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Abstract. This paper is a continuation of the previous paper Taira and Umezu
where we studied the existence and uniqueness of positive solutions of a class of sublinear
elliptic problems with degenerate boundary conditions. We intend here to give a further
investigation of the set of positive solutions in the forced case.

1. Introduction.

Let D be a bounded domain of Euclidean space R, N > 2, with C* boundary éD;
its closure D =D udD is an N-dimensional, compact C* manifold with boundary.
We let

Au(x) = — Z% (Z a’j(x)g—;;(x)) + ¢(x)u(x)

i=1 =1

be a second-order, elliptic differential operator with real C* coefficients on D such that:
(1) a¥(x) =a’(x), xe D, 1 <i,j< N, and there exists a constant @y > 0 such that

N
> al(x)&é > alé|’, xeD,EeRY,
ij=1
(2) ¢(x)>0in D.
In the first part of this paper, we consider the following semilinear elliptic boundary
value problem:

Au = Ju+ f(u) in D,
(*),1 Bu:a%—i—(l—a)u:o on 0D.

(1) A is a real parameter.

(2) fis a real-valued C'-function on [0, ).

(3) aeC*(@D) and 0 <a(x) <1 on dD.

(4) 0/dv is the conormal derivative associated with the operator A: d/dv =
zij.:laffn,-a/ax,-, where n = (nj,ny,...,ny) is the unit exterior normal to the
boundary dD.
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It seems worth pointing out that we study the case of a first order degenerate
boundary condition which is the Dirichlet condition if ¢ =0 on 0D, and which is the
Neumann condition if a =1 on dD.

A function u is said to be a solution of problem (x), if ue C?(D) and satisfies
problem (x),. If the solution u is positive everywhere in D, then it is called a positive
solution of problem (x),.

We assume that the nonlinearity f is forced, that is,

(H.1) f(0) >0,
and in addition assume that
/
(H.2) <@) <0, ¢t>0.

From the condition [H.2), we can see that f(r)/¢ is strictly decreasing in 7 > 0. So, we
can put

ky = lim&.

t—oo f
Let 4; be the first eigenvalue of the linear eigenvalue problem:

{Auziu in D,
Bu=0 on éD.

It is known ([9]) that the first eigenvalue A; is positive.

Under the conditions (H.1) and [H.2), Taira and Umezu [12, Corollary 1] proved
that

(1) problem (x), has a positive solution if and only if A < 4y —k,, (ks may be

equal to —oo),

(2) the existence of positive solutions of problem (x), is unique in space C?(D).

The purpose of the first part is to give a further precise behaviour of the positive
solution set of problem (x);.

Now the first result of ours is the following.

THEOREM 1. Let the conditions (H.1) and (H.2) be satisfied. If u() is a unique
positive solution of problem (x), for each i < i —ky (possibly k., = —o0), then the
following assertions hold.

(1.1)  The mapping A+ u(2) is of class C'.

(1.2) u(A) is monotone increasing, that is, u(A) < u(u) in D if 2 < p.

(1.3) |[u(A)||co — o0 as 4 — A1 — k.

(1.4) |u(A)]|co = 0 as A — —oo. More precisely, there exist constants C > 0 and

4 <0 such that

CHA < lu@)leo < CIATY, A< X

Here || - ||co denotes the maximum norm of space C°(D):= C(D). Figure 1 shows the
behaviour of the positive solution set.

RemARK 1.1. In the case that the nonlinear term f is monotone decreasing, Keller
[5] proved the existence and uniqueness of positive solutions of problem (x), under the
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non-degenerate boundary condition, that is, either under the condition that « = 0 on 0D
or under the condition that 0 <a <1 on dD.

llellco
A
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0l M = koo

Figure 1

The second part is devoted to the study of the following semilinear elliptic boundary
value problem:

(+4), {Au =Af(u) in D,

Bu=20 on 0D,

where

(1) A is a positive parameter,
(2) fis a real-valued C'-function on [0, ).

The definitions of solutions and positive solutions of problem (*x), are given in the same
manner as of problem (x),.

Under the conditions (H.1) and [H.2), Taira and Umezu [12, Corollary 2] proved
that
(1) problem (xx), has a positive solution if and only if

0 <A< Ai/ky in the case that k, >0,
A>0 in the case that k,, < 0 (possibly k., = —0),

(2) the existence of positive solutions of problem (x*), is unique in space C?(D).
Here it is understood that 4,/k,, = oo if k,, =0.

In this part, we aim to obtain the set of positive solutions of problem (xx), so
precisely as in the previous part.

Now the second result of ours is the following.

THEOREM 2. Suppose that the conditions (H.1) and (H.2) are satisfied.

(i) In the case that k., >0, if u(A) is a unique positive solution of problem (xx), for
each 0 < A < Ai/ky, then in addition to the assertions (1.1) and (1.2), the
following assertions hold.

(1.5) |lu(A)||c2en — 0, A — 0+,

(1.6) [u(Aco = 0, A= Ai/ke.

Here || - || o2 denotes the norm of Holder space C***(D), 0 < o < 1.
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(ii) In the case that k., < 0 (possibly ko, = —o0), if u(4) is a unique positive solution
of problem (xx), for each i > 0, then in addition to the assertions (1.1), (1.2) and
(1.5), we have

(1.7) |lu(A)||co — to, A — 0.

Here ty is the positive constant given by the following.

{f(t0)207
f(5)>0, 0<t<u.

Figures 2 and 3 exhibit the behaviour of the set of positive solutions in the case that
ke >0 and in the case that k., <0, respectively.

REMARK 1.2. Under the non-degenerate boundary conditions, Ambrosetti and Hess
[2] studied problem (xx), in the case that the nonlinearity is asymptotically linear.
More extensive classes than in are treated by Lions [7]. However we find that
characterizes the asymptotic behaviour of the positive solution of (xx), more
exactly by means of the method of super-subsolutions.

ExampLE 1.1. We give some examples f satisfying the conditions (H.1) and [H.2}.

() f(t)y=t+1/(t+1). In this case, k, = I.

(2) f(t)=e'. In this case, k., =0.

(3) f(r) =exp[t/(1 +t/a)] (0 <a<4). In this case, k,, =0. Problem (xx), for
this nonlinearity is called a modified Gel'fand problem arising in chemical
reactor theory (cf. [3], [13]).

4) f(t)=—-t+2—-1/(t+1). In this case, k, = —1.

(5) f(t)=1+Bt+a® (a,feR,0<0). In this case, k, = —o0.
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The rest of this paper is organized as follows. For proofs of Theorems 1 and 2 we
prepare, in Section 2, some results from the linear theory of elliptic boundary value
problems with the degenerate boundary condition. Our problems are reduced to
operator equations of the resolvent associated with the linear boundary value problem.
More precisely, since the resolvent has positivity and compactness in some Banach
spaces, we can apply to our case the theory of positive mappings in ordered Banach
spaces ([1]) and the positivity lemma for strongly positive compact linear operators ([6]),
by establishing existence and uniqueness theorems both in Sobolev spaces ([14, Theorem
1]) and in Holder spaces ([11, Theorem 1.1]) for the degenerate linear elliptic boundary
value problem. We remark that it seems to be difficult to use the variational method in
the degenerate case (cf. Remark 4.1).

Section 3 is devoted to the proof of Theorem 1. Our main tools are the implicit
function theorem and the method of super-subsolutions.

In Section 4, we prove Theorem 2 where the a priori upper bounds for positive
solutions plays an important role. The proof of Theorem 2 is given essentially in the
same manner as in Section 3.

2. Linear theory.

In this section, we prepare the linear theory of degenerate elliptic boundary value
problems to prove Theorems 1 and 2. We state the following existence and uniqueness
theorems both in the framework of Sobolev spaces and in the framework of Holder
spaces.

THEOREM 2.1 ([14, Theorem 1]). The mapping
(4,B): W*(D) — W*>(D) @ B, """(aD),
u v+ (Au, Bu)
is isomorphic for 1 < p < oo and s > 2 where
B7~Y/Pr(9D) = {go L@ =u|yp,UE W‘”’(D)}, g>1,
with norm
111 ge-15r0) = in6{ Nl : 0 = ulop, e W (D) },

and

B, " @D) = {p = apy + (1 = a)py : ;€ B (0D), 1 =0,1},
with norm

”(ﬂ||32—)1—1/1)‘1’(5l)) = inf{||€”1||Bsflfl/p\p(aD) + ||¢0||BS*1/I’~P(8D) :

0= ap,+ (1 —a)po, 9, € BVP2(0D), i=0,1}.
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THeEOREM 2.2 ([11, Theorem 1.1]). The mapping
(4, B): C**(D) = C*(D) ® C,*(2D),

— (Au, Bu)

is isomorphic for 0 < o <1 where
Co* (D) = {p = ap; + (1 — a)p, : ;€ C**(3D), i=0,1},
with norm

||¢Hc(llg°<(ap) = inf{“§”1||c1+ﬂ(az)) + H%HCM(@D) :

Y = ag, + (1 - a>¢07¢i € Cz_i—w(aD)?i - 07 1}

We remark that interpolation spaces Bfaf)]*l/” P(0D) and C(IJ“(@D) are Banach spaces

with respect to norms || - || B1-1rr () and | - || cLe(en)y respectively.

First we consider the linear boundary value problem
{Au =v in D,
Bu=0 on 0D.
Then we find from [Theorem 2.2 that there exists a resolvent K which maps C*(D)

isomorphically onto C3™*(D), where

C3™(D) ={ue C*™(D): Bu=0 on 0D}.

This implies that for any v e C*(D), Kv is a unique solution in C***(D) of the linear
problem. Hence we can find that a function « is a solution of (x), if and only if

= K(u+ f(u)) in C*D),

because f e C'([0, c0)).

Secondly since C(D) = L?(D) for any 1 < p < oo, with s =2 tells us
that there exists a unique extension of K, again denoted by K, to C(D) with its image
contained Wé’p (D) for all 1 <p < oo where

WaP(D) = {ue W*?(D): Bu=0 on D}

If we take the exponent p such that p > N, then we obtain by Sobolev’s imbedding
theorem that K is a continuous mapping of C(D) into C!'(D), and obtain by Ascoli-
Arzeld’s theorem that K maps C(D) compactly into itself. Hence, it is easy to see that
a function u is a solution of (x), if and only if

= K(u+ f(u)) in C(D).

Similarly we see that a function u is a solution of (xx), if and only if

K(if(u) in C(D).

Now, we know ([10, Lemma 2.1]) that K is strictly positive in C(D), meaning that

for any non-negative function v € C(D) such that v # 0, Kv is positive everywhere in D.
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More precisely, the function u which denotes Kv, has the following property.

u>0 in D\{xedD:a(x) =0},
ou
5 < 0 on dD\{x€edD:a(x)=1}.

v
Furthermore K is strongly positive in the following sense. Let e = K1. The space
C.(D) denotes

C.(D) ={ue C(D):3¢>0;—ce <ux< ce}.
It is known (cf. [T]) that the space C,(D) is a Banach space with respect to norm || - ||,
given by
|lu||, = inf{c > 0: —ce <u < ce}.

According to [10, Proposition 2.2], K : C,(D) — C,(D) is compact and strongly positive,
meaning that for any v in P,\{0}, Kv is an interior point in P, where P, = {u e C,(D) :
u>0}. We can check easily that a function u is a solution of (x), if and only if

u=K(u+ f(u)) in C.(D).

Similarly, we can see that a function u is a solution of (xx), if and only if

u=K(if(u) in C.(D).

Finally we state the following result which guarantees the existence and uniqueness
of positive solutions to equations for strongly positive, compact linear operators.

THEOREM 2.3 (|6, Theorem 2.16]). Let T be a strongly positive, compact linear
operator of C,(D) and Jy the largest eigenvalue of T. Then for any non-negative function

g € Co(D) such that g #0, the equation
w—Tv=yg

has exactly one positive solution ve C,(D) for each A > Ay.

3. Proof of Theorem 1.

In this section, we prove [Theorem 1. First we shall show the assertion (1.1). We
define a nonlinear mapping F by

F: R x C3™(D) — C*(D)
(A, u) — Au— Au— f(u).

From with s = 3, it is easy to see that a function u is a solution of problem
(%), if and only if F(4,u) =0. Let u(A) be the unique positive solution of (x), for
A< A —ky, that is, u(A) satisfies that

N

u(2) — Au(A) = f(u(A)) =0 in D,
(3.1) u(2) >0 in D,
Bu(2) =0 on 0D.
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The Fréchet derivative F,(4,u(4)) of F at (4,u(A)) is given by
F,(2,u(l)) : C3™(D) — C*(D)

o Ap— o — ['(u(2))p.
Let (1) be the first eigenvalue of F,(4,u(4)) and let p(4) a corresponding eigenfunction
to Jo(4):
- {450) o3 S wDoih =) i D,
' Bp(1) =0 on dD.

It is known ([9, Theorem 7.4]) that ¢(4) can be chosen as positive everywhere in D.
The boundary conditions imply that

u(2)
u(2)
6;(2) (lia> =0 on 0D,
5 W)
and hence
ou(2) dp(A)

_ b S D
3 @(2) —u(2) N 0 on 0D,
because (a,1 —a) # (0,0). In view of this assertion, we have from and

Jp(f (2) = f"(u(2)u(2)p(2) dx
[ u(A)p(4) dx ’

by integration by parts. Since it follows from the condition that

f()=f'(0e>0, >0,

we obtain that 6(4) > 0. This implies that F,(A,u(4)) is injective for all A < A; — k...
Moreover the bijectivity of F,(4,u(4)) follows from the combination of and
the index theory of Fredholm operators. So, we can apply the implicit function
theorem to obtain that the mapping A +— u(4) is of class C! in A < A; — k... The proof
of the assertion (1.1) is complete.

We shall prove the assertion (1.2). For our purpose, we use the method of super-
subsolutions. For a real-valued C'-function g on [0, 0) we consider

(33) {Au =g(u) in D,

8(%) =

Bu=0 on 0D.
A non-negative function € C?(D) is said to be a supersolution (resp. subsolution) of
if
{Aw > (resp. < )g(y) in D,
By > (resp. < )0 in 0D.

Now we give the following existence theorem of solutions for relying on the
super-subsolution method.
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THEOREM 3.1 ([11, Theorem 1]). Let ¢ be a subsolution and let \ a supersolution of
(3.3) such that ¢ <y in D. Then there exists a function u e C>(D) such that u satisfies
(3.3) and ¢ <u <y in D.

Let A<pu <y —ky. Itis clear that the positive solution u(u) of (x), is a su-

persolution of (x),, and that u = 0 is a subsolution but not a solution of (x), because of
the condition (H.1). By Mheorem 3.1, there exists a solution v of (), such that
0<v<u(u) in D.
Since f € C!([0, o)), there exists a constant ¢ > 0 such that (4 + &)z + f(¢) is monotone
increasing in the closed interval [0, max{|u(4)|co,||u(@)||c0}]. Hence, we find that
{(A+f)v= (A+&v+ f(v) = f(0) >0 in D,
Bv=0 on 0D.

By the strong maximum principle and boundary point lemma (see [8]), the solution v is
positive everywhere in D. From the uniqueness of positive solutions of (x), it follows
that v = u(4).

Next, we see that

(A+ Qu(p) = (n+ u(p) + f(u(w) > (A+ Qu(p) + f(u(w)) in D,

(A +&u(z) = (h+u(A) + f(u(2) in D,

and hence that

(4 + &) (u(p) —u(4))
> (A4 Qulp) + f(p) = {(A+ u(4) + f(u(2))} =0 in D,
B(u(p) —u(4)) =0 on 0D.

Therefore we have the assertion (1.2) by the strong maximum principle and the
boundary point lemma. The proof of the assertion (1.2) is complete.

We shall verify the assertion (1.3). First we discuss the case that k,, is finite.
Assume to the contrary that ||u(4)| o is bounded near A = A; — k... We recall that u(2)
satisfies

u(4) = K(2u(2) + f (u(4)))-
Since ||Au(4) + f(u(4))||co is bounded near A = 4; — ko, [[u(1)]|1 is bounded near 4 =
21 — ko, where || - |1 denotes the norm of C!(D). Hence we obtain that |[u(1)|| 2 is
bounded near A= A, — k., because of [Iheorem 2.2. Therefore, without loss of gen-
erality, we may obtain that there exists a function i € C?(D) such that
u(A) —a in C*(D), 1— A —ky.
With the aid of the assertion (1.2) we have
A= (A —ky)a+ f(#) in D,
{ u>0 in D,
Bii=10 on 0D.

This is a contradiction.



810 K. UmEZU

Next, we treat the case that k,, = —oo. For any 4 > A;, there exists a unique ¢; >
0 such that

U= A) AC)

L

Y

and we can see

t;, - o0 as A — oo.

By the condition we have for 0 <1 <1,

A+ f(1) f(@)
t

— =1+ Mzil-

A

> A+

Hence
M4 f(H)=Mt, 0<t<t,.

Let ¢, be a corresponding positive eigenfunction to the first eigenvalue A; such that
ll¢1]]co =1. Then we see that
1) 1 1 1) t; .
A(z%) - ifﬁ’)l —f<§<01> < shpr =45 =0 in D.
This implies that #,¢,/2 is a subsolution of (x),. On the other hand, if we take a
constant M, > 0 sufficiently large, then M, is a supersolution of (x),. Combining

and the uniqueness result for positive solutions of (*), , we obtain that for
A> A,

%¢1 <u(l)<M; inD
Hence,

< lu®les 2>,

which implies that
[u(A)llco = c0, 4 — o0

The proof of the assertion (1.3) is complete.
Finally we shall prove the assertion (1.4). For any constant ¢ > 0, there exists a
constant 4, < 0 such that if A < Z,, then

() () 409

>f(0)+e—f(—f(01+8> >0 in D,

because

f(—f“’l“) R ——
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This shows that —(f(0) +¢)/4 is a supersolution of (x), for 2 < Z. If we put
1(0)

then there exists a constant 1y < 0 such that, for A < Z,

(D) AP ) o) <0 mo

which implies that —¢,/Z is a subsolution of (x),. Combining with the
uniqueness of positive solutions and letting 2 = min{/,, o}, we have
: 0 -
O cupy < SOEE g
yl A
This shows the assertion (1.4). The proof of the assertion (1.4) is complete.
The proof of [Theorem 1 is now complete. O

4. Proof of Theorem 2.

4.1. Proof of part (i) of Theorem 2.

The proof of the assertion (1.1) is the same as in [Theorem 1, and we can prove the
assertion (1.2) similarly since if k., >0 then f(z) >0 for > 0.

We shall show the assertion [1.5). From the assertion (1.2) it follows that [u(4)|| o
is bounded near A =0. By [Theorem 2.1 with s =2, we get

(4.1) lu(D|er <C, 0<i<i
with some constants C > 0 and 4 > 0. On the other hand, from we have
(4.2) [u()]| 20 < CT2N S (u(2)) | 0

with some constant C’ > 0 independent of 4. From the assertions and we
obtain the assertion [1.5]. The proof of the assertion 1s complete.

We shall verify the assertion (1.6). In the case that k, >0, we can prove it
similarly as the assertion (1.3) of [Theorem 1. Next we deal with the case that ko, = 0.
Assume to the contrary that there exist constants C >0 and 4 > 0 such that

lu(D)|co < C, 4> 4
From the two equations:

Agpy = ip; in D,
Bp, =0 on 0D,

Au(A) = 2f(u(4)) in D,
{ Bu(4) =0 on 0D,

we derive by integration by parts

A [pu(A)p; dx

P )
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We put
Co = OI;Iltl;le(l) > 0.
Then we have
isﬁg.
Co

On letting A — oo, this leads to a contradiction. Hence, with the aid of the assertion
(1.2), we obtain that

[ullco — o0, 4 — 0.

The proof of the assertion is complete.
The proof of part (i) of is complete. O

4.2. Proof of part (ii) of Theorem 2.

The assertion (1.1) can be proved similarly as in [Theorem 1.

First we shall verify the assertion (1.2). To do so, we need the following lemma
which gives the a priori bounds for positive solutions of a class of sublinear elliptic
problems.

LEMMA 4.1. For the nonlinearity g of problem (3.3), we assume that there exists a
to > 0 such that

g(to) =0,
g(t) <0, t>t.
Then any positive solution u of problem (3.3) satisfies that
O0<u<ty in D.
PrOOF. Let u be a positive solution of [3.3]. We take a constant ¢ > 0 such that
u(x) <o in D,
h <oao.

Since g € C!([0, o0)), there exists a constant & > 0 such that the mapping ¢ — &t + g(¢) is
increasing in the closed interval [0,g]. As seen in Section 2, if K: denotes the inverse of
(A+¢&): C3™(D) — C*(D),0 <« < 1, then we have

u= Ke(&u+g(u)).

Now, assume to the contrary that there exists xo € D such that

(4.3) u(xo) > to.
Let

(4.4) o(x) = min{u(x), 1}, xeD.
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First we claim that
(4.5) w > K:(éw + g(w)).
From the definition of w, it follows that
o+ g(w) < Eu+g(u).

By the positivity of K,
(4.6) K (¢ +g(w)) < Ke(u+g(u)) = u.
Similarly

o+ g(w) < &to + g(to) = Eto,
and hence
(4.7) Ke(éo + g(o)) < EK:1.
Putting v = {fK:1, we obtain that

{(/H-é)(to—v) =ctp >0 in D,

B(ty —v)=(1—a)ty >0 on 0D.
Using the strong maximum principle and boundary point lemma, we obtain that
(4.8) v(x) <ty in D.

Therefore, the claim follows from the assertions [4.6)-(4.8).
Now, using the assertion [4.5), we get

(@ —u) = CKe(w —u) = Ke(g(w) — g(u)).
By and the assumption of the function g, we have
g(w) —g(u) #0 and >0 in D.
So, it follows from the strict positivity of K. that
K:(g(w) —g(u)) >0 in D.

Since the largest eigenvalue of the operator ¢K: is less than 1, the function w — u must
be positive everywhere in D because of [Theorem 2.3. This statement contradicts the
definition [4.4).

The proof of is complete. O

REMARK 4.1. Figueiredo [4, Lemma 2.9] proved in the Dirichlet
condition case. However it seems to be difficult to apply his method to the degenerate
case since it relies on the variational method.

Now, in the case that k., <0 (possibly —oo), there exists a 7 > 0 such that

f(t()) = 07
(4.9) f(H) >0, 0<1<t,
f(1) <0, > 1.
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From it follows that for all A > 0,
0<u(l) <ty in D,
and hence that for all A >0,
f(w(2)) >0 in D.

Having this statement in mind, we can prove the assertion (1.2) similarly as in
1. By virtue of the assertion (1.2), we can show the assertion in the same manner
as in part (i).

Finally we shall prove the assertion (1.7). [Lemma 4.1 and assert the
maximum norm |[u(4)|/- is bounded above by the value #). In addition, from the
assertion (1.2) it follows that ||u(1)||~0 is increasing in A. Hence we can put

F= lim [lu()|o(< ).

We use the super-subsolution method to prove that t =¢y,. It is obvious that u = ¢y is a
supersolution of (xx),. Let 0 <e < 1. From the condition we have for 4 > 1/1,

4((0=5)) 2#((0=3)m)
=X (to — %)e(m - if<<fo - %>8<”1>
(e R

< </11 — ;{fi‘(:(::)> (l() — %) &P in D.

This shows that (#) — 1/A)ep, is a subsolution of (xx), if 2 > 1, where 4, = max{1/t,
Jitoe/ f(toe)}. Combining Theorem 3.1 with the uniqueness, we obtain that for 1 > 4,

(to —%) ep; <u(d) <ty in D.

Hence

1 _
(to — z)e <|u(A)]|co < to, A > A,

and hence as A — o

toe < 7= lim u()] o < 1.

,— 00
Letting ¢ — 1, we have

Tim ()]l o = 1o

The proof of the assertion is complete.
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We have finished the proof of part (ii) of Theorem 2 O
The proof of is now complete. O
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