Chern number formula for ramified coverings

By Takeshi Izawa

(Received Mar. 16, 1998)

Abstract

For a ramified covering $f: Y \rightarrow X$ between compact complex manifolds, we establish a formula relating the Chern numbers of Y and X. We obtain the formula by localizing characteristic classes via the Čech-de Rham cohomology theory. As corollaries, we deduce generalizations of such formulas as the Riemann-Hurwitz formula and a formula of Hirzebruch for the signature, as well as formulas, for other invariants such as the Todd genus.

1. Introduction.

Let $f: Y \rightarrow X$ be a ramified covering between n-dimensional compact complex manifolds with covering multiplicity μ. Let $R_{f}=\sum_{i} r_{i} R_{i}$ be the ramification divisor of f, and $B_{f}=\sum_{i} b_{i} B_{i}$ the branch locus of f. We set $f^{*} B_{i}=\sum_{t} r_{i_{t}} R_{i_{t}}$ where $n_{i_{t}}$ denotes the mapping degree of the induced map $\left.f\right|_{R_{i t}}: R_{i_{t}} \rightarrow B_{i}$ with $b_{i}=\sum_{t} n_{i_{t}} r_{i_{i}}$. We assume that the ramification divisor and the irreducible component of the branch locus are all nonsingular. Our main result is

$$
\begin{aligned}
c_{1}^{N_{1}} \cdots & c_{n}^{N_{n}}(Y)-\mu \cdot c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}(X) \\
& =\sum_{i} \sum_{t}\left(H_{T R_{i_{t}}}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(L_{R_{i_{t}}}\right)\right) \frown\left[R_{i_{t}}\right]-n_{i_{t}}\left(r_{i_{t}}+1\right) H_{T B_{i}}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(L_{B_{i}}\right)\right) \frown\left[B_{i}\right]\right) \\
& =\sum_{i} \sum_{\alpha=0}^{n-1}\left(\sum_{t} \frac{n_{i_{t}}\left(1-\left(r_{i_{t}}+1\right)^{\alpha+1}\right)}{\left(r_{i_{t}}+1\right)^{\alpha}}\right) P_{\alpha}\left(c_{1}\left(B_{i}\right) \cdots c_{n-1}\left(B_{i}\right)\right) \cdot c_{1}\left(L_{B_{i}}\right)^{\alpha} \frown\left[B_{i}\right] .
\end{aligned}
$$

In the above, $\sum_{i=1}^{n} i N_{i}=n$ and we set formally

$$
\begin{aligned}
H_{\xi}^{\left(N_{1} \cdots N_{n}\right)}(l) & =l^{-1} \cdot\left(\left(\prod_{i=1}^{n}\left(c_{i}(\xi)+c_{i-1}(\xi) \cdot l\right)^{N_{i}}\right)-c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}(\xi)\right) \\
& =\sum_{\alpha=0}^{n-1} P_{\alpha}\left(c_{1} \cdots c_{n-1}\right) l^{\alpha},
\end{aligned}
$$

where P_{α} is the coefficient of l^{α} in $H(l)$ as a polynomial in l.
We prove the above formula for Chern numbers in the framework of localization of characteristic classes based on the Čech de-Rham cohomology theory. (Le1], [Le2], [Le3], [LS], [Su1].) Our methods of proof are rather elementary and computational.

[^0]Classically, all sorts of topological invariants can be calculated as the integral value of differential forms through the de Rham theorem, which gives the representation of cohomology classes and describe the explicit correspondence in the Poincare duality. The Cech-de Rham cohomology theory plays the same role for relative cohomology groups with the Alexander duality. So applying this analogy, we can localize Chern classes at the ramification set, which gives us more specific geometric information about what is caused by degeneracy of holomorphic maps. (See [Br1], [Br2], [D] for related works.)

Acknowlegement: I would like to express my gratitude to my advisor Professor T. Suwa for giving me an opportunity to study in this direction and teaching me how to do mathematics. I would also like to thank Professors J. P. Brasselet, M. Kwieciński, D. Lehmann and J. Seade for stimulating discussions and encouragement.

2. Preliminaries.

2.1. Čech-de Rham cohomology theory.

First we will give a brief sketch of the Čech-de Rham cohomology theory. (see [BT], [Su2].) Let X be an n-dimensional C^{∞}-manifold and $\mathscr{U}=\left\{U_{\alpha}\right\}_{\alpha \in I}$ an open covering of X, whose index set I is a countable ordered set such that $\left(\alpha_{0}, \ldots, \alpha_{p}\right) \in I^{p+1}$ is totally ordered if $U_{\alpha_{0}} \cap \cdots \cap U_{\alpha_{p}} \neq \phi$. Let us consider the de Rham complex of sheaves of germs of smooth forms on X

$$
0 \rightarrow \mathscr{A}^{0} \xrightarrow{d} \mathscr{A}^{1} \xrightarrow{d} \mathscr{A}^{2} \xrightarrow{d} \mathscr{A}^{3} \rightarrow \cdots .
$$

Now let $C^{p}\left(\mathscr{U}, \mathscr{A}^{q}\right)$ be the group of Čech cochains of degree p with values in \mathscr{A}^{q}. The commutativity of the two operators, the C ech coboundary operator δ and the exterior derivative d,

gives rise to a double complex $\left\{C^{p q}=C^{p}\left(\mathscr{U}, \mathscr{A}^{q}\right) ; \delta, d\right\}$. The associated single complex $\left(A^{\bullet}(\mathscr{U}), D\right)$ is defined by

$$
\begin{aligned}
A^{r}(\mathscr{U}) & =\bigoplus_{p+q=r} C^{p}\left(\mathscr{U}, \mathscr{A}^{q}\right) \\
D & =\delta+(-1)^{p} d .
\end{aligned}
$$

We call the cohomology groups $H^{r}\left(A^{\bullet}(\mathscr{U})\right)$ of this associated single complex, the Čechde Rham cohomology groups of X. This cohomology is canonically isomorphic to the
classical de Rham cohomology. ([BT].)

$$
H^{r}\left(A^{\bullet}(\mathscr{U})\right) \cong H_{D R}^{r}(X ; \boldsymbol{R}) .
$$

We also define a product structure $A^{r}(\mathscr{U}) \times A^{s}(\mathscr{U}) \rightarrow A^{r+s}(\mathscr{U})$ as

$$
(\sigma \smile \tau)_{\alpha_{0} \cdots \alpha_{p}}=\sum_{v=0}^{p}(-1)^{(r-v)(p-v)} \sigma_{\alpha_{0} \cdots \alpha_{v}} \wedge \tau_{\alpha_{v} \cdots \alpha_{p}}
$$

Then it induces the cup product structure for the cohomology of the Čech de-Rham complex, which is, via the above isomorphism, compatible with the usual product in the de Rham cohomology.

Next we define the integration on the Čech-de Rham cohomology group which is compatible with the usual integration on the de Rham cohomology group. [Le1], [Le2], [Le3].) Suppose now that the manifold X is oriented. Before making our definition, we introduce the following concept.

Definition. Let \mathscr{U} and X be as above. A family $\left\{R_{\alpha}\right\}_{\alpha \in I}$ of n-dimensional manifolds R_{α} with piecewise smooth boundary in X is called a system of honey-comb cells adapted to \mathscr{U} if:
(1) $R_{\alpha} \subset U_{\alpha}, X=\bigcup_{\alpha} R_{\alpha}$.
(2) $\operatorname{Int}\left(R_{\alpha}\right) \cap \operatorname{Int}\left(R_{\beta}\right)=\phi$ if $\alpha \neq \beta$.
(3) $R_{\alpha_{0} \cdots \alpha_{p}}=\bigcap_{\nu=0}^{p} R_{\alpha_{v}}$ is an $(n-p)$-dimensional manifold with piecewise smooth boundary for any $\left(\alpha_{0} \cdots \alpha_{p}\right) \in I^{p+1}$.
(4) If $\left(\alpha_{0} \cdots \alpha_{p}\right)$ is maximal, $R_{\alpha_{0} \cdots \alpha_{p}}$ has no boundary.

We also give $R_{\alpha_{0} \cdots \alpha_{p}}$ an orientation by the following rules.
(1) Each R_{α} has the same orientation as X.
(2) $R_{\alpha_{0}(0) \cdots \alpha_{p}(p)}=\operatorname{sgn}(\rho) \cdot R_{\alpha_{0} \cdots \alpha_{p}}$ for a permutation ρ.
(3) $\partial R_{\alpha_{0} \cdots \alpha_{p}}=\sum_{\alpha} R_{\alpha_{0} \cdots \alpha_{p} \alpha}$.

Now suppose that X is compact, and $\left\{R_{\alpha}\right\}_{\alpha \in I}$ a system of honey-comb cells adapted to \mathscr{U}. We define the integration on $A^{n}(\mathscr{U})$ as:

$$
\begin{gathered}
\int_{X}: A^{n}(\mathscr{U}) \rightarrow \boldsymbol{C}, \\
\int_{X} \sigma=\sum_{p=0}^{n}\left(\sum_{\alpha_{0} \cdots \alpha_{p} \in I^{p+1}} \int_{R_{\alpha_{0} \cdots \alpha_{p}}} \sigma_{\alpha_{0} \cdots \alpha_{p}}\right), \quad \sigma \in A^{n}(\mathscr{U}) .
\end{gathered}
$$

Then we see, from the fact that this integration is independent of the choice of the system of honey-comb cells for D-cocycles and it vanishes for D-coboundaries, that it induces the integration on the cohomology group

$$
\int_{X}: H^{n}\left(A^{\bullet}(\mathscr{U})\right) \rightarrow \boldsymbol{C}
$$

which is compatible with the usual integration on the de Rham cohomology.

Finally, we describe the Alexander duality in terms of the Čech-de Rham cohomology. (LLe1], [Le2], [Le3], [Su1].) We suppose that X is the same as above, and let $S \subset X$ be a compact subset of X which admits a regular neighborhood, $U_{0}=X-S$, and U_{1} a regular neighborhood of S. Now we set $\mathscr{U}=\left\{U_{0}, U_{1}\right\}$ and consider the Čech-de Rham cohomology of X associated with the covering \mathscr{U}. We set $A^{r}\left(\mathscr{U}, U_{0}\right)=$ $\operatorname{ker}\left(A^{r}(\mathscr{U}) \rightarrow A^{r}\left(U_{0}\right)\right)=\left\{\left(\sigma_{0}, \sigma_{1}, \sigma_{01}\right) \mid \sigma_{0}=0\right\}$ so that we have the exact sequence

$$
0 \rightarrow A^{r}\left(\mathscr{U}, U_{0}\right) \rightarrow A^{r}(\mathscr{U}) \rightarrow A^{r}\left(U_{0}\right) \rightarrow 0 .
$$

Then we conclude $H^{r}\left(A^{\bullet}\left(\mathscr{U}, U_{0}\right)\right) \cong H^{r}(X, X-S ; \boldsymbol{C})$ from the de Rham theorem and the five lemmas.

Let $\left\{R_{0}, R_{1}\right\}$ be a system of honey-comb celles adapted to \mathscr{U}. Then we still have the integration

$$
\int_{X}: A^{n}\left(\mathscr{U}, U_{0}\right) \rightarrow \boldsymbol{C},
$$

given by

$$
\int_{X} \sigma=\int_{R_{1}} \sigma_{1}+\int_{R_{01}} \sigma_{01}
$$

for $\sigma=\left(0, \sigma_{1}, \sigma_{01}\right) \in A^{n}\left(\mathscr{U}, U_{0}\right)$. This again induces the integration on the relative cohomology

$$
\int_{X}: H^{n}\left(A^{\bullet}\left(\mathscr{U}, U_{0}\right)\right) \rightarrow \boldsymbol{C}
$$

The cup product induces the pairing $A^{r}\left(\mathscr{U}, U_{0}\right) \times A^{n-r}\left(U_{1}\right) \rightarrow A^{n}\left(\mathscr{U}, U_{0}\right)$, which followed by the integration, gives a bilinear pairing

$$
A^{r}\left(\mathscr{U}, U_{0}\right) \times A^{n-r}\left(U_{1}\right) \rightarrow \boldsymbol{C},
$$

which induces the Alexander duality

$$
H^{r}(X, X-S ; \boldsymbol{C}) \cong H^{r}\left(A^{\bullet}\left(\mathscr{U}, U_{0}\right)\right) \cong H^{n-r}\left(U_{1}, \boldsymbol{C}\right)^{*} \cong H_{n-r}(S: C)
$$

2.2. Chern-Weil theory for Čech-de Rham classes.

First we recall some fundamental results of the Chern-Weil theory, the differential geometric treatment of characteristic classes. (see [GH].)

Let X be an n-dimensional C^{∞}-manifold and $\pi: E \rightarrow X$ a C^{∞}-complex vector bundle of rank r over X. Then the i-th Chern class $c_{i}(E)$ in $H_{D R}^{2 i}(X: \boldsymbol{C})$ is represented by

$$
c_{i}(\nabla)=\left(\frac{\sqrt{-1}}{2 \pi}\right)^{i} \sigma_{i}(\Theta)
$$

where we denote by σ_{i} the i-th elementary symmetric polynomial and Θ the curvature matrix of a connection ∇ on E with respect to some frame for E.

There is the following well-known result for invariant polynomials determined by connection forms. $[\mathbf{B o}]$.)

Suppose that $\pi: E \rightarrow X$ is a C^{∞}-complex vector bundle of rank r over X, and $\nabla_{0}, \ldots, \nabla_{p}$, connections on E. Then, for a symmetric polynomial c_{i}, we have a form $c_{i}\left(\nabla_{0} \cdots \nabla_{p}\right) \in A^{2(n-i)-p}(X)$ satisfying

$$
d c_{i}\left(\nabla_{0} \cdots \nabla_{p}\right)=\sum_{j=1}^{p}(-1)^{j-p-1} c_{i}\left(\nabla_{0} \cdots \check{\nabla}_{j} \cdots \nabla_{p}\right)
$$

The immediate construction of the above boundary term is given as follows. Let us consider the trivial extension $E \times \boldsymbol{R}^{p} \rightarrow X \times \boldsymbol{R}^{p}$ of the vector bundle E over $X \times \boldsymbol{R}^{p}$, and $\tilde{\pi}: X \times \boldsymbol{R}^{p} \rightarrow X$ a canonical projection. We take $\tilde{\nabla}=\left(1-t_{1}-\cdots-t_{p}\right) \nabla_{0}+t_{1} \nabla_{1}$ $+\cdots+t_{p} \nabla_{p}$ as the connection on $E \times \boldsymbol{R}^{p}$ and we set

$$
c_{i}\left(\nabla_{0} \cdots \nabla_{p}\right)=\tilde{\pi}_{*}\left(c_{i}(\tilde{\nabla})\right)
$$

then it has the desired property. Here " $\tilde{\pi}_{*}$ " means the integration along the fibers. By applying the above result for invariant polynomials determind by connection forms, we can express the i-th Chern class $c_{i}(E)$ in $H^{2 i}\left(A^{\bullet}(\mathscr{U})\right)$ as follows. (Le]], LLe2], LLe3], [Su1].) Let ∇_{α} be a connection on $\left.E\right|_{U_{\alpha}}$ over U_{α},

$$
\begin{gathered}
H_{D R}^{2 i}(X ; \boldsymbol{R}) \cong H^{2 i}\left(A^{\bullet}(\mathscr{U})\right) \\
c_{i}(E) \leftrightarrow\left[\left(\left(c_{i}\left(\nabla_{\alpha}\right)_{\alpha},\left(\left(c_{i}\left(\nabla_{\bar{\alpha}}\right)_{\bar{\alpha} \in I^{p}}\right)\right)_{p}\right)\right] .\right.
\end{gathered}
$$

In the above c_{i} is the i-th elementary symmetric polynomial.
In particular, for the case where the covering is given by $\mathscr{U}=\left\{U_{0}, U_{1}\right\}$, the Čech-de Rham cocycle $\left(c_{i}\left(\nabla_{0}\right), c_{i}\left(\nabla_{1}\right), c_{i}\left(\nabla_{0}, \nabla_{1}\right)\right)$ represents the i-th Chern class of E.

3. Chern number formula for ramified coverings.

3.1. Correspondence between fundamental classes and cohomology classes of divisors.

Let X be an n-dimensional compact complex manifold, and D a divisor on X, with local defining functions $\left\{f_{\alpha}\right\}$ over some open covering $\left\{U_{\alpha}\right\}$ of X. Then, $D=\left\{f_{\alpha}, U_{\alpha}\right\}$ defines naturally a complex line bundle L_{D} which has the system of transition functions $\left\{g_{\alpha \beta}=f_{\alpha} / f_{\beta}\right\}$. We know that, in the Poincaré duality, the Chern class $c_{1}\left(L_{D}\right)$ represents the dual of the fundamental class of the divisor D,

$$
\begin{gathered}
H_{D R}^{2}(X: \boldsymbol{C}) \cong H_{2 n-2}(X: \boldsymbol{C}), \\
c_{1}\left(L_{D}\right) \leftrightarrow[D], \\
\left(\int_{X} c_{1}\left(L_{D}\right) \wedge \varphi=\int_{D} \varphi, \quad{ }^{\forall} \varphi \in Z^{2 n-2}(X)\right) .
\end{gathered}
$$

Here, we find a more specific correspondence between the fundamental homology class and the Chern class of D in the Alexander duality, by localizing the Chern class in terms of the Čech de Rham cohomology theory. For simplification, here we assume that the divisor D is non-singular. (Indeed the following discussion can be applied to the general case. (Originally due to $[\mathbf{S u 2} \mathbf{2}]$.)

Let X be an n-dimensional complex manifold, D a compact non-singular divisor on X, and $L_{D} \rightarrow X$ the associated line bundle of D. If D is given by local defining
functions $\left\{f_{\alpha}\right\}$, then those functions clearly give a section $f_{D}=\left(f_{\alpha}, U_{\alpha}\right)$ of L_{D}, whose zero locus coincides with D itself. We set $U_{0}=X-D, \pi: U_{1} \rightarrow D$ a sufficiently small tubular neighborhood, R_{1} a closed disk bundle over D which is contained in U_{1}, and R_{0} the complement of the interior of R_{1}.

We consider the covering $\mathscr{U}=\left\{U_{0}, U_{1}\right\}$ with the system of honey-comb cells $\left\{R_{0}, R_{1}\right\}$ adapted to \mathscr{U}. Then as is discussed in the previous sections, the class

$$
c_{1}\left(L_{D}\right)=\left(c_{1}\left(\nabla_{0}\right), c_{1}\left(\nabla_{1}\right), c_{1}\left(\nabla_{0}, \nabla_{1}\right)\right)
$$

in the Čech-de Rham cohomology can be localized at D, by taking an f_{D}-trivial connection $\nabla_{f_{D}}$ as the connection ∇_{0} on U_{0} so that $c_{1}\left(\nabla_{f_{D}}\right)=0$.

Now let us consider the pairing

$$
A^{2}\left(\mathscr{U}, U_{0}\right) \times A^{2 n-2}\left(U_{1}\right) \rightarrow \boldsymbol{C},
$$

and compute

$$
\int_{X} c_{1}\left(L_{D}\right) \smile \tau_{1}=\int_{R_{1}} c_{1}\left(\nabla_{1}\right) \wedge \tau_{1}+\int_{R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \tau_{1}
$$

for $\tau_{1} \in A^{2 n-2}\left(U_{1}\right)$. We note that the elements of $A^{2}\left(\mathscr{U}, U_{0}\right)$ are expressed as cocycles whose component on U_{0} vanishes.

Since $\pi: U_{1} \rightarrow D$ is a deformation retract, U_{1} and D have the same homotopy type. So we have $H^{2 n-2}\left(U_{1}\right) \cong H^{2 n-2}(D)$, which implies

$$
\tau_{1}=\pi^{*} \theta+d \rho
$$

for some $\theta \in A^{2 n-2}(D)$, and $\rho \in A^{2 n-3}\left(U_{1}\right)$. Using the Stokes theorem and $\partial R_{1}=-R_{01}$, we compute

$$
\begin{aligned}
& \int_{R_{1}} c_{1}\left(\nabla_{1}\right) \wedge \tau_{1}=\int_{R_{1}} c_{1}\left(\nabla_{1}\right) \wedge \pi^{*} \theta+\int_{R_{1}} c_{1}\left(\nabla_{1}\right) \wedge d \rho=\int_{R_{1}} c_{1}\left(\nabla_{1}\right) \wedge \pi^{*} \theta-\int_{R_{01}} c_{1}\left(\nabla_{1}\right) \wedge \rho \\
& \int_{R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \tau_{1}=\int_{R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \pi^{*} \theta+\int_{R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge d \rho \\
&=\int_{R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \pi^{*} \theta+\int_{R_{01}} c_{1}\left(\nabla_{1}\right) \wedge \rho+\int_{\partial R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \rho .
\end{aligned}
$$

Hence we have

$$
\int_{R_{1}} c_{1}\left(\nabla_{1}\right) \wedge \tau_{1}+\int_{R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \tau_{1}=\int_{R_{1}} c_{1}\left(\nabla_{1}\right) \wedge \pi^{*} \theta+\int_{R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \pi^{*} \theta
$$

Let $\nabla_{N_{D}}$ be a connection on the normal bundle N_{D} of D. Since $\left.L_{D}\right|_{D} \cong N_{D}$, and also $\left.L_{D}\right|_{U_{1}} \cong \pi^{*} N_{D}$, we can take $\pi^{*} \nabla_{N_{D}}$ as the connection ∇_{1} on $\left.L_{D}\right|_{U_{1}}$ so that we have

$$
\int_{R_{1}} c_{1}\left(\nabla_{1}\right) \wedge \pi^{*} \theta=\int_{R_{1}} c_{1}\left(\pi^{*} \nabla_{N_{D}}\right) \wedge \pi^{*} \theta=\int_{R_{1}} \pi^{*}\left(c_{1}\left(\nabla_{N_{D}}\right) \wedge \theta\right)=\int_{D} c_{1}\left(\nabla_{N_{D}}\right) \wedge \theta=0
$$

because the last term is the integration of a $2 n$-form on a ($2 n-2$)-dimensional submanifold.

Next, we compute the boundary integral $\int_{R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \pi^{*} \theta$. Since the question is purely local, for any fixed point $p \in D$, and $V_{p} \subset D$ a neighborhood of p, we set $U_{p}=\pi^{-1}\left(V_{p}\right)$, and take a local coordinate system $\left(U_{p}, z\right)$ around p sufficiently small so that we may assume that $D=\left\{z_{1}=0\right\}$ on $U_{p}, U_{p} \subset U_{1}$, and $\left.N_{D}\right|_{V_{p}}$ has a non-vanishing section s_{N}. Then $\pi^{*} s_{N}$ gives a section on U for L_{D}. If we give a trivialization of L_{D} by $\pi^{*} s_{N}$, then on $U_{p}-D$

$$
f_{D}=z_{1}=z_{1} \cdot \pi^{*} s_{N}
$$

and therefore the connection form $\theta_{f_{D}}$ of $\nabla_{f_{D}}$ with respect to the frame $\pi^{*} s_{N}$ has the form $d f_{D} / f_{D}=d z_{1} / z_{1}$ of the Cauchy kernel on U. To compute the secondary term $c_{1}\left(\nabla_{0}, \nabla_{1}\right)$, let $\tilde{\theta}=(1-t) \theta_{f_{D}}+t \theta_{1}$

$$
c_{1}\left(\nabla_{0}, \nabla_{1}\right)=\tilde{\pi}_{*}(d \tilde{\theta}-\tilde{\theta} \wedge \tilde{\theta})=\theta_{f}-\theta_{1}
$$

Now by the Cauchy integral formula, we have

$$
\int_{R_{01} \cap U_{p}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \pi^{*} \theta=\int_{D \cap U_{p}} \theta=\int_{D \cap U} \tau_{1},
$$

which implies

$$
\int_{R_{01}} c_{1}\left(\nabla_{0}, \nabla_{1}\right) \wedge \pi^{*} \theta=\int_{D} \theta=\int_{D} \tau_{1} .
$$

To organize the results of the above calculation, we obtain the correspondence

$$
\begin{gathered}
H^{2}(X, X-D ; \boldsymbol{C}) \cong H^{2}\left(A \bullet\left(\mathscr{U}, U_{0}\right)\right) \cong H_{2 n-2}(D ; \boldsymbol{C}), \\
\left(0, c_{1}\left(\nabla_{1}\right), c_{1}\left(\nabla_{0}, \nabla_{1}\right)\right) \leftrightarrow[D] .
\end{gathered}
$$

We remark that the above correspondence is more precise than that of the Poincare duality. (1): We do not need the compactness of the ambient space X. (2): The dual of the Chern class is found in $H_{\bullet}(D)$, which indicates explicitly the location of singularities.

3.2. Proof of the main theorem.

In this section, we give the proof of the main theorem. Let X and Y be n dimensional compact complex manifolds, and $f: Y \rightarrow X$ a ramified covering with covering multiplicity μ. If f gives a simple (unramified) μ-sheeted covering, then we see that $c_{*}(Y)-\mu c_{*}(X)=0$, which suggests us that the gap is brought about by the ramification. So we expect that the difference of the Chern classes can be localized at the ramification set.

We recall some basic facts about ramified coverings.
The ramification divisor R_{f} of f is defined as the analytic hypersurface defined by $\{\operatorname{det}(d f)=0\}$. Let $R_{f}=\sum r_{i} R_{i}$ be the irreducible decomposition of R_{f}. Then we have

$$
r_{i}+1=\left[\mathcal{O}_{Y, y}: f^{*} \mathcal{O}_{X, f(y)}\right],
$$

the degree of integral extention $\mathcal{O}_{Y, y}$ over $f^{*} \mathcal{O}_{X, f(y)}$ for a generic point y on R_{i}. In other words, r_{i} indicates the number of decrease of sheets at R_{i}.

The branch locus B_{f} of f is defined by the direct image $f_{*} R_{f}$ of R_{f} under f. Let $B_{f}=\sum b_{i} B_{i}$ be the irreducible decomposition of B_{f}. Then we have

$$
b_{i}=\mu-\sharp f^{-1}(x)
$$

for a generic point x on B_{i}.
Now we assume that the ramification divisor of f and the irreducible components of the branch locus of f are all non-singular. Here we remark that the branch locus possibly has some self-intersection between other components. It followes from the assumption that the ramification divisor of f is non-singular, that $\left.f\right|_{R_{i}}: R_{i} \rightarrow B_{i}$ is nondegenerate so that it gives an unramified covering over B_{i}, with covering multiplicity r_{i} / b_{i}.

First let us consider the case where the ramification divisor R_{f} has only one component, hence the branch locus B_{f} also does. We set $R_{f}=r \cdot R$, and $B_{f}=b \cdot B$.

Let $\omega: V_{1} \rightarrow B$ be a tubular neighborhood of B, and we take a covering $\mathscr{U}=$ $\left\{U_{0}, U_{1}\right\}$ of Y with, $U_{0}=Y-R$, and $\pi: U_{1} \rightarrow R$, a tubular neighborhood of R such that $U_{1} \subset f^{-1}\left(V_{1}\right)$. We consider the Čech-de Rham cohomology of Y associated with the covering of \mathscr{U}, and set, in $H_{D R}^{2 i}(Y) \cong H^{2 i}\left(A^{\bullet}(\mathscr{U})\right)$, that

$$
\begin{aligned}
c_{i}(T Y) & \leftrightarrow\left(c_{i}\left(\nabla_{0}\right), c_{i}\left(\nabla_{1}\right), c_{i}\left(\nabla_{0}, \nabla_{1}\right)\right), \\
c_{i}\left(f^{*} T X\right) & \leftrightarrow\left(c_{i}\left(\tilde{\nabla}_{0}\right), c_{i}\left(\tilde{\nabla}_{1}\right), c_{i}\left(\tilde{\nabla}_{0}, \tilde{\nabla}_{1}\right)\right) .
\end{aligned}
$$

Since $d f: T Y \rightarrow T X$ gives a bundle homomorphism outside the ramification, and since U_{1} and V_{1} are tubular neighborhoods of R and B respectively, we have

$$
\begin{gathered}
\left.\left.T Y\right|_{Y-R} \cong f^{*} T X\right|_{Y-R}, \\
\left.\left.T Y\right|_{U_{1}} \cong \pi^{*} N_{R} \oplus \pi^{*} T R \cong L_{R}\right|_{U_{1}} \oplus \pi^{*} T R, \\
\left.f^{*} T X\right|_{U_{1}} \cong f^{*}\left(\omega^{*} N_{B} \oplus \omega^{*} T B\right) \cong f^{*}\left(L_{B} \oplus \omega^{*} T B\right) .
\end{gathered}
$$

In particular on $U_{1}-R, L_{R} \cong f^{*} L_{B}$ are isomorphic as trivial bundles. Thus we can take connections on each neighborhood as follows:

$$
\nabla_{0}=\tilde{\nabla}_{0}
$$

such that

$$
\begin{aligned}
\left.\tilde{\nabla}_{0}\right|_{f^{-1}\left(V_{1}-B\right)} & =\nabla_{f^{*} f_{B}} \oplus f^{*} \omega^{*} \nabla_{T B}, \\
\left.\nabla_{0}\right|_{U_{1}-R} & =\nabla_{f^{*} f_{B}} \oplus \pi^{*} \nabla_{T R} \\
& =\nabla_{f_{R}} \oplus \pi^{*} \nabla_{T R},
\end{aligned}
$$

and

$$
\begin{gathered}
\tilde{\nabla}_{1}=f^{*} \nabla_{L_{B}} \oplus f^{*} \omega^{*} \nabla_{T B}, \\
\nabla_{1}=\nabla_{L_{R}} \oplus \pi^{*} \nabla_{T R} .
\end{gathered}
$$

In the above, for a non-singular divisor D we denote by $f_{D}, \nabla_{f_{D}}$ and $\nabla_{T D}$, the section of D, the f_{D}-trivial connection, and a connection of the tangent bundle of D respectively.

Next we do local computation for secondary terms. Notation and choice of local neighborhood and frames are the same as in 3.1.

$$
\begin{aligned}
\tilde{A} & =(1-t)\left(\begin{array}{cc}
\pi^{*} \theta_{T R} & 0 \\
0 & \theta_{f_{R}}
\end{array}\right)+t\left(\begin{array}{cc}
\pi^{*} \theta_{T R} & 0 \\
0 & \theta_{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\pi^{*} \theta_{T R} & 0 \\
0 & (1-t) \theta_{f_{R}}+t \theta_{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\pi^{*} \theta_{T R} & 0 \\
0 & \tilde{\theta}
\end{array}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sigma_{i}(d \tilde{A}-\tilde{A} \wedge \tilde{A})= & \sigma_{i}\left(\begin{array}{cc}
d \pi^{*} \theta_{T R}-\pi^{*} \theta_{T R} \wedge \pi^{*} \theta_{T R} & 0 \\
0 & d \tilde{\theta}-\tilde{\theta} \wedge \tilde{\theta}
\end{array}\right) \\
= & (d \tilde{\theta}-\tilde{\theta} \wedge \tilde{\theta}) \wedge \sigma_{i-1}\left(d \pi^{*} \theta_{T R}-\pi^{*} \theta_{T R} \wedge \pi^{*} \theta_{T R}\right) \\
& +\sigma_{i}\left(d \pi^{*} \theta_{T R}-\pi^{*} \theta_{T R} \wedge \pi^{*} \theta_{T R}\right) .
\end{aligned}
$$

Since only $\tilde{\theta}$ involves the fiber coordinate t, it follows from the projection formula that

$$
\begin{aligned}
c_{i}\left(\nabla_{0}, \nabla_{1}\right) & =\tilde{\pi}_{*} \sigma_{i}(d \tilde{A}-\tilde{A} \wedge \tilde{A}) \\
& =\tilde{\pi}_{*}\left\{(d \tilde{\theta}-\tilde{\theta} \wedge \tilde{\theta}) \wedge \sigma_{i-1}\left(\pi^{*}\left(d \theta_{R}-\theta_{R} \wedge \theta_{R}\right)\right)\right\} \\
& =c_{1}\left(\nabla_{f_{R}}, \nabla_{L_{R}}\right) \wedge \pi^{*} c_{i-1}(R)
\end{aligned}
$$

To express the secondary term of $c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}(Y) \in H^{2 n}\left(A^{\bullet}(\mathscr{U})\right)$, in general we set

$$
\begin{aligned}
H_{\xi}^{\left(N_{1} \cdots N_{N}\right)}(l) & =l^{-1}\left(\prod_{i=1}^{n}\left(c_{i}(\xi)+c_{i-1}(\xi) \cdot l\right)^{N_{i}}-c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}(\xi)\right) \\
& =\sum_{\alpha=0}^{n-1} P_{\alpha}\left(c_{1} \cdots c_{n-1}\right) l^{\alpha} .
\end{aligned}
$$

Then the Čech-de Rham class of $c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}(Y)$ is represented by,

$$
\left(\pi^{*}\left(c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}\right)(R), \prod_{i=1}^{n}\left(\pi^{*} c_{i}(R)+\pi^{*} c_{i-1}(R) c_{1}\left(L_{R}\right)\right)^{N_{i}}, c_{1}\left(\nabla_{f_{R}}, \nabla_{L_{D}}\right) \wedge H_{T R}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(L_{R}\right)\right)\right)
$$

This can be proved by induction on the number of indeterminates c_{i} as follows. Here we remark that the degree of the class is not necessarily equal to n, the dimension of the ambient spaces. It follows from the inductive hypothesis that

$$
\begin{gathered}
c_{1}^{N_{1}} \cdots c_{k}^{N_{k}}(Y)=\left(\pi^{*}\left(c_{1}^{N_{1}} \cdots c_{k}^{N_{k}}\right)(R), \prod_{i=1}^{k}\left(\pi^{*} c_{i}(R)+\pi^{*} c_{i-1}(R) c_{1}\left(L_{R}\right)\right)^{N_{i}}\right. \\
\left.c_{1}\left(\nabla_{f_{R}}, \nabla_{L_{R}}\right) \wedge H_{T R}^{\left(N_{1} \cdots N_{k}\right)}\left(c_{1}\left(L_{R}\right)\right)\right) \\
c_{k+1}^{N_{k+1}}(Y)=\left(c_{k+1}^{N_{k+1}}(R),\left(\pi^{*} c_{k+1}(R)+\pi^{*} c_{k}(R) c_{1}\left(L_{R}\right)\right)^{N_{k+1}}, c_{1}\left(\nabla_{f_{R}}, \nabla_{L_{R}}\right) \wedge H_{T R}^{\left(N_{k+1}\right)}\left(c_{1}\left(L_{R}\right)\right)\right) .
\end{gathered}
$$

Thus, the secondary term of $c_{1}^{N_{1}} \cdots c_{k+1}^{N_{k+1}}(Y)$ is

$$
\begin{aligned}
c_{1}^{N_{1}} \cdots & c_{k+1}^{N_{k+1}}\left(\nabla_{0}, \nabla_{1}\right) \\
& =c_{1}^{N_{1}} \cdots c_{k}^{N_{k}}\left(\nabla_{0}\right) \wedge c_{k+1}^{N_{k+1}}\left(\nabla_{0}, \nabla_{1}\right)+c_{1}^{N_{1}} \cdots c_{k}^{N_{k}}\left(\nabla_{0}, \nabla_{1}\right) \wedge c_{k+1}^{N_{k+1}}\left(\nabla_{1}\right) \\
& =c_{1}\left(\nabla_{f_{R}}, \nabla_{L_{R}}\right) \wedge c_{1}\left(L_{R}\right)^{-1}\left(\prod_{i=1}^{k+1}\left(\pi^{*} c_{i}(R)+\pi^{*} c_{i-1}(R) c_{1}\left(L_{R}\right)\right)^{N_{i}}-c_{1}^{N_{1}} \cdots c_{k+1}^{N_{k+1}}(R)\right) \\
& =c_{1}\left(\nabla_{f_{R}}, \nabla_{L_{D}}\right) \wedge H_{T X}^{\left(N_{1} \cdots N_{k+1}\right)}\left(c_{1}\left(L_{R}\right)\right),
\end{aligned}
$$

which completes the induction.
In particular for the case where $n=\sum_{i=1}^{n} i \cdot N_{i}$, from our assumption that the ramification divisor has degree r we have $f^{*} L_{B}=\left(L_{R}\right)^{\otimes r+1}$, thus $f^{*} c_{1}\left(L_{B}\right)=(r+1)$. $c_{1}\left(L_{R}\right)$. Since $\left.f\right|_{R}: R \rightarrow B$ is non-degenerate, it follows from $T R \cong f^{*} T B$ that $c_{i}(R)=$ $f^{*} c_{i}(B)$. Therefore we have

$$
\begin{aligned}
H_{T R}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(L_{R}\right)\right) \frown[R] & =H_{f^{*} T B}^{\left(N_{1} \cdots N_{n}\right)}\left((r+1)^{-1} \cdot c_{1}\left(f^{*}\left(L_{B}\right)\right)\right) \frown[(b / r) \cdot B] \\
& =\sum_{\alpha=0}^{n-1} \frac{b}{r(r+1)^{\alpha}} P_{\alpha}\left(c_{1} \cdots c_{n-1}\right) \cdot c_{1}\left(L_{B}\right)^{\alpha} \frown[B] .
\end{aligned}
$$

By calculating the Čech-de Rham class of $c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}\left(f^{*} T X\right)$ similarly, we obtain

$$
\begin{aligned}
c_{1}^{N_{1}} & \cdots c_{n}^{N_{n}}(T Y)-c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}\left(f^{*} T X\right) \\
& =\left(0,(* * *), c_{1}\left(\nabla_{f_{R}}, \nabla_{L_{R}}\right) \wedge\left(H_{T R}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(L_{R}\right)\right)-(r+1) H_{f^{*} T B}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(f^{*} L_{B}\right)\right)\right)\right)
\end{aligned}
$$

(We omit the component on U_{1} since it vanishes by evaluating on R because of overdegree, which gives integration of $2 n$-forms on hypersurface, as observed in 3.1.)

Now, as discussed in 3.1, it follows from the correspondence of the Alexander duality that

$$
\begin{aligned}
c_{1}^{N_{1}} \cdots & c_{n}^{N_{n}}(T Y) \frown[Y]-\mu \cdot c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}(T X) \frown[X] \\
& =\int_{R} c_{1}\left(\nabla_{f_{R}}, \nabla_{L_{R}}\right) \wedge\left(H_{T R}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(L_{R}\right)\right)-(r+1) H_{f^{*} T B}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(f^{*} L_{B}\right)\right)\right) \\
& =H_{T R}^{\left(N_{1} \cdots N_{k+1}\right)}\left(c_{1}\left(L_{R}\right)\right) \frown[R]-(r+1) H_{T B}^{\left(N_{1} \cdots N_{k+1}\right)}\left(c_{1}\left(L_{B}\right)\right) \frown[(b / r) \cdot B] \\
& =\sum_{\alpha=0}^{n-1} \frac{b\left(1-(r+1)^{\alpha+1}\right)}{r(r+1)^{\alpha}} P_{\alpha}\left(c_{1}(B) \cdots c_{n-1}(B)\right) \cdot c_{1}\left(L_{B}\right)^{\alpha} \frown[B] .
\end{aligned}
$$

We assumed that the ramification divisor of f is non-singular, so we can assume that the tubular neighborhoods of irreducible components of the divisor do not intersect each other. Hence taking independent sum we conclude:

Theorem [Chern number formula for ramified coverings]. Let $f: Y \rightarrow X$ be a ramified covering with covering multiplicity μ between compact complex manifolds of dimension $n, R_{f}=\sum_{i} r_{i} R_{i}$ the ramification divisor of f, and $B_{f}=\sum_{i} b_{i} B_{i}$ the branch locus of f. We set $f^{*} B_{i}=\sum_{t} r_{i_{t}} R_{i_{t}}$ where $n_{i_{t}}$ denotes the mapping degree of the induced map $\left.f\right|_{R_{i_{t}}}: R_{i_{t}} \rightarrow B_{i}$ with $b_{i}=\sum_{t} n_{i_{t}} r_{i_{t}}$. We assume that the ramification divisor and the irreducible components B_{i} of the branch locus B_{f} are all non-singular, and suppose that $n=\sum_{i+1}^{n} i \cdot N_{i} . \quad$ Then:

$$
\begin{aligned}
c_{1}^{N_{1}} \cdots & \cdots c_{n}^{N_{n}}(Y)-\mu \cdot c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}(X) \\
& =\sum_{i} \sum_{t}\left(H_{T R_{i_{t}}}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(L_{R_{i_{t}}}\right)\right) \frown\left[R_{i_{t}}\right]-n_{i_{t}}\left(r_{i_{t}}+1\right) H_{T B_{i}}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(L_{B_{i}}\right)\right) \frown\left[B_{i}\right]\right) \\
& =\sum_{i} \sum_{\alpha=0}^{n-1}\left(\sum_{t} \frac{n_{i_{t}}\left(1-\left(r_{i_{t}}+1\right)^{\alpha+1}\right)}{\left(r_{i_{t}}+1\right)^{\alpha}}\right) P_{\alpha}\left(c_{1}\left(B_{i}\right) \cdots c_{n-1}\left(B_{i}\right)\right) \cdot c_{1}\left(L_{B_{i}}\right)^{\alpha} \frown\left[B_{i}\right],
\end{aligned}
$$

where we set

$$
H_{\xi}^{\left(N_{1} \cdots N_{n}\right)}(l)=l^{-1}\left(\prod_{i=1}^{n}\left(c_{i}(\xi)+c_{i-1}(\xi) \cdot l\right)^{N_{i}}-c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}(\xi)\right)=\sum_{\alpha=0}^{n-1} P_{\alpha}\left(c_{1} \cdots c_{n-1}\right) l^{\alpha} .
$$

Remark. More generally, the class $c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}(T Y)-c_{1}^{N_{1}} \cdots c_{n}^{N_{n}}\left(f^{*} T X\right)$ is localized at the ramification set even if the class has the degree $k=\sum i N_{i}$ which is different from the dimension of the ambient spaces. Explicitly, the class defines a relative cohomology class:

$$
\left[\left(0, \sigma_{1}, \sigma_{01}\right)\right] \in H^{k}(X, X-R ; \boldsymbol{C})
$$

where

$$
\begin{aligned}
\sigma_{1} & =\prod_{i=1}^{k}\left(\pi^{*} c_{i}(R)+\pi^{*} c_{i-1}(R) c_{1}\left(L_{R}\right)\right)^{N_{i}}-\prod_{i=1}^{k}\left(\pi^{*} c_{i}\left(f^{*} B\right)+\pi^{*} c_{i-1}\left(f^{*} B\right) c_{1}\left(f^{*} L_{B}\right)\right)^{N_{i}} \\
\sigma_{01} & =c_{1}\left(\nabla_{f_{R}}, \nabla_{L_{R}}\right) \wedge\left(H_{T R}^{\left(N_{1} \cdots N_{n}\right)}\left(c_{1}\left(L_{R}\right)\right)-(r+1) H_{f^{*} T B}^{\left(N_{1} \ldots N_{n}\right)}\left(c_{1}\left(f^{*} L_{B}\right)\right)\right)
\end{aligned}
$$

3.3. Applications.

In this section, we give some applications of our formula.
The result for the top Chern class implies the generalized Riemann-Hurwitz formula

$$
\chi(Y)-\mu \cdot \chi(X)=-\sum_{i} b_{i} \cdot \chi\left(B_{i}\right),
$$

which is a special case of the formula proved by Y. Yomdin, $[\mathbf{Y}]$.
In case that $(\mathbf{n}=\mathbf{2})$:

The result for the second Chern class implies

$$
c_{2}(T Y) \frown[Y]-\mu \cdot c_{2}(T X) \frown[X]=-\sum_{i} b_{i} \cdot \chi\left(B_{i}\right) .
$$

We remark that a more general formula is proved for algebraic cases. (see $\lfloor\mathbf{I v}]$.)
We can also deduce the formula for the square of the first Chern classes as follows:

$$
c_{1}(T Y)^{2} \frown[Y]-\mu \cdot c_{1}(T X)^{2} \frown[X]=-\sum_{i}\left(2 b_{i} \cdot \chi\left(B_{i}\right)+\sum_{t} \frac{n_{i_{t}} r_{i_{t}}\left(r_{i_{T}}+2\right)}{r_{i_{t}}+1} B_{i} \cdot B_{i}\right) .
$$

Now from the fact that the signature of the surface is expressed by $L_{1}=(1 / 3) p_{1}=$ $(1 / 3)\left(-2 c_{2}+c_{1}^{2}\right)$, (The calculation for T and L-genus is found in [H1]), we obtain:

Theorem [The formula for signature for ramified coverings]. Let $f: Y \rightarrow X$ be a ramified covering between compact complex analytic surfaces with covering multiplicity μ, $R_{f}=\sum_{i} r_{i} R_{i}$ the ramification divisor of f, and $B_{f}=\sum_{i} b_{i} B_{i}$ the branch locus of f. We assume that ramification divisor and irreducible components B_{i} of the branch locus B_{f} are all non-singular. Then

$$
\begin{aligned}
\operatorname{Sign}(Y)-\mu \cdot \operatorname{Sign}(X) & =\frac{1}{3}\left(p_{1}(Y)-\mu \cdot p_{1}(X)\right) \\
& =\frac{1}{3}\left\{\left(c_{1}(Y)^{2}-\mu \cdot c_{1}(X)^{2}\right)-2\left(c_{2}(Y)-\mu \cdot c_{2}(X)\right)\right\} \\
& =-\sum_{i} \frac{n_{i t} r_{i_{i}}\left(r_{i_{t}}+2\right)}{3\left(r_{i_{t}}+1\right)} B_{i} \cdot B_{i} .
\end{aligned}
$$

Originally, the formula for signature for cyclic coverings is formulated for 4-manifold as follows.

Theorem [Hirzebruch [H2]]. Let X be a compact oriented differentiable manifold of dimension 4 without boundary on which the cyclic groups G_{n} of order n acts by orientation preserving diffeomorphisms. Suppose that Y is differential submanifold of X, not necessarily connected, and has codimension 2. And G_{n} operates freely on $X-Y$. Then

$$
\operatorname{Sign}(X)-n \cdot \operatorname{Sign}\left(X / G_{n}\right)=-\frac{n^{2}-1}{3 n} Y^{\prime} \cdot Y^{\prime},
$$

where Y^{\prime} is the branch locus in X / G_{n}.
This is a particular case of the above formula for signature for ramified coverings, the case that $r=b=n-1$.

We can also deduce the formula for the Todd genus, which is $T_{1}=(1 / 12)\left(c_{2}+c_{1}^{2}\right)$:
Theorem. Under the same assumption as the above theorem,

$$
\begin{aligned}
T(Y)-\mu \cdot T(X) & =\frac{1}{12}\left\{\left(c_{2}(Y)-\mu \cdot c_{2}(X)\right)+\left(c_{1}(Y)^{2}-\mu \cdot c_{1}(X)^{2}\right)\right\} \\
& =-\sum_{i}\left(\frac{b_{i}}{2} T_{1}\left(B_{i}\right)+\sum_{t} \frac{n_{i t} r_{i_{t}}\left(r_{i_{t}}+2\right)}{12\left(r_{i_{t}}+1\right)} B_{i} \cdot B_{i}\right) .
\end{aligned}
$$

In general, however, the calculation for the T-genus or the L-genus is more complicated, as examples we indicate formulas for the cases $n=3,4,5$, and 6 . (Also see [H1].) $(\mathbf{n}=3)$:

$$
\begin{gathered}
T_{3}=\frac{1}{24} c_{1} c_{2} \\
H(l)=\frac{1}{24}\left(\left(c_{2}+c_{1}^{2}\right)+c_{1} l\right) . \\
T(Y)-\mu \cdot T(X)=-\sum_{i}\left(b_{i} \frac{T_{2}\left(B_{i}\right)}{2}+\sum_{t} \frac{n_{i} r_{i_{t}}\left(r_{i}+1\right)}{\left(r_{i_{t}}+1\right)} \int_{B_{i}} \frac{T_{1}\left(B_{i}\right)}{12} \smile c_{1}\left(N_{B_{i}}\right)\right) .
\end{gathered}
$$

$$
(\mathrm{n}=\mathbf{4}):
$$

$$
\begin{gathered}
T_{4}=\frac{1}{720} \cdot\left(-c_{4}+c_{3} c_{1}+3 c_{2}^{2}+4 c_{2} c_{1}^{2}-c_{1}^{4}\right) \\
H(l)=\frac{1}{720}\left(15 c_{2} c_{1}+5\left(c_{2}+c_{1}^{2}\right) l-l^{3}\right) . \\
T(Y)-\mu \cdot T(X)=- \\
\sum_{i} \frac{T_{3}\left(B_{i}\right)}{2}+\sum_{i} \sum_{t} \frac{n_{i} r_{i_{t}}\left(1-\left(r_{i_{t}}+1\right)^{2}\right)}{\left(r_{i_{t}}+1\right)} \int_{B_{i}} \frac{T_{2}\left(B_{i}\right)}{12} \smile c_{1}\left(N_{B_{i}}\right) \\
+\sum_{i} \sum_{t} \frac{n_{i_{t}} r_{i_{t}}\left(1-\left(r_{i_{t}}+1\right)^{3}\right)}{\left(r_{i_{t}}+1\right)^{2}} \int_{B_{i}} \frac{c_{1}^{3}\left(N_{B_{i}}\right)}{720} .
\end{gathered}
$$

We can also define the signature for $n=4$, as

$$
\begin{aligned}
L_{2}=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right) & =\frac{1}{45}\left(14 c_{4}-14 c_{3} c_{1}+3 c_{2}^{2}+4 c_{2} c_{1}^{2}-c_{1}^{4}\right) . \\
H(l) & =\frac{1}{45}\left(\left(-10 c_{2}+5 c_{1}^{2}\right) l-l^{3}\right) . \\
\operatorname{Sign}(Y)-\mu \cdot \operatorname{Sign}(X)= & -\sum_{i} \sum_{t} \frac{n_{i t} r_{i_{t}}\left(1-\left(r_{i_{t}}+1\right)^{2}\right)}{\left(r_{i_{t}}+1\right)} \int_{B_{i}} \frac{L_{1}\left(B_{i}\right)}{3} \smile c_{1}\left(L_{B_{i}}\right) \\
& -\sum_{i} \frac{b_{i}\left(1-\left(r_{i}+1\right)^{4}\right)}{r_{i}\left(r_{i}+1\right)^{3}} \int_{B_{i}} \frac{c_{1}\left(L_{B_{i}}\right)^{3}}{45} .
\end{aligned}
$$

$(\mathbf{n}=5):$

$$
\begin{gathered}
T_{5}=\frac{1}{1440}\left(-c_{4} c_{1}+c_{3} c_{1}^{2}+3 c_{2}^{2} c_{1}-c_{2} c_{1}^{3}\right) \\
H(l)=\frac{1}{1440}\left\{\left(-c_{4}+c_{3} c_{1}+3 c_{2}^{2}+4 c_{2} c_{1}^{2}-c_{1}^{4}\right)+5 c_{2} c_{1} l-c_{1} l^{3}\right\}
\end{gathered}
$$

$$
\begin{aligned}
T(Y)-\mu \cdot T(X)= & -\sum_{i} \frac{T_{4}\left(B_{i}\right)}{2}+\sum_{i} \sum_{t} \frac{n_{i t} r_{i_{t}}\left(1-\left(r_{i_{t}}+1\right)^{2}\right)}{\left(r_{i_{t}}+1\right)} \int_{B_{i}} \frac{T_{3}\left(B_{i}\right)}{12} \smile c_{1}\left(N_{B_{i}}\right) \\
& -\sum_{i} \sum_{t} \frac{n_{i_{t}} r_{i_{t}}\left(1-r_{i_{t}}+1^{4}\right)}{\left(r_{i_{t}}+1\right)^{3}} \int_{B_{i}} \frac{T_{1}\left(B_{i}\right)}{720} \smile c_{1}^{3}\left(N_{B_{i}}\right) .
\end{aligned}
$$

$$
(\mathbf{n}=\mathbf{6}):
$$

$$
\begin{gathered}
L_{3}=\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 p_{3}-13 p_{2} p_{1}+2 p_{1}^{3}\right) \\
= \\
\left.\begin{array}{rl}
3^{3} \cdot 5 \cdot 7 \\
& +124 c_{6}+124 c_{5} c_{1}-72 c_{4} c_{2}-26 c_{4} c_{1}^{2} \\
& \left.+62 c_{3}^{2}-52 c_{3} c_{2} c_{1}+26 c_{3} c_{1}^{3}+10 c_{2}^{3}+11 c_{2}^{2} c_{1}^{2}-12 c_{2} c_{1}^{4}+2 c_{1}^{6}\right) . \\
3^{3} \cdot 5 \cdot 7
\end{array}\left(98 c_{4}-98 c_{3} c_{1}+21 c_{2}^{2}+28 c_{2} c_{1}^{2}-7 c_{1}^{4}\right) \cdot l+\left(14 c_{2}-7 c_{1}^{2}\right) \cdot l^{3}+2 l^{5}\right\} . \\
\operatorname{Sign}(Y)-\mu \cdot \operatorname{Sign}(X)= \\
-\sum_{i} \sum_{t} \frac{n_{i_{t}} r_{i_{t}}\left(1-\left(r_{i_{t}}+1\right)^{2}\right)}{\left(r_{i_{t}}+1\right)} \int_{B_{i}} \frac{L_{2}\left(B_{i}\right)}{3} \smile c_{1}\left(L_{\left.B_{i}\right)}\right) \\
\\
-\sum_{i} \sum_{t} \frac{n_{i_{i}} r_{i_{t}}\left(1-\left(r_{i_{t}}+1\right)^{4}\right)}{\left(r_{i_{t}}+1\right)^{3}} \int_{B_{i}} \frac{L_{1}\left(B_{i}\right)}{45} \smile c_{1}\left(L_{B_{i}}\right)^{3} \\
\\
\quad-\sum_{i} \sum_{t} \frac{n_{i_{i}} r_{i_{t}}\left(1-\left(r_{i_{t}}+1\right)^{6}\right)}{\left(r_{i_{t}}+1\right)^{5}} \int_{B_{i}} \frac{2 c_{1}\left(L_{B_{i}}\right)^{5}}{945} .
\end{gathered}
$$

References

[Bo] R. Bott, Lectures on characteristic classes and foliations, Lectures on Algebraic and Differential Topology, Lecture Notes in Mathematics 279, Springer-Verlag, New York, Heidelberg, Berlin, 1972, pp. 1-94.
[BT] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathmatics 82, Springer-Verlag, New York, Heidelberg, Berlin, 1994.
[Br1] J. P. Brasselet, Une generalization de formule de Riemann-Hurwitz, Bull. Soc. math. France, Mémoire 38, 1974, 99-106.
[Br 2] J. P. Brasselet, Sur une formule de M. H. Schwartz relative aux revêtements ramifiés. C. R. Acad. Soc. Paris 283 Série A-41, 1976.
[D] E. H. C. M. Diop, Résidue d'applications holomorphes entre variétés, preprint.
[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley \& Sons, New York, Chichester, Brisbane, Toronto, 1978.
[H1] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1966.
[H2] F. Hirzebruch, The signature of ramified coverings, Global Analysis (Papers in honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 253-265.
[Iv] B. Iversen, Numerical invariants and multiple planes, Amer. J. Math. 92, 1970, 968-996.
[Le1] D. Lehmann, Variétés stratifiées \boldsymbol{C}^{∞} : Intégration de Čech-de Rham et théorie de Chern-Weil, Geometry and Topology of Submanifolds II, Proc. Conf., May 30-June 3, 1988, Avignon, France, World Scienific, Singapore, 1990, pp 205-248.
[Le2] D. Lehmann, Systèmes d'alvéoles et intégration sur le complexe Čech-de Rham, Publications de l'IRMA, 23, N VI, Université de Lille I, 1991.
[Le3] D. Lehmann, Résidues des sous-variétés invariantes d'un feuilletage singulier, Ann. Inst. Fourier 41 1991, 211-258.
[LS] D. Lehmann and T. Suwa, Residues of holomorphic vector fields relative to singular invariant subvarieties, J. of Diff. Geom. 42 (1995), 165-192.
[Su1] T. Suwa, Indices of Vector Fields and Residues of Singular Holomorphic Foliations, Actualités Mathématiques, Hermann, Paris, 1998.
[Su2] T. Suwa, Dual class of a subvariety, To appear in Tokyo. J. of Math.
[Y] Y. Yomdin, The structure of strata $\mu=$ const in a critical set of a complete intersection singularities, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympo. Pure Math., Amer. Math. Soc., Providence, R.I., 1983, 663-665.

Takeshi Izawa
Department of Mathematics
Faculty of Science
Hokkaido University, Sapporo 060-0810
Japan
E-mail: t-izawa@math.sci.hokudai.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 57R20; Secondary 32J25.
 Key words and phrases. Characteristic classses, ramified coverings.
 This article was partially supported by Japan society for the promotion of science (JSPS).

