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Abstract. We determine the conjugacy classes of the Mathieu simple groups by using
the combinatorial properties of the Steiner system and the binary Golay code.

0. Introduction.

Around 1860, Mathieu discovered the first five sporadic simple groups as multiply
transitive permutation groups. In the 1970’s, Conway [2], Curtis et al. defined the
Mathieu group M, of degree 24 using the Binary Golay Code and the Steiner system
S(5,8,24). The methods in Conway and Curtis are very useful to study the
structure of M»4. In 1904, Frobenius @ determined the conjugacy classes of M4 and
its character table. However he did not mention the way to classify the conjugacy
classes of M,,. No such work has been published elsewhere. The purpose of this
paper is to classify all the conjugacy classes of My, M>3, M, using the combinatorial
methods by Kondo [5] who determined the conjugacy classes of elements of orders 2 and
3 using its combinatorial properties. Aschbacher [1] also determined the conjugacy
classes of elements of orders 2 and 3.

In section 1 we describe a number of basic results of M>4 and Kondo’s results which
will be applied in our computations. In section 2 we determine the types of the
elements in M»4, and in section 3 we investigate elements of order 4. In the last two
sections 4 and 5, we determine the conjugacy classes of My, M>; and M.

1. Preliminaries.

For a finite set X, let Sy be the group of all permutations on X, and Ay be the
group of all even permutations on X. Throughout this paper, permutations are
multiplied from the left to the right, and £ denotes the set of 24 points.

Let 2(€2) be the power set of 2. 2(€2) is a 24-dimensional vector space over
GFQ2) with X +Y:=XUY - XNY for X,Y € 2(2). The Binary Golay Code I is a
subspace of 2(€2) which satisfies the following conditions:

Irsx+#g = |X|=>8
dimI = 12.
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The code I' exists and is uniquely determined up to isomorphism. Let O :=
{X erl||X|=28}. Then (2,0) forms a Steiner system S(5,8,24) on £, that is, each 5-
point subset of € is contained in a unique element of (. Elements of (¢ are called
octads.

DerFINITION.  Let Aut(2,0) :={o € So|0° = O0}. Aut(2,0) is called the Mathieu
group of degree 24, which will be denoted by My4. Let M4 ; be the stabilizer of i
points in M for i =1,2. Since M4 is 5-fold transitive on £, the structure of M4 ;
does not depend on a choice of i points. My ; is called the Mathieu group of degree
24 — .

Lemma 1.1 (2]). For Ci # Coe @, |CINCy| =0,2 or 4.

DerINITION. A partition =T, UT,U --- UTs of 2 into a 6-tuple of 4-point
subsets is a sextet if and only if 7;UT; € O for any i,j (i # j). Each T; is called a
sextet component.

DerFNITION ([2]). Let X be a subset of €.
(1) X is special if and only if there is an octad containing X.
(2) X is non-special if and only if there is no octad containing X.

DEerINITION ([5]).  An ordered sequence (xjx;---x7) of 7 mutually distinct points of
Q is an M-sequence if and only if {x|,xs,...,x¢} is non-special and {x;,x3,...,x7} is
special.

DerINITION ([5]). A 4 x 6 matrix 2 whose entries are distinct points of £ is an
M-matrix if and only if 2 satisfies the following conditions:

(1) The partition of € into 6 columns of Z is a sextet.

(2) In the following 6 pictures, each 8-point subset of £ forms an octad.
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The following theorem is the essential part of the combinatorial method of My,.

TueoreM 1.2 ([5]). (1) For an M-sequence (xixy---x7), there exists a unique
M-matrix X such that

X1 X2 X3 X4 X5 Xg

I
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(2) Let Z(i,j) and %(i,j) (1 <i<4,1 < j<6) be the (i, ])-entries of M-matrices
X and % respectively. Then a map Z(i,j)— % (i, j) is an isomorphism of a Steiner
system S(5,8,24), that is, a position of each octad is uniquely determined, and does not
depend on an M-matrix.

CorROLLARY 1.3 ([5]). The Steiner system S(5,8,24) is unique up to relabelling the
points.

COROLLARY 1.4 ([5]). Moy acts regularly on the set of all M-sequences. In par-
ticular,

24
| M>| = t{all M-sequences} = <5> 51.3.16=21.33.5.7.11.23.

This theorem shows that the cardinality of the set {(ax; ---x¢) : M-sequence | x; € 2}
is |[My3| and the cardinality of the set {(abx)---xs): M-sequence|x; € 2} is |M»,| for
a,be 2. These do not depend on the positions of a and b.

Theorems [L3-1.11 are well-known.

THEOREM 1.5 ([2]). (1) My acts transitively on the set O of 759 octads.
(2) Moy acts transitively on the set of all sextets.

THEOREM 1.6 ([2]). Let Ce O and
H:H(C) = {O'EM24’CJ:C}
N=N(C):={oce My |x’=x (Vxe C)}.

Then the following holds:
(1) Nx~ZyxZyxZy,xZ, and N acts regularly on Q — C.
(2) H/N ~ Ag ~ GL(4,2) and H splits over N.

COROLLARY 1.7. For 1€ Ac, there are sixteen elements in M,y which contain t in
cycle notation.

THEOREM 1.8 ([2]). Let Y be a non-special 6-point subset of Q. Set
E=X(Y):={ceMy|Y =Y}
Eo = Z()(Y) = {O’G M24 | ya =) (Vy € Y)}

Then the following holds:
(1) [Eo| = 3.
(2) X/Xy~S¢ and X does not split over Xy.

COROLLARY 1.9. For t € Sy, there are three elements in M4 which contain t in cycle
notation.

Let Y ={y,»,,..., Vs} be a non-special 6-point subset of 2. Then there exists an
M-matrix % with the first row y;, ,,..., . We give names 1,2,...,24 for the 24
points of £.
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Vi Y2 V3 Vs Vs Ve 1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

The following 5 permutations generate X = X(Y).

11 e Y

“3::*’::"’4H><3

Furthermore the following permutation generates Xy = Xo(Y).

o= (a4a5)l(alaz)l(aws)(alaz)—(l J J l l l)

TaeoreM 1.10 ([2]). Let 7 ={T\,T»,...,Ts} be a sextet. Set
KIZ{O'EM24|,9-0:,9-}

Ko : :{O'GM24|(TZ‘)J: Tl‘ (1 SViS6)}~

Then the following holds:
(1) K/Ky~S¢ and K does not split over Kj.
(2) |Ko| =2%-3, and Ky has a unique elementary abelian Sylow 2-subgroup K,.
(3) K/K, ~X(Y) (See Theorem 1.8) and K splits over K,.

By (2), K does not depend on the sextet 7. Hence we may assume
that 7 is the partition of £ into 6 columns of the M-matrix %.
The following 6 permutations generate Kj.
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TueoreMm 1.11 ([3], [5]). For an element o € Moy of type (2'2), there exists a unique
sextet all of whose components are fixed by o.

THEOREM 1.12 ([5]). For an element 1 # o € My4 fixing 6 points xi,Xx3,...,Xs of £,
one of the following holds:

(1) If {x1,x2,...,x¢} is special, then o is of type (2% - 13) such that the set of fixed
points of o forms an octad.

(2) If {x1,x2,...,%x¢} is non-special, then o is of type (3°-16).

2. The types of the elements in M.

Moy is of order 210.33.5.7.11.23 by and is a subgroup of Sy. In
this section, we will study the types of the elements in M4. Aschbacher [1] and Kondo

determined the conjugacy classes of elements of orders 2 and 3 using its combi-
natorial properties.

THeEOREM 2.1 ([1], [4], [5]). (1) Each involution of My is a permutation on  of
type (28 -18) or (2'2), and the orders of the centralizers are, respectively, 2'°-3.7 and
2°.3.5.

(2) Each element of My of order 3 is a permutation on 2 of type (3°-1°) or (3%),
and the orders of the centralizers are, respectively, 23-33-5 and 23-3%.7.
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TABLE 1. Moy
type number of the conjugacy classes | order of the centralizer
(28-1%) 1 21504
(2") 1 7680
(36-19) 1 1080
(3%) 1 504

Let o be an element of order 5. By [Theorem 1.12, ¢ fixes at most 5 points. It
follows that ¢ is of type (5%-1%). Similarly elements of orders 7, 11, and 23 are,
respectively, of types (7°-1%), (112-12) and (23-1). By [Theorem 2.1 (1), there is an
element o of order 14. If ¢ contains a 14-cycle, then o is of type (14-7-2-1). If
o is of type (7% -2%-1%) (e; > 1,e; > 1,e3 > 0), then o’ is of type (2 -17a%«) By
Theorem 1.12, we have e; = 8 and 7e; + e3 = 8. It follows that o is of type (7-28-1)
i.e. a* is of type (7-1'7). This contradicts the type of an element of order 7. This
yields that an element of order 14 is of type (14-7-2-1). Similarly there are elements
of orders 10, 15 and 21, and these elements are, respectively, of types (10%-2?),
(15-5-3-1) and (21-3). Next we will consider the elements in the sextet stabilizer K

(See [Theorem 1.10)).

a3a2a1b1
= (1,2,9,4)(3,10,7,8)(5,11,23,17)(6, 12, 18,24)(13,20,21,22)(14, 15, 16, 19)

dsdzdrdq
= (1,2,3,4)(7,8,9,10)(13,14,15,16)(19,20,21,22)(5,6)(11,24)(12,17)(18,23)

aszdrdy
= (1,2,3,4)(7,8,9,10)(13, 20, 15,22)(14, 21,16, 19) (11, 17)(12,24)(5)(6)(18)(23)

dasdapdsdrdg
=(1,2,3,4,5,6)(7,8,15,16,23,24)(9,22,17,12,19, 14)(10, 11, 18, 13,20, 21)

araay
= (7,20,21,13,14,9)(10,17,22,23,16, 11)(1,2,3)(8,15,19)(4, 5)(12,24)(6)(18)

a3a2a1b1a
= (1,2,15,22,19,20,9,4)(3,16,7,14,21, 10,13, 8)(6, 18, 12,24)(5,17)(11)(23)

a5a4a3a2a1b1b2
= (1,8,21,4,5,6,7,2,9,16,23,24)(3,10,11,18,19,20,15,22,17,12, 13, 14)

dasazdard o
= (7,14,21,10,13,20,9,16,19,8,15,22)(11,12,23,24,17,18)(1,2, 3,4)(6, 5)

Hence we have the following:
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THEOREM 2.2. (1) The elements of orders 5, 7, 10, 11, 14, 15, 21 and 23 are,
respectively, of types (5*-1%), (73-13), (10%-22), (112-1%), (14-7-2-1), (15-5-3-1),
(21-3) and (23-1).

(2) There are elements of types (4%), (4%-2%), (4%-2%2.1%), (6%), (6%-3%2-22-1?),
(82-4-2-12), (122) and (12-6-4-2).

3. The relation between elements of order 4 and sextet components.

In this section, we will investigate the relation between elements of order 4 and
sextet components. Let X be a subset of 2 with |X|=4. Then there exists a unique
sextet containing X as a sextet component.

LemMA 3.1. (1) Let 6 = (x1,x2,X3,X4) - - - be an element of type (4%) in May. Then
there exists a unique 4-cycle (xs,xe,x7,x3) of o such that {x;,x;,...,xg} €.

(2) Let & be the sextet containing {xi,x»,x3,x4} and {xs,x¢,x7,x3}. Then o
induces a permutation of type (1> -4') on the sextet components.

Proor. Let % be the sextet containing X = {x,x2,x3,x4}, and let {X,S;,Ss,
S3, 84, S5} be the components of .. Since ¢ acts on X and ¢* = 1, we may assume
that ¢ induces a permutation on the components as follows:

(a) (X)(S1)(82)(83)(84)(S5)
(b) (X)(S1)(82)(S83)(S4, S5)
() (X)(81)(S2, $3) (84, S5)
(d) (X)(81)(S2, S3, 54, Ss).
If ¢ induces (a), then ¢ € Ky (See [Theorem 1.10). This contradicts that ¢ is of order

4. Next suppose that ¢ induces (b) or (c). Let U; be a g-orbit on S;USs, and % =
{Uy, Us,...,Us} be the sextet containing U;. We may assume that S;USs = U; U Us.
Then o fixes two components U; and U,. Assume that ¢ induces a permutation on %
as follows:

g = (U])(Uz)(U3, U4, U5, U6).

Since |S;NU;|=2 (i=4,5,j=1,2) and |U;NX| =1 (j = 3,4,5,6), we have |(S;UX)N
(UUUs)| =3. This is a contradiction by Lemma [.1. It follows that ¢ induces a
permutation on % of type (14-2') or (12-22). Then o2 is of type (2!?) and fixes every
component of the two sextets ¥ and % (¥ # %). This is a contradiction by
1.11. Hence ¢ induces the permutation (d) on . This completes the proof.

LEMMA 3.2. Let 0 = (X1,X2,X3,X4) - - - be an element of type (4*-2%) in M>y. Then
there exists a 4-cycle (xs,x¢,Xx7,X3) of a such that {xy,xs,...,x3} € C.
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ProOF. By the same way as in the proof of [Lemma 3.1, o fixes at least two
components X = {x;,x2,x3,x4} and Y of the sextet containing X. Since ¢ acts on the
octad XUY as Ag, o acts on Y as 4-cycle. This completes the proof.

LeMMA 3.3. Let o= (x1,X2,X3,X4) --- be an element of type (4*-2%2-1%) in
M. Then there exists a 4-cycle (xs,xg,x7,x3) of o such that {xi,x»,...,xs} € C.

Proor. The fixed points of ¢ form an octad, and which is a union of two
components of the sextet containing {xj,x»,x3,x4}. Since o is of order 4, the proof is
complete.

4. The conjugacy classes of M.

In this section, we will classify all the conjugacy classes of M>4 which are given in
TABLE 2.

TABLE 2. My,
type number of the conjugacy classes | order of the centralizer
(4% 2% 1 384
(442214 1 128
(46) 1 96
(5% 1%) 1 60
(62-32.22.12) 1 24
(64) 1 24
(73 -13) 2 42, 42
(82-4.2-1?%) 1 16
(102 -22) 1 20
(112-12) 1 11
(12-6-4-2) 1 12
(122) 1 12
(14-7-2-1) 2 14, 14
(15-5-3-1) 2 15, 15
(21-3) 2 21, 21
(23-1) 2 23, 23

Types (5%-1%),(4%-.22-1%) and (6-3%-22.12).

THEOREM 4.1, All elements of type (5* - 1%) form one conjugacy class in My, and the
order of the centralizer of the element in My is 60.

ProOOF. Let

o = (x1)(x2)(x3)(xa) (V15 Y25 V35 Vas Vs5) -+

T = (51)(52)(s3)(84) (11, 12, 13, L 15) - - -
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be elements of type (5*-1%). Let C € @ such that C 2 Y := {y,, 3, ¥3, V4, ¥s}. Since
C? = C, we may assume C = Y U{xp,x3,x4}. It follows that (x;x,y,1,13)4¥5) 1s an
M-sequence. Similarly we may assume that (s;s:¢122f32425) is an M-sequence. There
exists a unique element pe Mys such that p:s;—x; (i=1,2),p:t;—y; (1 <i<5)

by [Corollary T.4 Since (p 'tp)o' = (x1)(x2)(31)(¥2)(¥3)(7a)(ys5) -+, p'tp =0 by

Corollary 1.4, It follows that all elements of type (5%-1%) are conjugate in Mp. Let

My s 6= (5% 1%)-type
M = < (0, (x1X2X3X4X5X6X7)) | (X1 X2X3X4X5X6X7) : M-sequence

0= (X1)(X2)(X3,X4,x5,x6,x7) Tt

For an element of type (5*-1%), there are 4-5-3-1 M-sequences which satisfy the
conditions of M (There are 4 -5 choices for x3xsxsxgx7, 3 choices for x,, then x; is
uniquely determined). Conversely, for an M-sequence (xjxyXx3X4Xs5X¢X7), if there are
two elements o = (x1)(x2)(x3, X4, X5, X6, X7) --- and 7 = (x1)(x2)(x3, X4, X5, X6, X7) -+ Of

type (5% - 1%), then ¢ = 7 by [Corollary 1.4. Hence for an M-sequence, there is a unique
element which satisfies the conditions of M. Set m :=t{c e May|o = (5% 1%)-type}.

Then
M|=m-4-5-3-1
= f{all M-sequences} - 1
M| - 1.
Since | Ma4|/m = 60, the order of the centralizer of an element of type (5%-1%) in Moy is
60.

We can determine the conjugacy classes of the elements of types (4*-22-1%) and
(6%-32.22.12) by the same way as in the proof of [Theorem 4.1.

Types (4*-2%),(6%) and (12-6-4-2).

THEOREM 4.2.  All elements of type (4* -2%) form one conjugacy class in My, and the
order of the centralizer of the element in My4 is 384.

Proor. Let

= (Y1, Y2, V3, Ya)(¥s, ¥6) (V7, ¥s) -
T = (S15S27S35S4)(S57S6) Tt

be elements of type (4*-2%). Assume that there exists Ce @ such that C 2
Y :={y,, V2, V3, Va, Vs, Y6} Since C? =C, we may assume C = YU{y,, y3}. This
contradicts that ¢ acts on C as an even permutation. Hence Y is non-special. By
(Corollary 1.9, there are three elements which contain (yy, y,, 3, ¥4)(¥s, y¢) in cycle
notation. Using the generators of X(Y) (See [Theorem 1.§), we find that these three
elements are as follows:
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ﬁl ‘= dsdazaxag
= (yla Y2, V3, y4)(y57 y6)(778797 10)(137 147 157 16)(19720721722)

x (11,24)(12,17)(18,23)

By = af
= (¥1, Y2, V3, Ya)(¥s, ¥6)(7,14,21,10,13,20,9,16,19,8,15,22)(11,12,23,24,17,18)
By = 05231

= (y1, V2, V3, Ya)(¥s, ¥6)(7,20,15,10,19,14,9,22,13,8,21,16)(11, 18, 17,24,23,12).

Therefore o (= f3;) is a unique element of type (4*-2%) containing (y;, 5, V3, V4) -
(ys, ¥¢) In cycle notation. Similarly we have that {s;,ss,...,8¢} is non-special. By
(Corollary 1.4, there is an element pe M,s such that p:s;— p; (1 <i<6). Since

p~Ytp = (¥, Y2, 3, ¥4) (s, ¥6) -+, p~ltp=0a. It follows that all elements of type
(4*-2%) are conjugate in M. Let

My 50 = (4% 2%)-type

(x1X2X3X4X5X6) : ordered sequence
M = < (g, (X1X2X3X4X5X6)) _ ‘
{x1, X2, X3, X4, X5, X } : non-special 6-point subset

L O':(X],X2,X3,X4)(X5,X6)"'

For an element of type (4*-2%), there are 4 -4 -4 -2 ordered sequences which satisfy the
conditions of Mt (There are 4 -4 choices for x;x;x3x4, 4-2 choices for xsxs). Con-
versely, for the ordered sequence, there is a unique element which satisfies the conditions
of M. Set m:=t{ce My|o=(4* 2%-type}. Then

M| =m-4-4-4.2

(x1X2X3X4X5X6) : ordered sequence
=84 (X1 X2X3X4X5X6) ‘ _ -1
{x1, X2, X3, X4, X5, X6 } : non-special 6-point subset

= (|Ma4]/3) - 1.

Since |M»y4|/m = 384, the order of the centralizer of an element of type (4*-2%) in My
1s 384.

We can determine the conjugacy classes of the elements of types (6*) and
(12-6-4-2) by the same way as in the proof of [Theorem 4.2,

Type (15-5-3-1).

THEOREM 4.3.  All elements of type (15-5-3-1) form two conjugacy classes in Moy,
and the order of the centralizer of the element in My, is 15.

Proor. Let
0= (Y1, Y2 V3, Y4 ¥s)(Vs) -

T = (81,52,53,54,55)(S6) - -



Conjugacy classes of the Mathieu simple groups 671

be elements of type (15-5-3-1). By [Theorem 1.12, Y :={y;,», ...,¥} and
{s1,82,...,5} are non-special. By [Corollary 1.9, there are three elements which contain

(¥1, Y2, V3, V4, s5) (¥g) in cycle notation. Using the generators of X(Y) (See
1.8), we find that these three elements are as follows:

Py i = asazara;
= (¥, V2, V35 Va, ¥5)(6)(7,8,15,10,11,19,20,9,22,23,13,14,21,16,17)(12, 18, 24)
By i = ap
= (V1, V2, V35 Va, ¥5)(¥6)(7,14,9,10,17,13,20,15,16,23,19,8,21,22,11)(12,24, 18)
By =0’
= (V1, 2, V3, 1, ¥5) (1) (6)(12)(18)(24)(7, 20, 21, 10, 23)(8,9, 16, 11, 13)
x (14,15,22,17,19).

The elements 8, and 8, are of type (15-5-3-1) which contain (y;, ¥,, 3, V4, ¥5)(Vg) In
cycle notation. Assume that f; and f, are conjugate in M». Let p be an element
such that p~'f,p=pf,. Then we may assume that p= (y;, ¥y, V3, Ve, Vs) (V) - --
(j=1,2,3,4 0r 5). If j=1,2,3 or 4, then p is of type (15-5-3-1) or (5*-1%). If
j =25, then p is of type (3°-1%) by Mheorem 1.12. On the other hand, the element p
induces a permutation on {12,18,24}. We may assume that p = (12)(18,24)---,
(18)(12,24) --- or (24)(12,18)---. This contradicts the type of p. Therefore f;, and
f, are not conjugate in Mp.

By [Corollary 1.4 there is an element Je Mys such that o:s+— ),
(1 <i<6). Since 010 = (p;, Vs, V3, Var ¥s) (V) -+, 0 ‘w0 =, or f,. It follows that
all elements of type (15-5-3-1) form two conjugacy classes. Let % be one of
them. Let

( 3\

>0

(x1X2X3x4X5X6) : ordered sequence
M = < (g, (X1X2X3X4X5X6)) . '
{x1, X2, X3, X4, X5, X6 } : non-special 6-point subset

g = (XI,XQ,X3,X4,X5)(X6) e
L Y,

For an element in %, there are 5 ordered sequences which satisfy the conditions of
9i. Conversely, for the ordered sequence, there is a unique element in 4 which satisfies
the conditions in 9. Then

|90 = 1%]-5

(X1X2X3Xx4X5X6) : ordered sequence
= ﬁ (X]XQX3X4X5X6) ) ) -1
{x1, x2, X3, X4, X5, X¢ } : non-special 6-point subset

= (|M24]/3) - 1.
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Since |M|/|€| = 15, the order of the centralizer of y € ¥ in M4 is 15. This completes
the proof.

Types (4°) and (82-4-2-12).

Lemma 44. Let C={x|,x2,...,x8} € 0. For an element 7= (x1,Xx2,X3,X4)
(x5, X¢, X7, X3) € Ac, there are eight elements in My, of type (4°) which contain t in cycle
notation and these elements are conjugate in H := {a € My, |C? = C}.

Proor. By [Corollary 1.7, there are sixteen elements in M»4 which contain 7 in cycle
notation. Let

H::{O'GM24‘CU:C}
N:={oeMy|x’=x (¥xeC)} (SeeTheorem 1.6).

Each element of H can be written as (n,7) (n€ N,t € GL(4,2)), and the product in H is
given by (n1,T1)(l’12,T2) = (I’ZIT2 —|—I’l2,T1T2). Let

0 0 0 1
01 00

0= L oo 1€ GL(4,2).
0 0 1 1

Then 6 is of type (4?) as an element of Ag, and (n,5) (n € N) are the sixteen elements in
M>4 which contain J in cycle natation.
Next we will investigate the types of the sixteen elements. Let

o = (81,82, 53,54)(55, 6,57, 53) - - -

be an element of type (4°), (4% -24) or (4*-2%.1%). We may assume that {s1,s7,...,s3}
is an octad by Lemmas (.1, and B.3. Since M>4 acts transitively on (), and all
clements of type (4%) in Ay form one conjugacy class in Ag, elements of types
(4%), (4*-2%) and (4*-22-1%) are contained in the sixteen elements. Let

0,0,0,0

[S—

m = ( ) ( ) ( )
ns=(1,0,0,1) ng=(1,1,1,0) ny=(1,1,0,1) ng=(1,0,1,1)
ny = ( ) ( ) ( )

( ) ( )

niz =

in N.
(n, 1) (n1,0)(n;, 1) = (n? + ny + m;, ).
Similarly the following holds:
(l’lz,&) (I/li,é) (124715516)7 (”375) ; (I/li,é) (126,12,13),

~
N

(n775) ;;(nlaa) (l:9710511)
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Furthermore, for

01 0 1
01 0 0

=11 0 o 1 € Cgrs)(9),
0O 1 1 1

(n3,p) ' (n3,0)(n3,p) = (m,6). It follows that the sixteen elements consist of three

orbits, and the types of the representatives are (4%), (4*.2%) and (4%.22.1%).

Moreover (ny, 1) (ny,8)*(n2,1) = (n7,6)* shows that (n;,0) (i =2,3,4,6,12,13,15,16)

are elements of type (4%). Since there is an element y € Ag such that y~'dy =1,
(n!,7) = (n1,y) " (n;,0)(n1,7) (i=2,3,4,6,12,13,15,16)

are elements of type (4°) which contain 7 in cycle notation, and the proof is complete.

THEOREM 4.5.  All elements of type (4%) form one conjugacy class in My, and the
order of the centralizer of the element in My, is 96.

Proor. Let
o= (X],xz,X3,X4)(X5,X6,X7,X8) te

T = (81,82, 53, 54) (S5, 56, 57, 53) - - -

be elements of type (4%). By [Cemma 3.1, we may assume that {xi,x,,...,xs} and
{s1,82,...,58} are octads. Then there exists an element p such that

pilfp = (Xl,xz,X3,X4)(XS,X6,X7,X8) Tt
By [Cemma 4.4, there is an element 0 such that 6~'(p~'tp)d =¢. It follows that all
elements of type (4°) are conjugate in My Let

(

M24 30 = (46)-type

(x1x2 - - - xg) : ordered sequence
N = (O’, (X]Xg---x8))
{x1,x2,...,x8} €0

o = (x1,X2, X3, x4)(Xs, X6, X7,X8) - - -

\ Vs

For an element of type (4°), there are 6-4-4 ordered sequences which satisfy the
conditions of M by Lemma 3.1. Conversely, for the ordered sequence, there are eight
elements which satisfy the conditions of M by [Lemma 44. Set m:=t{ce Mxu|c
= (4%)-type}. Then

M| =m-6-4-4

:ﬂ{mxz...xg)

(x1x2 - - - xg) : ordered sequence
-8
{x1,x2,...,x8} €0

= (| Mo -8!/2% - |45)) - 8.

Since |Mp4|/m = 96, the order of the centralizer of an element of type (4°) in My is 96.
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We can determine the conjugacy class of the element of type (8%2-4-2-12) by the
same way as in the proof of [Theorem 4.3.

Types (73 -13),(102-22),(112-12),(14-7-2-1),(21 - 3) and (23 1).

Since M>4 is simple, conjugacy classes of these types are determined easily using
Sylow’s theorem or Burnside’s theorem.

Type (122)

THEOREM 4.6.  All elements of type (12%) form one conjugacy class in My, and the
order of the centralizer of the element in My, is 12.

Proor. We will consider the elements in the sextet stabilizer K (See

1.10). For al,az,ag,a4,a5,b1,b2,b4,b5 in K, put o .= a5a4a3a2a1b1b2 and 7:= 0'2.

Then
o=1(1,8,21,4,5,6,7,2,9,16,23,24)(3,10,11,18,19,20,15,22,17,12,13, 14)

t=(1,21,5,7,9,23)(8,4,6,2,16,24)(3, 11,19, 15, 17,13)(10, 18,20, 22, 12, 14).

Since |Cyp,, ()| = 24 (See Theorem 4.2)), we have |Cyy,, (6)|=12 or 24. Let 6 := bybsbsr.
Then

o =(1,3,5,19,9,17)(2,10,24,20,4, 12)(6, 14, 16, 18,8,22)(7, 15,23, 13,21, 11).
Since ¢ is in Cyy,,(7) — Cyp,,(0), we have that |Cyp,(0)| =12 and
0™ | = | M| /| Cap,y (0)| =28 -3%-5-7-11-23.

The sum of the cardinalities of the conjugacy classes of M,4 which we have determined
equals |Mpy|. It follows that all elements of type (122) are conjugate in Myq.

This yields that we have classified all the conjugacy classes of Myy.

5. The conjugacy classes of M>3;, M.

In this section, we will classify all the conjugacy classes of M»; := {6 € My |a® = a}
and My, := {0 € My |a’ = a,b’ = b} (a,b € Q) which are given in TABLE 3 and TABLE 4.

TABLE 3. M>;
type number of the conjugacy classes | order of the centralizer
(2%-17) 1 2688
(3%-1°) 1 180
(4%-22.13) 1 32
(5%-1%) 1 15
(6%-3%2.22.1) 1 12
(7 12) 2 14, 14
(82-4-2-1) 1 8
(112-1) 2 11, 11
(14-7-2) 2 14, 14
(15-5-3) 2 15, 15
(23) 2 23, 23
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TABLE 4. My,
type number of the conjugacy classes | order of the centralizer
(28-19) 1 384
36.14) 1 36
(44.2%.12) 2 16, 32
(5%-12) 1 5
(6%-3%.22) 1 12
(7% 1) 2 7,7
(8%2-4-2) 1 8
(112) 2 11, 11

Since M4 acts 5-fold transitively on the set £ of 24 letters, the types of the elements
of M»3; and My, are as above.

THEOREM 5.1.  All involutions form one conjugacy class in My, and the order of the
centralizer of the element in M>,s is 2688.

Proor. Let
o = (a)(x1)(x2)(3)(xa) (¥1, ¥2)(¥3, 4) -

T = (a)(s1)(s2)(s3) (sa) (21, 22) (83, 84) - - -

be involutions in M»3. Let C e O such that C 2 X := {a,x1,x2, y;,y,}. By Theorem
1.6, we may assume that C = X U{xs, y;3,y4}. It follows that (xsax;xyx3y,y,) is
an M-sequence. Similarly we may assume that (ssas;sys3t1f2) is an M-sequence. By

Corollary 1.4 there exists an element p € M>4 such that p:s;—x; (1 <i<4), p:ara,
p:ti—y; (i=1,2). Since (p~'tp)o! = (xa)(@)(x1)(x2)(x3)(¥1)(31) -+, p~'tp= o by
Corollary 1.4, Moreover p is in Mp;. It follows that all involutions are conjugate in
M>3. Furthermore, counting the cardinality of the set

My 30 = (2% 17)-type
(0, (x1ax2x3X4X5X6)) | (X1aX2X3X4X5X6) : M-sequence ,
o = (x1)(@)(x2)(x3)(x4) (x5, X6) - -
we have |Cyy, ((2% - 17)-type)| = 2688.

We can determine the conjugacy classes of the elements in M3, M, of orders 2, 5
and 6, and the conjugacy class of the element in M3 of order 4 by the same way as in

the proof of [Theorem 5.1.

THEOREM 5.2.  All elements of type (3% - 1°) form one conjugacy class in My, and the
order of the centralizer of the element in M»3 is 180.

PrOOF. Let

o= (a)(y) () (¥3)(ya)(ys) -
© = (a)(t)(t2)(83)(ta)(25) - -~
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be elements of type (3°-1°). By [Theorem 1.12, Y := {a,y;,..., s} and {a,11,...,15}
are non-special. There exists an element pe My such that p:f;—y; (1 <i<5),

p:a—a. Then p is in My and p~ltp = (a)(y)(12)(33)(ya)(¥s)---. There is an
M-matrix % such that

a yr Yo V3 Va Vs
@Y —

Using the elements in X(Y) (See Mheorem 1.8), we find that the nonidentity elements
in My fixing a, y,...,»s are o and o?. Since a3'oay = o? (a3 € My;) and a,p l1pe
{o,2%}, we have that ¢ and t are conjugate in M>,;. Furthermore, counting the
cardinality of the set

(

My 36 = (3% 1%)-type

(ax1x2x3x4x5) : ordered sequence
(g, (ax1x2X3X4X5)) . . ,
{a, x1,x2,X3,X4, X5} : non-special 6-point subset

\ o = (a)(x1)(x2)(x3)(x4)(xs) - -~ )

we have |Cyy,,((3%-1°)-type)| = 180.

We can determine the conjugacy class of the element in M»; of order 3 by the same
way as in the proof of Theorem 5.2

Using the same argument as in the proof of [Lemma 4.4, we have the following
result:

LemMmAa 5.3. Let C={xy,x2,...,x3} €. For an element 1= (x1)(x2)(x3,xs)
(xs, X, X7, X3) € A, there are eight elements in My of type (8% -4 -2 -12) which contain t
in cycle notation and these elements are conjugate in N := {6 € My |x° =x (Vxe C)}.

THEOREM 5.4. All the elements of type (8%-4-2-1) form one conjugacy class in
M>s, and the order of the centralizer of the element in Mys is 8.

ProoOF. Let
o = (a)(x1)(x2,x3)(X4, X5, X6, X7) - - -

7 = (a)(s1)(s2,53) (84, S5, S6,57) - * -
be elements of type (8%2-4-2-1). By [Theorem 1.12, {a,xi,...,x7} and {a,s,...,s7}
are octads. Hence there exists an element p in M,; such that pltp=
(a)(x1)(x2,x3) (x4, x5,X6, X7) ---. By [Lemma 5.3, we have that ¢ and 7 are conjugate in
M>,3. Moreover, counting the cardinality of the set

My s0=(82-4-2-1)-type

(ax1xy -+ - x7) : ordered sequence
(g, (ax;xy -+ x7)) ,
{a,x1,x2,...,x7} €0

\ o = (a)(x1)(x2, x3) (X4, X5, X6, X7) - - -

we have |Cyy,,((8%-4-2-1)-type)| = 8.
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We can determine the conjugacy class of the element in M»; of order 8 by the same
way as in the proof of [Theorem 5.4l

Applying the results about the conjugacy classes of M4 (See TABLE 2), we can
determine the conjugacy classes of M, of types (73 -12),(11%-1),(14-7-2),(15-5-3)
and (23), and the conjugacy classes of My of types (7°-1) and (11?).

We have determined all the conjugacy classes of M53, and the number of the
elements in My of type (4*-22-12%) is 41580.

THEOREM 5.5. All elements of type (4*-22-12) form two conjugacy classes in My,
and the orders of the centralizers in My, are 16 and 32.

PrOOF. Let

o = (a)(b)(x1)(x2)(¥1, ¥2)(¥3: ¥4) (21, 22,23, 24) - - - (213, 214, 215, Z16)
© = (a)(b)(s1)(82)(t1, 22) (23, a) (W1, w2, w3, wa) - - - (W13, W14, W15, Wi6)

be elements of type (4*-2%-12). Let C; € O such that C; 2 Z := {a,z1,23,23,24}. By

Theorem 1.6, we may assume that C; = Z; U{b, y;, y,} or C; = Z1U{x1, y, »,}.
Case 1. C;=2Z,U{b,y;, »}

Set Zz = {Cl,ZS,Z6,Z7,Zg},Zg = {a,29,210,211,212} and Z4 = {0,213,214,215,216}. Let

CieO such that C;2Z; (2<i<4). Since |C;NCj|=2 or 4(1<i#j<4) by

Lemma 1.1, each C; is as follows:

G =ZzU{b, ylvyz} or Z2U{bv y37y4}
C3 :Z3U{b7 ylayZ} or Z3U{b7 y37y4}

C4 = Z4U{b7 .y17y2} or Z4U{b7 y37y4}'

This case implies that b is in the octad containing a and four points p; (1 <i < 4) with
(P)” = pivi (1 <P<3),(pa)” = p1-

Case 2. C) =Z1U{x1, 1, )}
Then

Cy = ZoU{x1, y1, ya} or ZyU{x1, y3, ¥4}
Cy = Z3U{x1, y1, yo} or ZzU{x1, y3, ¥4}

Gy = Z4U{X1,y1,y2} or Z4U{X1,y3,y4}.

This case implies that b is not in the octad containing ¢ and four points p; (1 <i < 4)
with (p;)7 = piy (1 <i<3),(py)” = p1-

Suppose that ¢ and 7 satisfy Case 1. We may assume that (xjabzjzyz3z4) and
(syabwywowswy) are M-sequences. By [Corollary 1.4, there exists an element p e My
such that p:ar—a,p:b—b,p:si—x,p:wi—z; (1<i<4). By [Corollary 1.4 we
have that p~'tp = o (p € M). Suppose that ¢ and 7 satisfy the Case 2. Since we may
assume that (baxizjzyz3z4) and (basywiwawswys) are M-sequences, ¢ and 7 are conjugate
in M»; by the same argument as above. Suppose that ¢ satisfies Case 1, and 7 satisfies
Case 2. We assume that there exists an element p € My, such that p~'tp =¢. Then o
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satisfies Case 1, and p~'7p satisfies Case 2. This is a contradiction. Therefore ¢ and 7
are not conjugate in M»,.

It follows that all elements of type (4*-22-12) form one or two conjugacy classes
in M. We assume that o satisfies Case 1. Let % be the conjugacy class of M>,
containing ¢. Counting the cardinality of the set

o7t
(7, (x1abxyx3x4x5)) | (x1abxyx3xexs) : M-sequence ,
T= (Xl)((l)(b)(Xz, X3, X4, XS) e

we have that |Cyy,(0)| =32 and |%| = 13860. Then the order of % is less than
41580. It follows that all elements of type (4*-22-1%) form two conjugacy classes in
M>,. Moreover we have that the order of the other centralizer is 16.

This yields that we have classified all the conjugacy classes of M>,.

Our tables are, of course, the same as those in Frobenius [4] and Todd [6]!
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