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Abstract. This paper is a continuation of the previous paper Taira and Umezu [12]

where we studied the existence and uniqueness of positive solutions of a class of sublinear

elliptic problems with degenerate boundary conditions. We intend here to give a further

investigation of the set of positive solutions in the forced case.

1. Introduction.

Let D be a bounded domain of Euclidean space R
N , NV 2, with Cy boundary qD;

its closure D ¼ DW qD is an N-dimensional, compact Cy manifold with boundary.

We let

AuðxÞ ¼ ÿ
X

N

i¼1

q

qxi

X

N

j¼1

a ijðxÞ
qu

qxj
ðxÞ

 !

þ cðxÞuðxÞ

be a second-order, elliptic di¤erential operator with real Cy coe‰cients on D such that:

(1) a ijðxÞ ¼ a jiðxÞ, x A D, 1U i; jUN, and there exists a constant a0 > 0 such that

X

N

i; j¼1

a ijðxÞxixjV a0jxj
2; x A D; x A R

N ;

(2) cðxÞ > 0 in D.

In the first part of this paper, we consider the following semilinear elliptic boundary

value problem:

Au ¼ luþ f ðuÞ in D,

Bu ¼ a
qu

qn
þ ð1ÿ aÞu ¼ 0 on qD:

8

<

:

ð�Þl

Here:

(1) l is a real parameter.

(2) f is a real-valued C1-function on ½0;yÞ.

(3) a A CyðqDÞ and 0U aðxÞU 1 on qD.

(4) q=qn is the conormal derivative associated with the operator A: q=qn ¼
PN

i; j¼1 a
ijnjq=qxi, where n ¼ ðn1; n2; . . . ; nNÞ is the unit exterior normal to the

boundary qD.
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It seems worth pointing out that we study the case of a first order degenerate

boundary condition which is the Dirichlet condition if a1 0 on qD, and which is the

Neumann condition if a1 1 on qD.

A function u is said to be a solution of problem ð�Þl if u A C2ðDÞ and satisfies

problem ð�Þl. If the solution u is positive everywhere in D, then it is called a positive

solution of problem ð�Þl.

We assume that the nonlinearity f is forced, that is,

f ð0Þ > 0;ðH:1Þ

and in addition assume that

f ðtÞ

t

� �0

< 0; t > 0:ðH:2Þ

From the condition (H.2), we can see that f ðtÞ=t is strictly decreasing in t > 0. So, we

can put

ky ¼ lim
t!y

f ðtÞ

t
:

Let l1 be the first eigenvalue of the linear eigenvalue problem:

Au ¼ lu in D,

Bu ¼ 0 on qD:

�

It is known ([9]) that the first eigenvalue l1 is positive.

Under the conditions (H.1) and (H.2), Taira and Umezu [12, Corollary 1] proved

that

(1) problem ð�Þl has a positive solution if and only if l < l1 ÿ ky (ky may be

equal to ÿy),

(2) the existence of positive solutions of problem ð�Þl is unique in space C2ðDÞ.

The purpose of the first part is to give a further precise behaviour of the positive

solution set of problem ð�Þl.

Now the first result of ours is the following.

Theorem 1. Let the conditions (H.1) and (H.2) be satisfied. If uðlÞ is a unique

positive solution of problem ð�Þl for each l < l1 ÿ ky ( possibly ky ¼ ÿy), then the

following assertions hold.

(1.1) The mapping l 7! uðlÞ is of class C 1.

(1.2) uðlÞ is monotone increasing, that is, uðlÞ < uðmÞ in D if l < m.

(1.3) kuðlÞkC 0 ! y as l ! l1 ÿ ky.

(1.4) kuðlÞkC 0 ! 0 as l ! ÿy. More precisely, there exist constants C > 0 and

l < 0 such that

Cÿ1jljÿ1
U kuðlÞkC 0UCjljÿ1; l < l:

Here k � kC 0 denotes the maximum norm of space C0ðDÞ :¼ CðDÞ. Figure 1 shows the

behaviour of the positive solution set.

Remark 1.1. In the case that the nonlinear term f is monotone decreasing, Keller

[5] proved the existence and uniqueness of positive solutions of problem ð�Þl under the
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non-degenerate boundary condition, that is, either under the condition that a1 0 on qD

or under the condition that 0 < aU 1 on qD.

The second part is devoted to the study of the following semilinear elliptic boundary

value problem:

Au ¼ l f ðuÞ in D,

Bu ¼ 0 on qD;

�

ð��Þ
l

where

(1) l is a positive parameter,

(2) f is a real-valued C1-function on ½0;yÞ.

The definitions of solutions and positive solutions of problem ð��Þ
l
are given in the same

manner as of problem ð�Þ
l
.

Under the conditions (H.1) and (H.2), Taira and Umezu [12, Corollary 2] proved

that

(1) problem ð��Þ
l
has a positive solution if and only if

0 < l < l1=ky in the case that kyV 0,

l > 0 in the case that ky < 0 ðpossibly ky ¼ ÿyÞ;

(

(2) the existence of positive solutions of problem ð��Þ
l
is unique in space C2ðDÞ.

Here it is understood that l1=ky ¼ y if ky ¼ 0.

In this part, we aim to obtain the set of positive solutions of problem ð��Þ
l
so

precisely as in the previous part.

Now the second result of ours is the following.

Theorem 2. Suppose that the conditions (H.1) and (H.2) are satisfied.

(i) In the case that kyV 0, if uðlÞ is a unique positive solution of problem ð��Þ
l
for

each 0 < l < l1=ky, then in addition to the assertions (1.1) and (1.2), the

following assertions hold.

kuðlÞkC 2þa ! 0; l ! 0þ;ð1:5Þ

kuðlÞkC 0 ! y; l ! l1=ky:ð1:6Þ

Here k � kC 2þa denotes the norm of Hölder space C 2þaðDÞ, 0 < a < 1.

Figure 1
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(ii) In the case that ky < 0 ( possibly ky ¼ ÿy), if uðlÞ is a unique positive solution

of problem ð��Þl for each l > 0, then in addition to the assertions (1.1), (1.2) and

(1.5), we have

kuðlÞkC 0 ! t0; l ! y:ð1:7Þ

Here t0 is the positive constant given by the following.

f ðt0Þ ¼ 0;

f ðtÞ > 0; 0U t < t0:

�

Figures 2 and 3 exhibit the behaviour of the set of positive solutions in the case that

kyV 0 and in the case that ky < 0, respectively.

Remark 1.2. Under the non-degenerate boundary conditions, Ambrosetti and Hess

[2] studied problem ð��Þl in the case that the nonlinearity is asymptotically linear.

More extensive classes than in [2] are treated by Lions [7]. However we find that

Theorem 2 characterizes the asymptotic behaviour of the positive solution of ð��Þl more

exactly by means of the method of super-subsolutions.

Example 1.1. We give some examples f satisfying the conditions (H.1) and (H.2).

(1) f ðtÞ ¼ tþ 1=ðtþ 1Þ. In this case, ky ¼ 1.

(2) f ðtÞ ¼ eÿt. In this case, ky ¼ 0.

(3) f ðtÞ ¼ exp½t=ð1þ t=aÞ� ð0 < a < 4Þ. In this case, ky ¼ 0. Problem ð��Þl for

this nonlinearity is called a modified Gel’fand problem arising in chemical

reactor theory (cf. [3], [13]).

(4) f ðtÞ ¼ ÿtþ 2ÿ 1=ðtþ 1Þ. In this case, ky ¼ ÿ1.

(5) f ðtÞ ¼ 1þ btþ at2 ða; b A R; a < 0Þ. In this case, ky ¼ ÿy.

Figure 2

Figure 3
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The rest of this paper is organized as follows. For proofs of Theorems 1 and 2 we

prepare, in Section 2, some results from the linear theory of elliptic boundary value

problems with the degenerate boundary condition. Our problems are reduced to

operator equations of the resolvent associated with the linear boundary value problem.

More precisely, since the resolvent has positivity and compactness in some Banach

spaces, we can apply to our case the theory of positive mappings in ordered Banach

spaces ([1]) and the positivity lemma for strongly positive compact linear operators ([6]),

by establishing existence and uniqueness theorems both in Sobolev spaces ([14, Theorem

1]) and in Hölder spaces ([11, Theorem 1.1]) for the degenerate linear elliptic boundary

value problem. We remark that it seems to be di‰cult to use the variational method in

the degenerate case (cf. Remark 4.1).

Section 3 is devoted to the proof of Theorem 1. Our main tools are the implicit

function theorem and the method of super-subsolutions.

In Section 4, we prove Theorem 2 where the a priori upper bounds for positive

solutions plays an important role. The proof of Theorem 2 is given essentially in the

same manner as in Section 3.

2. Linear theory.

In this section, we prepare the linear theory of degenerate elliptic boundary value

problems to prove Theorems 1 and 2. We state the following existence and uniqueness

theorems both in the framework of Sobolev spaces and in the framework of Hölder

spaces.

Theorem 2.1 ([14, Theorem 1]). The mapping

ðA;BÞ: W s;pðDÞ ! W sÿ2;pðDÞlB
sÿ1ÿ1=p;p
ðaÞ ðqDÞ;

u 7! ðAu;BuÞ

is isomorphic for 1 < p < y and sV 2 where

Bsÿ1=p;pðqDÞ ¼ j : j ¼ ujqD; u A W s;pðDÞ
� 	

; sV 1;

with norm

kjkBsÿ1=p; pðqDÞ ¼ inf kukW s; pðDÞ : j ¼ ujqD; u A W s;pðDÞ
n o

;

and

B
sÿ1ÿ1=p;p
ðaÞ ðqDÞ ¼ j ¼ aj1 þ ð1ÿ aÞj0 : ji A B sÿiÿ1=p;pðqDÞ; i ¼ 0; 1

n o

;

with norm

kjk
B

sÿ1ÿ1=p; p

ðaÞ
ðqDÞ

¼ inffkj1kB sÿ1ÿ1=p; pðqDÞ þ kj0kB sÿ1=p; pðqDÞ :

j ¼ aj1 þ ð1ÿ aÞj0; ji A Bsÿiÿ1=p;pðqDÞ; i ¼ 0; 1g:
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Theorem 2.2 ([11, Theorem 1.1]). The mapping

ðA;BÞ: C2þaðDÞ ! C aðDÞlC1þa
ðaÞ ðqDÞ;

u 7! ðAu;BuÞ

is isomorphic for 0 < a < 1 where

C1þa
ðaÞ ðqDÞ ¼ fj ¼ aj1 þ ð1ÿ aÞj0 : ji A C2ÿiþaðqDÞ; i ¼ 0; 1g;

with norm

kjkC 1þa
ðaÞ

ðqDÞ ¼ inffkj1kC 1þaðqDÞ þ kj0kC 2þaðqDÞ :

j ¼ aj1 þ ð1ÿ aÞj0; ji A C 2ÿiþaðqDÞ; i ¼ 0; 1g:

We remark that interpolation spaces B
sÿ1ÿ1=p;p
ðaÞ ðqDÞ and C1þa

ðaÞ ðqDÞ are Banach spaces

with respect to norms k � k
B

sÿ1ÿ1=p; p

ðaÞ
ðqDÞ

and k � kC 1þa
ðaÞ

ðqDÞ, respectively.

First we consider the linear boundary value problem

Au ¼ v in D,

Bu ¼ 0 on qD:

�

Then we find from Theorem 2.2 that there exists a resolvent K which maps C aðDÞ

isomorphically onto C 2þa
B ðDÞ, where

C2þa
B ðDÞ ¼ fu A C2þaðDÞ : Bu ¼ 0 on qDg:

This implies that for any v A C aðDÞ, Kv is a unique solution in C2þaðDÞ of the linear

problem. Hence we can find that a function u is a solution of ð�Þl if and only if

u ¼ Kðluþ f ðuÞÞ in C aðDÞ;

because f A C1ð½0;yÞÞ.

Secondly since CðDÞHLpðDÞ for any 1 < p < y, Theorem 2.1 with s ¼ 2 tells us

that there exists a unique extension of K, again denoted by K, to CðDÞ with its image

contained W
2;p
B ðDÞ for all 1 < p < y where

W
2;p
B ðDÞ ¼ fu A W 2;pðDÞ : Bu ¼ 0 on qDg:

If we take the exponent p such that p > N, then we obtain by Sobolev’s imbedding

theorem that K is a continuous mapping of CðDÞ into C 1ðDÞ, and obtain by Ascoli-

Arzelà’s theorem that K maps CðDÞ compactly into itself. Hence, it is easy to see that

a function u is a solution of ð�Þl if and only if

u ¼ Kðluþ f ðuÞÞ in CðDÞ:

Similarly we see that a function u is a solution of ð��Þl if and only if

u ¼ Kðl f ðuÞÞ in CðDÞ:

Now, we know ([10, Lemma 2.1]) that K is strictly positive in CðDÞ, meaning that

for any non-negative function v A CðDÞ such that v2 0, Kv is positive everywhere in D.
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More precisely, the function u which denotes Kv, has the following property.

u > 0 in Dnfx A qD : aðxÞ ¼ 0g,

qu

qn
< 0 on qDnfx A qD : aðxÞ ¼ 1g:

8

<

:

Furthermore K is strongly positive in the following sense. Let e ¼ K1. The space

CeðDÞ denotes

CeðDÞ ¼ fu A CðDÞ : bc > 0 ;ÿceU uU ceg:

It is known (cf. [1]) that the space CeðDÞ is a Banach space with respect to norm k � ke
given by

kuke ¼ inffc > 0 : ÿceU uU ceg:

According to [10, Proposition 2.2], K : CeðDÞ ! CeðDÞ is compact and strongly positive,

meaning that for any v in Penf0g, Kv is an interior point in Pe where Pe ¼ u A CeðDÞ :
�

uV 0g. We can check easily that a function u is a solution of ð�Þ
l
if and only if

u ¼ Kðluþ f ðuÞÞ in CeðDÞ:

Similarly, we can see that a function u is a solution of ð��Þ
l
if and only if

u ¼ Kðl f ðuÞÞ in CeðDÞ:

Finally we state the following result which guarantees the existence and uniqueness

of positive solutions to equations for strongly positive, compact linear operators.

Theorem 2.3 ([6, Theorem 2.16]). Let T be a strongly positive, compact linear

operator of CeðDÞ and l0 the largest eigenvalue of T. Then for any non-negative function

g A CeðDÞ such that g2 0, the equation

lvÿ Tv ¼ g

has exactly one positive solution v A CeðDÞ for each l > l0.

3. Proof of Theorem 1.

In this section, we prove Theorem 1. First we shall show the assertion (1.1). We

define a nonlinear mapping F by

F : R� C2þa

B ðDÞ ! C aðDÞ

ðl; uÞ 7! Auÿ luÿ f ðuÞ:

From Theorem 2.1 with s ¼ 3, it is easy to see that a function u is a solution of problem

ð�Þ
l
if and only if F ðl; uÞ ¼ 0. Let uðlÞ be the unique positive solution of ð�Þ

l
for

l < l1 ÿ ky, that is, uðlÞ satisfies that

AuðlÞ ÿ luðlÞ ÿ f ðuðlÞÞ ¼ 0 in D,

uðlÞ > 0 in D,

BuðlÞ ¼ 0 on qD:

8

>

<

>

:

ð3:1Þ
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The Fréchet derivative Fuðl; uðlÞÞ of F at ðl; uðlÞÞ is given by

Fuðl; uðlÞÞ : C
2þa
B ðDÞ ! C aðDÞ

j 7! Ajÿ ljÿ f 0ðuðlÞÞj:

Let dðlÞ be the first eigenvalue of Fuðl; uðlÞÞ and let jðlÞ a corresponding eigenfunction

to dðlÞ:

AjðlÞ ÿ ljðlÞ ÿ f 0ðuðlÞÞjðlÞ ¼ dðlÞjðlÞ in D,

BjðlÞ ¼ 0 on qD:

�

ð3:2Þ

It is known ([9, Theorem 7.4]) that jðlÞ can be chosen as positive everywhere in D.

The boundary conditions imply that

quðlÞ

qn
uðlÞ

qjðlÞ

qn
jðlÞ

0

B

B

@

1

C

C

A

a

1ÿ a

� �

¼ 0 on qD;

and hence

quðlÞ

qn
jðlÞ ÿ uðlÞ

qjðlÞ

qn
¼ 0 on qD;

because ða; 1ÿ aÞ0 ð0; 0Þ. In view of this assertion, we have from (3.1) and (3.2)

dðlÞ ¼

Ð

D
ð f ðuðlÞÞ ÿ f 0ðuðlÞÞuðlÞÞjðlÞ dx

Ð

D
uðlÞjðlÞ dx

;

by integration by parts. Since it follows from the condition (H.2) that

f ðtÞ ÿ f 0ðtÞt > 0; t > 0;

we obtain that dðlÞ > 0. This implies that Fuðl; uðlÞÞ is injective for all l < l1 ÿ ky.

Moreover the bijectivity of Fuðl; uðlÞÞ follows from the combination of Theorem 2.2 and

the index theory of Fredholm operators. So, we can apply the implicit function

theorem to obtain that the mapping l 7! uðlÞ is of class C1 in l < l1 ÿ ky. The proof

of the assertion (1.1) is complete.

We shall prove the assertion (1.2). For our purpose, we use the method of super-

subsolutions. For a real-valued C1-function g on ½0;yÞ we consider

Au ¼ gðuÞ in D,

Bu ¼ 0 on qD:

�

ð3:3Þ

A non-negative function c A C2ðDÞ is said to be a supersolution (resp. subsolution) of

(3.3) if

AcV ðresp:U ÞgðcÞ in D,

BcV ðresp:U Þ0 in qD:

�

Now we give the following existence theorem of solutions for (3.3) relying on the

super-subsolution method.
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Theorem 3.1 ([11, Theorem 1]). Let f be a subsolution and let c a supersolution of

(3.3) such that fUc in D. Then there exists a function u A C2ðDÞ such that u satisfies

(3.3) and fU uUc in D.

Let l < m < l1 ÿ ky. It is clear that the positive solution uðmÞ of ð�Þm is a su-

persolution of ð�Þl, and that u1 0 is a subsolution but not a solution of ð�Þl because of

the condition (H.1). By Theorem 3.1, there exists a solution v of ð�Þl such that

0U vU uðmÞ in D:

Since f A C 1ð½0;yÞÞ, there exists a constant x > 0 such that ðlþ xÞtþ f ðtÞ is monotone

increasing in the closed interval ½0;maxfkuðlÞkC 0 ; kuðmÞkC 0g�. Hence, we find that

ðAþ xÞv ¼ ðlþ xÞvþ f ðvÞV f ð0Þ > 0 in D,

Bv ¼ 0 on qD:

�

By the strong maximum principle and boundary point lemma (see [8]), the solution v is

positive everywhere in D. From the uniqueness of positive solutions of ð�Þl it follows

that v1 uðlÞ.

Next, we see that

ðAþ xÞuðmÞ ¼ ðmþ xÞuðmÞ þ f ðuðmÞÞ > ðlþ xÞuðmÞ þ f ðuðmÞÞ in D;

ðAþ xÞuðlÞ ¼ ðlþ xÞuðlÞ þ f ðuðlÞÞ in D;

and hence that

ðAþ xÞðuðmÞ ÿ uðlÞÞ

> ðlþ xÞuðmÞ þ f ðuðmÞÞ ÿ ðlþ xÞuðlÞ þ f ðuðlÞÞf gV 0 in D,

BðuðmÞ ÿ uðlÞÞ ¼ 0 on qD:

8

>

<

>

:

Therefore we have the assertion (1.2) by the strong maximum principle and the

boundary point lemma. The proof of the assertion (1.2) is complete.

We shall verify the assertion (1.3). First we discuss the case that ky is finite.

Assume to the contrary that kuðlÞkC 0 is bounded near l ¼ l1 ÿ ky. We recall that uðlÞ

satisfies

uðlÞ ¼ KðluðlÞ þ f ðuðlÞÞÞ:

Since kluðlÞ þ f ðuðlÞÞkC 0 is bounded near l ¼ l1 ÿ ky, kuðlÞkC 1 is bounded near l ¼

l1 ÿ ky where k � kC 1 denotes the norm of C1ðDÞ. Hence we obtain that kuðlÞkC 2þa is

bounded near l ¼ l1 ÿ ky because of Theorem 2.2. Therefore, without loss of gen-

erality, we may obtain that there exists a function u A C2ðDÞ such that

uðlÞ ! u in C 2ðDÞ; l ! l1 ÿ ky:

With the aid of the assertion (1.2) we have

Au ¼ ðl1 ÿ kyÞuþ f ðuÞ in D,

u > 0 in D,

Bu ¼ 0 on qD:

8

<

:

This is a contradiction.
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Next, we treat the case that ky ¼ ÿy. For any l > l1, there exists a unique tl >

0 such that

ÿðlÿ l1Þ ¼
f ðtlÞ

tl
;

and we can see

tl ! y as l ! y:

By the condition (H.2) we have for 0 < tU tl,

ltþ f ðtÞ

t
¼ lþ

f ðtÞ

t
V lþ

f ðtlÞ

tl
¼ l1:

Hence

ltþ f ðtÞV l1t; 0U tU tl:

Let j1 be a corresponding positive eigenfunction to the first eigenvalue l1 such that

kj1kC 0 ¼ 1. Then we see that

A
tl

2
j1

� �

ÿ l
tl

2
j1 ÿ f

tl

2
j1

� �

U
tl

2
l1j1 ÿ l1

tl

2
j1 ¼ 0 in D:

This implies that tlj1=2 is a subsolution of ð�Þl. On the other hand, if we take a

constant Ml > 0 su‰ciently large, then Ml is a supersolution of ð�Þl. Combining

Theorem 3.1 and the uniqueness result for positive solutions of ð�Þl , we obtain that for

l > l1,

tl

2
j1U uðlÞUMl in D:

Hence,

tl

2
U kuðlÞkC 0 ; l > l1;

which implies that

kuðlÞkC 0 ! y; l ! y:

The proof of the assertion (1.3) is complete.

Finally we shall prove the assertion (1.4). For any constant e > 0, there exists a

constant le < 0 such that if l < le, then

A ÿ
f ð0Þ þ e

l

� �

ÿ l ÿ
f ð0Þ þ e

l

� �

ÿ f ÿ
f ð0Þ þ e

l

� �

> f ð0Þ þ eÿ f ÿ
f ð0Þ þ e

l

� �

> 0 in D;

8

>

>

>

<

>

>

>

:

because

f ÿ
f ð0Þ þ e

l

� �

! f ð0Þ; l ! ÿy:
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This shows that ÿð f ð0Þ þ eÞ=l is a supersolution of ð�Þl for l < le. If we put

j f ¼
f ð0Þ

2
j1;

then there exists a constant l0 < 0 such that, for l < l0,

A ÿ
j f

l

� �

ÿ l ÿ
j f

l

� �

ÿ f ÿ
j f

l

� �

¼ ÿ
l1

l
j f þ j f ÿ f ÿ

j f

l

� �

< 0 in D;

which implies that ÿj f =l is a subsolution of ð�Þl. Combining Theorem 3.1 with the

uniqueness of positive solutions and letting l ¼ minfle; l0g, we have

ÿ
j f

l
U uðlÞU ÿ

f ð0Þ þ e

l
; l < l:

This shows the assertion (1.4). The proof of the assertion (1.4) is complete.

The proof of Theorem 1 is now complete. r

4. Proof of Theorem 2.

4.1. Proof of part (i) of Theorem 2.

The proof of the assertion (1.1) is the same as in Theorem 1, and we can prove the

assertion (1.2) similarly since if kyV 0 then f ðtÞ > 0 for t > 0.

We shall show the assertion (1.5). From the assertion (1.2) it follows that kuðlÞkC 0

is bounded near l ¼ 0. By Theorem 2.1 with s ¼ 2, we get

kuðlÞkC 1UC; 0 < l < lð4:1Þ

with some constants C > 0 and l > 0. On the other hand, from Theorem 2.2 we have

kuðlÞkC 2þaUC 0lk f ðuðlÞÞkC að4:2Þ

with some constant C 0 > 0 independent of l. From the assertions (4.1) and (4.2) we

obtain the assertion (1.5). The proof of the assertion (1.5) is complete.

We shall verify the assertion (1.6). In the case that ky > 0, we can prove it

similarly as the assertion (1.3) of Theorem 1. Next we deal with the case that ky ¼ 0.

Assume to the contrary that there exist constants C > 0 and l > 0 such that

kuðlÞkC 0UC; l > l:

From the two equations:

Aj1 ¼ l1j1 in D,

Bj1 ¼ 0 on qD;

�

AuðlÞ ¼ l f ðuðlÞÞ in D,

BuðlÞ ¼ 0 on qD,

�

we derive by integration by parts

l ¼
l1

Ð

D
uðlÞj1 dx

Ð

D
f ðuðlÞÞj1dx

:
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We put

C0 ¼ min
0UtUC

f ðtÞ > 0:

Then we have

lU
l1C

C0
:

On letting l ! y, this leads to a contradiction. Hence, with the aid of the assertion

(1.2), we obtain that

kuðlÞkC 0 ! y; l ! y:

The proof of the assertion (1.6) is complete.

The proof of part (i) of Theorem 2 is complete. r

4.2. Proof of part (ii) of Theorem 2.

The assertion (1.1) can be proved similarly as in Theorem 1.

First we shall verify the assertion (1.2). To do so, we need the following lemma

which gives the a priori bounds for positive solutions of a class of sublinear elliptic

problems.

Lemma 4.1. For the nonlinearity g of problem (3.3), we assume that there exists a

t0 > 0 such that

gðt0Þ ¼ 0;

gðtÞ < 0; t > t0:

Then any positive solution u of problem (3.3) satisfies that

0U uU t0 in D:

Proof. Let u be a positive solution of (3.3). We take a constant s > 0 such that

uðxÞU s in D;

t0U s:

Since g A C1ð½0;yÞÞ, there exists a constant x > 0 such that the mapping t 7! xtþ gðtÞ is

increasing in the closed interval ½0; s�. As seen in Section 2, if Kx denotes the inverse of

ðAþ xÞ : C2þa
B ðDÞ ! C aðDÞ; 0 < a < 1, then we have

u ¼ Kxðxuþ gðuÞÞ:

Now, assume to the contrary that there exists x0 A D such that

uðx0Þ > t0:ð4:3Þ

Let

oðxÞ ¼ minfuðxÞ; t0g; x A D:ð4:4Þ
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First we claim that

oVKxðxoþ gðoÞÞ:ð4:5Þ

From the definition of o, it follows that

xoþ gðoÞU xuþ gðuÞ:

By the positivity of Kx,

Kxðxoþ gðoÞÞUKxðxuþ gðuÞÞ ¼ u:ð4:6Þ

Similarly

xoþ gðoÞU xt0 þ gðt0Þ ¼ xt0;

and hence

Kxðxoþ gðoÞÞU xt0Kx1:ð4:7Þ

Putting v ¼ xt0Kx1, we obtain that

ðAþ xÞðt0 ÿ vÞ ¼ ct0 > 0 in D,

Bðt0 ÿ vÞ ¼ ð1ÿ aÞt0V 0 on qD:

�

Using the strong maximum principle and boundary point lemma, we obtain that

vðxÞ < t0 in D:ð4:8Þ

Therefore, the claim (4.5) follows from the assertions (4.6)–(4.8).

Now, using the assertion (4.5), we get

ðoÿ uÞ ÿ xKxðoÿ uÞVKxðgðoÞ ÿ gðuÞÞ:

By (4.3) and the assumption of the function g, we have

gðoÞ ÿ gðuÞ2 0 andV 0 in D:

So, it follows from the strict positivity of Kx that

KxðgðoÞ ÿ gðuÞÞ > 0 in D:

Since the largest eigenvalue of the operator xKx is less than 1, the function oÿ u must

be positive everywhere in D because of Theorem 2.3. This statement contradicts the

definition (4.4).

The proof of Lemma 4.1 is complete. r

Remark 4.1. Figueiredo [4, Lemma 2.9] proved Lemma 4.1 in the Dirichlet

condition case. However it seems to be di‰cult to apply his method to the degenerate

case since it relies on the variational method.

Now, in the case that ky < 0 (possibly ÿy), there exists a t0 > 0 such that

f ðt0Þ ¼ 0;

f ðtÞ > 0; 0U t < t0,

f ðtÞ < 0; t > t0:

8

>

>

<

>

>

:

ð4:9Þ
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From Lemma 4.1 it follows that for all l > 0,

0U uðlÞU t0 in D;

and hence that for all l > 0,

f ðuðlÞÞV 0 in D:

Having this statement in mind, we can prove the assertion (1.2) similarly as in Theorem

1. By virtue of the assertion (1.2), we can show the assertion (1.5) in the same manner

as in part (i).

Finally we shall prove the assertion (1.7). Lemma 4.1 and (4.9) assert the

maximum norm kuðlÞkC 0 is bounded above by the value t0. In addition, from the

assertion (1.2) it follows that kuðlÞkC 0 is increasing in l. Hence we can put

t ¼ lim
l!y

kuðlÞkC 0ðU t0Þ:

We use the super-subsolution method to prove that t ¼ t0. It is obvious that u1 t0 is a

supersolution of ð��Þl. Let 0 < e < 1. From the condition (H.2) we have for l > 1=t0,

A t0 ÿ
1

l

� �

ej1

� �

ÿ l f t0 ÿ
1

l

� �

ej1

� �

¼ l1 t0 ÿ
1

l

� �

ej1 ÿ l f t0 ÿ
1

l

� �

ej1

� �

¼ l1 ÿ l
f ððt0 ÿ ð1=lÞÞej1Þ

ðt0 ÿ ð1=lÞÞej1

� �

t0 ÿ
1

l

� �

ej1

U l1 ÿ l
f ðt0eÞ

t0e

� �

t0 ÿ
1

l

� �

ej1 in D:

This shows that ðt0 ÿ 1=lÞej1 is a subsolution of ð��Þl if l > le where le ¼ max 1=t0;f

l1t0e= f ðt0eÞg. Combining Theorem 3.1 with the uniqueness, we obtain that for l > le,

t0 ÿ
1

l

� �

ej1U uðlÞU t0 in D:

Hence

t0 ÿ
1

l

� �

eU kuðlÞkC 0U t0; l > le;

and hence as l ! y

t0eU t ¼ lim
l!y

kuðlÞkC 0U t0:

Letting e ! 1, we have

lim
l!y

kuðlÞkC 0 ¼ t0:

The proof of the assertion (1.7) is complete.

K. Umezu814



We have finished the proof of part (ii) of Theorem 2. r

The proof of Theorem 2 is now complete. r
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