Invariance of the Godbillon-Vey class by C^1 -diffeomorphisms for higher codimensional foliations

By Taro Asuke

(Received Dec. 24, 1996) (Revised Sept. 24, 1997)

Abstract. G. Raby proved in [4] that the Godbillon-Vey invariant for codimension-one foliations is invariant by C^1 -diffeomorphisms. In this paper we generalize the result for foliations of arbitrary codimension.

Introduction

Let (M_1, \mathscr{F}_1) and (M_2, \mathscr{F}_2) be closed foliated manifolds of codimension q. We assume the manifolds and the foliations are of class C^{∞} and oriented. Let $GV(\mathscr{F}_1)$ and $GV(\mathscr{F}_2)$ denote the Godbillon-Vey class of (M_1, \mathscr{F}_1) and (M_2, \mathscr{F}_2) , respectively. Let φ be a C^1 diffeomorphism from M_1 to M_2 which maps \mathscr{F}_1 to \mathscr{F}_2 . Then we have the following theorem.

THEOREM (Raby [4]). Suppose that q = 1. It then follows $\varphi^*(GV(\mathscr{F}_2)) = GV(\mathscr{F}_1)$. In this paper we generalize his result to foliations of higher codimension.

1. Preliminaries.

In this section we review basic results about currents and forms after de Rham [5]. We put $n = \dim M_1 = \dim M_2$. The space of p-dimensional currents are the dual of the space of p-forms of class C^{∞} . If T is a current of dimension p, we say T is of degree (n-p) or T is a p-current.

Let T be a p-current and η a p-form of class C^{∞} , then we denote by $\langle T, \eta \rangle$ the natural pairing.

Let ω be an integrable p-form, then ω defines a (n-p)-current T_{ω} by

$$\langle T_{\omega}, \eta \rangle = \int_{M_1} \omega \wedge \eta,$$

where η is an (n-p)-form. We denote the current T_{ω} by $[\omega]$.

Let T be a p-current and ω is a q-form of class C^{∞} , then we denote by $T \wedge \omega$ the (p-q)-current defined by

¹⁹⁹¹ Mathematics Subject Classification. Primary 57R32, Secondary 57R30.

Key Words and Phrases. Foliations, Godbillon-Vey class, C^1 -invariance, secondary characteristic classes. Supported by the JSPS Postdoctoral Fellowships for Research Abroad.

This article is prepared when the auther was a Research Fellow of the Japan Society for Promotion of Science.

T. Asuke

$$\langle T \wedge \omega, \eta \rangle = \langle T, \omega \wedge \eta \rangle.$$

We define a (p-q)-current $\omega \wedge T$ by the formula $\omega \wedge T = (-1)^{pq} T \wedge \omega$.

Let T be a p-current on M_1 and f be a C^{∞} map from M_1 to M_2 , then we denote by f_*T the p-current on M_2 defined by

$$\langle f, T, \eta \rangle = \langle T, f^* \eta \rangle.$$

Finally for a p-current T we denote by dT the (p-1)-current defined by

$$\langle dT, \eta \rangle = \langle T, (-1)^{n-p+1} d\eta \rangle.$$

See [5] or [6] for the details of the nature of currents.

2. The invariance of the Godbillon-Vey class.

In this section we show the following.

THEOREM. Let (M_1, \mathcal{F}_1) and (M_2, \mathcal{F}_2) be closed foliated manifolds of codimension q. We assume that the manifolds and the foliations are of class C^{∞} and oriented. Suppose that φ is a C^1 -diffeomorphism from M_1 to M_2 which maps \mathcal{F}_1 to \mathcal{F}_2 . Then $\varphi^*(GV(\mathcal{F}_2)) = GV(\mathcal{F}_1)$.

Now we recall the definition of the Godbillon-Vey class GV. By the assumption \mathscr{F}_1 is transversely oriented. Then we have a C^{∞} transverse volume form Ω_1 of (M_1, \mathscr{F}_1) . Due to the integrability of the subbundle $T\mathscr{F}_1$ of TM_1 , there is a smooth 1-form α_1 satisfying

$$d\Omega_1 = \Omega_1 \wedge \alpha_1$$
.

The Godbillon-Vey class is then defined to be the cohomology class of $H^*(M)$ given by the form $\alpha_1 \wedge (d\alpha_1)^q$.

Similarly we choose a C^{∞} transverse volume form Ω_2 of (M_2, \mathscr{F}_2) and define α_2 . It suffices to show that two forms $\varphi^*(\alpha_2 \wedge (d\alpha_2)^q)$ and $\alpha_1 \wedge (d\alpha_1)^q$ defines the same (n-(2q+1))-current modulo boundaries. For simplicity we assume that φ preserves the orientations of the manifolds and foliations.

First we begin with the following lemmas.

Lemma 2.1 (Raby [4], Lemme i)). Let ω be a p-form of class C^{∞} on M_2 , then we have

$$d[\varphi^*\omega] = [\varphi^*(d\omega)].$$

PROOF. We approximate $\psi = \varphi^{-1}$ by C^{∞} maps in the C^1 -topology and then see that

$$d(\psi_*[\omega]) = \psi_*[d\omega].$$

See Federer [1] and de Rham [5] for details.

On the other hand we have for any C^{∞} form η

$$\varphi_*\psi_*[\eta] = [\eta]$$
 and $\varphi_*[\varphi^*\eta] = [\eta]$.

Hence $[\varphi^*\eta] = \psi_*[\eta]$. It follows that

$$d[\varphi^*\omega] = d\psi_*[\omega] = \psi_*[d\omega] = [\varphi^*(d\omega)].$$

Since φ maps \mathcal{F}_1 to \mathcal{F}_2 and preserves the orientation,

$$\varphi^*\Omega_2 = e^h \cdot \Omega_1$$

where h is a certain continuous function.

LEMMA 2.2 (see Raby [4], Lemme ii)).

- i) The function h is leafwise of class C^1 .
- ii) Let θ be a continuous (q+1)-form which satisfies

$$d[e^h] \wedge \Omega_1 = [e^h \theta],$$

then we have

$$d[h] \wedge \Omega_1 = [\theta].$$

PROOF. It suffices to show the equation locally. So we choose a foliated chart $U_i \cong \mathbb{R}^p \times \mathbb{R}^q$, where

$$\mathscr{F}_1|_{U_i} \cong \{\mathbf{R}^p \times \{y\}; y \in \mathbf{R}^q\}.$$

We denote points of U_i by $(x, y) = (x_1, \dots, x_p, y_1, \dots, y_q)$. Then we may assume

$$\Omega_1 = a(x, y) dy_1 \wedge \cdots \wedge dy_q$$

where a is a C^{∞} function.

The assumption shows that

$$\theta = \left(\sum_{i=1}^{p} b_i(x, y) dx_i\right) \wedge dy_1 \wedge \cdots \wedge dy_q,$$

where b_i are continuous functions. It follows that

$$\frac{\partial [e^h]}{\partial x_i} \cdot a = [e^h \cdot b_i].$$

Here the term $\partial[e^h]/\partial x_i$ is defined by taking the distributional derivative of the continuous function e^h regarded as a function of x_i . Therefore the function e^h is a C^0 function with distributional C^0 derivative with respect to x. Hence e^h is of class C^1 with respect to x.

Consequently h is also of class C^1 with respect to x, and the equation

$$\frac{\partial h}{\partial x_i} \cdot a = b_i.$$

holds. It follows that

$$d[h] \wedge \Omega_1 = \left[\left(\sum_{i=1}^p \frac{\partial h}{\partial x_i} dx_i \right) \wedge \Omega_1 \right] = [\theta].$$

658 T. Asuke

We have

$$d[\varphi^*\Omega_2] = [\varphi^*(d\Omega_2)]$$
$$= [\varphi^*(\Omega_2 \wedge \alpha_2)]$$
$$= [e^h\Omega_1 \wedge \varphi^*\alpha_2].$$

The left hand side is equal to

$$d[e^h\Omega_1] = d[e^h] \wedge \Omega_1 + [e^h\Omega_1 \wedge \alpha_1].$$

It follows that

$$d[e^h] \wedge \Omega_1 = [e^h(\Omega_1 \wedge \varphi^* \alpha_2 - \Omega_1 \wedge \alpha_1)].$$

Hence by ii) of Lemma 2.2,

$$d[h] \wedge \Omega_1 = [\Omega_1 \wedge \varphi^* \alpha_2 - \Omega_1 \wedge \alpha_1].$$

Consequently we have

$$(\varphi^*\alpha_2 - \alpha_1 + (-1)^{q+1}d[h]) \wedge \Omega_1 = 0.$$

Now we put $\lambda = \varphi^* \alpha_2 - \alpha_1$, then λ is a continuous 1-form and

$$(\lambda + (-1)^{q+1}d[h]) \wedge \Omega_1 = 0.$$

The derivative $d[\lambda]$ of λ is represented by a continuous 2-form. In fact, if we put $\partial \lambda = \varphi^*(d\alpha_2) - d\alpha_1$ then by virtue of Lemma 2.1

$$d[\lambda] = d[\varphi^* \alpha_2 - \alpha_1]$$
$$= [\varphi^* (d\alpha_2) - d\alpha_1]$$
$$= [\partial \lambda].$$

Note that $d[\partial \lambda] = 0$ by definition.

Now we have an equality of currents as follows, namely,

$$\varphi^*(\alpha_2 \wedge (d\alpha_2)^q)
= (\alpha_1 + \lambda) \wedge (d\alpha_1 + \partial \lambda)^q
= \alpha_1 \wedge (d\alpha_1)^q + \sum_{j=1}^q \binom{q}{j} \alpha_1 \wedge (d\alpha_1)^{q-j} \wedge (\partial \lambda)^j + \lambda \wedge (d\alpha_1 + \partial \lambda)^q
= \alpha_1 \wedge (d\alpha_1)^q - d \left(\sum_{j=1}^q \binom{q}{j} \alpha_1 \wedge (d\alpha_1)^{q-j} \wedge (\partial \lambda)^{j-1} \wedge \lambda \right)
+ \sum_{j=1}^q \binom{q}{j} (d\alpha_1)^{q-j+1} \wedge (\partial \lambda)^{j-1} \wedge \lambda + \lambda \wedge (d\alpha_1 + \partial \lambda)^q.$$

Recall that

$$(\lambda + (-1)^{q+1}d[h]) \wedge \Omega_1 = 0$$

and h is leafwise of class C^1 . Hence if we put

$$\lambda = (-1)^q \sum_{i=1}^p f_i dx_i + \sum_{i=1}^q g_i dy_i,$$

where f_i and g_i are continuous functions, then locally we have

$$f_i = \frac{\partial h}{\partial x_i}.$$

Now we put

$$d_{x}h = \sum_{i=1}^{p} \frac{\partial h}{\partial x_{i}} dx_{i}.$$

Note that the operator d_x can be defined globally as the exterior differentiation along the leaves.

Now we have the following lemma:

LEMMA 2.3 (see Raby [4], Lemme iii)). Let ω be a continuous form such that $d[\omega]$ is defined by a continuous form of transverse degree q, i.e., of the form $\mu \wedge \Omega_1$, where μ is a continuous form. Then we have

$$d[h \cdot d[\omega]] = (-1)^q \lambda \wedge d[\omega].$$

PROOF. We work on a foliated chart $U_i \cong \mathbf{R}^p \times \mathbf{R}^q$.

From the assumption and the above remark it follows that

$$\lambda \wedge d[\omega] = (-1)^q d_x h \wedge d[\omega].$$

Thus it suffices to show that

$$d[h \cdot d[\omega]] = d_x h \wedge d[\omega].$$

This equation is obvious when h is of class C^{∞} . In general we choose a sequence h_n of C^{∞} functions such that h_n and $\partial h_n/\partial x_i$ converge to h and $\partial h/\partial x_i$ in the C^0 -topology, respectively. Then it is easy to see $d[h_n \cdot d[\omega]]$ and $d_x h_n$ converge to $d[h \cdot d[\omega]]$ and $d_x h$ in the space of currents, respectively.

Now we apply the above lemma to the continuous forms $\alpha_1 \wedge (d\alpha_1)^{q-j} \wedge (\partial \lambda)^{j-1}$ and $(\alpha_1 + \lambda) \wedge (d\alpha_1 + \partial \lambda)^{q-1}$. It suffices to see that the differential of these forms are of transverse degree not less than q. We have

$$d\Omega_1 = \Omega_1 \wedge \alpha_1$$
.

It follows that $\Omega_1 \wedge d\alpha_1 = 0$. Similarly

$$\Omega_2 \wedge d\alpha_2 = 0$$

T. Asuke

and hence

$$e^h\Omega_1 \wedge \varphi^*(d\alpha_2) = 0.$$

Noticing that $d[\lambda]$ is represented by the form $\varphi^*(d\alpha_2) - d\alpha_1$, we see that

$$\Omega_1 \wedge d[\lambda] = [\Omega_1 \wedge \partial \lambda] = 0.$$

These equalities show that the continuous forms $(td\alpha_1 + s\partial\lambda)^q$ are of transverse degree q for arbitrary real numbers t and s.

It follows that

$$(d\alpha_1)^{q-j+1} \wedge (\partial \lambda)^{j-1} \wedge \lambda = (-1)^q d[(d\alpha_1)^{q-j+1} \wedge (\partial \lambda)^{j-1} \cdot h],$$

and

$$\lambda \wedge (d\alpha_1 + \partial \lambda)^q = (-1)^q d[h \cdot (d\alpha_1 + \partial \lambda)^q].$$

Notice here that

$$d[(d\alpha_1 + \partial \lambda)^{q-1} \wedge (\alpha_1 + \lambda)]$$

$$= d[\varphi^* (d\alpha_2)^{q-1} \wedge \varphi^* \alpha_2]$$

$$= d[\varphi^* ((d\alpha_2)^{q-1} \wedge \alpha_2)]$$

$$= [\varphi^* (d\alpha_2)^q]$$

$$= [(d\alpha_1 + \partial \lambda)^q].$$

Consequently the two continuous forms $\varphi^*(\alpha_2 \wedge (d\alpha_2)^q)$ and $\alpha_1 \wedge (d\alpha_1)^q$ define the same class as a current modulo boundaries. Namely we have $\varphi^*(GV(\mathscr{F}_2)) = GV(\mathscr{F}_1)$.

REMARK 2.4. Quite recently, H. Moriyoshi has obtained the same result by a different approach [3].

Finally the author would express his gratitude to the referee for his helpful comments.

References

- [1] H. Federer, Geometric Measure Theory, Grundlehren der mathematischen Wissenschaften 153, 1969.
- [2] J. Heitsch and S. Hurder, Secondary Classes, Weil Measures and the Geometry of Foliations, J. Diff. Geom. **20** (1984), 291–309.
- [3] H. Moriyoshi, Talk given at seminar on foliations at Atami, October 1996.
- [4] G. Raby, Invariance des classes de Godbillon-Vey par C^1 -diffeomorphisms, Ann. Inst. Fourier, Grenoble 38 (1988), 205–213.
- [5] G. de Rham, Differentiable Manifolds, Grundlehren der mathematischen Wissenschaften 266, 1984.
- [6] L. Schwartz, Théorie des distributions. Nouvelle Edition. Paris, Hermann., 1966.

Taro Asuke

Department of Mathematical Sciences University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8914 Japan Current address:
Department of Mathematics,
Hiroshima University
1-3-1 Kagamiyama, Higashi-Hiroshima
Hiroshima 739-8526 Japan
E-mail: asuke@math.sci.hiroshima-u.ac.jp