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Abstract. In this article we begin the study of X̂X , an n-dimensional algebraic

submanifold of complex projective space P
N , in terms of a hyperplane section ÂA which is

not irreducible. A number of general results are given, including a Lefschetz theorem

relating the cohomology of X̂X to the cohomology of the components of a normal crossing

divisor which is ample, and a strong extension theorem for divisors which are high index

Fano fibrations. As a consequence we describe X̂X HP
N of dimension at least five if the

intersection of X̂X with some hyperplane is a union of rV 2 smooth normal crossing

divisors ÂA1; . . . ; ÂAr, such that for each i, h1ðOÂAi
Þ equals the genus gðÂAiÞ of a curve section

of ÂAi . Complete results are also given for the case of dimension four when r ¼ 2.

Introduction.

Let X̂X be an n-dimensional algebraic submanifold of complex projective space P
N .

There are many results [5], [9] describing the structure of X̂X under assumptions on one of

its hyperplane sections. For example, there are classifications under conditions on some

basic projective invariant such as the degree or genus of a curve section, or some

birational invariant such as not being of general type. Though, in these results

smoothness of X̂X or of the hyperplane section of X̂X is often relaxed slightly, they all

assume that the hyperplane section is irreducible. In this article we begin the study of

X̂X in terms of a hyperplane section ÂA which is not irreducible. We assume that ÂA is a

union of distinct components ÂA1; . . . ; ÂAr where rV 2. Since normal bundles of the ÂAi

do not have to be ample (some of the ÂAi can have ample conormal bundles), the known

theory does not apply.

Since any line bundle becomes very ample after being twisted by a high enough

power of a very ample line bundle, it is clear that given any divisor ÂA1 on a connected

projective manifold X, there is a smooth divisor ÂA2 on X̂X with good transversality

properties with respect to ÂA1 and with ÂA1 þ ÂA2 very ample. This process produces a

divisor ÂA2, whose invariants are generally quite large. Looking at examples suggests

strongly that if ÂA is a very ample divisor on a projective manifold X̂X of dimension at

least two, and if ÂA decomposes into irreducible components

ÂA ¼
Xr

i¼1

ÂAi;
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and if all of the ÂAi are ‘‘small’’ measured with respect to some invariant, then ðX̂X ; L̂LÞ

should be ‘‘special’’.

In this paper we investigate the simplest problem of this type.

Problem A. Describe X̂X HP
N if the intersection of X̂X with some hyperplane is a

union of rV 2 smooth normal crossing divisors, each of which has a curve section of

genus 0.

This puts numerous restraints on X̂X , e.g., the first Betti number of X̂X is zero, but it is

very di‰cult to make a complete classification of the X̂X HP
N satisfying this condition

when dim X̂X ¼ 2. This paper grew from the realization that such a problem becomes

progressively easier as the dimension of X̂X increases. We give a complete answer when

r ¼ 2 and dim X̂X ¼ 4 and for arbitrary r when dim X̂X V 5. Indeed for dimensions V5

we solve the following more general problem.

Problem B. Describe X̂X HP
N if the intersection of X̂X with some hyperplane is a

union of rV 2 smooth normal crossing divisors ÂA1; . . . ; ÂAr, such that for each i, h1ðOÂAi
Þ

equals the genus gðÂAiÞ of a curve section of ÂAi.

In the course of solving these problems we identify some of the invariants controlling

this sort of problem and develop some of the theory surrounding them.

Here is the scheme of the paper. In §1 we summarize background material and

give a number of examples and preliminary results that come up in the rest of the paper.

In §2 we prove some general facts. The most striking is the very useful variant of

the First Lefschetz Theorem on hyperplane sections that follows from the usual First

Lefschetz Theorem combined with mixed Hodge theory.

In §3 we work out the structure of pairs ðX̂X ; L̂LÞ with L̂L ample and ÂA1 þ � � � þ ÂAr A jL̂Lj

with rV 2, and KX̂X þ ðnÿ 2ÞL̂L not nef and big.

In §4 we prove an extension theorem which gives strong restrictions on high index

Fano fibrations as divisors on manifolds of dimension nV 4. In particular using the

results of §3 we solve Problem B, and we solve Problem A when r ¼ 2 and the di-

mension of X̂X equals 4.

In the three dimensional case we need more stringent hypotheses, e.g., that the

hyperplane section has exactly two components. The results in this case are di¤erent

than those in this paper, and require a very detailed case by case argument based on the

special structure of the second reduction and detailed analysis of bundles on P
1-bundles

over curves. For these reasons we are preparing a sequel dealing only with the results

special to three dimensions.

We thank the referee for many helpful comments. The third author would like to

thank the Alexander von Humboldt Stiftung for their support.

1. Preliminary material.

Certain special varieties arise naturally as the building blocks of adjunction theory.

We give definitions in the smooth case. For more on these varieties and on all aspects

of adjunction theory we refer to the book of Beltrametti and the third author [5].
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Given an integer kV 0, by a Fano fibration of index k, we mean a quadruple,

ðM;L; p;YÞ with L an ample line bundle on a connected projective manifold M, a

normal projective variety Y and a surjective morphism with connected fibers p : M ! Y

with KM þ kLG p�H for some ample line bundle H on Y. The general fiber F of p is

a Fano manifold of index k, i.e., ÿKF G kLF . With appropriate interpretation, we

could let k be merely rational, but this does not give much more generality (since writing

k as a quotient of relatively prime integers k ¼ u=v with uV 0; v > 0, and by changing

the line bundle L appropriately (see [5, Lemma 1.5.6]), such a fibration becomes a

u-Fano fibration with the same p and Y ).

Some special cases are particularly important. By a scroll ðM;LÞ over a normal

variety Y we mean a pair consisting of an ample line bundle L on a connected

projective manifold M and a morphism p : M ! Y with connected fibers such that

KM þ ð f þ 1ÞLG p�H where H is an ample line bundle on Y and f :¼ dimMÿ

dimY . By a quadric fibration ðM;LÞ (respectively a Del Pezzo fibration) over a

normal variety Y we mean a pair consisting of an ample line bundle L on a connected

projective manifold M and a morphism p : M ! Y with connected fibers such that

KM þ fLG p�H (respectively KM þ ð f ÿ 1ÞLG p�H) where H is an ample line bundle

on Y and f :¼ dimMÿ dimY . The third author introduced these and a number of the

above classes of special varieties in [16]. They are better behaved than might be

expected merely from the definitions, see, [5, Chapter 12], e.g., in the case of a scroll,

the general fiber of p is ðP f ;O
P

f ð1ÞÞ, if f V 1 and y :¼ dimY U 2, then these are P
nÿy-

bundles over Y.

We recall basic results on nefvalue morphisms, and refer the reader to [5, (1.5)] for

further discussion. Given an ample line bundle L on a normal irreducible and reduced

projective variety V of index e with at worst canonical singularities, we define the

nefvalue of the pair ðV ;LÞ to be the number

t :¼ minft A RjKV þ tL is nefg:

The Kawamata rationality theorem [12] and the Kawamata-Shokurov Basepoint-Free

theorem [12], [14] assert the following.

Theorem 1.1 (Kawamata-Shokurov). Let L be an ample line bundle on a normal

irreducible and reduced projective variety V of index e with at worst canonical singu-

larities. Assume that KV is not nef and let t be the nefvalue of ðV ;LÞ.

1. t is rational and there is a morphism with connected fibers n : V ! W onto a normal

projective variety W such that given any positive integer such that Nt and N=e are

integral, there is an ample line bundle H on W such that NðKV þ tLÞ ¼ n
�
H.

2. Further, expressing et ¼ u=v with u; v coprime positive integers,

uU e max
y AW

fdim n
ÿ1ðyÞg þ 1

� �

:

We need the following result due to Beltrametti, Sommese, and Wiśniewski [5,

Theorem 6.4.4] (see also [6]).

Theorem 1.2 (Beltrametti, Sommese, Wiśniewski). Let ðM;L; n;Y Þ be a Fano
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fibration of index kV ðn=2Þ þ 1 where n :¼ dimM. Assume that n > dimY > 0. Then

n is the contraction of an extremal ray and PicðMÞGPicðY ÞlZL.

The important case when dimY ¼ 0 is due to Wiśniewski [18].

Theorem 1.3 (Wiśniewski). Let ðM;L; nÞ be a Fano manifold of index kV

ðn=2Þ þ 1 where n :¼ dimM. Either PicðMÞGZL or k ¼ ðn=2Þ þ 1; M ¼ P
n=2� P

n=2,

and L ¼ O
P

n=2�P
n=2ð1; 1Þ.

The following lemma will be useful.

Lemma 1.4. Let L be an ample line bundle on a connected projective manifold X.

Assume that there is a divisor Aþ B A jLj with A and B distinct irreducible divisors. Let

p : X ! Y be a surjective morphism with connected fibers onto a projective variety Y.

If dimX ÿ dimY V 1 then either pðAVBÞ is of dimension at least dimension dimY ÿ 1;

or pðAVBÞ ¼ pðAÞ; or pðAVBÞ ¼ pðBÞ.

Proof. If dimY U 1 there is nothing to prove. Thus we can assume without loss

of generality that dimY V 2.

Assume that dim pðAVBÞ < dimY ÿ 1. Let H be a very ample line bundle on Y.

If pðAÞ and pðBÞ both properly contain pðAVBÞ, we can find general D1; . . . ;Dk A jHj

such that, letting Yk :¼ D1 V � � � VDk, Yk V pðAÞ0q, Yk V pðBÞ0q, and Yk V p

ðAVBÞ ¼ q. This implies that Yk is of dimension at least one, and Xk :¼ p
ÿ1ðYkÞ is at

least two dimensional. Since the Di are general we can also assume without loss of

generality that Yk is irreducible and normal, and Xk is smooth and connected.

Let Ak :¼ AVXk and Bk :¼ BVXk. Since both are nonempty and since Ak þ Bk is

an ample divisor on Xk with dimXk V 2, we conclude that Ak VBk 0q. This implies

that pðAVBÞVYk 0q. r

Corollary 1.5. Let ðM;L; n;Y Þ be a Fano fibration of index kV ðn=2Þ þ 1 where

n :¼ dimM. Assume that n > dimY > 0. Let Aþ B A jLj with A and B distinct

irreducible divisors. Then dim nðAVBÞV dimY ÿ 1.

Proof. If dim nðAVBÞ < dimY ÿ 1 it follows from Lemma 1.4 that after possibly

renaming, nðAÞ ¼ nðAVBÞ and thus that dim nðAÞ < dimY ÿ 1. Since n is a con-

traction of an extremal ray and since A misses at least one fiber of n we conclude that

there is a divisor on Y whose inverse image is A. This contradicts the conclusion

dim nðAÞ < dimY ÿ 1. r

Slightly more is true in special cases.

Corollary 1.6. Let ðM;L; n;YÞ be a Fano fibration of index k ¼ nÿ 2 where

n :¼ dimM. Let Aþ B A jLj with A and B distinct irreducible divisors. If nV dimY

þ 2 then dim nðAVBÞV dimY ÿ 1.

Proof. The result is clear if dimY U 1. If dimY ¼ 2 this is a result of Bel-

trametti and the third author [5, Theorem 14.2.3]. If dimY ¼ 3 this is a result of
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Beltrametti, the third author, and Wiśniewski, see [6, (3.2.1)] and [5, Theorem

14.1.1]. r

The following simple example comes up often.

Example 1.7. Let L̂L be an ample line bundle on a smooth n-dimensional projective

manifold X̂X . Suppose that PicðX̂XÞ ¼ Z with a generator OX̂X ð1Þ for PicðX̂XÞ. If L̂LG

OX̂X ð1Þ, then every D A jL̂Lj is irreducible and reduced. More generally if L̂LGOX̂X ðsÞ and

D A jL̂Lj decomposes D ¼
Pr

i¼1 Di into irreducible and reduced divisors Di, then Di A

jOX̂X ðsiÞj with s ¼
Pr

i¼1 si.

Example 1.8 [Scrolls of arbitrary fiber and base dimensions]. Let V be a rank

ðnÿmþ 1Þ vector bundle over a smooth projective manifold Y of dimension m, and let

ðX ;LÞ ¼ ðPðVÞ; xV Þ. Assume that

1. there is a smooth connected divisor ZHY such that V n ½ÿZ� has a nowhere

vanishing section s;

2. V is very ample in the sense that the tautological bundle xV over PðVÞ is very

ample; and

3. KY þ detV is ample and therefore ðPðVÞ; xV Þ is a scroll over Y, i.e., KPðVÞ þ

ðnÿmþ 1ÞxV G p�
VH with H ample on Y.

Letting ŝs denote the section of xV n p�
V ½ÿZ� corresponding to s, B :¼ ŝsÿ1ð0Þ is a smooth

P
nÿmÿ1-bundle over Y, A :¼ pÿ1

V ðZÞ is a smooth P
nÿm-bundle over Z, A meets B

transversely in PðVZ=ðsZ nOZÞÞ, and xV ¼ Aþ B. Note that given any smooth

projective manifold Y of dimension m and any integer nVmþ 1, we can find V and Z

satisfying the above conditions. Indeed taking Z as a divisor which is very ample and

such that KY þ ð2nÿ 2mþ 1ÞZ is ample, define V :¼ ½Z�l ½2Z�l ðnÿmÞ.

The following theorem shows that Example 1.8 is a common state of a¤airs for

scrolls.

Theorem 1.9. Let L be an ample line bundle on an n-dimensional projective manifold

X. Assume that ðX ;LÞ is ðPðVÞ; xV Þ for a vector bundle of rankV dimY þ 1 over a

smooth positive dimensional projective manifold Y with induced projection p : X ! Y . If

there are smooth connected divisors A1; . . . ;Ar with rV 2 and with A1 þ � � � þ Ar A jLj,

then (after renaming if necessary):

1. there are smooth connected divisors D1; . . . ;Drÿ1 on Y such that Ai ¼ pÿ1ðDiÞ for

1U iU rÿ 1; and

2. Ar meets the generic fiber of p in a hyperplane, and if dimY U 3 then Ar ¼ PðV 0Þ

for an appropriate quotient bundle of V.

Proof. Let F be a general fiber of p. Since LF is a generator of PicðF Þ ¼ Z we

conclude that only one (say, after renaming, Ar) of the Ai can meet a general fiber of F

of p and Ar will meet it in a hyperplane. Thus there are smooth connected divisors

D1; . . . ;Drÿ1 on Y such that Ai ¼ pÿ1ðDiÞ for 1U iU rÿ 1.

Letting f :¼ dimX ÿ dimY , we have f ÿ 1 ¼ dimAr ÿ dimY V dimY ÿ 1. Lÿ

Ar is the pullback under p of a line bundle P on Y, i.e., L ¼ Ar þ p�
P. Choose an

ample line bundle H on Y such that PþH and KY þ detV þ ð f ÿ 1ÞðPþHÞ are
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ample line bundles and Lþ p�ðPþHÞ is very ample. Then ðAr; ðLþ p�ðPþHÞÞAr
Þ

is a scroll over Y. To see this note that

KAr
þ f ðLþ p�ðPþHÞÞAr

¼ ðKX þ Ar þ f ðLþ p�ðPþHÞÞÞAr

¼ ðKX þ ð f þ 1ÞLþ f ðp�ðPþHÞÞ ÿPÞAr

¼ p�ðKY þ detV þ ð f ÿ 1ÞðPþHÞ þHÞ:

Since dimAr ÿ dimY V dimY ÿ 1 the result follows from [5, Proposition 14.1.3]. r

Remark 1.10. The condition on the base is merely to ensure that we had a

bundle. See [5, Chapter 14.1] for what is known and conjectured about the more

general case when the base is arbitrary. Indeed using the discussion following [5,

Conjecture 14.1.10] it follows that the condition dimY U 3 can be removed.

Slightly more can be said when ðX ;LÞ is a scroll over a curve.

Theorem 1.11. Let L be an ample line bundle on an n-dimensional projective

manifold X. Assume that ðX ;LÞ is ðPðVÞ; xV Þ for a vector bundle of rank V 2 over a

smooth curve Y with induced projection p : X ! Y . If there are rV 2 irreducible

connected divisors A1; . . . ;Ar with A1 þ � � � þ Ar A jLj, then (after renaming if necessary):

1. there are distinct points D1; . . . ;Drÿ1 on Y such that Ai ¼ pÿ1ðDiÞ for 1U iU

rÿ 1; and

2. Ar meets the generic fiber of p in a hyperplane; if Ar has at worst isolated

singularities then Ar ¼ PðV 0Þ for an appropriate quotient bundle of V.

Proof. The argument from the proof of Theorem 1.9 quickly reduces us (after

renaming if necessary) to showing that if Ar is the component that meets every fiber of

p, then Ar is a fiber bundle under p. This is clear if dimAr ¼ 1, since in this case Ar

meets the general fiber in a single point and is therefore a section. Since Ar has at

worst isolated singularities and is a Cartier divisor of dimension V 2 on a manifold, it

follows that Ar is normal. Using [5, Proposition 3.2.1], it su‰ces to note that the fibers

of pAr
are of equal dimension. r

The results in [5, Chapter 7] contain the classification results we need from ad-

junction theory. Here let us summarize the main concepts from the classification.

Let L̂L be an ample line bundle on a connected n-dimensional projective manifold X̂X .

Assume that nV 2. Up to a short list of very special pairs ðX̂X ; L̂LÞ described in [5,

Chapter 7], we have that KX̂X þ ðnÿ 1ÞL̂L is nef and big. If KX̂X þ ðnÿ 1ÞL̂L is nef and big,

then there exist a pair ðX ;LÞ called the first reduction of ðX̂X ; L̂LÞ and a morphism

f : X̂X ! X called the first reduction map, where:

1. X is a projective manifold and f expresses X̂X as the blowup of X at a finite set F;

2. L :¼ ðf�LÞ
�� and KX þ ðnÿ 1ÞL are ample line bundles;

3. KX̂X þ ðnÿ 1ÞL̂LG f�ðKX þ ðnÿ 1ÞLÞ (or, equivalently, L̂LG f�Lÿ fÿ1ðFÞ).

Furthermore if nV 3 and the first reduction of ðX ;LÞ of ðX̂X ; L̂LÞ exists, then up to a short

list of very special pairs ðX ;LÞ described in [5, Chapter 7], we have that K :¼ KX þ

ðnÿ 2ÞL is nef and big. There exist a pair ðX 0
;L 0Þ called the second reduction of ðX̂X ; L̂LÞ

and a morphism c : X ! X 0 called the second reduction map, where:
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1. X 0 has isolated terminal singularities and c expresses X as a completely explicit

modification of X 0 with X ÿ cÿ1ðZÞ isomorphic to X 0 ÿ Z for an algebraic set

Z with dimZU 1;

2. L 0 ¼ ðf�LÞ
�� is at worst 2-Cartier, K

0
:¼ KX 0 þ ðnÿ 2ÞL 0 is an ample line

bundle, and K ¼ c�
K

0 ¼ c�ðKX 0 þ ðnÿ 2ÞL 0Þ.

Here is an example where the fibers of the first reduction map are part of an ample

divisor.

Example 1.12 [Fibers of reduction maps]. Let L̂L be a very ample line bundle on a

smooth connected projective n-fold X̂X . Assume that there is a smooth divisor ÂAGPnÿ1

on X̂X such that ½ÂA�ÂA GOP nÿ1ðÿ1Þ and L̂LÂA GOP nÿ1ð1Þ. This can always be achieved by

taking a taking X̂X to be the blowup of a smooth projective manifold f : X̂X ! X at one

point x A X , with ÂA :¼ fÿ1ðxÞ, and with L̂L :¼ f�Lÿ ÂA for some line bundle L which

is a tensor product of at least two very ample line bundles on X (or which, more

generally is 2-jet ample in the sense of [4]). Then L̂Lÿ ÂA is spanned and choosing

a general B̂B A jL̂Lÿ ÂAj we have ÂAþ B̂B A jL̂Lj with ÂA and B̂B smooth and transverse.

The usual situation is that B̂B is connected. This happens if either nV 3 or n ¼ 2 and

ðL̂Lÿ ÂAÞ2 > 0.

Note that ÂA meets B̂B transversely in a smooth quadric relative to L̂L. Thus the

genus of a curve section of ÂAV B̂B is 0.

Notice that the example ðX̂X ; L̂LÞ arising from this construction when we choose

ðX ;LÞG ðP3
;OP3ð2ÞÞ is Del Pezzo.

2. A first Lefschetz theorem for reducible hyperplane sections.

In this section we collect some consequences of the first Lefschetz hyperplane section

theorem and Deligne’s mixed Hodge theory [8].

Throughout this section we let D be an ample divisor on a smooth connected

projective manifold X and assume that D ¼
Pr

i¼1 Di is a sum of smooth irreducible

divisors on X with all subsets of the Di’s meeting transversely. For any multi-index

I ¼ ði0; . . . ; ikÞ with 1U i0 < � � � < ik U r, we let lðIÞ ¼ k and DI ¼ Di0 V � � � VDik .

In this case, the mixed Hodge structure on D has been constructed in a simple and

concrete way in [10, section 4]. The weight filtration has the form

f0gHW0 HW1 H � � � HWmÿ1 HWm ¼ HmðD;QÞ;

and tensored with C is defined by using the filtration induced on the Ey term of the

spectral sequence of the double complex Ap;q ¼ ApðD½q�Þ by the filtration 0
rUk

Ar; s.

Here, D½q� is the disjoint union of all DI with lðIÞ ¼ q, and A�ðD½q�Þ is the usual de

Rham complex.

Let d : Ap;q ! Apþ1;q be the usual exterior derivative and let d : Ap;q ! Ap;qþ1 be

given by

ðdfÞi0���iqþ1
¼

Xqþ1

n¼0

ðÿ1Þnþp
fi0���înin���iqþ1

jDi0
V ���VDiqþ1

for f ¼ ðfi0���iqÞ, with fi0���iq A ApðDi0 V � � � VDiqÞ. Then the graded module associated to
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the weight filtration on H �ðDÞ is the Ey term of the spectral sequence of the double

complex ðA�;�; d; dÞ, and the usual Hodge filtration on A�;� induces a Hodge structure of

pure weight m on Em
y.

Moreover, the spectral sequence degenerates at the E2 term, i.e.,

E2 ¼ E3 ¼ � � � ¼ Ey;

and it follows that Wmÿj=Wmÿjÿ1 GH jðHmÿjðDI ;QÞ; dÞ, where the right-hand side is

induced by the sequence

� � � ! 0
lðIÞ¼jÿ1

HmÿjðDI ;QÞ !
d

0
lðIÞ¼j

HmÿjðDI ;QÞ !
d

0
lðIÞ¼jþ1

HmÿjðDI ;QÞ ! � � � :

If D is an ample divisor of a smooth projective variety X, the image of HmðX ;QÞ !

HmðD;QÞ is of pure weight m, and combining that observation with the Lefschetz

theorem yields the following theorem:

Theorem 2.1. Let D be an ample divisor on a smooth, connected projective variety

X, and assume that D ¼
Pr

i¼1 Di is a sum of smooth irreducible divisors with all subsets of

the collection of divisors meeting transversely. Then for j þ k < dimX

0 ! H jðX ;QÞ ! 0
lðIÞ¼0

H jðDI ;QÞ ! � � � ! 0
lðIÞ¼k

H jðDI ;QÞ

is exact with the convention that H jðDI ;QÞ ¼ 0 if lðIÞV r.

In particular, the case k ¼ 0, together with the Lefschetz theorem, yields the

following.

Corollary 2.2. If j < dimX , the restriction map H jðX ;QÞ ! 0 r

i¼1
H jðDi;QÞ is

injective. Moreover, if j < dimD, the restriction map H jðD;QÞ ! 0r

i¼1
H jðDi;QÞ is

injective.

If D has two irreducible components, say D ¼ Aþ B, we have the following

corollary of Theorem 2.1.

Corollary 2.3. Let D be an ample divisor on a connected projective manifold X

with dimX ¼ 3þ jV 3, and assume that D ¼ Aþ B, where A and B are connected

submanifolds that intersect transversely. Then

0 ! H iðX ;QÞ ! H iðA;QÞlH iðB;QÞ ! H iðAVB;QÞ ! 0

for iU j. In particular AVB is connected if dimX V 3.

Proof. From Theorem 2.1 with r ¼ 2 we have

0 ! H iðX ;QÞ ! H iðA;QÞlH iðB;QÞ ! H iðAVB;QÞ ! 0;

from which the conclusion follows. r

Let D be an ample divisor on a connected projective manifold X with dimX V 3,

and assume that D ¼ Aþ B, where A and B are connected submanifolds that intersect

transversely. We call AVB the hinge variety associated to the divisor Aþ B. As a
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byproduct of our investigation we will give a complete classification of such divisors

when the curve genus of ðAVB;LAVBÞ is 0 or 1, i.e., when the genus of a curve section

of ðAVB;LAVBÞ is 0 or 1.

3. Classification up to the second reduction.

In this section we let L̂L denote an ample line bundle on a projective manifold X̂X of

dimension nV 2, and we assume that ÂA ¼
Pr

i¼1 ÂAi is a divisor in jL̂Lj, where each ÂAi is

irreducible. Unless otherwise stated we do not assume that the ÂAi’s are smooth or

intersect transversely. We do not assume that the line bundle is spanned because we

will in the course of studying very ample line bundles need to apply these results to

ample, but not necessarily spanned line bundles.

Theorem 3.1. Let L̂L denote an ample line bundle on a projective manifold X̂X of

dimension nV 2. Assume that ÂA ¼
Pr

i¼1 ÂAi is a divisor in jL̂Lj with rV 2, and with each

ÂAi irreducible. If KX̂X þ ðnÿ 1ÞL̂L is not nef then either

1. ðX̂X ; L̂LÞ ¼ ðP2
;O

P
2ð2ÞÞ, r ¼ 2, and each ðÂAi; L̂LÂAi

Þ is a line; or

2. ðX̂X ; L̂LÞ ¼ ðP1 � P
1
;O

P
1�P

1ð1; 1ÞÞ, r ¼ 2, and there are points x; y A P
1 such that

ÂA ¼ ðfxg � P
1Þ þ ðP1 � fygÞ; or

3. ðX̂X ; L̂LÞ is a scroll over a smooth curve Y, one component of ÂA meets the general

fiber in a hyperplane, and the other components are fibers. If the ÂAi have at worst

isolated singularities, then all the components are smooth, and the component that meets

the general fiber in a hyperplane is a scroll over a curve relative to L̂L, and is in particular a

P
nÿ2-bundle over Y.

Moreover, each of these cases occurs.

Proof. By adjunction theory [5, table 7.4, p. 164], any polarized manifold ðX̂X ; L̂LÞ

for which KX̂X þ ðnÿ 1ÞL̂L is not nef must be one of the following:

1. ðPn
;OP

nð1ÞÞ; or

2. ðP2
;O

P
2ð2ÞÞ; or

3. ðQ;OQð1ÞÞ where Q is a quadric in P
nþ1; or

4. a scroll over a smooth curve.

Since rV 2 and PicðPnÞGZ, we conclude from Example 1.7 that ðPn
;OP

nð1ÞÞ is not

possible. The case of ðP2
;O

P
2ð2ÞÞ obviously occurs with ÂAi a line for i ¼ 1; 2.

Similarly the assertion about the quadric is clear. Theorem 1.11 gives the assertion

about for a scroll over a smooth curve. A scroll over a smooth curve is a special

case of Example 1.8. r

We now assume that KX̂X þ ðnÿ 1ÞL̂L is nef. The next two theorems take us to the

first reduction ðX ;LÞ.

Theorem 3.2. Let L̂L denote an ample line bundle on a projective manifold X̂X of

dimension nV 2. Assume that ÂA ¼
Pr

i¼1 ÂAi is a divisor in jL̂Lj with rV 2, and with each

ÂAi irreducible. If KX̂X þ ðnÿ 1ÞL̂L is nef but not big, then either

1. ðX̂X ; L̂LÞ is a Del Pezzo manifold, i.e., KX̂X ¼ ÿðnÿ 1ÞL̂L: these are enumerated in

Theorem 3.4; or
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2. X̂X is a quadric fibration over a smooth curve; moreover, if dim X̂X V 3 each fiber is

irreducible and reduced; or

3. X̂X is a scroll (and a P
nÿ2-bundle of dimension V3 over a smooth surface Y ), and

exactly one component of ÂA, say ÂAr meets every fiber. If ÂAr is smooth and

nV 4, then ÂAr is a P
nÿ3-bundle over Y.

Proof. From adjunction theory [5, Theorem 7.3.2, p. 169] we know that X̂X is

either a Del Pezzo manifold (i.e., one with KX̂X ¼ ÿðnÿ 1ÞL̂L), a quadric fibration over a

smooth curve, or a scroll over a normal surface.

In the case of a quadric fibration, the assertion about the fibers follows easily from

the fact that L̂LF ¼ OQð1Þ for any fiber F. In the case of a scroll, the assertion about the

components of ÂA follows from the fact that L̂Lnÿ1 � F ¼ 1, as in Proposition 3.1. The

fact that p : X̂X ! Y is a P
nÿ3-bundle when nV 4 (respectively ÂAr is a P

nÿ2-bundle when

nV 3) over a smooth surface follows from the discussion after Conjecture 5.3 of [1] (see

also [16, Theorem 3.3]). r

For the purpose of this paper, the case of dimension V 3 treated in Theorem 3.4

su‰ces. The two dimensional case is a straightforward consequence of the classification

of Del Pezzo surfaces, but has many special cases. The following simple lemma is

needed.

Lemma 3.3. Let L̂L be an ample line bundle on a connected projective manifold X̂X of

dimension nV 3. Assume that L̂Ln ¼ 2, and that ÂA ¼
Pr

i¼1 ÂAi A jL̂Lj is a sum of irreducible

divisors ÂAi. If KX̂X ¼ ÿðnÿ 1ÞL̂L then r ¼ 1.

Proof. Assume that rV 2. By Theorem 1.3 we can assume that n ¼ 3. Since

2 ¼ L̂L3 ¼ L̂L2 � ÂA ¼
Xr

i¼1

L̂L2 � ÂAi;

we see that we can assume that r ¼ 2. We know that L̂L is spanned by [9, page 44].

From this and Goren’s theorem [9, Theorem (1.1)], we conclude that ðÂAi; L̂LAi
ÞG

ðPnÿ1
;O

P
nÿ1ð1ÞÞ for i ¼ 1; 2. From this and KX̂X ¼ ÿðnÿ 1ÞL̂L we conclude that the

normal bundle of ÂAi is GO
P

nÿ1ðÿ1Þ for i ¼ 1; 2. This is absurd since this would allow

us to contract one of the ÂAi, say ÂA1, on X̂X , which would give rise to a holomorphic map

on ÂA2, which has a positive dimensional image and which contracts the positive di-

mensional set ÂA1 V ÂA2 H ÂA2. r

Theorem 3.4. Let L̂L be an ample line bundle on a connected projective manifold X̂X

of dimension nV 3. Assume that ÂA ¼
Pr

i¼1 ÂAi A jL̂Lj is a sum of rV 2 irreducible divisors

ÂAi, each having at worst isolated singularities. Assume that the ÂAi meet pairwise

transversely. If KX̂X ¼ ÿðnÿ 1ÞL̂L then either

1. ðX̂X ; L̂LÞ ¼ ðP1 � P
1 � P

1
;O

P
1�P

1�P
1ð1; 1; 1ÞÞ; or

2. ðX̂X ; L̂LÞ ¼ ðP2 � P
2
;O

P
2�P

2ð1; 1ÞÞ; or

3. ðX̂X ; L̂LÞ ¼ ðPðT
P

2Þ; xT
P2
Þ; or

4. ðX̂X ; L̂LÞ has first reduction ðP3
;O

P
3ð2ÞÞ with X̂X the blowup of P3 at most one point.
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Proof. For the Del Pezzo case we use Fujita’s classification [9, 8.11]. We first

note that 1U dU 8, where d ¼ L̂Ln is the degree of L̂L. If r > 1 then d0 1. Indeed

since L̂L is ample, L̂Ln ¼
Pr

i¼1 L̂L
nÿ1 � ÂAi V r.

Moreover, d0 2 by Lemma 3.3.

The Del Pezzo manifolds with 3U dU 8, except for the ones listed in the prop-

osition above, have PicðX̂XÞ ¼ Z with generator L̂L, which contradicts the assumption that

r > 1. r

Remark 3.5. It is easy to see that each of the cases listed in the above propositions

can occur. Scrolls over normal surfaces are special cases of example 1.8. The blowup

of P
3 at a point is a special case of example 1.12. On PðT

P
2Þ we get a divisor by

considering the section of the tautological bundle induced by a vector field on P
2 with

zero set consisting of a point and a line. To get a quadric fibration we modify example

1.8 by taking X̂X to be a smooth section of 2xV , where V has rank nÿmþ 2, and

constructing the divisor ÂAþ B̂B as in that example.

It follows from Propositions 3.1 and 3.2 that, with the exceptions listed, the first

reduction ðX ;LÞ exists; i.e., X̂X is the blowup f : X̂X ! X of a finite set F on a smooth

projective variety X, and L :¼ ðf�L̂LÞ
�� is an ample line bundle with KX þ ðnÿ 1ÞL

ample. If E ¼ fÿ1ðxÞ is an exceptional divisor over a point x A X , then EGP
nÿ1 with

½E�E ¼ O
P

nÿ1ðÿ1Þ and L̂LE ¼ O
P

nÿ1ð1Þ (see [5, 7.3]).

It follows that if E is not a component of the ample divisor ÂA it can meet at most

one component, say ÂA1, and it must meet it transversely in a smooth P
nÿ2 lying entirely

in the set of regular points of ÂA1 and with O
P

nÿ2ðÿ1Þ as the normal bundle of E V ÂA1 in

ÂA1. In this case, blowing down E does not reduce the number of components, so that

we obtain a divisor A ¼
Pr

i¼1 Ai in X, where the singularities of the Ai’s are no worse

than those of the ÂAi’s in X̂X .

If E is a component of ÂA, say E ¼ ÂA1, then we must have ½
Pr

i¼2 ÂAi�E ¼ O
P

nÿ1ð2Þ,

from which it follows that either
� E meets exactly one other component ÂAi with i0 1 in an ðnÿ 2Þ-dimensional

smooth quadric Q lying entirely in the set of regular points of ÂAi and with

normal bundle ÿLQ in ÂAi; or
� E meets exactly two other components ÂAi, ÂAj with 1 < i < j. In this case each

of E V ÂAi H regðÂAiÞ and E V ÂAj H regðÂAjÞ is a P
nÿ2, and the normal bundles of

E V ÂAi in ÂAi and of E V ÂAj in ÂAj are both isomorphic to O
P

nÿ2ðÿ1Þ; or
� E meets exactly one other component in a singular (possibly nonreduced)

quadric.

Obviously, the third alternative can not occur if the ÂAi are all smooth and intersect

transversely.

It is also clear that if more than one component of ÂA is exceptional with respect to

f, then no two of the exceptional components can intersect (otherwise the intersection

would be a divisor in P
nÿ1 with negative normal bundle).

We sum up these observations in the following propositions.

Theorem 3.6. Let L̂L be an ample line bundle on a connected projective manifold X̂X

of dimension nV 3. Assume that ÂA ¼
Pr

i¼1 ÂAi is a divisor in jL̂Lj, where rV 2, each ÂAi is
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irreducible with at worst isolated singularities, and ÂAi 0 ÂAj for i0 j. Assume that KX̂X þ

ðnÿ 1ÞL̂L is nef and big. Let f : X̂X ! X denote the first reduction. Let Ai ¼ fðÂAiÞ. If

no component of ÂA is a fiber of f, then

1. f is a biholomorphism in a neighborhood of any point belonging to at least two of

ÂAi. Thus if all subsets of the ÂAi have transverse intersection, then all subsets of

the Ai have transverse intersection.

2. The map fÂAi
: ÂAi ! Ai expresses ÂAi as the blowup of Ai at the finite set FVAi of

regular points of Ai with L̂LÂAi
¼ f�LAi

ÿ fÿ1
ÂAi

ðFVAiÞ. Thus the singularities of

Ai ¼ fðÂAiÞ are the same as the singularities of ÂAi and the curve genus of ðÂAi; L̂LÂAi
Þ

is the same as the curve genus of ðAi;LAi
Þ.

Theorem 3.7. Let L̂L be an ample line bundle on a connected projective manifold X̂X

of dimension nV 3. Assume that ÂA ¼
Pr

i¼1 ÂAi is a divisor in jL̂Lj, with rV 2, with each

ÂAi having at worst isolated singularities, and with the ÂAi irreducible and meeting pair-

wise transversely. Assume that SingðÂAiÞV SingðÂAjÞ ¼ q for i0 j. Assume that KX̂X þ

ðnÿ 1ÞL̂L is nef and big. Let f : X̂X ! X denote the first reduction. Assume (after

renaming if necessary) that dim fðÂAiÞ < dim ÂAi if and only if i ¼ sþ 1; . . . ; r. Then for

i > s, fðÂAiÞ is a point xi, ÂAi meets at least one other ÂAj with jU s and at most two other

such ÂAj. If it meets just one other ÂAj, then xi is a nondegenerate quadratic singularity of

fðÂAjÞ. Moreover, sV 1 and f maps ÂA onto a divisor A ¼
Ps

i¼1 Ai.

We now pass to the first reduction; that is we consider an n-dimensional projective

manifold X with an ample divisor A ¼
Ps

i¼1 Ai and assume that the line bundles L ¼ ½A�

and KX þ ðnÿ 1ÞL are both ample. We do not assume that the Ai’s are smooth or that

their intersections are transversal. Adjunction theory gives us the following proposition.

Theorem 3.8. Let L be an ample line bundle on a connected n-dimensional projective

manifold X. Assume that KX þ ðnÿ 1ÞL is ample. Assume that there is an A A jLj with

A ¼
Ps

i¼1 Ai for distinct irreducible divisors Ai. Then KX þ ðnÿ 2ÞL is nef, except in the

following cases:

1. ðX ;LÞ ¼ ðP4
;O

P
4ð2ÞÞ.

2. ðX ;LÞ ¼ ðQ3;OQ3
ð2ÞÞ, where ðQ3;OQ3

ð1ÞÞ is a smooth quadric 3-fold in P
4.

3. ðX ;LÞ ¼ ðP3
;O

P
3ð3ÞÞ.

4. X is a P
2-bundle over a smooth curve Y, n : X ! Y with 2KX þ 3LG n�H for

an ample line bundle H on Y. Thus ðF ;LF Þ ¼ ðP2
;O

P
2ð2ÞÞ for a general fiber

F. There are two possibilities:

(a) Except for one of the Ai which meets a general fiber in a smooth conic, the Ai

are fibers; or

(b) Two of the Ai are scrolls over Y, each meets a fiber of n in a line, and the

remaining Ai are fibers of n.

Moreover, all of these cases can occur with s > 1.

Proof. The proposition is simply a restatement of [5, Theorem 7.3.4, p. 171],

except for the claim that each example occurs. Cases 1 through 3 are evident. An

example of case 4(a) is obtained by taking X ¼ PðO
P

1 lO
P

1ðaÞlO
P

1ðbÞÞ over P
1 with

0 < aU b and letting L :¼ 2xþ F , where x is the tautological bundle and F is a

K. A. Chandler, A. Howard and A. J. Sommese898



fiber. An example of case 4(b) is obtained with the same X, by letting L :¼

ðxþ F Þ þ ðxþ FÞ. r

Theorem 3.9. Let L be an ample line bundle on a connected n-dimensional projective

manifold X. Assume that KX þ ðnÿ 1ÞL is ample. Assume that there is an A A jLj with

A ¼
Ps

i¼1 Ai for distinct irreducible divisors Ai. Assume that KX þ ðnÿ 2ÞL is nef but

not big. Let n : X ! Y be the nefvalue morphism associated to ðX ;LÞ, i.e., n is a

surjective morphism with connected fibers onto a normal projective variety Y, and

KX þ ðnÿ 2ÞLG n�H for an ample line bundle H on Y. Then one of the following must

hold.

1. ðX ;LÞ is a Mukai variety; i.e., KX ¼ ÿðnÿ 2ÞL. If s > 1 then either dimX U 5

or ðX ;LÞ ¼ ðP3 � P
3
;O

P
3�P

3ð1; 1ÞÞ.

2. ðX ;LÞ is a Del Pezzo fibration over a smooth curve under n.

3. ðX ;LÞ is a quadric fibration over a normal surface under n.

4. ðX ;LÞ is a scroll over a normal 3-fold under n.

Proof. This proposition is a restatement of [5, Theorem 7.5.3, p. 176], except for

the second statement in case 1, which follows immediately from Theorem 1.3. r

As an application of the above results we have the following results we will need

below.

Theorem 3.10. Let L̂L be an ample and spanned line bundle on an n-dimensional

projective manifold X̂X . Assume that nV 3 and that there are two smooth transverse

divisors ÂA; B̂B on X̂X with ÂAþ B̂B A jL̂Lj. Assume that the genus gðhÞ of a curve section of

h :¼ ÂAV B̂B is 0. Then either:

1. ðX̂X ; L̂LÞ is a scroll over a smooth curve; or

2. ðX̂X ; L̂LÞ is Del Pezzo (see Theorem 3.4); or

3. ðX̂X ; L̂LÞ is a quadric fibration over a smooth curve (there are two possibilities: the

general possibility plus the special three dimensional case over a rational curve

with ÂA and B̂B both P
1-bundles); or

4. X̂X is a scroll over a smooth surface, and only one component, say ÂA meets every

fiber, and is a P
nÿ3-bundle over the base surface; B̂B is the inverse image under the

scroll projection of a rational curve on the surface;

5. KX̂X þ ðnÿ 1ÞL̂L is nef and big and either ÂA or B̂B is a fiber of the first reduction

mapping associated to ðX̂X ; L̂LÞ; or

6. KX̂X þ ðnÿ 1ÞL̂L is nef and big with first reduction ðX ;LÞ and neither ÂA nor B̂B is a

fiber of the first reduction mapping f : X̂X ! X associated to ðX̂X ; L̂LÞ. Let

A :¼ fðÂAÞ and B :¼ B̂B. The following cases occur:

(a) ðX ;LÞG ðP4
;O

P
4ð2ÞÞ; or

(b) ðX ;LÞ ¼ ðQ3;OQ3
ð2ÞÞ, where ðQ3;OQ3

ð1ÞÞ is a smooth quadric 3-fold in P
4; or

(c) ðX ;LÞG ðP3
;O

P
3ð3ÞÞ; or

(d) X is a P
2-bundle over a smooth curve Y, n : X ! Y with 2KX þ 3LG n�H for

an ample line bundle H on Y. Thus ðF ;LF Þ ¼ ðP2
;O

P
2ð2ÞÞ for a general fiber

F. There are two possibilities:
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i. After renaming if necessary B is a fiber and A meets a general fiber in a smooth

conic; or

ii. A and B are scrolls over Y GP
1, each meets a fiber of n in a line.

Proof. By theorem 3.1, if KX̂X þ ðnÿ 1ÞL̂L is not nef then ðX̂X ; L̂LÞ is a scroll over a

smooth curve. We may therefore assume that KX̂X þ ðnÿ 1ÞL̂L is nef. Then by theorem

3.2, KX̂X þ ðnÿ 1ÞL̂L is big except when ðX̂X ; L̂LÞ is Del Pezzo; or a quadric fibration over a

smooth curve; or a scroll over a smooth surface.

Now assume that KX̂X þ ðnÿ 1ÞL̂L is nef and big and denote by ðX ;LÞ its first

reduction. Assume that neither ÂA nor B̂B is a fiber of the first reduction map f : X̂X ! X

and call A ¼ fðÂAÞ, B ¼ fðB̂BÞ.

By Theorem 3.8 KX þ ðnÿ 2ÞL is nef unless ðX ;LÞ ¼ ðP4
;O

P
4ð2ÞÞ; or ðX ;LÞ ¼

ðQ3;OQ3
ð2ÞÞ, where ðQ3;OQ3

ð1ÞÞ is a smooth quadric 3-fold in P
4; or ðX ;LÞ ¼

ðP3
;O

P
3ð3ÞÞ; or X is a P

2-bundle over a smooth curve Y, n : X ! Y with 2KX þ

3LG n�H for an ample line bundle H on Y, and ðF ;LF Þ ¼ ðP2
;O

P
2ð2ÞÞ for a general

fiber F. In the last case (after possibly renaming), A meets a fiber in a smooth conic

and B is a fiber; or both A and B are scrolls over Y GP
1.

These cases account for the cases in part 6 of the theorem.

Hence we may now assume that KX þ ðnÿ 2ÞL is nef. But then fðhÞ is isomorphic

to h, and 2gðhÞ ÿ 2 ¼ ðKX þ ðnÿ 2ÞLÞ � A � B � Lnÿ3
V 0, contrary to gðhÞ ¼ 0. r

Theorem 3.11. Let L̂L be an ample and spanned line bundle on an n-dimensional

projective manifold X̂X . Assume that nV 3 and that there are two smooth transverse

divisors ÂA; B̂B on X̂X with ÂAþ B̂B A jL̂Lj. Assume that the genus gðhÞ of a curve section of

h :¼ ÂAV B̂B is 1. Then either:

1. n ¼ 3 and ðX̂X ; L̂LÞ is a quadric fibration over an elliptic curve with ÂA and B̂B

P
1-bundles over the elliptic curve; or

2. X̂X is a scroll over a smooth surface, and only one component, say ÂA meets every

fiber, and when nV 4, ÂA is a P
nÿ3-bundle over the base surface; B̂B is the inverse

image under the scroll projection of an elliptic curve on the surface; or

3. X̂X is a P
2-bundle over an elliptic curve Y, n : X̂X ! Y with 2KX̂X þ 3L̂LG n�H for

an ample line bundle H on Y. Thus ðF ; L̂LF Þ ¼ ðP2
;O

P
2ð2ÞÞ for a general fiber

F; ÂA and B̂B are P
1-bundles; and each meets a fiber of n in a line.

4. The first reduction f : ðX̂X ; L̂LÞ ! ðX ;LÞ exists with L, KX þ ðnÿ 1ÞL ample,

and with KX þ ðnÿ 2ÞL nef. Neither ÂA nor B̂B are exceptional divisors for f

and f is a biholomorphism in a neighborhood of h. Letting A :¼ fðÂAÞ and

B :¼ fðB̂BÞ we have

(a) ðX ;LÞ is Mukai with dimX U 5 or ðX ;LÞ ¼ ðP3 � P
3
;O

P
3�P

3ð1; 1ÞÞ; or

(b) ðX ;LÞ is a Del Pezzo fibration over a smooth curve under n: after renaming, ÂA is

a fiber and B̂B meets the general fiber in a Del Pezzo manifold;

(c) X is three-dimensional and ðX ;LÞ is a quadric fibration over a smooth surface

under n;

(d) X is four-dimensional and ðX ;LÞ is a scroll over a normal threefold under n.

(e) KX þ ðnÿ 2ÞL is nef and big and either A or B is a divisor which gets mapped to

a point under the second reduction mapping c : X ! X 0 associated to ðX ;LÞ.

K. A. Chandler, A. Howard and A. J. Sommese900



Proof. We let gðhÞ ¼ 1 denote the genus of a curve section of ðh; L̂LhÞ. Note that

by Theorem 3.1 KX̂X þ ðnÿ 1ÞL̂L is nef. By Theorem 3.2 either KX̂X þ ðnÿ 1ÞL̂L is big or

one of the following happens.

1. ðX̂X ; L̂LÞ is a Del Pezzo manifold, i.e., KX̂X ¼ ÿðnÿ 1ÞL̂L;

2. X̂X is a quadric fibration over a smooth curve and since dim X̂X V 3 then each

fiber is irreducible and reduced;

3. X̂X is a scroll over a smooth surface, and only one component, say ÂA meets every

fiber; moreover, if dim X̂X V 4, then ÂA is a P
nÿ3-bundle over the base surface.

Note the first cannot happen since it would yield the absurdity

0 ¼ 2gðhÞ ÿ 2 ¼ ðKX̂X þ ðnÿ 2ÞL̂LÞ � L̂Lnÿ3 � ÂA � B̂B ¼ ÿL̂L � h < 0:

In the second case we have either

1. B̂B is a fiber and ÂA is a divisor meeting a general fiber in a quadric. In this case

the genus of a curve section of ÂAV B̂B is zero; or

2. dim X̂X ¼ 3 and ÂA, B̂B are P
1 bundles meeting in a section. This is possible if the

base curve is elliptic, giving the first case in the theorem.

In the third case we can get an elliptic curve as a curve section of the inter-

section. This gives the second case of the theorem.

Thus we can assume without loss of generality that KX̂X þ ðnÿ 1ÞL̂L is nef and

big. Let ðX ;LÞ be the first reduction of ðX̂X ; L̂LÞ. Note that neither ÂA nor B̂B is an

exceptional fiber of the first reduction map since a curve section of h would then be a

smooth rational curve. Thus ÂA and B̂B are mapped to smooth divisors A, B in X and

any exceptional fibers do not meet ÂAV B̂B, thus, a neighborhood of ÂAV B̂B in X̂X is

isomorphic to a neighborhood of AVB in X.

By Theorem 3.8 KX þ ðnÿ 2ÞL is nef unless:

1. ðX ;LÞ ¼ ðP4
;O

P
4ð2ÞÞ

2. ðX ;LÞ ¼ ðQ3;OQ3
ð2ÞÞ, where ðQ3;OQ3

ð1ÞÞ is a smooth quadric 3-fold in P
4

3. ðX ;LÞ ¼ ðP3
;O

P
3ð3ÞÞ

4. X is a P
2-bundle over a smooth curve Y, n : X ! Y with 2KX þ 3LG n

�
H

for an ample line bundle H on Y. Thus ðF ;LF Þ ¼ ðP2
;O

P
2ð2ÞÞ for a general

fiber F. There are two possibilities:

(a) After renaming if necessary, A meets a fiber in a smooth conic and B is a fiber;

or

(b) Both A and B are P
1-bundles over Y.

Only the last case with Y an elliptic curve is possible, which gives the third case of the

theorem.

If KX þ ðnÿ 2ÞL is nef but not big then by Theorem 3.9 one of the following

occurs. Let n : X ! Y be the nefvalue morphism associated to ðX ;LÞ, i.e., n is a

surjective morphism with connected fibers onto a normal projective variety Y, and

KX þ ðnÿ 2ÞLG n
�
H for an ample line bundle H on Y. Then one of the following

must hold.

1. ðX ;LÞ is a Mukai variety; i.e., KX ¼ ÿðnÿ 2ÞL. Either dimX U 5 or

ðX ;LÞ ¼ ðP3 � P
3
;O

P
3�P

3ð1; 1ÞÞ.

2. ðX ;LÞ is a Del Pezzo fibration over a smooth curve under n; or
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3. ðX ;LÞ is a quadric fibration over a normal surface under n; or

4. ðX ;LÞ is a scroll over a normal 3-fold under n.

Note that 0 ¼ 2gðhÞ ÿ 2 ¼ ðKX þ ðnÿ 2ÞLÞ � Lnÿ3 � A � B ¼ n�H � A � B � Lnÿ3. Thus h is

contained in a fiber of the map n. Thus the first case that ðX ;LÞ is a Mukai variety can

occur. The second can also with A a fiber and B meeting the general fiber in a Del

Pezzo manifold. In the remaining cases we note that since AVB must go to a point

under n we must have that either A or B also goes to a point, by Lemma 1.4. Using

Corollary 1.6 we see that in the last two cases we must have that dimX ÿ dim nðX Þ ¼ 1.

Note the base surface of the quadric fibration is smooth by a theorem of Besana [7].

Thus we can assume without loss of generality that KX þ ðnÿ 2ÞL is nef and big.

Let c : X ! X 0 be the second reduction map. By [2, Theorem 0.2.1] c is an

isomorphism outside of a union of irreducible divisors of X, and for each such divisor D,

either cðDÞ is a point, or ðD;LDÞ is a scroll over a curve.

Observe that at most one of A and B is one of these exceptional divisors.

Now we shall show that exactly one of A and B is exceptional. To see this, assume

that neither A nor B is exceptional. Then since KX þ ðnÿ 2ÞLGc�
K

0 for an ample

line bundle K
0 on X 0 and

0 ¼ 2gðhÞ ÿ 2 ¼ ðKX þ ðnÿ 3ÞLþ Aþ BÞ � Lnÿ3 � A � B ¼ c�
K

0 � h � Lnÿ3
;

h must go to a point under c. Choosing general D1; . . . ;Dnÿ3 A jLj we can slice A;B

and consider the situation in dimension n ¼ 3. Since neither A nor B is an exceptional

divisor we conclude that L ¼ Aþ B meets each exceptional divisor in a curve containing

two copies of h. This is impossible by an inspection of the list of exceptional divisors

given in [2, Theorem 0.2.1].

Thus, after renaming if necessary, we may assume that B is exceptional. Since

KX þ ðnÿ 2ÞLGc�
K

0 for some ample line bundle K
0 on X 0, we have

2gðhÞ ÿ 2 ¼ ðKX þ ðnÿ 3ÞLþ Aþ BÞ � Lnÿ3 � A � B

¼ ðKX þ ðnÿ 2ÞLÞ � Lnÿ3 � A � B

¼ c�
K

0 � Lnÿ3 � A � B ¼ c�
BK

0 � Lnÿ3
B � AB:

If B goes to a point under c we have that c�
BK

0 is trivial and thus c�
BK

0 � Lnÿ3
B �

AB ¼ 0.

Otherwise, ðB;LBÞ is a scroll over a curve C under c. We shall show that this

situation cannot occur. Choosing general D1; . . . ;Dnÿ3 A jLj we can slice A;B and

reduce to the case of dimension n ¼ 3. In this case we have 2gðhÞ ÿ 2 ¼ c�
BK

0 � AB.

Since K
0
C is ample we have that c�

BK
0 is numerically equivalent to a positive multiple

t f of some fiber f of cB : B ! C. Since L � f ¼ 1 and B � f ¼ ÿ1 we have that

A � f ¼ 2 and thus 2gðhÞ ÿ 2 ¼ c�
BK

0 � AB ¼ t f � A ¼ 2t > 0. r

4. High index Fano fibrations as components of divisors.

In this section we investigate smooth, connected projective varieties that contain an

ample divisor with one or more components that are k-Fano fibrations.
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Our main tool in studying the structure of high dimensional projective manifolds

with an ample divisor equal to a union of scrolls is the following proposition and its

corollary.

Theorem 4.1. Suppose that L is an ample line bundle on a normal irreducible

projective variety V with at worst canonical singularities. Assume that A is an irreducible

and reduced Cartier divisor on V with at worst canonical singularities. Assume that KA is

not nef, let t denote the nefvalue of ðA;LAÞ, and let f : A ! Y be the nefvalue morphism

of ðA;LAÞ. Assume that KV þ tL is nef. There is a morphism f : V ! Y with

connected fibers from V onto a normal projective variety Y and an embedding i : Y ! Y

such that the diagram

A H V

f

?
?
?
y

?
?
?
y
f

Y ���!
i

Y

commutes. If F is an irreducible positive dimensional fiber of f and FNA, then

F VA ¼ q and NðKV þ tLÞF GOF for positive integers N such that Nt is integral and

NKV is Cartier.

Proof. We first observe that KV þ tLþ A is nef. For if C is an irre-

ducible e¤ective curve with CNA, then ðKV þ tLþ AÞ � C ¼ ðKV þ tLÞ � C þ A � C

V 0, since A is e¤ective and KV þ tL is nef. On the other hand, if CHA, then

ðKV þ tLþ AÞ� C ¼ ðKA þ tLAÞ � CV 0, since ðKA þ tLAÞ is nef.

Therefore by Kleiman’s criterion [13] tðtLþ ðT ÿ 1ÞðKV þ tLþ AÞÞ is an

ample line bundle for all positive integers T and all positive integers t such that

tðtLþ ðT ÿ 1ÞðKV þ tLþ AÞÞ is a line bundle.

Let e denote the index of V, i.e., assume that e is the smallest positive integer such

that eKV is Cartier. By the Kawamata-Shokurov Basepoint-Free theorem we can

choose a positive integer N 0 such that N 0=e and N 0t are integral and N 0ðKV þ tLÞ is

spanned by global sections. Let e 0 denote the index of A. Choose an integer N > 0

which is a positive multiple of N 0 and such that N=e 0 is integral and NðKA þ tLAÞ ¼

f�
H for a very ample line bundle H on Y. Note that NðKV þ tLÞ ¼ KV þ tLþ

ðN ÿ 1ÞðKV þ tLÞ. Using the sequence

0 ! KV þ tLþ ðN ÿ 1ÞðKV þ tLþ AÞ ! NðKV þ tLþ AÞ ! NðKA þ tLAÞ ! 0

we see that GðNðKV þ tLþ AÞÞ ! GðNðKA þ tLAÞÞ is surjective, and thus that

NðKV þ tLþ AÞ is spanned in a neighborhood of A by global sections. Furthermore,

since NðKV þ tLÞ is spanned, the bundle NðKV þ tLþ AÞ ¼ NðKV þ tLÞ þNA is

spanned at all points of V ÿ A. Thus NðKV þ tLþ AÞ is spanned.

Replace N by a positive multiple N̂N such that the morphism associated to

jN̂NðKV þ tLþ AÞj has connected fibers and a normal image Y. The map f : V ! Y

associated to N̂NðKV þ tLþ AÞ extends f as asserted.

To see the last assertion about F, note that jN̂NðKV þ tLþ AÞj maps F to a point.

Thus since N̂NðKV þ tLÞ is spanned, and AVF 0F , N̂NðKV þ tLÞ is trivial on F. r
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Corollary 4.2. Let L;V ;A;Y ; f; t be as in Theorem 4.1. Let B be any irre-

ducible subvariety of V with PicðBÞ ¼ Z. If V is smooth and dimAÿ dimY þ dimB >

dimV then either BVA ¼ q or there exists a y A Y with BH fÿ1ðyÞ.

Proof. Let n :¼ dimV . Suppose that BVA0q and BNA. Then AB is ef-

fective, and therefore, since PicðBÞ ¼ Z, it is ample. In addition, ðKV þ tLÞB is nef;

so from Kleiman’s criterion we see that ðKV þ tLþ AÞB is ample. Therefore the map

f is finite to one on B. Let F 0 be an irreducible component of a fiber of f that meets

AVB. Observing that dimF 0 V dimAÿ dimY we get

dimF VBV dimF 0 þ dimBÿ nV dimAÿ dimY þ dimBÿ n > 0;

which contradicts the finite-to-oneness of fB. Thus BHA. The same argument shows

that in fact BH fÿ1ðyÞ for some y A Y . r

We remark that Corollary 4.2 includes the case when B ¼ V .

We now apply Corollary 4.2 to study the structure of the morphism c : V ! W

associated to NðKV þ tLÞ. First, we make the following general observation.

Lemma 4.3. Let L be an ample line bundle on a projective variety V with at worst

canonical singularities and index e. Suppose the bundle NðKV þ tLÞ is spanned and non-

trivial for some rational t > 0 and some positive integer N with Nt and N=e inte-

gral. Let h be the induced morphism, and assume that the general fiber of h has positive

dimension. Then dimV ÿ dim hðVÞV tÿ 1.

Proof. Let F be a general fiber of h. Our assumptions about the singularities of

V assure that F has canonical singularities of index e and that NðKF þ tLF ÞG

OF . Thus by Theorem 1.1 we have the assertion. r

We now come to the main result of this section.

Theorem 4.4. Let L be an ample line bundle on an n-dimensional connected

projective manifold, V. Let A be an irreducible divisor on V with at worst canonical

singularities and with index e 0. Assume that KA is not nef and that t is the nefvalue of

ðA;LAÞ and f : A ! Y is the nefvalue morphism of ðA;LAÞ. Further assume that

KV þ t 0L is nef for some rational t 0 satisfying 0U t 0 U t. Let c : V ! W be the

morphism (which exists by the Kawamata-Shokurov Basepoint-Free Theorem) from V onto

a normal projective variety W such that c�
HGNðKV þ t 0LÞ where H is ample and N

is a positive integer such that Nt 0 is integral. Assume that t 0 V ðnþ 3Þ=2. Then we can

conclude the following.

1. If dimW < dimV , then A is the pullback under c of a divisor in W; moreover, c

is of maximal rank in a neighborhood of a general fiber lying in A.

2. Assume that dimW ¼ dimV . If the image under f of the singularities of A is

not all of Y, then for a general fiber f of f : A ! Y , it follows that Picð f Þ ¼ Z,

Af < 0, and KV þ t 0L is ample on f.

Proof. We first consider the case in which dimW < dimV . Applying Lemma 4.3

gives dimV ÿ dimW V t 0 ÿ 1. Applying the same lemma to f : A ! Y , we get dimA

ÿ dimY V tÿ 1V t 0 ÿ 1.
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Thus, if F is a general fiber of c, we have

dimAÿ dimY þ dimF V 2ðt 0 ÿ 1ÞV nþ 1:

Moreover, since t 0 V ðnþ 3Þ=2 > ðdimF þ 2Þ=2, Theorem 1.3 implies that PicðFÞ ¼ Z.

Therefore, from Corollary 4.2 we get that either F VA ¼ q or F H fÿ1ðyÞ for a y A Y .

The latter alternative is clearly impossible if F is a general fiber of c and A is a divisor

of V. Therefore, AF is trivial; in other words, A is in the kernel of the restriction map

PicðVÞ ! PicðFÞ.

Since dimW < dimV , the bundle NðKV þ t 0LÞ is spanned but not ample, and thus

t 0 is the nefvalue of ðV ;LÞ. In that case it is known from Theorem 1.2 that c is a

Mori contraction, and, in particular, the sequence PicðWÞ ! PicðVÞ ! PicðF Þ is exact.

Therefore, the divisor A is in the image of PicðWÞ; i.e., it is the pullback under c of a

divisor on W.

To see that c is of maximal rank in a neighborhood of a general fiber F lying in

A, note that F is smooth since F is a general fiber of the morphism cA. Since

KF ¼ ÿt 0LF < 0, we have H 1ðF ;OF Þ ¼ 0. Letting NFnA (respectively, NFnV ) be the

normal bundle of F in A (respectively, in V ), we have the short exact sequence:

0 ! NFnA ! NFnV ! ½A�F ! 0:

Using the facts that ½A�F GOF GNFnA, and that H 1ðF ;OF Þ ¼ 0, we conclude that

NFnV ¼ NFnA l ½A�F ¼ NFnA lOF ; and therefore that NFnV is also trivial. Using

H 1ðF ;OF Þ ¼ 0, we have that H 1ðF ;NFnV Þ ¼ 0. It follows from deformation theory

that around any point p A F we have a neighborhood of the form U �V, where

1. p A U HF and V is transverse to F with c giving a biholomorphism of V with

an open neighborhood cðVÞ of cðpÞ; and

2. under the biholomorphism V ! cðVÞ, cU�V is identified to the product

projection U �V ! V.

Therefore, cU�V maps V one-to-one onto W, and hence has maximal rank at p.

We next consider the case when dimW ¼ dimV . Let f be a general fiber of f :

A ! Y . Note that if the image under f of the singularities of A is not all of Y, then a

general fiber f is smooth. Applying theorem 1.3 gives Picð f Þ ¼ Z.

Since the map f is induced by NðKA þ tLAÞ, we have

ðKA þ tLAÞf ¼ ðKV þ tLÞf þ Af ¼ 0:

Moreover, since ðKV þ tLÞf is nef, we have Af U 0.

We claim that, in fact, Af < 0; for, if Af ¼ 0, then ðKV þ tLÞf ¼ 0 as well.

Therefore t ¼ t 0 and the map c : V ! W contracts f. Furthermore, the same argument

we gave in the previous case shows that the normal bundle N f nA of f in A is trivial,

and, therefore the normal bundle N f nV in V must also be trivial because ½A�f is

trivial. Also, Kf < 0, so H 1ð f ;N f nV Þ ¼ 0. But then the fibers of c fill out an open

set around f, and therefore dimW < dimV , contrary to hypothesis.

From Af < 0 we get ðKV þ tLÞf > 0, so that ðKV þ tLÞf is ample as asserted.

r

Many nonexistence results follow from the above results. We restrict ourselves to a

few illustrative results, the first of which we need below.
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Theorem 4.5. Let L be an ample line bundle on an n-dimensional connected

projective manifold V. Assume that KV þ ðnÿ 1ÞL is nef and big and that nV 4. Let

A1; . . . ;Ar be rV 2 distinct irreducible divisors whose union is connected, e.g., whose union

is the reduction of an ample divisor. Assume that each ðAi;LAi
Þ is either a scroll over a

curve, a quadric, or ðPnÿ1
;O

P
nÿ1ð1ÞÞ. Then n ¼ 4 and all of the ðAi;LAi

Þ are scrolls.

Proof. First we assume that nV 4 and that not all of the ðAi;LAi
Þ are scrolls over

a curve. After renaming if necessary we can assume that ðA2;LA2
Þ is not a scroll. Let

A1 (after possibly renaming) be an Ai distinct from A2 such that A1 VA2 0q. Let

f1 : A1 ! Y be the nefvalue morphism of ðA1;LA1
Þ. By hypothesis the image of f1

is either a point or a curve. Let f1 : V ! Y be the extension of f1 that exists by

Theorem 4.1. Since PicðA2Þ ¼ Z, Corollary 4.2 implies that A2 H fÿ1
1 ðf1ðxÞÞ for some

x A A1 VA2. This is absurd since A1 and A2 are distinct irreducible divisors.

Thus we have reduced to the situation when nV 5 and all of the ðAi;LAi
Þ are

scrolls. Let fi : Ai ! Yi be the nefvalue morphism of ðAi;LAi
Þ. After renaming if

necessary we can assume that A1 and A2 meet. Let x A A1 VA2. Let B denote the

fiber fÿ1
2 ðf2ðxÞÞ. Note that BGP

nÿ2 and PicðBÞ ¼ Z. Let f1 : V ! Y1 be the ex-

tension of f1 that exists by Theorem 4.1. Note that BH fÿ1
1 ðf1ðxÞÞ by Corollary 4.2.

From rigidity of proper maps we conclude that given any fiber F of the map f2 we have

that f1ðFÞ is a point. From Theorem 4.1 we see that KV þ ðnÿ 1ÞL must be trivial

when restricted to any fiber of f2 not contained in A1. But this implies that a Zariski

open set of A2 is contained in a component of the exceptional set of the first adjunction

map. This gives the absurdity that A2 GP
nÿ1. r

Here is the solution to Problem B of the Introduction for dimensions at least five.

Corollary 4.6. Let L̂L be an ample and spanned line bundle on an n-dimensional

connected projective manifold X̂X with nV 5. Assume that there is a normal crossing

divisor ÂA ¼ ÂA1 þ � � � þ ÂAr A jL̂Lj. Assume that rV 2. If for each i the genus of a curve

section of ðÂAi; L̂LÂAi
Þ equals h1ðOÂAi

Þ, then ðX̂X ; L̂LÞ is a scroll over a smooth curve, one

component of ÂA meets each fiber in a hyperplane, and the other components are fibers.

Proof. By [9, Theorem 11.7], Theorem 3.1, and Theorem 4.5, each ðÂAi; L̂LÂAi
Þ is a

scroll over a curve. Then since n > 4, Theorem 4.5 rules out the possibility that

KX̂X þ ðnÿ 1ÞL̂L could be nef and big.

Now suppose that KX̂X þ ðnÿ 1ÞL̂L is nef but not big. By theorem 3.2, ðX̂X ; L̂LÞ is

either a Del Pezzo manifold as in Theorem 3.4, a quadric fibration over a smooth curve,

or X̂X is a scroll over a normal surface. However, the Del Pezzo manifolds exhibited in

Theorem 3.4 all have dim X̂X U 4, so the first case does not occur. Likewise, the latter

two cases are inconsistent with the ðÂAi; L̂LAi
Þ’s being scrolls over curves.

Hence we conclude that ðX̂X ; L̂LÞ is not nef. So by theorem 3.1, ðX̂X ; L̂LÞ is a scroll

over a smooth curve, all the components of ÂA but one are fibers, and the remaining one

meets each fiber in a hyperplane. r

We need the following useful lemma.

Lemma 4.7. Let L̂L be a very ample line bundle on a four-dimensional connected

projective manifold X̂X . Let A and B be two smooth divisors on X̂X meeting transversely in
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a nonempty manifold h. Assume that ðA; L̂LAÞ and ðB; L̂LBÞ are scrolls over smooth curves

A and B respectively with scroll projections a : A ! A and b : B ! B respectively. If

KX̂X þ 3L̂L is nef and big, then ða; bÞ maps h isomorphically onto A�B.

Proof. Using the argument of Theorem 4.5 we see that if KX̂X þ 3L̂L is nef and big

then no fiber of a meets a fiber of b in a positive dimensional set. In particular

aðhÞ ¼ A and bðhÞ ¼ B.

First note that ða; bÞ is one-to-one on h. If not there are two points that are

identified by a and by b. Since L̂L is very ample and the fibers of a and b are linear, we

conclude that the line l between these two points is in the fibers of a and b. Thus

lH h. This contradicts the fact that no fiber of a can meet a fiber of b in a positive

dimensional set. The same argument shows that no tangent vector of h can be mapped

to zero by the di¤erential of ða; bÞ. r

Lemma 4.7 is very strong. It lets us use Theorems 3.10 and 3.11 to solve Problem

A of the Introduction under the assumptions that r ¼ 2 and n ¼ 4.

Corollary 4.8. Let L̂L be a very ample line bundle on a four-dimensional connected

projective manifold X̂X . Assume that there is a normal crossing divisor ÂAþ B̂B A jL̂Lj. If

the genus of a curve section of ðÂA; L̂LÂAÞ and the genus of a curve section of ðB̂B; L̂LB̂BÞ both

equal zero, then

1. ðX̂X ; L̂LÞ is a scroll over P
1; or

2. ðX̂X ; L̂LÞ ¼ ðP2 � P
2
;O

P
2�P

2ð1; 1ÞÞ; or

3. ðX̂X ; L̂LÞG ðPðVÞ; xV Þ where V GO
P

2ð1ÞlO
P

2ð1ÞlO
P

2ð2Þ and (after possibly

renaming) B̂B is equal to the inverse image of a conic in P
2 under the scroll

projection, ðÂA; L̂LAÞG ðP2 � P
1
;O

P
2�P

1ð1; 1ÞÞ, and ÂA is the unique divisor

A jL̂Lÿ B̂Bj; or

4. ðX̂X ; L̂LÞ is Mukai, i.e., ÿKX̂X ¼ 2L̂L.

Proof. By Theorem 3.1 either KX̂X þ 3L̂L is nef or else ðX̂X ; L̂LÞ is a scroll over a

curve, which gives the first case of the theorem.

Thus we may assume that KX̂X þ 3L̂L is nef. Now using Theorem 3.2, we see that

KX̂X þ 3L̂L is big except when ðX̂X ; L̂LÞ is a Del Pezzo manifold, a quadric fibration over a

smooth curve, or a scroll over a smooth surface. In the Del Pezzo case, we have

ðX̂X ; L̂LÞ ¼ ðP2 � P
2
;O

P
2�P

2ð1; 1ÞÞ by Theorem 3.4.

The case of a quadric fibration over a curve is not possible. To see this let p :

X̂X ! C be the quadric fibration morphism onto the smooth curve C. There is an ample

line bundle H on C with KX̂X þ 3L̂LG p�H. Since the general fiber of p is irreducible,

we see that after renaming ÂA is a fiber and B̂B meets the general fiber in a smooth

quadric. Also since C is a curve, all of the fibers of pB̂B have equal dimension. Since

the curve genus of ðB̂B;LB̂BÞ is 0 we have

ÿ2 ¼ ðKX̂X þ B̂Bþ 2L̂LB̂BÞ � B̂B � L̂L2 ¼ ðp�H ÿ ÂAÞ � B̂B � L̂L2
:

But p�H is numerically equivalent to tÂA for some tV 1 and ðÂAV B̂BÞ � L̂L2 ¼ 2 so we have

the contradiction that ÿ2 ¼ 2ðtÿ 1ÞV 0.
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We now work out the case of a scroll p : X̂X ! Y over a surface.

First note that both ÂA and B̂B are scrolls over curves. If not then after possibly

renaming, ÂA would be P
3 or a three-dimensional quadric. In these cases PicðÂAÞGZ so

pðÂAÞ can only be three dimensional or a point, according to Corollary 4.2. Since

dimY ¼ 2 we conclude that ÂA is contained in a fiber of p. This is impossible since p is

a P
2-bundle ([16, Theorem 3.3], [5, Chapter 12]), while dim ÂA ¼ 3.

Thus ÂA and B̂B are scrolls over curves. Since the genera of curve sections of ÂA and

B̂B are both zero, ÂA and B̂B are both scrolls over P
1.

After renaming if necessary we conclude by Theorem 1.9 that B̂B ¼ p
ÿ1ðCÞ for a

smooth rational curve C, and ÂA meets a general fiber in a linear P
1. Since L̂L is very

ample and since the fibers of both p and the scroll projection q : ÂA ! P
1 are linear P2’s,

we see that a fiber of q is a section of p. Thus Y GP
2, and therefore

½B̂B�G p
�
O
P

2ðbÞ with b ¼ 1 or b ¼ 2:

Since ðX̂X ; L̂LÞ is a scroll over P2 we have by definition that KX̂X þ 3L̂LG p
�
O
P

2ðcÞ with

cV 1. We claim that c ¼ 1 and b ¼ 2. To see this observe that a curve section of ÂA is

rational so we have

ÿ2 ¼ ðKÂA þ 2L̂LÂAÞ � L̂L
2
ÂA
¼ ðKX̂X þ 3L̂Lÿ B̂BÞ � ÂA � L̂L2 ¼ p

�
O
P

2ðcÿ bÞ � ÂA � L̂L2
:

From this we conclude that cÿ b < 0. Since c > 0 and b ¼ 1 or 2 we see that c ¼ 1

and b ¼ 2.

Let V :¼ p�L̂L. Two distinct fibers of q : ÂA ! P
1 give two disjoint sections of p

therefore we obtain an exact sequence with x; y; z A Z

0 ! O
P

2ðxÞ ! V ! O
P

2ðyÞlO
P

2ðzÞ ! 0:

This sequence splits since the first cohomology of any line bundle on P
2 vanishes.

Hence V is a direct sum of line bundles. Since K
P

2 þ detV GO
P

2ðbÞGO
P

2ð1Þ, we

conclude that detV GO
P

2ð4Þ. Thus V GO
P

2ð1ÞlO
P

2ð1ÞlO
P

2ð2Þ with B equal to

the inverse image of a conic in P
2 under p and with ÂA A jL̂Lÿ B̂Bj. Since

p�ðL̂Lÿ B̂BÞGO
P

2ðÿ1ÞlO
P

2ðÿ1ÞlO
P

2 ;

we see that ðÂA; L̂LÂAÞG ðP2 � P
1
;O

P
2�P

1ð1; 1ÞÞ. From this explicit description existence

follows.

Now assume that KX̂X þ 3L̂L is nef and big. Then by Theorem 4.5, ÂA and B̂B are both

scrolls over P
1. Also, h ¼ ÂAV B̂B is isomorphic to P

1 � P
1 by Lemma 4.7.

A fiber of the map P
1 � P

1 ! P
1 induced by the inclusion of h in ÂA is a smooth P

1

inside a fiber P
2 of ÂA ! P

1, hence is of degree 1 or 2. Likewise for the map from B̂B.

Then L̂Lh is either O
P

1�P
1ð1; 1Þ, O

P
1�P

1ð2; 1Þ, O
P

1�P
1ð1; 2Þ, or O

P
1�P

1ð2; 2Þ and we have

gðhÞU 1.

If the genus of a curve section of h is zero then, by Theorem 3.10, either ÂA or B̂B is a

fiber of the first reduction map or ðX̂X ; L̂LÞ ¼ ðP4
;O

P
4ð2ÞÞ. But the first case would

contradict ÂA and B̂B’s both being scrolls. The second case ðX̂X ; L̂LÞ ¼ ðP4
;O

P
4ð2ÞÞ is also

not possible. Indeed we must have ÂA; B̂B A jO
P

4ð1Þj. In this case ÂAGP
3, L̂LÂA GO

P
3ð2Þ,

and the genus of a curve section of ðP3
;O

P
3ð2ÞÞ is one and not zero.
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Otherwise the sectional genus is one. According to Theorem 3.11, this implies that

the first reduction ðX ;LÞ of ðX̂X ; L̂LÞ exists with KX þ 2L nef and the first reduction map a

biholomorphism in a neighborhood of ÂAV B̂B. Note that X̂X ¼ X . To see this suppose

there were an exceptional fiber E for the first reduction map. Then E meets ÂAþ B̂B, so

we may assume without loss of generality that it meets ÂA. Since ÂA is a scroll p : ÂA ! C

over a curve we see that E would have to contain at least one curve of a fiber of p.

This would force ÂA to equal E, in contradiction to ÂA’s being a scroll. Thus KX̂X þ 2L̂L is

nef.

Let n : X̂X ! Y denote the morphism with connected fibers onto a normal projective

variety Y such that KX̂X þ 2L̂LG n
�H for an ample line bundle H on Y. Since 0 ¼

ðKX̂X þ 2L̂LÞ � ÂA � B̂B � L̂L, we conclude that n maps ÂAV B̂B to a point. Since ÂAV B̂B contains

curves in fibers of the scroll maps of ÂA and B̂B we conclude that n maps ÂAþ B̂B to a

point. Thus n maps X̂X to a point. Thus ÿKX̂X ¼ 2L̂L. r

The solution of the following general problem would complement for reducible

divisors the results we know for irreducible ample divisors [5, Chapter 6] and [3].

Problem C. Let L̂L be a very ample line bundle on a connected n-dimensional

projective manifold X̂X . Classify ðX̂X ; L̂LÞ when there exists a divisor ÂA ¼ ÂA1 þ � � � þ ÂAr A

jL̂Lj with all ÂAi degenerate, e.g., with kðKÂAi
þ ðdim ÂAi ÿ kÞL̂LÂAi

Þ < dim ÂAi if nV k þ 1,

where k is either 1, 2, or 3.
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