN1

1 � � � cNn

n �X�

�
X

i

X

t

�H
�N1���Nn�
TRit

�c1�LRit
��y �Rit � ÿ nit�rit � 1�H

�N1���Nn�
TBi

�c1�LBi
��y �Bi��

�
X

i

X

nÿ1

a�0

X

t

nit�1ÿ �rit � 1�a�1�

�rit � 1�a

 !

Pa�c1�Bi� � � � cnÿ1�Bi�� � c1�LBi
�a y �Bi�:

In the above,
Pn

i�1 iNi � n and we set formally

H
�N1���Nn�
x �l� � lÿ1 �

Y

n

i�1

�ci�x� � ciÿ1�x� � l�
Ni

 !

ÿ cN1

1 � � � cNn

n �x�

 !

�
X

nÿ1

a�0

Pa�c1 � � � cnÿ1�l
a
;

where Pa is the coe½cient of l a in H�l� as a polynomial in l.

We prove the above formula for Chern numbers in the framework of localization

of characteristic classes based on the CÏ ech de-Rham cohomology theory. ([Le1], [Le2],

[Le3], [LS ], [Su1].) Our methods of proof are rather elementary and computational.
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Classically, all sorts of topological invariants can be calculated as the integral value of

di¨erential forms through the de Rham theorem, which gives the representation of

cohomology classes and describe the explicit correspondence in the PoincareÂ duality. The

CÏ ech-de Rham cohomology theory plays the same role for relative cohomology groups

with the Alexander duality. So applying this analogy, we can localize Chern classes at

the rami®cation set, which gives us more speci®c geometric information about what is

caused by degeneracy of holomorphic maps. (See [Br1], [Br2], [D] for related works.)

Acknowlegement: I would like to express my gratitude to my advisor Professor

T. Suwa for giving me an opportunity to study in this direction and teaching me how to

do mathematics. I would also like to thank Professors J. P. Brasselet, M. KwiecinÂski,

D. Lehmann and J. Seade for stimulating discussions and encouragement.

2. Preliminaries.

2.1. CÏ ech-de Rham cohomology theory.

First we will give a brief sketch of the CÏ ech-de Rham cohomology theory. (see

[BT ], [Su2].) Let X be an n-dimensional Cy-manifold and U � fUaga A I an open

covering of X, whose index set I is a countable ordered set such that �a0; . . . ; ap� A I p�1

is totally ordered if Ua0 V � � � VUap 0 f. Let us consider the de Rham complex of

sheaves of germs of smooth forms on X

0 ! A
0 !

d
A

1 !
d
A

2 !
d
A

3 ! � � � :

Now let C p�U;A
q� be the group of CÏ ech cochains of degree p with values in A

q. The

commutativity of the two operators, the CÏ ech coboundary operator d and the exterior

derivative d,

d

?
?
?
y

?
?
?
y
d

���!
d

C p�U;A
q� ���!

d
C p�1�U;A

q� ���!
d

d

?
?
?
y

?
?
?
y
d

���!
d

C p�U;A
q�1� ���!

d
C p�1�U;A

q�1� ���!
d

d

?
?
?
y

?
?
?
y
d

gives rise to a double complex fC pq � C p�U;A
q�; d; dg. The associated single complex

�A��U�;D� is de®ned by

Ar�U� � 0
p�q�r

C p�U;A
q�

D � d� �ÿ1�pd:

We call the cohomology groups H r�A��U�� of this associated single complex, the CÏ ech-

de Rham cohomology groups of X. This cohomology is canonically isomorphic to the
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classical de Rham cohomology. ([BT ].)

H r�A��U��GH r
DR�X ;R�:

We also de®ne a product structure Ar�U� � As�U� ! Ar�s�U� as

�sx t�a0���ap �
X

p

n�0

�ÿ1��rÿn��pÿn�
sa0���an 5 tan���ap :

Then it induces the cup product structure for the cohomology of the CÏ ech de-Rham

complex, which is, via the above isomorphism, compatible with the usual product in the

de Rham cohomology.

Next we de®ne the integration on the CÏ ech-de Rham cohomology group which

is compatible with the usual integration on the de Rham cohomology group. ([Le1],

[Le2], [Le3].) Suppose now that the manifold X is oriented. Before making our

de®nition, we introduce the following concept.

Definition. Let U and X be as above. A family fRaga A I of n-dimensional

manifolds Ra with piecewise smooth boundary in X is called a system of honey-comb

cells adapted to U if:

(1) Ra HUa, X � 6
a
Ra.

(2) Int�Ra�V Int�Rb� � f if a0 b.

(3) Ra0���ap � 7p

n�0
Ran is an �nÿ p�-dimensional manifold with piecewise smooth

boundary for any �a0 � � � ap� A I p�1.

(4) If �a0 � � � ap� is maximal, Ra0���ap has no boundary.

We also give Ra0���ap an orientation by the following rules.

(1) Each Ra has the same orientation as X.

(2) Ra0�0����ap� p� � sgn�r� � Ra0���ap for a permutation r.

(3) qRa0���ap �
P

a Ra0���apa.

Now suppose that X is compact, and fRaga A I a system of honey-comb cells adapted

to U. We de®ne the integration on An�U� as:

�

X

: An�U� ! C ;

�

X

s �
X

n

p�0

X

a0���ap A I p�1

�

Ra0 ���ap

sa0���ap

0

@

1

A

; s A An�U�:

Then we see, from the fact that this integration is independent of the choice of the

system of honey-comb cells for D-cocycles and it vanishes for D-coboundaries, that it

induces the integration on the cohomology group

�

X

: H n�A��U�� ! C ;

which is compatible with the usual integration on the de Rham cohomology.
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Finally, we describe the Alexander duality in terms of the CÏ ech-de Rham coho-

mology. ([Le1], [Le2], [Le3], [Su1].) We suppose that X is the same as above, and let

SHX be a compact subset of X which admits a regular neighborhood, U0 � X ÿ S,

and U1 a regular neighborhood of S. Now we set U � fU0;U1g and consider the

CÏ ech-de Rham cohomology of X associated with the covering U. We set Ar�U;U0� �
ker�Ar�U� ! A

r�U0�� � f�s0; s1; s01� j s0 � 0g so that we have the exact sequence

0 ! A
r�U;U0� ! A

r�U� ! A
r�U0� ! 0:

Then we conclude H
r�A��U;U0��GH

r�X ;X ÿ S;C� from the de Rham theorem and

the ®ve lemmas.

Let fR0;R1g be a system of honey-comb celles adapted to U. Then we still have

the integration

�

X

: A
n�U;U0� ! C ;

given by

�

X

s �
�

R1

s1 �
�

R01

s01;

for s � �0; s1; s01� A A
n�U;U0�: This again induces the integration on the relative

cohomology

�

X

: H
n�A��U;U0�� ! C :

The cup product induces the pairing A
r�U;U0� � A

nÿr�U1� ! A
n�U;U0�, which

followed by the integration, gives a bilinear pairing

A
r�U;U0� � A

nÿr�U1� ! C ;

which induces the Alexander duality

H
r�X ;X ÿ S;C�GH

r�A��U;U0��GH
nÿr�U1;C�� GHnÿr�S : C�:

2.2. Chern-Weil theory for CÏ ech-de Rham classes.

First we recall some fundamental results of the Chern-Weil theory, the di¨erential

geometric treatment of characteristic classes. (see [GH ].)

Let X be an n-dimensional C
y-manifold and p : E ! X a C

y-complex vector

bundle of rank r over X. Then the i-th Chern class ci�E� in H
2i
DR

�X : C� is represented

by

ci�`� �
�������

ÿ1
p

2p

 !i

si�Y�;

where we denote by si the i-th elementary symmetric polynomial and Y the curvature

matrix of a connection ` on E with respect to some frame for E.

There is the following well-known result for invariant polynomials determined by

connection forms. ([Bo].)
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Suppose that p : E ! X is a Cy-complex vector bundle of rank r over X, and

`0; . . . ;`p; connections on E. Then, for a symmetric polynomial ci, we have a form

ci�`0 � � �`p� A A2�nÿi�ÿp�X� satisfying

dci�`0 � � �`p� �
X

p

j�1

�ÿ1� jÿpÿ1
ci�`0 � � � �̀ j � � �`p�:

The immediate construction of the above boundary term is given as follows. Let us

consider the trivial extension E � R
p ! X � R

p of the vector bundle E over X � R
p,

and ~p : X � R
p ! X a canonical projection. We take ~̀ � �1ÿ t1 ÿ � � � ÿ tp�`0 � t1`1

� � � � � tp`p as the connection on E � R
p and we set

ci�`0 � � �`p� � ~p��ci� ~̀��;

then it has the desired property. Here ``~p�'' means the integration along the ®bers. By

applying the above result for invariant polynomials determind by connection forms, we

can express the i-th Chern class ci�E� in H 2i�A��U�� as follows. ([Le1], [Le2], [Le3],

[Su1].) Let `a be a connection on EjUa
over Ua,

H 2i
DR�X ;R�GH 2i�A��U��

ci�E� $ ���ci�`a�a; ��ci�`a�a A I p��p��:

In the above ci is the i-th elementary symmetric polynomial.

In particular, for the case where the covering is given by U � fU0;U1g, the CÏ ech-de

Rham cocycle �ci�`0�; ci�`1�; ci�`0;`1�� represents the i-th Chern class of E.

3. Chern number formula for rami®ed coverings.

3.1. Correspondence between fundamental classes and cohomology classes of divisors.

Let X be an n-dimensional compact complex manifold, and D a divisor on X, with

local de®ning functions f fag over some open covering fUag of X. Then, D � f fa;Uag

de®nes naturally a complex line bundle LD which has the system of transition functions

fgab � fa= fbg. We know that, in the PoincareÂ duality, the Chern class c1�LD� rep-

resents the dual of the fundamental class of the divisor D,

H 2
DR�X : C�GH2nÿ2�X : C�;

c1�LD� $ �D�;
�

X

c1�LD�5 j �

�

D

j; Ej A Z2nÿ2�X�

� �

:

Here, we ®nd a more speci®c correspondence between the fundamental homology

class and the Chern class of D in the Alexander duality, by localizing the Chern class

in terms of the CÏ ech de Rham cohomology theory. For simpli®cation, here we assume

that the divisor D is non-singular. (Indeed the following discussion can be applied to

the general case. (Originally due to [Su2].))

Let X be an n-dimensional complex manifold, D a compact non-singular divisor

on X, and LD ! X the associated line bundle of D. If D is given by local de®ning

Chern number formula for rami®ed coverings 5



functions f fag, then those functions clearly give a section fD � � fa;Ua� of LD, whose

zero locus coincides with D itself. We set U0 � X ÿD, p : U1 ! D a su½ciently small

tubular neighborhood, R1 a closed disk bundle over D which is contained in U1, and R0

the complement of the interior of R1.

We consider the covering U � fU0;U1g with the system of honey-comb cells

fR0;R1g adapted to U. Then as is discussed in the previous sections, the class

c1�LD� � �c1�`0�; c1�`1�; c1�`0;`1��

in the CÏ ech-de Rham cohomology can be localized at D, by taking an fD-trivial

connection f̀D as the connection `0 on U0 so that c1� f̀D� � 0.

Now let us consider the pairing

A2�U;U0� � A2nÿ2�U1� ! C ;

and compute

�
X

c1�LD�x t1 �

�
R1

c1�`1�5 t1 �

�
R01

c1�`0;`1�5 t1

for t1 A A2nÿ2�U1�. We note that the elements of A2�U;U0� are expressed as cocycles

whose component on U0 vanishes.

Since p : U1 ! D is a deformation retract, U1 and D have the same homotopy type.

So we have H 2nÿ2�U1�GH 2nÿ2�D�, which implies

t1 � p�y� dr;

for some y A A2nÿ2�D�, and r A A2nÿ3�U1�. Using the Stokes theorem and qR1 � ÿR01,

we compute

�
R1

c1�`1�5t1 �

�
R1

c1�`1�5p�y�

�
R1

c1�`1�5dr �

�
R1

c1�`1�5p�yÿ

�
R01

c1�`1�5r;

�
R01

c1�`0;`1�5 t1 �

�
R01

c1�`0;`1�5 p�y�

�
R01

c1�`0;`1�5 dr

�

�
R01

c1�`0;`1�5 p�y�

�
R01

c1�`1�5 r�

�
qR01

c1�`0;`1�5 r:

Hence we have

�
R1

c1�`1�5 t1 �

�
R01

c1�`0;`1�5 t1 �

�
R1

c1�`1�5 p�y�

�
R01

c1�`0;`1�5 p�y:

Let ǸD
be a connection on the normal bundle ND of D. Since LDjD GND, and also

LDjU1
G p�ND, we can take p�

ǸD
as the connection `1 on LDjU1

so that we have

�
R1

c1�`1�5 p�y �

�
R1

c1�p
�`ND

�5 p�y �

�
R1

p��c1� ǸD
�5 y� �

�
D

c1� ǸD
�5 y � 0;

because the last term is the integration of a 2n-form on a �2nÿ 2�-dimensional sub-

manifold.
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Next, we compute the boundary integral
�
R01

c1�`0;`1�5 p�y. Since the question is

purely local, for any ®xed point p A D, and Vp HD a neighborhood of p, we set

Up � pÿ1�Vp�, and take a local coordinate system �Up; z� around p su½ciently small so

that we may assume that D � fz1 � 0g on Up, Up HU1, and NDjVp
has a non-vanishing

section sN . Then p�sN gives a section on U for LD. If we give a trivialization of LD

by p�sN , then on Up ÿD

fD � z1 � z1 � p
�sN ;

and therefore the connection form yfD of f̀D with respect to the frame p�sN has the

form d fD= fD � dz1=z1 of the Cauchy kernel on U. To compute the secondary term

c1�`0;`1�, let ~y � �1ÿ t�yfD � ty1

c1�`0;`1� � ~p��d ~yÿ ~y5 ~y� � yf ÿ y1:

Now by the Cauchy integral formula, we have

�
R01VUp

c1�`0;`1�5 p�y �

�
DVUp

y �

�
DVU

t1;

which implies �
R01

c1�`0;`1�5 p�y �

�
D

y �

�
D

t1:

To organize the results of the above calculation, we obtain the correspondence

H 2�X ;X ÿD;C�GH 2�A��U;U0��GH2nÿ2�D;C�;

�0; c1�`1�; c1�`0;`1�� $ �D�:

We remark that the above correspondence is more precise than that of the PoincareÂ

duality. (1): We do not need the compactness of the ambient space X. (2): The

dual of the Chern class is found in H��D�, which indicates explicitly the location of

singularities.

3.2. Proof of the main theorem.

In this section, we give the proof of the main theorem. Let X and Y be n-

dimensional compact complex manifolds, and f : Y ! X a rami®ed covering with

covering multiplicity m. If f gives a simple (unrami®ed) m-sheeted covering, then we

see that c��Y � ÿ mc��X� � 0, which suggests us that the gap is brought about by the

rami®cation. So we expect that the di¨erence of the Chern classes can be localized at

the rami®cation set.

We recall some basic facts about rami®ed coverings.

The rami®cation divisor Rf of f is de®ned as the analytic hypersurface de®ned by

fdet�df � � 0g. Let Rf �
P

riRi be the irreducible decomposition of Rf . Then we

have

ri � 1 � �OY ;y : f
�
OX ; f �y��;

the degree of integral extention OY ;y over f �
OX ; f �y� for a generic point y on Ri. In

other words, ri indicates the number of decrease of sheets at Ri.

Chern number formula for rami®ed coverings 7



The branch locus Bf of f is de®ned by the direct image f�Rf of Rf under f. Let

Bf �
P

biBi be the irreducible decomposition of Bf . Then we have

bi � mÿ ] f ÿ1�x�

for a generic point x on Bi.

Now we assume that the rami®cation divisor of f and the irreducible components of

the branch locus of f are all non-singular. Here we remark that the branch locus

possibly has some self-intersection between other components. It followes from the

assumption that the rami®cation divisor of f is non-singular, that f jRi
: Ri ! Bi is non-

degenerate so that it gives an unrami®ed covering over Bi, with covering multiplicity

ri=bi.

First let us consider the case where the rami®cation divisor Rf has only one

component, hence the branch locus Bf also does. We set Rf � r � R, and Bf � b � B.

Let o : V1 ! B be a tubular neighborhood of B, and we take a covering U �

fU0;U1g of Y with, U0 � Y ÿ R, and p : U1 ! R, a tubular neighborhood of R such

that U1 H f ÿ1�V1�: We consider the CÏ ech-de Rham cohomology of Y associated with

the covering of U, and set, in H 2i
DR�Y�GH 2i�A��U��, that

ci�TY� $ �ci�`0�; ci�`1�; ci�`0;`1��;

ci� f
�TX � $ �ci� ~̀0�; ci� ~̀1�; ci� ~̀0; ~̀1��:

Since df : TY ! TX gives a bundle homomorphism outside the rami®cation, and

since U1 and V1 are tubular neighborhoods of R and B respectively, we have

TY jYÿR G f �TX jYÿR;

TY jU1
G p�NR l p�TRGLRjU1

l p�TR;

f �TX jU1
G f ��o�NB lo�TB�G f ��LB lo�TB�:

In particular on U1 ÿ R, LR G f �LB are isomorphic as trivial bundles. Thus we can

take connections on each neighborhood as follows:

`0 � ~̀
0

such that

~̀
0jf ÿ1�V1ÿB� � f̀ �fB l f �o�`TB;

`0jU1ÿR � f̀ � fB l p�`TR

� f̀R l p�`TR;

and

~̀
1 � f �

L̀B
l f �o�`TB;

`1 � L̀R
l p�`TR:
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In the above, for a non-singular divisor D we denote by fD, f̀D and `TD, the section of

D, the fD-trivial connection, and a connection of the tangent bundle of D respectively.

Next we do local computation for secondary terms. Notation and choice of local

neighborhood and frames are the same as in 3.1.

~A � �1ÿ t�
p�yTR 0

0 yfR

 !

� t
p�yTR 0

0 y1

 !

�
p�yTR 0

0 �1ÿ t�yfR � ty1

 !

�
p�yTR 0

0 ~y

 !

:

Thus

s i�d ~Aÿ ~A5
~A� � si

dp�yTR ÿ p�yTR 5 p�yTR 0

0 d ~yÿ ~y5 ~y

 !

� �d ~yÿ ~y5 ~y�5 s iÿ1�dp
�yTR ÿ p�yTR 5 p�yTR�

� si�dp
�yTR ÿ p�yTR 5 p�yTR�:

Since only ~y involves the ®ber coordinate t, it follows from the projection formula that

ci�`0;`1� � ~p�si�d ~Aÿ ~A5
~A�

� ~p�f�d ~yÿ ~y5 ~y�5 siÿ1�p
��dyR ÿ yR 5 yR��g

� c1�`fR ;`LR
�5 p�ciÿ1�R�:

To express the secondary term of cN1

1 � � � cNn
n �Y� A H 2n�A��U��, in general we set

H
�N1���NN �
x �l� � lÿ1

Y

n

i�1

�ci�x� � ciÿ1�x� � l�
Ni ÿ cN1

1 � � � cNn

n �x�

 !

�
X

nÿ1

a�0

Pa�c1 � � � cnÿ1�l
a
:

Then the CÏ ech-de Rham class of cN1

1 � � � cNn
n �Y� is represented by,

p��cN1

1 � � � cNn

n ��R�;
Y

n

i�1

�p�ci�R� � p�ciÿ1�R�c1�LR��
Ni
; c1�`fR ;`LD

�5H
�N1���Nn�
TR �c1�LR��

 !

:

This can be proved by induction on the number of indeterminates ci as follows. Here

we remark that the degree of the class is not necessarily equal to n, the dimension of the

ambient spaces. It follows from the inductive hypothesis that

Chern number formula for rami®ed coverings 9



cN1

1 � � � cNk

k �Y � �

 

p��cN1

1 � � � cNk

k ��R�;
Y

k

i�1

�p�ci�R� � p�ciÿ1�R�c1�LR��
Ni ;

c1�`fR ;`LR
�5H

�N1���Nk�
TR �c1�LR��

!

:

c
Nk�1

k�1 �Y� � �cNk�1

k�1 �R�; �p
�ck�1�R� � p�ck�R�c1�LR��

Nk�1 ; c1�`fR ;`LR
�5H

�Nk�1�
TR �c1�LR���:

Thus, the secondary term of cN1

1 � � � cNk�1

k�1 �Y� is

cN1

1 � � � cNk�1

k�1 �`0;`1�

� cN1

1 � � � cNk

k �`0�5 c
Nk�1

k�1 �`0;`1� � cN1

1 � � � cNk

k �`0;`1�5 c
Nk�1

k�1 �`1�

� c1�`fR ;`LR
�5 c1�LR�

ÿ1
Y

k�1

i�1

�p�ci�R� � p�ciÿ1�R�c1�LR��
Ni ÿ cN1

1 � � � cNk�1

k�1 �R�

 !

� c1�`fR ;`LD
�5H

�N1���Nk�1�
TX �c1�LR��;

which completes the induction.

In particular for the case where n �
Pn

i�1 i �Ni, from our assumption that the

rami®cation divisor has degree r we have f �LB � �LR�
nr�1, thus f �c1�LB� � �r� 1� �

c1�LR�. Since f jR : R ! B is non-degenerate, it follows from TRG f �TB that ci�R� �

f �ci�B�. Therefore we have

H
�N1���Nn�
TR �c1�LR��y �R� � H

�N1���Nn�
f �TB ��r� 1�ÿ1 � c1� f

��LB���y ��b=r� � B�

�
X

nÿ1

a�0

b

r�r� 1�a
Pa�c1 � � � cnÿ1� � c1�LB�

a
y �B�:

By calculating the CÏ ech-de Rham class of cN1

1 � � � cNn
n � f �TX � similarly, we obtain

cN1

1 � � � cNn

n �TY� ÿ cN1

1 � � � cNn

n � f �TX �

� �0; �� � ��; c1�`fR ;`LR
�5 �H

�N1���Nn�
TR �c1�LR�� ÿ �r� 1�H

�N1���Nn�
f �TB �c1� f

�LB����:

(We omit the component on U1 since it vanishes by evaluating on R because of

overdegree, which gives integration of 2n-forms on hypersurface, as observed in 3.1.)

Now, as discussed in 3.1, it follows from the correspondence of the Alexander

duality that

cN1

1 � � � cNn

n �TY �y �Y � ÿ m � cN1

1 � � � cNn

n �TX �y �X �

�

�

R

c1�`fR ;`LR
�5 �H

�N1���Nn�
TR �c1�LR�� ÿ �r� 1�H

�N1���Nn�
f �TB �c1� f

�LB���

� H
�N1���Nk�1�
TR �c1�LR��y �R� ÿ �r� 1�H

�N1���Nk�1�
TB �c1�LB��y ��b=r� � B�

�
X

nÿ1

a�0

b�1ÿ �r� 1�a�1�

r�r� 1�a
Pa�c1�B� � � � cnÿ1�B�� � c1�LB�

a
y �B�:
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We assumed that the rami®cation divisor of f is non-singular, so we can assume that

the tubular neighborhoods of irreducible components of the divisor do not intersect each

other. Hence taking independent sum we conclude:

Theorem [Chern number formula for rami®ed coverings]. Let f : Y ! X be a

rami®ed covering with covering multiplicity m between compact complex manifolds of

dimension n, Rf �
P

i riRi the rami®cation divisor of f, and Bf �
P

i biBi the branch locus

of f. We set f �Bi �
P

t ritRit where nit denotes the mapping degree of the induced map

f jRit
: Rit ! Bi with bi �

P

t nitrit . We assume that the rami®cation divisor and the

irreducible components Bi of the branch locus Bf are all non-singular, and suppose that

n �
Pn

i�1 i �Ni. Then:

cN1

1 � � � cNn

n �Y� ÿ m � cN1

1 � � � cNn

n �X�

�
X

i

X

t

�H
�N1���Nn�
TRit

�c1�LRit
��y �Rit � ÿ nit�rit � 1�H

�N1���Nn�
TBi

�c1�LBi
��y �Bi��

�
X

i

X

nÿ1

a�0

X

t

nit�1ÿ �rit � 1�a�1�

�rit � 1�a

 !

Pa�c1�Bi� � � � cnÿ1�Bi�� � c1�LBi
�a y �Bi�;

where we set

H
�N1���Nn�
x �l� � lÿ1

Y

n

i�1

�ci�x� � ciÿ1�x� � l�
Ni ÿ cN1

1 � � � cNn

n �x�

 !

�
X

nÿ1

a�0

Pa�c1 � � � cnÿ1�l
a
:

Remark. More generally, the class cN1

1 � � � cNn
n �TY � ÿ cN1

1 � � � cNn
n � f �TX� is localized

at the rami®cation set even if the class has the degree k �
P

iNi which is di¨erent from

the dimension of the ambient spaces. Explicitly, the class de®nes a relative cohomology

class:

��0; s1; s01�� A H k�X ;X ÿ R;C�;

where

s1 �
Y

k

i�1

�p�ci�R� � p�ciÿ1�R�c1�LR��
Ni ÿ

Y

k

i�1

�p�ci� f
�B� � p�ciÿ1� f

�B�c1� f
�LB��

Ni
;

s01 � c1�`fR ;`LR
�5 �H

�N1���Nn�
TR �c1�LR�� ÿ �r� 1�H

�N1���Nn�
f �TB �c1� f

�LB���:

3.3. Applications.

In this section, we give some applications of our formula.

The result for the top Chern class implies the generalized Riemann-Hurwitz formula

w�Y� ÿ m � w�X� � ÿ
X

i

bi � w�Bi�;

which is a special case of the formula proved by Y. Yomdin, [Y ].

In case that �n � 2�:

Chern number formula for rami®ed coverings 11



The result for the second Chern class implies

c2�TY �y �Y � ÿ m � c2�TX �y �X � � ÿ
X

i

bi � w�Bi�:

We remark that a more general formula is proved for algebraic cases. (see [Iv].)

We can also deduce the formula for the square of the ®rst Chern classes as follows:

c1�TY �2 y �Y � ÿ m � c1�TX �2 y �X � � ÿ
X

i

2bi � w�Bi� �
X

t

nitrit�riT � 2�

rit � 1
Bi � Bi

 !

:

Now from the fact that the signature of the surface is expressed by L1 � �1=3�p1 �

�1=3��ÿ2c2 � c21�, (The calculation for T and L-genus is found in [H1]), we obtain:

Theorem [The formula for signature for rami®ed coverings]. Let f : Y ! X be a

rami®ed covering between compact complex analytic surfaces with covering multiplicity m,

Rf �
P

i riRi the rami®cation divisor of f, and Bf �
P

i biBi the branch locus of f. We

assume that rami®cation divisor and irreducible components Bi of the branch locus Bf are

all non-singular. Then

Sign�Y � ÿ m � Sign�X� �
1

3
�p1�Y� ÿ m � p1�X ��

�
1

3
f�c1�Y�2 ÿ m � c1�X�2� ÿ 2�c2�Y� ÿ m � c2�X��g

� ÿ
X

i

nitrit�rit � 2�

3�rit � 1�
Bi � Bi:

Originally, the formula for signature for cyclic coverings is formulated for 4-manifold as

follows.

Theorem [Hirzebruch [H2]]. Let X be a compact oriented di¨erentiable manifold of

dimension 4 without boundary on which the cyclic groups Gn of order n acts by orientation

preserving di¨eomorphisms. Suppose that Y is di¨erential submanifold of X, not nec-

essarily connected, and has codimension 2. And Gn operates freely on X ÿ Y . Then

Sign�X� ÿ n � Sign�X=Gn� � ÿ
n2 ÿ 1

3n
Y 0 � Y 0;

where Y 0 is the branch locus in X=Gn.

This is a particular case of the above formula for signature for rami®ed coverings,

the case that r � b � nÿ 1.

We can also deduce the formula for the Todd genus, which is T1 � �1=12��c2 � c21�:

Theorem. Under the same assumption as the above theorem,

T�Y � ÿ m � T�X� �
1

12
f�c2�Y � ÿ m � c2�X�� � �c1�Y�2 ÿ m � c1�X�2�g

� ÿ
X

i

bi

2
T1�Bi� �

X

t

nitrit�rit � 2�

12�rit � 1�
Bi � Bi

 !

:
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In general, however, the calculation for the T-genus or the L-genus is more

complicated, as examples we indicate formulas for the cases n � 3; 4; 5, and 6. (Also

see [H1].)

�n � 3�:

T3 �
1

24
c1c2;

H�l� �
1

24
��c2 � c21� � c1l�:

T�Y � ÿ m � T�X� � ÿ
X

i

bi
T2�Bi�

2
�
X

t

nitrit�ri � 1�

�rit � 1�

�

Bi

T1�Bi�

12
x c1�NBi

�

 !

:

�n � 4�:

T4 �
1

720
� �ÿc4 � c3c1 � 3c22 � 4c2c

2
1 ÿ c41�;

H�l� �
1

720
�15c2c1 � 5�c2 � c21�l ÿ l 3�:

T�Y � ÿ m � T�X� � ÿ
X

i

T3�Bi�

2
�
X

i

X

t

nitrit�1ÿ �rit � 1�2�

�rit � 1�

�

Bi

T2�Bi�

12
x c1�NBi

�

�
X

i

X

t

nitrit�1ÿ �rit � 1�3�

�rit � 1�2

�

Bi

c31�NBi
�

720
:

We can also de®ne the signature for n � 4, as

L2 �
1

45
�7p2 ÿ p21� �

1

45
�14c4 ÿ 14c3c1 � 3c22 � 4c2c

2
1 ÿ c41�:

H�l� �
1

45
��ÿ10c2 � 5c21�l ÿ l3�:

Sign�Y � ÿ m � Sign�X� � ÿ
X

i

X

t

nitrit�1ÿ �rit � 1�2�

�rit � 1�

�

Bi

L1�Bi�

3
x c1�LBi

�

ÿ
X

i

bi�1ÿ �ri � 1�4�

ri�ri � 1�3

�

Bi

c1�LBi
�3

45
:

�n � 5�:

T5 �
1

1440
�ÿc4c1 � c3c

2
1 � 3c22c1 ÿ c2c

3
1�;

H�l� �
1

1440
f�ÿc4 � c3c1 � 3c22 � 4c2c

2
1 ÿ c41� � 5c2c1l ÿ c1l

3g:
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T�Y � ÿ m � T�X� � ÿ
X
i

T4�Bi�

2
�
X
i

X
t

nitrit�1ÿ �rit � 1�2�

�rit � 1�

�
Bi

T3�Bi�

12
x c1�NBi

�

ÿ
X
i

X
t

nitrit�1ÿ rit � 14�

�rit � 1�3

�
Bi

T1�Bi�

720
x c31�NBi

�:

�n � 6�:

L3 �
1

33 � 5 � 7
�62p3 ÿ 13p2p1 � 2p31�

�
1

33 � 5 � 7
�ÿ124c6 � 124c5c1 ÿ 72c4c2 ÿ 26c4c

2
1

� 62c23 ÿ 52c3c2c1 � 26c3c
3
1 � 10c32 � 11c22c

2
1 ÿ 12c2c

4
1 � 2c61�:

H�l� �
1

33 � 5 � 7
f�98c4 ÿ 98c3c1 � 21c22 � 28c2c

2
1 ÿ 7c41� � l � �14c2 ÿ 7c21� � l

3 � 2l5g:

Sign�Y � ÿ m � Sign�X� � ÿ
X
i

X
t

nitrit�1ÿ �rit � 1�2�

�rit � 1�

�
Bi

L2�Bi�

3
x c1�LBi

�

ÿ
X
i

X
t

nitrit�1ÿ �rit � 1�4�

�rit � 1�3

�
Bi

L1�Bi�

45
x c1�LBi

�3

ÿ
X
i

X
t

nitrit�1ÿ �rit � 1�6�

�rit � 1�5

�
Bi

2c1�LBi
�5

945
:
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