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Abstract. In this paper, when an entire function f and the linear combination of its

derivatives Lð f Þ with small functions as its coe‰cients share one value CM and another

value IM is studied. We also resolved the question when an entire function f and its

derivative f 0 share two values CM jointly. Some of the results remain to be valid if f

is meromorphic and satisfying Nðr; f Þ ¼ oðTðr; f ÞÞ as r ! y and the values a; b are

replaced by small functions of f ðzÞ.

1. Introduction.

Let f and g be two non-constant meromorphic functions and b be a complex

number. We say that f and g share the value b CM (IM) provided that f ðzÞ ÿ b and

gðzÞ ÿ b have the same zeros with the same multiplicities (ignoring multiplicities). In

1929, R. Nevanlinna proved [1] that (i) if f and g share five values IM, then f 1 g,

and (ii) if f and g share four values CM, then f is a Möbius transformation of g.

Particularly, if f and g are entire functions, then f 1 g provided that f and g share four

finite values CM. Recently the studies on sharing values have been extended to the

studies of sharing small functions of f and sharing several finite sets or even to one finite

set only, see, e.g. [2], [3], [4], [5] and [6]. For instance, it has been shown in [7] that

there exists a single set S with 15 elements such that f ÿ1ðSÞ ¼ gÿ1ðSÞ implies f 1 g.

For its improvements, we refer the reader to Yi [8] and Mues-Reinders [9]. In 1976, it

was shown [10] that if an entire function f and its derivative f 0 share two values a;

b CM, then f 1 f 0. Since then the subject of sharing values between a meromorphic

function and its derivatives has been studied by many mathematicians. For example,

G. Gundersen [11] proved that if f is entire and shares two finite nonzero values IM with

f 0, then f 1 f 0. E. Mues and N. Steinmetz [12] proved that if f is meromorphic and

shares three finite values IM with f 0, then f 1 f 0. This result was improved by Frank

and Schwick [13] to the case that f shares three finite values IM with f ðkÞ. Similar

questions on f shares three finite values IM with its di¤erential polynomial Lð f Þ were

studied in [14], [15] and [16]. When a meromorphic function f shares two finite values

CM with its di¤erential polynomial Lð f Þ whose coe‰cients are polynomials, P.

Russmann [17] proves that f 1Lð f Þ except for six specific cases.

More recently, Bernstein-Chang-Li [18] studied the similar questions about

meromorphic functions of several complex variables. As a special case, they proved
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Theorem A. Let f be a non-constant entire function and

Lð f Þ ¼ bn f
ðnÞ þ bnÿ1 f

ðnÿ1Þ þ � � � þ b1 f
0 þ b0 f

with all bj being small meromorphic functions of f. If f and Lð f Þ share two values CM,

then f 1Lð f Þ.

Note, here and in the sequel, a meromorphic function aðzÞ is called a small function

of f ðzÞ i¤ Tðr; aðzÞÞ ¼ oðTðr; f ÞÞ as r ! y except a set of finite measure of r A ð0;yÞ.

In this paper, we have improved the above result and resolved the problem when the

condition of Theorem A is replaced by assuming that f (entire) and Lð f Þ share one value

a1 CM and another value a2 IM. We have also resolved an interesting problem,

namely: What happens if an entire function f and its derivative f 0 share two finite

values a1; a2 CM jointly, i.e., ð f ðzÞ ÿ a1Þð f ðzÞ ÿ a2Þ ¼ 0 and ð f 0ðzÞ ÿ a1Þð f
0ðzÞ ÿ a2Þ ¼ 0

have the same zeros counting multiplicities? It is assumed that the reader is familiar

with the standard notations and basics of Nevanlinna’s value distribution theory (cf.

[19], [20]).

2. Lemmas and main results.

The following lemmas will be used in the proof of our theorems. Lemma 1 is

obvious by the Lemma of the logarithmic derivative, i.e., mðr; f 0= f Þ ¼ Sðr; f Þ, see e.g.

[19]. Lemma 2 and Lemma 3 are well-known. Lemma 4 can be deduced easily from

Lemma 2.

Lemma 1. Let f be a transcendental meromorphic function, Pkð f Þ denote a

polynomial in f of degree k, and ai; i ¼ 1; 2 . . . ; n denote finite distinct constants in C. Let

g ¼
Pkð f Þ f

0

ð f ÿ a1Þ � � � ð f ÿ anÞ
:

If k < n, then mðr; gÞ ¼ Sðr; f Þ, where and in the sequel Sðr; f Þ will be used to denote any

quantity oðTðr; f ÞÞ; r ! y, except a set of finite measure of r A ð0;yÞ.

Lemma 2 ([21]). Let Pkð f Þ and Plð f Þ be two relatively prime polynomials of degree

k and l, respectively. That is

Pkð f Þ ¼ a0ðzÞ f
kðzÞ þ a1ðzÞ f

kÿ1ðzÞ þ � � � þ akðzÞ;

and

Plð f Þ ¼ b0ðzÞ f
lðzÞ þ b1ðzÞ f

lÿ1ðzÞ þ � � � þ blðzÞ

such that no polynomial in f of degree more than or equal to one can be a common factor

of Pkð f Þ and Plð f Þ. Let

Rð f Þ ¼
Pkð f Þ

Plð f Þ
:

Then

Tðr;Rð f ÞÞ ¼ dTðr; f Þ þ Sðr; f Þ;

where d ¼ maxfk; lg.
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Lemma 3 ([21]). Let f be a transcendental meromorphic function and bi; i ¼ 0;

1; . . . ; n be small functions of f. If

bn f
n þ bnÿ1 f

nÿ1 þ � � � þ b0 1 0;

then bi 1 0; i ¼ 0; 1; . . . n.

Lemma 4. Let

f ¼
X

n

i¼0

bie
ia
;

where a is a nonconstant entire function and bi ði ¼ 0; 1; . . . ; nÞ are meromorphic functions

satisfying Tðr; biÞ ¼ Sðr; eaÞ, then

Tðr; f ðkÞÞ ¼ Tðr; f Þ þ Sðr; f Þ:

Lemma 5. Let f be a nonconstant entire function and

g ¼ Lð f Þ ¼ bÿ1 þ
X

n

i¼0

bi f
ðiÞ
; ð1Þ

where bi ði ¼ ÿ1; 0; 1; . . . ; nÞ are small meromorphic functions of f. Let a1 and a2 be two

distinct constants in C. If f and g share a1, a2 IM, then

Tðr; f Þ ¼ N r;
1

f ÿ a1

� �

þN r;
1

f ÿ a2

� �

þ Sðr; f Þ;

and

Tðr; f ÞU 2Tðr; gÞ þ Sðr; f Þ

provided that f 2 g.

Proof. Let

f ¼
f 0ð f ÿ gÞ

ð f ÿ a1Þð f ÿ a2Þ
: ð2Þ

From Lemma 1 one can easily see that mðr; fÞ ¼ Sðr; f Þ. Since f and g share a1 and a2,

we see that Nðr; fÞ ¼ Sðr; f Þ, thus

Tðr; fÞ ¼ Sðr; f Þ: ð3Þ

If f1 0, then f 1 g. Suppose that f2 0, that is f 2 g. From (1) we deduce that

Tðr; f ÿ gÞ ¼ T r;
fð f ÿ a1Þð f ÿ a2Þ

f 0

� �

¼ T r;
f 0

ð f ÿ a1Þð f ÿ a2Þ

� �

þ Sðr; f Þ

¼ N r;
f 0

ð f ÿ a1Þð f ÿ a2Þ

� �

þ Sðr; f Þ:
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That is

Tðr; f ÿ gÞ ¼ N r;
1

f ÿ a1

� �

þN r;
1

f ÿ a2

� �

þ Sðr; f Þ:

From the expression of g, it is clearly that Tðr; f ÿ gÞUTðr; f Þ þ Sðr; f Þ. Thus

N r;
1

f ÿ a1

� �

þN r;
1

f ÿ a2

� �

UTðr; f Þ þ Sðr; f Þ:

According to Nevanlinna’s Second Fundamental Theorem and the above inequality, we

have

Tðr; f Þ ¼ N r;
1

f ÿ a1

� �

þN r;
1

f ÿ a2

� �

þ Sðr; f Þ

UTðr; gÞ þ Tðr; gÞ þ Sðr; f Þ;

since f and g share a1 and a2. r

Lemma 6. Let f and g be as in Lemma 5. Furthermore, if f and g share a1 CM, a2
IM, and Nðr; 1=ð f ÿ a2ÞÞ ¼ Sðr; f Þ, then f 1 g.

Proof. Suppose that f 2 g. Then the function f in (2) is not identically zero.

Set

b ¼
g 0

gÿ a2
ÿ

f 0

f ÿ a2
: ð4Þ

By the assumption of Lemma 6, we have Tðr; bÞ ¼ Sðr; f Þ. From (2), we get

f
f ÿ a1

f 0 1 1ÿ
gÿ a2

f ÿ a2
:

By taking the derivative and using (4), we have

f 0 f ÿ a1

f 0 þ f 1ÿ
ð f ÿ a1Þ f

00

ð f 0Þ2

 !

1 b f
f ÿ a1

f 0 ÿ 1

� �

:

That is

ðfþ bÞ
f 0

f ÿ a1
ÿ f

f 00

f 0 þ f 0 ÿ bf1 0: ð5Þ

Since Nðr; 1=ð f ÿ a2ÞÞ ¼ Sðr; f Þ, from Lemma 5 we have

N r;
1

f ÿ a1

� �

¼ Tðr; f Þ þ Sðr; f Þ0Sðr; f Þ:

Since f ; g share a1 CM, from (2) we see that ‘‘almost all’’ a1-points of f are simple.

And (5) implies that ‘‘almost all’’ simple a1-points of f are the zeros of fþ b. Hence

we have fþ b1 0, and thus

ÿ
f 00

f 0 þ
f 0

f
ÿ b1 0:
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That is

fð f ÿ a2Þ1 c f 0ðgÿ a2Þ; ð6Þ

where c0 0 is a constant. From (2) and (6) we get

f ÿ g1 cð f ÿ a1Þðgÿ a2Þ:

This can be rewritten as

ÿc gÿ
1þ ca2

c

� �

1
gÿ a1

f ÿ a1
:

Since f, g share a1 CM, it follows from the above identity that

N r;
1

gÿ ð1þ ca2Þ=c

� �

¼ Sðr; f Þ:

Hence by Nevanlinna’s Second Fundamental Theorem,

Tðr; gÞUN r;
1

gÿ a2

� �

þN r;
1

gÿ ð1þ ca2Þ=c

� �

þ Sðr; gÞ ¼ Sðr; f Þ:

Thus from Lemma 5, Tðr; f ÞU 2Tðr; gÞ þ Sðr; f Þ ¼ Sðr; f Þ, a contradiction. r

Theorem 1. Let f be a nonconstant entire function and

g ¼ Lð f Þ ¼ bÿ1 þ
X

n

i¼0

bi f
ðiÞ;

where bi ði ¼ ÿ1; 0; 1; . . . ; nÞ are small meromorphic functions of f. Let a1 and a2 be two

distinct constants in C . If f and g ¼ Lð f Þ share a1 CM and a2 IM, then f 1 g or f and

g have the following expressions,

f ¼ a2 þ ða1 ÿ a2Þð1ÿ eaÞ2;

and

g ¼ 2a2 ÿ a1 þ ða1 ÿ a2Þe
a;

where a is an entire function.

Proof. Suppose that f 2 g. Set

g ¼
f 0

f ÿ a1
ÿ

g 0

gÿ a1
: ð7Þ

Since f and g share a1 CM, we have Tðr; gÞ ¼ Sðr; f Þ. From (2)

f
f ÿ a2

f 0 1 1ÿ
gÿ a1

f ÿ a1
:

By taking the derivative in both sides of the above identity and using it again, we deduce

that

f 0 f ÿ a2

f 0 þ f 1ÿ
ð f ÿ a2Þ f

00

ð f 0Þ2

 !

1 g
gÿ a1

f ÿ a1
1 g 1ÿ f

f ÿ a2

f 0

� �

:
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That is

ðfÿ gÞ
f 0

f ÿ a2
ÿ f

f 00

f 0 þ f 0 þ gf1 0: ð8Þ

If fÿ g1 0, then

ÿ
f 00

f 0 þ
f 0

f
þ

f 0

f ÿ a1
ÿ

g 0

gÿ a1
1 0:

It follows from (2) and the above equation that

f ÿ g

ð f ÿ a2Þðgÿ a1Þ
1 c; ðnonzero constantÞ;

which leads to that f and g share a1; a2 CM. And thus by using Theorem A, we have

f 1 g, a contradiction.

In the following, we assume that fÿ g2 0. Denote by NkÞðr; 1=ð f ÿ aÞÞ the

counting function of those a-points of f whose multiplicities are less than or equal to k

and by Nðkþ1ðr; 1=ð f ÿ aÞÞ the counting function of those a-points of f whose multi-

plicities are greater than k.

Let z0 be an a2-point of f of multiplicity kV 1 but not the zero of fÿ g and the

pole of f 0 þ gf. Then the formula (8) implies that fðz0Þ ÿ kgðz0Þ ¼ 0. If fÿ kg2 0

for any kV 1, then

NkÞ r;
1

f ÿ a2

� �

¼ Sðr; f Þ:

Let z1 be an a2-point of f of multiplicity kV nþ 2, but not the zero of fÿ g and not the

pole of f 0 þ gf and bi ði ¼ ÿ1; 0; 1; . . .Þ. Then from (1), we have bÿ1ðz1Þ þ b0ðz1Þa2 ¼

a2. If bÿ1 þ b0a2 2 a2, then we get Nðnþ2ðr; 1=ð f ÿ a2ÞÞ ¼ Sðr; f Þ. If bÿ1 þ b0a2 1 a2,

then it follows from (1) that

gÿ f 1 ðb0 ÿ 1Þð f ÿ a2Þ þ
X

n

i¼1

bi f
ðiÞ:

Hence z1 is a multiple zero of gÿ f and thus a zero of f. Hence Nðnþ2ðr; 1=ð f ÿ a2ÞÞ ¼

Sðr; f Þ still holds. In any case, we can deduce that Nðr; 1=ð f ÿ a2ÞÞ ¼ Sðr; f Þ. Hence

f 1 g by Lemma 6.

Now we suppose that there exist an integer kV 1 such that fÿ kg1 0 and f2

0. Then it follows from (8) that

1ÿ
1

k

� �

f 0

f ÿ a2
ÿ

f 00

f 0 þ
f 0

f
þ g1 0: ð9Þ

By integrating, we obtain that

ð f ÿ a2Þ
kÿ1

1 c
f 0ðgÿ a1Þ

fð f ÿ a1Þ

� �k

;
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where c0 0 is a constant. From this and (2), by eliminating f, we have

f 1 a2 þ
1

c
ðhÿ 1Þk; ð10Þ

where

h1
f ÿ a1

gÿ a1
: ð11Þ

Clearly, h 0
1 gh, from (1) and (10) we see that there exist small functions di ði ¼ 0;

1; . . . ; kÞ of f such that

g1
X

k

i¼0

dih
i: ð12Þ

From (10), (11) and (12), we have

dkh
kþ1 þ

X

k

i¼2

diÿ1 ÿ
ðÿ1Þkÿi

c

k

i

 !" #

h i

þ d0 ÿ a1 ÿ ðÿ1Þkÿ1 k

c

� �

hþ a1 ÿ a2 ÿ
ðÿ1Þk

c
1 0: ð13Þ

From this and Lemma 3, we get

c1
ðÿ1Þk

a1 ÿ a2
;

d0 1 a1 ÿ kða1 ÿ a2Þ;

diÿ1 1 ðÿ1Þ i
k

i

 !

ða1 ÿ a2Þ; i ¼ 2; . . . ; k;

dk 1 0:

Thus it follows from (10), (11) and (12) that

f 1 a2 þ ða1 ÿ a2Þð1ÿ hÞk;

g1 a1 þ
ða1 ÿ a2Þ½ð1ÿ hÞk ÿ 1�

h
:

These two identities can be rewritten as

f ÿ a2 1 ða1 ÿ a2Þð1ÿ hÞk; ð14Þ

gÿ a2 1 ða1 ÿ a2Þ
hÿ 1

h
½1ÿ ð1ÿ hÞkÿ1�: ð15Þ

Since f and g share a1 CM, we have Nðr; hÞ ¼ Sðr; f Þ and Nðr; 1=hÞ ¼ Sðr; f Þ. On

the other hand, from (10) and by Lemma 2, we have

Tðr; hÞ ¼
1

k
Tðr; f Þ þ Sðr; f Þ0Sðr; f Þ:
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Hence h can take any finite value b0 0; 1. Thus when k > 2, there exists a value

b0 0; 1 such that ð1ÿ bÞkÿ1 ¼ 1. Noting that f and g share a2, from (14) and (15) we

can conclude that k ¼ 2. Thus g1 2a2 ÿ a1 þ ða1 ÿ a2Þh is an entire function. Hence

h ¼ ð f ÿ a1Þ=ðgÿ a1Þ ¼ ea, where a is an entire function. Finally from this, (14) and

(15), we obtain that

f 1 a2 þ ða1 ÿ a2Þð1ÿ eaÞ2;
and

g1 2a2 ÿ a1 þ ða1 ÿ a2Þea;
which completes the proof of Theorem 1. r

Corollary 1. Let f be an entire function, and a1, a2 be two distinct numbers in

C. If f and f ðkÞ share a1 CM and a2 IM, then f 1 f ðkÞ.

Proof. If f 1 a2 þ ða1 ÿ a2Þð1ÿ eaÞ2, then, by Lemma 4, f ðkÞ can not be 2a2 ÿ
a1 þ ða1 ÿ a2Þea. Hence Corollary 1 follows from Theorem 1. r

Remark 1. (i) There are examples to show that the word ‘‘entire function’’ in

Theorem 1 can not be replaced by ‘‘meromorphic function’’. (ii) The assumption ‘‘f

and Lð f Þ share a1 CM’’ in Theorem 1 can not be replaced by ‘‘f and Lð f Þ share a1
IM’’.

Example 1. Let a1; a2 A C, a1 ÿ a2 ¼
ffiffiffi

2
p

i, w be a nonconstant solution of the

following Riccati equation

w 0 ¼ ðwÿ a1Þðwÿ a2Þ:
Let

f ¼ ðwÿ a1Þðwÿ a2Þ ÿ
1

3
:

Then w and f are transcendental meromorphic functions and w 0 0 0. It is easy to verify

that

f 00 ¼ 6w 0f ; f 00 þ 1

6
¼ 6 f þ 1

6

� �2

:

Hence f and f 00 share 0 CM and ÿð1=6Þ IM. However, neither f 1 f 00 nor f has the

form a2 þ ða1 ÿ a2Þð1ÿ eaÞ2.

Example 2. Let f ¼ ð1=2Þez þ ð1=2Þa2eÿz and Lð f Þ ¼ f 00 þ f 0 ¼ ez, where a is a

nonzero constant. It is obviously that

ðLð f Þ ÿ f Þ2 ¼ ð f ÿ aÞð f þ aÞ:

Hence f and Lð f Þ share ÿa; a IM and not CM. Again neither f 1Lð f Þ nor f assumes

the form a2 þ ða1 ÿ a2Þð1ÿ eaÞ2.

Now we state a slight generalization of Theorem 1. First of all, we generalise the

definitions of CM and IM to CM� and IM�.
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Let f and g be two meromorphic functions. Denote by Ncðr; 1=ð f ÿ aÞÞ the

counting function of those a-points of f where a is taken by f and g with the same

multiplicity, counted only once regardless of the multiplicity, and Niðr; 1=ð f ÿ aÞÞ the

counting function of those a-points of f where a is taken by f and g regardless of the

multiplicity, counted only once. We say that f and g share the value a CM�, if

N r;
1

f ÿ a

� �

ÿNc r;
1

f ÿ a

� �

¼ Sðr; f Þ;

and

N r;
1

gÿ a

� �

ÿNc r;
1

gÿ a

� �

¼ Sðr; f Þ:

Similarly, we say that f and g share the value a IM�, if

N r;
1

f ÿ a

� �

ÿNi r;
1

f ÿ a

� �

¼ Sðr; f Þ;

and

N r;
1

gÿ a

� �

ÿNi r;
1

gÿ a

� �

¼ Sðr; f Þ:

Remark 2. From the proofs of Lemma 5, Lemma 6 and Theorem 1, one can easily

deduce that the result in Theorem 1 is still valid for a nonconstant meromorphic

function f satisfying Nðr; f Þ ¼ Sðr; f Þ and sharing a1 CM� and a2 IM� with g ¼ Lð f Þ.

When a1; a2 are two small functions of f, we have the following

Theorem 2. Let f be a nonconstant meromorphic function satisfying Nðr; f Þ ¼

Sðr; f Þ, and

g ¼ Lð f Þ ¼ bÿ1 þ
X

n

i¼0

bi f
ðiÞ;

where bi ði ¼ ÿ1; 0; 1; . . . ; nÞ are small meromorphic functions of f. Let a1 and a2 be two

distinct small meromorphic functions of f. If f and g share a1 CM� and a2 IM�, then

f 1 g or

f 1 a2 þ ða1 ÿ a2Þð1ÿ eaÞ2;

and

g1 2a2 ÿ a1 þ ða1 ÿ a2Þe
a;

where a is an entire function.

Proof. Let

F ¼
f ÿ a1

a2 ÿ a1
; and G ¼

gÿ a1

a2 ÿ a1
:

Then F and G share 0 CM� and 1 IM�. Obviously, G still has the form Bÿ1 þ
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Pn
i¼0 BiF

ðiÞ, where Bi ði ¼ ÿ1; 0; 1; . . . ; nÞ are small functions of F. According to

Remark 2, we can deduce that F 1G or

F 1 1ÿ ð1ÿ eaÞ2;

and

G1 2ÿ ea;

where a is an entire function. Hence we get f 1 g or

f 1 a2 þ ða1 ÿ a2Þð1ÿ eaÞ2;

and

g1 2a2 ÿ a1 þ ða1 ÿ a2Þe
a: r

Corollary 2. Let f be a meromorphic function satisfying Nðr; f Þ ¼ Sðr; f Þ and

a1; a2 be two distinct small meromorphic functions of f. If f and f ðkÞ share a1 CM� and

share a2 IM�, then f 1 f ðkÞ.

Thus we have completely resolved the question: What happens when an entire

function f and the linear combination of its derivatives Lð f Þ share a small function a1
CM and another small function a2 IM? Next we propose to solve a new interesting

question, namely: What happens when an entire function f and its derivative f 0 share

two finite values a1; a2 CM jointly, that is f ÿ1fa1; a2g ¼ ð f 0Þÿ1fa1; b2g counting

multiplicities? Firstly, we prove two lemmas which will be needed in the proof of the

theorem.

Lemma 7. Let f be a nonconstant entire function and a1; a2 be two nonzero distinct

finite values. If f and f 0 share the set fa1; a2g IM and Tðr; hÞ0Sðr; f Þ, where

h1
ð f 0 ÿ a1Þð f

0 ÿ a2Þ

ð f ÿ a1Þð f ÿ a2Þ
; ð16Þ

then following conclusions hold.

(i) Tðr;cÞ ¼ Sðr; f Þ, where

c1
ð f 0hÿ f 00Þð f 0hþ f 00Þ

ð f 0 ÿ a1Þð f
0 ÿ a2Þ

: ð17Þ

(ii) Tðr; f 0Þ ¼ Nðr; 1=ð f 0 ÿ aiÞÞ þ Sðr; f Þ, i ¼ 1; 2.

(iii) mðr; 1=ð f ÿ cÞÞ ¼ Sðr; f Þ, where c0 a1; a2 is a constant.

(iv) Tðr; hÞ ¼ mðr; 1=ð f ÿ a1ÞÞ þmðr; 1=ð f ÿ a2ÞÞ þ Sðr; f Þ ¼ mðr; 1= f 0Þ þ Sðr; f Þ.

(v) 2Tðr; f Þ ÿ 2Tðr; f 0Þ ¼ mðr; 1=hÞ þ Sðr; f Þ.

Proof. (i) Since f ; f 0 share aiði ¼ 1; 2Þ, any ai-point of f is simple and thus h is an

entire function. By assumption, Tðr; hÞ0Sðr; f Þ, hence c2 0. Rewrite (16) as

ð f 0 ÿ a1Þð f
0 ÿ a2Þ1 ð f ÿ a1Þð f ÿ a2Þh; ð18Þ

and then by taking the derivative in both sides of (18), we have

ð2 f 0 ÿ a1 ÿ a2Þ f
00 1 ½ð2 f ÿ a1 ÿ a2Þ f

0hþ ð f ÿ a1Þð f ÿ a2Þh
0�: ð19Þ
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When, say at z ¼ z0, ð f
0ðz0Þ ÿ a1Þð f

0ðz0Þ ÿ a2Þ ¼ 0, and thus ð f ðz0Þ ÿ a1Þð f ðz0Þ ÿ a2Þ ¼

0, we have

2 f 0ðz0Þ ÿ a1 ÿ a2

2 f ðz0Þ ÿ a1 ÿ a2
¼ G1:

It follows that

ð f 0ðz0Þhðz0Þ ÿ f 00ðz0ÞÞð f
0ðz0Þhðz0Þ þ f 00ðz0ÞÞ ¼ 0:

Hence we see that the simple ai-points of f 0 are not the poles of c. If z0 is an ai-point

of f 0 of multiplicity mV 2, thus a zero of f 00 of multiplicity mÿ 1, then from (16), z0 is

also a zero of h of multiplicity mÿ 1. Hence z0 is not the pole of c. We conclude

that c is an entire function. Furthermore, since

f 0hÿ f 00

f 0 ÿ a1
1

ð f 0Þ2 ÿ a2 f
0

ð f ÿ a1Þð f ÿ a2Þ
ÿ

f 00

f 0 ÿ a1
; ð20Þ

by using Lemma 1, we have mðr; ð f 0hÿ f 00Þ=ð f 0 ÿ a1ÞÞ ¼ Sðr; f Þ. Similarly, we have

mðr; ð f 0hþ f 00Þ=ð f 0 ÿ a2ÞÞ ¼ Sðr; f Þ. Hence mðr;cÞ ¼ Sðr; f Þ, and thus Tðr;cÞ ¼

Sðr; f Þ.

(ii) By rewriting (17) as

c

f 0hÿ f 00 1
f 0

ð f ÿ a1Þð f ÿ a2Þ
þ

f 00

ð f 0 ÿ a1Þð f
0 ÿ a2Þ

;

and then by Lemma 1, we can deduce that mðr; 1=ð f 0hÿ f 00ÞÞ ¼ Sðr; f Þ. Similarly,

we have mðr; 1=ð f 0hþ f 00ÞÞ ¼ Sðr; f Þ. Hence it follows from (17) that

m r; 1=ðð f 0 ÿ a1Þð f
0 ÿ a2ÞÞð Þ ¼ Sðr; f Þ, which implies that Tðr; f 0Þ ¼ N r; 1=ð f 0 ÿ aiÞð Þþ

Sðr; f Þ; i ¼ 1; 2.

(iii) From (17) and (20), we have

c

f ÿ c
1

ð f 0Þ2 ÿ a2 f
0

ð f ÿ cÞð f ÿ a1Þð f ÿ a2Þ
ÿ

f 0

f ÿ c

f 00

f 0ð f 0 ÿ a1Þ

" #

f 0hþ f 00

f 0 ÿ a2
:

Hence by Lemma 1, we get mðr; 1=ð f ÿ cÞÞ ¼ Sðr; f Þ, for c0 a1; a2.

(iv) Since the function h in (16) is entire and

h ¼
f 0

f ÿ a1

f 0

f ÿ a2
ÿ

ða1 þ a2Þ f
0

ð f ÿ a1Þð f ÿ a2Þ
þ

a1a2

ð f ÿ a1Þð f ÿ a2Þ
;

by using Lemma 1, it is not di‰cult to get

Tðr; hÞ ¼ m r;
1

ð f ÿ a1Þð f ÿ a2Þ

� �

þ Sðr; f Þ

¼ m r;
1

f ÿ a1

� �

þm r;
1

f ÿ a2

� �

þ Sðr; f Þ

Um r;
1

f 0

� �

þ Sðr; f Þ:
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On the other hand, from (16) and (17) by eliminating h, we have

c

f 0 1
ð f 0Þ3 ÿ ða1 þ a2Þð f

0Þ2

ð f 0 ÿ a1Þ
2ð f 0 ÿ a2Þ

2
ÿ

ð f 00Þ2

f 0ð f 0 ÿ a1Þð f
0 ÿ a2Þ

þ
a1a2 f

0

ð f ÿ a1Þð f ÿ a2Þ

1

ð f ÿ a1Þð f ÿ a2Þ
;

thus by Lemma 1, we get

m r;
1

f 0

� �

Um r;
1

f ÿ a1

� �

þm r;
1

f ÿ a2

� �

þ Sðr; f Þ:

Hence we obtain that

Tðr; hÞ ¼ m r;
1

f ÿ a1

� �

þm r;
1

f ÿ a2

� �

þ Sðr; f Þ ¼ m r;
1

f 0

� �

þ Sðr; f Þ:

(v) By using the conclusion in (ii), we have

2Tðr; f 0Þ ¼ N r;
1

ð f 0 ÿ a1Þð f
0 ÿ a2Þ

� �

þ Sðr; f Þ:

It follows from (18) and the conclusion in (iv) that

2Tðr; f 0Þ ¼ N r;
1

ð f ÿ a1Þð f ÿ a2Þh

� �

þ Sðr; f Þ

¼ N r;
1

ð f ÿ a1Þð f ÿ a2Þ

� �

þN r;
1

h

� �

þ Sðr; f Þ

¼ 2Tðr; f Þ ÿm r;
1

f ÿ a1

� �

ÿm r;
1

f ÿ a2

� �

þN r;
1

h

� �

þ Sðr; f Þ

¼ 2Tðr; f Þ ÿ Tðr; hÞ þN r;
1

h

� �

þ Sðr; f Þ:

That is 2Tðr; f Þ ÿ 2Tðr; f 0Þ ¼ mðr; 1=hÞ þ Sðr; f Þ, which completes the proof of

Lemma 7. r

Lemma 8. Let f be a nonconstant entire function and a1; a2 be two distinct finite

values. If f and f 0 share the set fa1; a2g CM, then Tðr; hÞ ¼ Sðr; f Þ, where h is the same

as in Lemma 7.

Proof. For the sake of convenience, we write f1 ¼ f 0; f2 ¼ f 00, and f3 ¼ f 000.

Because f and f1 share the set fa1; a2g CM, there exists an entire function a such that

h1 ea. If a1a2 ¼ 0, then from (16)

h1
f 21

ð f ÿ a1Þð f ÿ a2Þ
ÿ

ða1 þ a2Þ f1
ð f ÿ a1Þð f ÿ a2Þ

:

Hence by Lemma 1 we have Tðr; hÞ ¼ Sðr; f Þ. Without loss of generality, we may

assume that a1a2 0 0. Suppose Tðr; hÞ0Sðr; f Þ. From (17), (18) and (19) by
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eliminating h, we have

½ð f ÿ a1Þ þ ð f ÿ a2Þ� f1
ð f ÿ a1Þð f ÿ a2Þ

1
ð2 f ÿ a1 ÿ a2Þ f1
ð f ÿ a1Þð f ÿ a2Þ

1
ð2 f1 ÿ a1 ÿ a2Þ f2
ð f1 ÿ a1Þð f1 ÿ a2Þ

ÿ b; ð21Þ

where, and in the sequel b1 a 0, and

f 21

ð f ÿ a1Þ
2ð f ÿ a2Þ

2
1

f 22

ð f1 ÿ a1Þ
2ð f1 ÿ a2Þ

2
þ

c

ð f1 ÿ a1Þð f1 ÿ a2Þ
: ð22Þ

By squaring all sides of (21), we get

f 21

ð f ÿ a1Þ
2
þ

2 f 21
ð f ÿ a1Þð f ÿ a2Þ

þ
f 21

ð f ÿ a2Þ
2

1
ð2 f1 ÿ a1 ÿ a2Þ

2
f 22

ð f1 ÿ a1Þ
2ð f1 ÿ a2Þ

2
ÿ
2bð2 f1 ÿ a1 ÿ a2Þ f2
ð f1 ÿ a1Þð f1 ÿ a2Þ

þ b2: ð23Þ

Now (22) can be written as

f 21

ð f ÿ a1Þ
2
ÿ

2 f 21
ð f ÿ a1Þð f ÿ a2Þ

þ
f 21

ð f ÿ a2Þ
2

" #

1
ða1 ÿ a2Þ

2
cð f1 ÿ a1Þð f1 ÿ a2Þ þ ða1 ÿ a2Þ

2
f 22

ð f1 ÿ a1Þ
2ð f1 ÿ a2Þ

2
: ð24Þ

By taking the di¤erence of (23) and (24), we get

4 f 21
ð f ÿ a1Þð f ÿ a2Þ

1
4 f 22 ÿ 2bð2 f1 ÿ a1 ÿ a2Þ f2

ð f1 ÿ a1Þð f1 ÿ a2Þ
þ
b2ð f1 ÿ a1Þð f1 ÿ a2Þ ÿ ða1 ÿ a2Þ

2
c

ð f1 ÿ a1Þð f1 ÿ a2Þ
:

ð25Þ

By eliminating f from (17), (22) and (24), we have

16c

ð f1 ÿ a1Þð f1 ÿ a2Þ
þ

16 f 22

ð f1 ÿ a1Þ
2ð f1 ÿ a2Þ

2
1

4 f 22 ÿ 2bð2 f1 ÿ a1 ÿ a2Þ f2
f1ð f1 ÿ a1Þð f1 ÿ a2Þ

þH

" #2

; ð26Þ

where

H ¼
b2ð f1 ÿ a1Þð f1 ÿ a2Þ ÿ ða1 ÿ a2Þ

2
c

f1ð f1 ÿ a1Þð f1 ÿ a2Þ
:

From Lemma 7, mðr; 1=ð f1 ÿ a1ÞÞ þmðr; 1=ð f1 ÿ a2ÞÞ ¼ Sðr; f Þ. Hence from (26) and

by using Lemma 1, we get

mðr;HÞ ¼ Sðr; f Þ: ð27Þ

We shall treat two cases: a1a2b
2 ÿ ða1 ÿ a2Þ

2
c2 0 and a1a2b

2 ÿ ða1 ÿ a2Þ
2
c1 0,

separately.
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If a1a2b
2 ÿ ða1 ÿ a2Þ

2
c2 0, then from (27) and Lemma 2, we can deduce that

3Tðr; f1Þ ¼ N r;
1

f1

� �

þN r;
1

f1 ÿ a1

� �

þN r;
1

f1 ÿ a2

� �

þ Sðr; f Þ:

By (ii) of Lemma 7 and above formula, we get

m r;
1

f1

� �

¼ Sðr; f Þ: ð28Þ

Hence by (iv) of Lemma 7, we have Tðr; hÞ ¼ Sðr; f Þ.

Now we consider the case

a1a2b
2 ÿ ða1 ÿ a2Þ

2
c1 0; ð29Þ

and rewrite (17) as

cð f1 ÿ a1Þð f1 ÿ a2Þ1 f 21 e
2a ÿ f 22 : ð30Þ

By taking the derivative on both sides of (30), we get

c 0ð f1 ÿ a1Þð f1 ÿ a2Þ þ cð2 f1 ÿ a1 ÿ a2Þ f2

1 2a 0 f 21 e
2a þ 2 f1 f2e

2a ÿ 2 f2 f3: ð31Þ

Let z0 be a zero of f1. From (17), (18), (19) and (31), we can see that

cðz0Þ ¼ ÿ
f 22 ðz0Þ

a1a2
; bðz0Þ ¼ ÿ

ða1 þ a2Þ f2ðz0Þ

a1a2
;

and

a1a2c
0ðz0Þ ÿ ða1 þ a2Þcðz0Þ f2ðz0Þ ¼ ÿ2 f2ðz0Þ f3ðz0Þ:

Thus by using (29), we have

b 0ðz0Þ

bðz0Þ
þ
bðz0Þ

2

� �

f2ðz0Þ ÿ f3ðz0Þ ¼ 0:

Again from (17) we see that any zero of f1 and f2 must be the zero of c, thus ‘‘almost

all’’ zeros of f1 are simple. Let

g1
b 0

b
þ
b

2

� �

f2
f1
ÿ

f3
f1
: ð32Þ

Then we have Tðr; gÞ ¼ Sðr; f Þ, which also holds when f1 is zero free.

If g1 0, then we can deduce that f 02= f2 1 ðb 0=bÞ þ ða 0=2Þ, and thus by integrating,

we have f2 1 cðb=2Þ expða=2Þ, and thus f1 1 cfexpða=2Þ þ dg, where c0 0 and d are

constants. This implies

m r;
1

f1

� �

¼ m r;
1

expða=2Þ þ d

� �

U
1

2
Tðr; hÞ þ Sðr; f Þ;

which leads to Tðr; hÞ ¼ Sðr; f Þ, by Lemma 7.
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In the following, we assume that g2 0. From (30), (31), by eliminating e2a, we

have

ðc 0 ÿ 2a 0cÞ f1ð f1 ÿ a1Þð f1 ÿ a2Þ þ cð2 f1 ÿ a1 ÿ a2Þ f1 f2

1 2a 0 f1 f
2
2 þ 2cð f1 ÿ a1Þð f1 ÿ a2Þ f2 þ 2 f 32 ÿ 2 f1 f2 f3: ð33Þ

If c 0 ÿ 2a 0c1 0, then we can get e2a 1 cc, where c is a constant. Hence Tðr; hÞ ¼

Tðr; eaÞ ¼ Sðr; f Þ. Without loss of generality, we may assume that c 0 ÿ 2a 0c2 0.

Since any a1-point and any a2-point of f1 are simple, from (33) any zero of f2 but

not a zero of f1 must be also a zero of c 0 ÿ 2a 0c. Hence we can conclude that

Tðr; f3= f2Þ ¼ Sðr; f Þ. From (32), we have

g1
b 0

b
þ
b

2
ÿ

f3
f2

� �

f2
f1
:

Thus

T r;
f2
f1

� �

¼ Sðr; f Þ: ð34Þ

Now since (29) holds, (26) can be rewritten as

b0 f
2
1 þ b1 f1 þ b2 1 0; ð35Þ

where

b0 1 ð16ÿ 12b2Þ
f2
f1

� �2

þ4b3 f2
f1

� �

þ 16cþ 16b ÿ 16ÿ b4;

b1 1ÿ 16ða1 þ a2Þb
f2
f1

� �3

þ16ða1 þ a2Þb
2 f2

f1

� �2

ÿ8ða1 þ a2Þb
3 f2

f1

� �

þ 2ða1 þ a2Þb
4 ÿ 16ða1 þ a2Þc;

b2 1ÿ 4ða1 þ a2Þ
2
b2 f2

f1

� �2

þ4ða1 þ aÿ 2Þ2b3 f2
f1

� �

þ 16a1aÿ 2cÿ ða1 þ a2Þ
2
b4:

It is obviously that Tðr; biÞ ¼ Sðr; f Þ; i ¼ 0; 1; 2. Since

Tðr; f Þ < N r;
1

f ÿ a1

� �

þN r;
1

f ÿ a2

� �

þ Sðr; f Þ

¼ N r;
1

f1 ÿ a1

� �

þN r;
1

f1 ÿ a2

� �

þ Sðr; f Þ

U 2Tðr; f1Þ þ Sðr; f Þ;

we have Tðr; biÞ ¼ Sðr; f1Þ; i ¼ 0; 1; 2. Thus by Lemma 3, we have

bi 1 0; i ¼ 0; 1; 2: ð36Þ
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From this, (29), and (36), it is not di‰cult to show that f2= f1 is a constant. Hence

f 0 1 c1ð f ÿ c2Þ; ð37Þ

where c1 0 0, and c2 0 a1; a2 are constants. From (30) and (37), we have

Nðr; 1=ð f ÿ c2ÞÞ ¼ Sðr; f Þ. On the other hand, from (21), Lemma 7 and Lemma 1, we

can conclude that mðr; b=ð f ÿ c2ÞÞ ¼ Sðr; f Þ. Thus mðr; 1=ð f ÿ c2ÞÞ ¼ Sðr; f Þ. Hence

Tðr; f Þ ¼ Sðr; f Þ, a contradiction. r

Theorem 3. Let f be a nonconstant entire function and a1; a2 be two distinct complex

numbers. If f and f 0 share the set fa1; a2g CM, then one and only one of the following

conclusions holds:

(i) f 1 f 0.

(ii) f þ f 0 1 a1 þ a2.

(iii) f 1 c1e
cz þ c2e

ÿcz, with a1 þ a2 ¼ 0, where c; c1 and c2 are nonzero constants

which satisfy c2 0 1 and c1c2 ¼ ð1=4Þa21ð1ÿ cÿ2Þ.

Proof. Under the assumption of Theorem 3, there exists an entire function a

satisfying Tðr; eaÞ ¼ Sðr; f Þ such that ð f 0 ÿ a1Þð f
0 ÿ a2Þ1 ð f ÿ a1Þð f ÿ a2Þe

a, which can

be expressed as

ea=2 f ÿ
a1 þ a2

2
ea=2 þ f 0 ÿ

a1 þ a2

2

� �

ea=2 f ÿ
a1 þ a2

2
ea=2 ÿ f 0 þ

a1 þ a2

2

� �

1
a1 ÿ a2

2

� �2

ðea ÿ 1Þ: ð38Þ

Set

G1 ea=2 f ÿ
a1 þ a2

2
ea=2 þ f 0 ÿ

a1 þ a2

2
; ð39Þ

and

H1 ea=2 f ÿ
a1 þ a2

2
ea=2 ÿ f 0 þ

a1 þ a2

2
: ð40Þ

Then G and H are entire functions and, if G �H2 0,

N r;
1

G

� �

þN r;
1

H

� �

¼ Sðr; f Þ: ð41Þ

Thus

T r;
G 0

G

� �

þ T r;
H 0

H

� �

¼ Sðr; f Þ: ð42Þ

From (38), (39) and (40), we have

G þH1 ea=2ð2 f ÿ a1 ÿ a2Þ; ð43Þ

G ÿH1 2 f 0 ÿ a1 ÿ a2; ð44Þ

GH1
a1 ÿ a2

2

� �2

ðea ÿ 1Þ: ð45Þ
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We deduce easily from above three equations that

a 0

2
þ ea=2 ÿ

G 0

G

� �

G þ
a 0

2
ÿ ea=2 ÿ

H 0

H

� �

H þ ða1 þ a2Þe
a=2 1 0: ð46Þ

By multiplying G on both sides of (46), we get

f1G
2 þ f2G þ f3 1 0; ð47Þ

where

f1 1
a 0

2
þ ea=2 ÿ

G 0

G
;

f2 1 ða1 þ a2Þe
a=2;

f3 1
a1 ÿ a2

2

� �2

ðea ÿ 1Þ
a 0

2
ÿ ea=2 ÿ

H 0

H

� �

:

From (42), we see that

Tðr; fiÞ ¼ Sðr; f Þ; i ¼ 1; 2; 3: ð48Þ

When ea ¼ h1 1, we can easily get from (16) that

either f 1 f 0 or f þ f 0 1 a1 þ a2:

Now we assume that ea 2 1. If Tðr;GÞ ¼ Sðr; f Þ, then from (45) we have Tðr;HÞ

¼ Sðr; f Þ. Thus Tðr; f Þ ¼ Sðr; f Þ from (43). This is impossible. Hence Tðr;GÞ0

Sðr; f Þ. If f1 2 0, then from (47) and (48), we get

2Tðr;GÞ ¼ T r;
f2
f1

G þ
f3
f1

� �

UTðr;GÞ þ Sðr; f Þ;

and thus Tðr;GÞ ¼ Sðr; f Þ, a contradiction. Hence f1 1 0. Similarly we have fi 1 0;

i ¼ 2; 3. That is

a 0

2
þ ea=2 ÿ

G 0

G
1 0; ð49Þ

a 0

2
ÿ ea=2 ÿ

H 0

H
1 0; ð50Þ

a1 þ a2 ¼ 0: ð51Þ

Formulas (49) and (50) lead to ðG 0=GÞ þ ðH 0=HÞ1 a 0. Thus

GH1 c0e
a; ð52Þ

where c0 is a nonzero constant. By combining (45), (51), and (52) we can see that ea

and thus a is a constant. Hence (49) and (50) become G 0 1 ea=2G and H 0 1 ÿ ea=2H,

respectively. This and (45) lead to

G1 c1e
cz; H1 c2e

ÿcz; ð53Þ
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where c ¼ ea=2 0G1, with c1; c2 are constants satisfying

c1c2 ¼
a1 ÿ a2

2

� �2

ðea ÿ 1Þ ¼
a1 ÿ a2

2

� �2

ðc2 ÿ 1Þ: ð54Þ

Hence from (43), (53) and (54), we have

f 1
c1

2
eÿða=2Þecz þ

c2

2
eÿða=2Þeÿcz:

The above expression can also be rewritten as

f 1 ~cc1e
cz þ ~cc2e

ÿcz;

where ~cc1 ¼ ðc1=2Þe
ÿða=2Þ, and ~cc2 ¼ ðc2=2Þe

ÿða=2Þ satisfy

~cc1~cc2 ¼
1

4

a1 ÿ a2

2

� �2
ð1ÿ cÿ2Þ;

which completes the proof of Theorem 3. r

Remark 3. We suspect that the condition ‘f and f 0 share the set fa1; a2g CM’ in

Theorem 3 can be replaced by ‘f and f 0 share the set fa1; a2g IM’. But it can be shown

that for a meromorphic function f, the word ‘CM’ in Theorem 3 can not be replaced by

‘IM’. For example, if f ¼ ðe2z ÿ 1Þ=ðe2z þ 1Þ, then f and f 0 share 0; 1 IM jointly. The

following is a more complicated example.

Example 3. Taking a constant a; a0 0;ÿð27=32Þ. Then the equation z3 ÿ az2 ÿ

a2zþ a3 þ a2 ¼ 0 has no multiple root. Let f be the elliptic function satisfying

ð f 0Þ2 ¼ f 3 ÿ a f 2 ÿ a2 f þ a3 þ a2:

Then

ð f 0 ÿ aÞð f 0 þ aÞ ¼ ð f ÿ aÞ2ð f þ aÞ;

and f ; f 0 share a;ÿa IM jointly.
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