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Abstract. For the signature of the Milnor fiber of a surface singularity of cyclic

type, we prove a certain inequality, which naturally induce an answer of Durfee’s

conjecture in this case. For the proof, we use a certain perturbation method on the way

of Hirzebruch’s resolution process.

Introduction.

Let ðB;P0Þ be a germ of a plane curve singularity gðx; yÞ ¼ 0 at the origin of C
2.

By a germ ðV ;PÞ of an n-fold cyclic cover (nV 2) branched along ðB;P0Þ, we mean a

germ of 2-dimensional isolated hypersurface singularity defined by the equation f ðx; y; zÞ

:¼ zn þ gðx; yÞ at the origin of C 3, which we simply call a singularity of cyclic type. The

aim of this paper is to describe analytic and topological invariants of ðV ;PÞ via a certain

algebra-geometric method. Especially, for the signature of the Milnor fiber sðV ;PÞ, we

prove a certain inequality, which naturally induce an a‰rmative answer to the negativity

conjecture for the signature posed by Durfee [D, p. 96] in the case of a singularity of

cyclic type.

In §1, we investigate the invariants of a complete surface S which is a cyclic covering

over a nonsingular surface, where we admit non-normal singularities on S. Especially

we define the ‘‘Milnor number’’ of such a non-normal surface in some sense, and prove

a Noether type formula in Proposition 1.5.

In §2, we first realize a singularity of cyclic type on a complete surface, and resolve

it by the method of Hirzebruch [Hi1]. Next we express the Milnor number and the

geometric genus of ðV ;PÞ in terms of the non-reduced divisor which naturally appears at

the final step of the resolution process by using Proposition 1.5 and the Esnault-Viehweg

formula [E], [V ].

We note that, by the reason that these invariants are essentially described in

A’Campo [Ac2] and in Esnault [E ], our contribution in §1, §2 is only to propose another

formalism. Our motivation of this formulation is to generalize to the arbitrary covering

degree of Horikawa’s method [Ho, §2] for double covering in some sence.

In §3, we define the improved singularity ðV4
;P4Þ of ðV ;PÞ which has the fol-

lowing property: The number of times needed of blow-ups of the branch curve of

ðV4
;P4Þ such that the reduced scheme of its total transform has normal crossing is one
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less than that of ðV ;PÞ in general. We also calculate the di¤erence of the invariants

between ðV ;PÞ and ðV4;P4Þ

The method of the construction of the improved singularity is a combinatorial

interpretation of the ‘‘local perturbation method’’ on the way of the embedded res-

olution process of a plane curve singularity appeared in A’Campo [Ac1], and has some

natural connection to A’Campo and Gusein-Zade theory [Ac1], [G]. We will publish

the topological meaning of this process as well as another application in our forth-

coming paper.

In §4, by using Hirzebruch-Durfee-Laufer’s formula [Hi2], [D], [L] and our previous

result, we prove a certain formula for sðV ;PÞ in Proposition 4.7.

§5 and §6 are devoted to estimate the signature. Our method is, roughly speaking,

to show that the signature of the improved singularity is not less than that of the

original singularity. We note that, after producing our process inductively, we finally

reach the singularity ðW ;PÞ whose branch curve is an ordinary singularity. Therefore

we can compare sðV ;PÞ with sðW ;PÞ. Our main result is the following:

Theorem. Let ðB;P0Þ be a germ of a plane curve singularity. Let ðC;P0Þ be a

germ of an ordinary plane curve singularity whose multiplicity coincides with the mul-

tiplicity of ðB;P0Þ. Let ðV ;PÞ and ðW ;PÞ be germs of n-fold cyclic cover branched along

ðB;P0Þ and ðC;P0Þ, respectively. Let sðV ;PÞ (resp. sðW ;PÞ) be the signature of the

Milnor fiber of ðV ;PÞ (resp. ðW ;PÞ). Then we have

sðV ;PÞU sðW ;PÞ:

Furtherover, the equality sðV ;PÞ ¼ sðW ;PÞ holds if and only if ðB;P0Þ itself is an

ordinary singularity.

We remark that sðW ;PÞ is explicitly calculated and its negativity is well-known.

Therefore the above theorem induce an answer to the problem of Durfee [D, p. 96] in

the case of a singularity of cyclic type as follows:

Corollary. Let ðV ;PÞ be a germ of analytic function f ðx; y; zÞ ¼ zn þ gðx; yÞ such

that ðV ;PÞ defines at most an isolated singularity. Then we have

sðV ;PÞU 0:

Furthermore, the equality sðV ;PÞ ¼ 0 holds if and only if ðV ;PÞ is a germ of a non-

singular point.

As a topological approach to the signature of a singularity of cyclic type, Neumann

and Wahl [NW ] showed that, under the assumption that the link L of the singularity

is a Z-homology sphere, s coincides with the (1=8)-time the Casson invariant of L. As

they proved in [NW, Proposition 2.1], the assumption for L to be a homology sphere is

somewhat strong, and so it seems an interesting problem to avoid it by extending the

notion of the Casson invariant. We note that, in the double point case z2 þ gðx; yÞ, it

is classically known that s coincides with the signature of the symmetrized Seifert form

of the classical link of the branch curve gðx; yÞ, which is the compound torus link (cf.

[Sh]). In this case, since the signature of the Seifert form changes sign when the link
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changes into its mirror image, the negativity of s means that the mirror image of a

classical algebraic link cannot be algebraic. Therefore one can imagine that our result

corresponds to some feature of the ‘‘one-sided chirality’’ of the non-classical link arising

from such a surface singularity.

From another point of view, the Durfee problem is directly connected with the

upper bound problem of the geometric genus of the singularity as is mentioned in [D,

p. 97]. For instance, we refer to [XY1], [XY2], [To1], [To2], [As] for some types of

singularities, whereas Wahl [W ] found a non-complete intersection singularity whose

signature of the Milnor fiber is positive.

On the other hand, general and powerful approaches for the signature of singularity

have been done via mixed Hodge theory and Seifert geometry ([Ne], [St1], [St2], [SSS ] etc.).

For the signature of weighted homogeneous singularities, many work have been

done ([Br], [HZ], [HM], [St2], [E], [XY2], [FMS], [NW ] etc.).

For recent global study of cyclic coverings of surfaces, we refer Sakai [Sa]. For

singularities on Galois coverings, we refer Tsuchihashi [Ts].
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§1. Cyclic coverings.

1.1 Let W be a complete nonsingular analytic surface and L ! W a line bundle on

W. For an integer n greater than 1, let B be a divisor on W which is linearly equivalent

to nL. We construct an n-fold cyclic cover S of W branched along B in the total space

VðLÞ of L in a usual manner as follows:

Suppose B is defined by the equation bi ¼ 0 on a chart Ui of W. Let xi be the fiber

coordinate of VðLÞ ! W on a local trivialization Ui � C . Then the equations xn
i þ bi

¼ 0 on Ui � C for all i patched and define the surface S on VðLÞ.

We remark that if B is reduced, then S is normal.

Let p : VðLÞ ¼ PðOW ðLÞlOW Þ ! W be the associated P
1-bundle. It is con-

venient to consider the above S as a hypersurface on VðLÞ. The dualizing sheaf oS

is isomorphic to O
VðLÞ

ðK
VðLÞ

þ SÞnOS and the self-intersection number o2
S is defined as

ðK
VðLÞ

þ SÞ2S on VðLÞ.

Lemma 1.2. Let S be an n-fold cyclic cover of W on VðLÞ. Then we have

(i) wðOSÞ ¼ ð1=4Þnðnÿ 1ÞKWLþ ð1=12Þnðnÿ 1Þð2nÿ 1ÞL2 þ nwðOW Þ,

(ii) o2
S ¼ nfðnÿ 1ÞLþ KWg2.

Proof. We first prove the assertion (ii). We set X ¼ VðLÞ and let T be the

tautological line bundle on X. Since KX is linearly equivalent to ÿ2T þ p�ðKW þ LÞ,
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we have

o
2
S ¼ fðnÿ 2ÞT þ p

�ðKW þ LÞg2 � nT ðon XÞ

¼ ðnÿ 2Þ2nL2 þ 2nðnÿ 2ÞKWLþ nðKW þ LÞ2 ðon WÞ

¼ nfðnÿ 1ÞLþ KWg2

by the formula T 3 ¼ Tðp�LÞ2.

Next we prove the assertion (i). Since we have

R1
p�OX ðKX þ SÞ ¼ 0;

p�OX ðKX þ SÞF Symmnÿ2ðOlOðLÞÞnOðKW þ LÞF 0
nÿ1

j¼1

OðKW þ jLÞ;

it follows from Leray’s spectral sequence and the Riemann-Roch formula that

wðX ;OðKX þ SÞÞ ¼
Xnÿ1

j¼1

wðW ;OðKW þ jLÞÞ

¼
1

2

Xnÿ1

j¼1

ð jKWLþ j2L2Þ þ ðnÿ 1ÞwðOW Þ

¼
1

4
nðnÿ 1ÞKWLþ

1

12
nðnÿ 1Þð2nÿ 1ÞL2 þ ðnÿ 1ÞwðOW Þ: ð1:2:1Þ

On the other hand, it follows from the exact sequence 0 ! OðKX Þ ! OðKX þ SÞ !

OðoSÞ ! 0 that

wðOSÞ ¼ wðoSÞ ¼ wðOðKX þ SÞÞ ÿ wðOðKX ÞÞ

¼ wðOðKX þ SÞÞ þ wðOW Þ: ð1:2:2Þ

Therefore the assertion (i) follows. r

Definition 1.3. (i) For a divisor B on W, we define the number mðBÞ by

mðBÞ ¼ ÿ2wðOBÞ þ eðBÞ;

where eðBÞ is the topological Euler number of the reduced scheme Bred of B.

(ii) For an n-fold cyclic cover S of W branched along B, we define the number

mðSÞ by

mðSÞ ¼ ðnÿ 1ÞmðBÞ

Lemma 1.4. (S. L. Tan) If B is a reduced divisor on W, then the number mðBÞ

coincides with the total Milnor number of B, i.e. the sum of the Milnor numbers of all the

isolated singularities on B.

Moreover in this case, for an n-fold cyclic cover S of W branched along B (which is

automatically normal ), the number mðSÞ coincides with the total Milnor number of S.
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Proof. The first assertion is proved in [Ta, Lemma 1.1] by Milnor’s formula [M,

p. 85]. The second assertion is clear from the first assertion because the equation of an

isolated singularity P on S is written as f ðx; y; zÞ ¼ zn þ gðx; yÞ and we have

mðPÞ ¼ dimCfx; y; zg=ð fx; fy; fzÞ

¼ ðnÿ 1Þ dimCfx; yg=ð fx; fyÞ ¼ ðnÿ 1ÞmðPÞ;

where P is the singularity defined by gðx; yÞ ¼ 0. r

Proposition 1.5. (The Noether type formula). Let S be an n-fold cyclic cover of

W with branch locus B on VðLÞ. Then we have

wðOSÞ ¼
1

12
ðo2

S þ eðSÞ þ mðSÞÞ:

Proof. Since S is topologically obtained by patching n copies of W along B for

nÿ 1 times, it follows from the Mayer-Vietoris exact sequence that

eðSÞ ¼ n eðWÞ ÿ ðnÿ 1ÞeðBÞ: ð1:5:1Þ

On the other hand, by the Riemann-Roch formula and the duality theorem, it follows

from the exact sequence 0 ! OðKW Þ ! OðKW þ BÞ ! OðoBÞ ! 0 that

wðOBÞ ¼ wðOðoBÞÞ ¼ ÿwðOðKW þ BÞÞ þ wðOðKW ÞÞ ¼ ÿ
1

2
ðKW þ BÞB:

Therefore it follows from Lemma 1.2 and the usual Noether formula for W that

wðOSÞ ÿ
1

12
ðo2

S þ eðSÞÞ ¼
1

12
n2ðnÿ 1ÞL2 þ

1

12
nðnÿ 1ÞKWLþ

1

12
ðnÿ 1ÞeðWÞ

¼
1

12
ðnÿ 1ÞðKWBþ B2 þ eðBÞÞ

¼
1

12
ðnÿ 1Þfÿ2wðOBÞ þ eðBÞg ¼

1

12
mðSÞ: r

Remark 1.6. In the situation of Proposition 1.5, we add the assumption that S is

normal. Then the assertion directly follows from Laufer’s formula [L] (see Brenton

[B ]).

§2. The invariant formula via the Hirzebruch-Jung resolution.

Let ðV ;PÞ be a germ of 2-dimensional isolated hypersurface singularity defined at

the origin of C
3 by the equation

f ðx; y; zÞ ¼ zn þ gðx; yÞ;

where gðx; yÞ is an analytic function with respect to the variables x, y, and n is an

integer greater than 1. Such a singularity ðV ;PÞ is said to be of cyclic type in this

paper. The aim of this section is to describe the geometric genus pgðV ;PÞ and the

Milnor number mðV ;PÞ in terms of the data on a branch curve which naturally appears

in the process of the Hirzebruch-Jung resolution of ðV ;PÞ. We note that this resolution
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process is a special case of the original one introduced by Hirzebruch [Hi1] for the

solution of the resolution problem of any 2-dimensional analytic space.

Lemma 2.1. Let ðV ;PÞ be as above. Then there exist a nonsingular surface W0, a

line bundle L0 on W0 and an n-fold cyclic cover p0 : S0 !W0 on VðL0Þ such that

(i) there exists a point P0 A S0 such that the germ of the singularity at P0 of S0

coincides with ðV ;PÞ,

(ii) the reduced scheme of the branch locus B0 of p0 has normal crossing outside a

neighborhood of P0 ¼ p0ðP0Þ.

Proof. By Artin’s theorem [Ar], we may assume that gðx; yÞ is algebraic. Let D

be the closure in P
2 of the a‰ne curve gðx; yÞ ¼ 0. The curve D is reduced since ðV ;PÞ

is an isolated singularity. Let Q0 A P
2 be the point corresponding to the origin of C 2

in the open immersion C
2
,! P

2.

We choose general hyperplanes H1; . . . ;Ht of P
2 which do not pass through Q0 in

such a way that the degree of the reduced divisor

D# :¼ DþH1 þ � � � þHt

is a multiple of n. We set deg D# ¼ na and L# ¼ O
P

2ðaÞ for a A Z. Let

p
# : S# ! P

2 be the n-fold cyclic cover branched along D# on VðL#Þ. Let

fQ0;Q1; . . . ;Qsg ðsV 0Þ be the set of all isolated singularities on D#. The fiber

ðp#Þÿ1ðQiÞ consists of one point for a fixed i (0U iU s), which we denote by Qi. Then

S# is a normal surface whose singularities are on Q0; . . . ;Qs. Moreover, the germ of

the singularity of S# at Q0 coincides with ðV ;PÞ.

Now let t
# : W0 ! P

2 be the succession of blow-ups whose centers are infinitely

near points of Q1; . . . ;Qs such that the reduced scheme of the divisor

B0 :¼ ðt
#Þ�D#

has normal crossing except in a neighborhood of P0 :¼ ðt
#Þÿ1ðQ0Þ. Set L0 ¼

ðt#Þ�O
P

2ðaÞ. Let p0 : S0 !W0 be the n-fold cyclic cover branched along B0 on VðL0Þ,

and we put P0 ¼ p
ÿ1
0 ðP0Þ. Then the desired properties are satified. r

2.2. Let VðL0ÞIS0 !W0 be the n-fold cyclic cover branched along B0 as in

Lemma 2.1. Let W0  �
t1

W1  �
t2
� � �  �

tr
Wr be the succession of blow-ups at infinitely

near points of P0 such that the reduced scheme ðBrÞred of the total transform Br of B0

by t1 � � � � � tr has normal crossing. We take the smallest such number r which enjoys

the above property and fix it from now on.

We note that, if r coincides with 0, then B0 defines an ordinary double point at P0.

In this case, ðV ;PÞ is a rational double point of type Anÿ1, whose properties concerning

our problem are well-known. From now on, we assume rV 1 in this section.

For 1U iU r, let Si be the fiber product of Siÿ1 and Wi over Wiÿ1, and let btiti : Si !

Siÿ1 and pi : Si !Wi be the natural maps. We set Li ¼ t
�
i Liÿ1. Then Si is realized on

VðLiÞ and the map btiti is also induced by the restriction of the natural map VðLiÞ !

VðLiÿ1Þ. Let r 0 : ~SS ! Sr be the normalization. We set r ¼ pr � r
0. Then the surface

~SS has at most isolated cyclic quotient singularities. Let r
00 : S � ! ~SS be the resolution

of such singularities. We note that this process r
00 is performed by using the so-called
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Hirzebruch-Jung string ([Hi1], [BPV, Chap. III]). Therefore we obtain the following

diagram:

VðLaÞ VðL0Þ VðL1Þ VðLrÞ

U U U U

S#  �
b
t#t#

S0  �bt1t1 S1  � � � �  �btrtr Sr  �r
0

~SS  �r
00

S �

# # # #

P
2  �t

#

W0  �t1 W1  ÿ � � �  �tr Wr

The nonsingular surface S � itself is not uniquely determined by the germ ðV ;PÞ since it

depends on the compactification S# in Lemma 2.1. Although locally, i.e. over an open

neighborhood which is the inverse image of the a‰ne neighborhood of the original

singularity, the structure of S � is uniquely determined. Moreover, the above process is

also uniquely determined up to order in the selection of the centers of blow-ups

t1; . . . ; tr. We call this process the Hirzebruch-Jung resolution of ðV ;PÞ.

For later use, we introduce some definitions and notation. For 0U j < iU r,

we put tj; i ¼ tjþ1 � � � � � ti : Wi !Wj. For 1U iU r, let Bi (resp. eBiBi) be the total

transform (resp. the proper transform) of B0 by t0;i. Then Bi coincides with the branch

locus of the n-fold cyclic cover pi : Si !Wi. Let Piÿ1 A Wiÿ1 be the center of the blow-

up ti, and let mi ¼ multPiÿ1
Biÿ1 be the multiplicity of Biÿ1 at Piÿ1. Let Ei; i ¼ t

ÿ1
i ðPiÿ1Þ

be the exceptional curve of ti, and let Ei; j be the proper transform of Ei; i by ti; j for

i < jU r. Let Ei be the (scheme-theoretic) exceptional divisor for t0; i. Then we have

the irreducible decomposition

E i ¼
Xi

j¼1

mjEj; i:

We put Ei ¼ ðEiÞred. Moreover we decompose B0 into B 00 þ B 000 , where B 00 is the divisor

consisting of the components of B0 which pass through P0 and B 000 ¼ B0 ÿ B 00. Note

that B 00 is a reduced divisor since P0 is an isolated singularity. We formally write the

irreducible decompositions as B 00 ¼
P0

j¼ÿr 0 Ej;0 and B 000 ¼
Pÿr 0ÿ1

j¼ÿr 00 mjEj;0. For 1U iU r

and ÿr 00U jU 0, let Ej; i be the proper transform of Ej;0 by t0;i. We also formally put

m j ¼ 1 for ÿr 0U jU 0. Then we have the irreducible decomposition

Bi ¼
Xi

j¼ÿr 00

mjEj; i; eBiBi ¼
X0

j¼ÿr 00

mjEj; i:

Now we look at the branch curve Br ¼
Pr

j¼ÿr 00 mjEj; r on Wr. The following lemma

essentially comes from the Esnault-Viehweg formula:

Lemma 2.3. In the above situation, we have

(i) wðOSr
Þ ¼ wðOS0

Þ ¼ wðOS #Þ, o
2
Sr
¼ o

2
S0
ÿ nr,

(ii) wðO ~SSÞ ÿ wðOSr
Þ ¼

1

2

Xnÿ1

i¼1

Xr

j¼ÿr 00

mj i

n

� �
2þ E2

j; r þ
Xr

k¼ÿr 00

mki

n

� �
Ek; rEj; r

( )

(iii) wðOS �Þ ¼ wðO ~SSÞ,

where ½mji=n� is the greatest integer not exceeding the number mji=n.
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Proof. Since KWi
¼ t

�
i KWiÿ1

þ Ei; i and Li ¼ t
�
i Liÿ1 for 1U iU r, we easily have

wðOSi
Þ ¼ wðOSiÿ1

Þ and o
2
Si
¼ o

2
Siÿ1

ÿ n by Lemma 1.2. Therefore we have wðOSr
Þ ¼

wðOS0
Þ and o

2
Sr
¼ o

2
S0
ÿ nr. We remark that the birational morphism S0 ! S# is

similarly constructed as for Sr ! S0 with respect to the isolated singularities fQig1UiUs

which appear in the proof of Lemma 2.1. Therefore we have wðOS0
Þ ¼ wðOS #Þ sim-

ilarly.

The assertion (iii) is clear because r
00 is the resolution of isolated rational singu-

larities.

It remains to prove (ii). For 0U iU nÿ 1, let L
ðiÞ be the line bundle on Wr

defined by

L
ðiÞ ¼ Lni

r lOWr
ÿ
X

r

j¼ÿr 00

mj i

n

� �

Ej; r

 !

:

Since ðBrÞred has normal crossing, it follows from [E, Lemma 2] or [V, §1] that

r�O ~SS F 0
nÿ1

i¼0

ðLðiÞÞ4;

where ðLðiÞÞ4 is the dual bundle of L
ðiÞ.

Since Rq
r�O ~SS vanishes for qV 1, it follows from the Riemann-Roch formula that

wðO ~SSÞ ¼ wðr�O ~SSÞ ¼
X

nÿ1

i¼0

w Wr;O ÿiLr þ
X

j

mji

n

� �

Ej; r

 ! !

¼
X

nÿ1

i¼0

1

2
ÿiLr þ

X

j

mj i

n

� �

Ej; r

 !

ÿiLr þ
X

j

mji

n

� �

Ej; r ÿ KWr

 !

þ wðOWr
Þ

( )

¼
1

2

X

nÿ1

i¼0

iLrðiLr þ KWr
Þ þ nwðOWr

Þ

þ
1

2

X

nÿ1

i¼1

X

r

j¼ÿr 00

mj i

n

� �

ÿ
2i

n
BrEj; r þ 2þ E2

j; r þ
X

r

k¼ÿr 00

mki

n

� �

Ek; rEj; r

( )

;

On the other hand, by (1.2.1) and (1.2.2), we have

wðOSr
Þ ¼

1

2

X

nÿ1

i¼0

iLrðiLr þ KWr
Þ þ nwðOWr

Þ:

Moreover if Ej; r is an exceptional curve for t
# � t1 � � � � � tr, then we have

BrEj; i ¼ 0. If Ej; r is not an exceptional curve for t
# � t1 � � � � � tr, then we have

½mji=n� ¼ 0 (1U iU nÿ 1) by m j ¼ 1. Therefore we obtain the assertion (ii). r

Corollary 2.4.

pgðV ;PÞ ¼ ÿ
1

2

X

nÿ1

i¼1

X

r

j¼1

mj i

n

� �

2þ E2
j; r þ

X

r

k¼1

mki

n

� �

Ek; rEj; r

( )

:
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Proof. We put t ¼ t
# � t0; r : Wr ! P

2. We first decompose the set of integers

J ¼ fÿr 00;ÿr 00 þ 1; . . . ; rg into the disjoint union JE q JB, where

JE ¼ f j A J jmjV 2g; JB ¼ f j A J jmj ¼ 1g:

Since D# is a reduced divisor on P
2,

P
j A JB

Ej; r coincides with the proper transform eBrBr

of D# by t, and
P

j A JE
mjEj; r coincides with the exceptional divisor of 6s

‘¼0
Q‘ for t.

We next decompose JE into the disjoint union
‘

0U‘Us J‘, where

J‘ ¼ f j A JE j tðEj; rÞ ¼ Q‘g:

It follows from Lemma 2.3 that

Xs

‘¼0

pgðQ‘ Þ ¼ wðOS #Þ ÿ wðOS �Þ

¼ ÿ
1

2

Xnÿ1

i¼1

Xr

j¼ÿr 00

mji

n

� �
2þ E2

j; r þ
Xr

k¼ÿr 00

mki

n

� �
Ek; rEj; r

( )

¼ ÿ
1

2

Xs

‘¼0

Xnÿ1

i¼1

X

j A J‘

mj i

n

� �
2þ E2

j; r þ
X

k A J‘

mki

n

� �
Ek; rEj; r

( )
:

We remark that, for any isolated singularity, its geometric genus is a local invariant

and is independent of the compactification of its ambient space. Hence pgðQ‘ Þ is

determined by the resolution data of Q‘ themselves, i.e. we have

pgðQ‘ Þ ¼ ÿ
1

2

Xnÿ1

i¼1

X

j A J‘

mji

n

� �
2þ E2

j; r þ
X

k A J‘

mki

n

� �
Ek; rEj; r

( )
:

Since we have pgðPÞ ¼ pgðQ0 Þ and J0 ¼ f1; . . . ; rg, the assertion is proved. r

Lemma 2.5.

mðV ;PÞ ¼ ðnÿ 1Þ

�
ÿ rþ

Xr

i¼1

ðmi ÿ 1ÞðmiE
2
i; r ÿ 2Þ

þ
X

ÿr 0UiUr;1UjUr; i<j;Ei; r VEj; r0q

ð2mimj ÿ 1Þ

�
:

Proof. For brevity, we write Ei :¼ Ei; r for ÿr 00U iU r.

Since eðWrÞ ¼ eðW0Þ þ r and eðBrÞ ¼ eðB0Þ þ r, we have eðSrÞ ¼ eðS0Þ þ r by

(1.5.1). Therefore it follows from Proposition 1.5 and Lemma 2.3 that

mðSrÞ ÿ mðS0Þ ¼ 12fwðOSr
Þ ÿ wðOS0

Þg ÿ ðo2
Sr
ÿ o

2
S0
Þ ÿ feðSrÞ ÿ eðS0Þg ¼ ðnÿ 1Þr: ð2:4:1Þ

Now for an integer i with 0U iU r, we define a divisor B
ðiÞ on Wr by

B
ðiÞ ¼

Xÿr 0ÿ1

j¼ÿr 00

mjEj þ
Xi

j¼ÿr 0

Ej þ
Xr

j¼iþ1

mjEj :
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Then we have Br ¼ B
ð0Þ and eBrBr þ Er ¼ B

ðrÞ. Now we claim

mðBrÞ ÿ mð eBrBr þ ErÞ ¼ 2
Xr

i¼1

ðmi ÿ 1ÞðEiB
ðiÞ ÿ 1Þ þ

Xr

i¼1

ðmi ÿ 1Þðmi ÿ 2ÞE2
i : ð2:4:2Þ

Indeed, if mi ¼ 1, then we clearly have wðO
B
ðiÿ1ÞÞ ¼ wðO

B
ðiÞÞ. Let us assume miV 2.

Then for any integer k (1U kUmi ÿ 1), we consider the exact sequence

0 ! OEi
ðÿB

ðiÞ ÿ ðk ÿ 1ÞEiÞ ! O
B
ðiÞþkEi

! O
B
ðiÞþðkÿ1ÞEi

! 0:

We note that Ei is isomorphic to P
1 for 1U iU r. Therefore, by using the above

sequence inductively and by the Riemann-Roch formula, we have

wðO
B
ðiÿ1ÞÞ ¼ wðO

B
ðiÞþðmiÿ1ÞEi

Þ ¼ wðO
B
ðiÞÞ þ

Xmiÿ2

k¼0

wðOEi
ðÿB

ðiÞ ÿ kEiÞÞ

¼ wðO
B
ðiÞÞ þ

Xmiÿ2

k¼0

fEiðÿB
ðiÞ ÿ kEiÞ þ 1g

¼ wðO
B
ðiÞÞ ÿ ðmi ÿ 1ÞðEiB

ðiÞ ÿ 1Þ ÿ
1

2
ðmi ÿ 1Þðmi ÿ 2ÞE2

i :

From this, we obtain (2.4.2).

Next we compare mðB0Þ with mð eBrBr þ ErÞ. Let U0 be a suitable a‰ne neigh-

borhood of P0 in W0 and set Ur ¼ tÿ1
0; rðU0Þ. Then the restricted curves B0jW0nU0

and

ð eBrBr þ ErÞjWrnUr
are mutually isomorphic. On the other hand, Er and eBrBr meet trans-

versally at l :¼ Er
eBrBr points. Moreover Er has just rÿ 1 ordinally double points as its

singularities. Therefore the set of singularities on ð eBrBr þ ErÞjUr
consists of rþ lÿ 1

ordinally double points, while the set of singulariries on B0jU0
consists of only P0

itself. Hence it follows from Lemma 1.4 that

mð eBrBr þ ErÞ ÿ mðB0Þ ¼ rþ lÿ 1ÿ mðP0Þ: ð2:4:3Þ

Therefore from (2.4.2) and (2.4.3), we have

mðBrÞ ÿ mðB0Þ ¼
Xr

i¼1

f2ðmi ÿ 1ÞðE2
i ÿ 1Þ þ ðmi ÿ 1Þðmi ÿ 2ÞE2

i g

þ 2
Xr

i¼1

ðmi ÿ 1Þ
Xiÿ1

j¼ÿr 0

Ej þ
Xr

j¼iþ1

mjEj

 !
Ei þ rþ lÿ 1ÿ mðP0Þ

¼
Xr

i¼1

ðmi ÿ 1ÞðmiE
2
i ÿ 2Þ þ

X

ÿr 0UiU0;1UjUr;Ei VEj0q

fð2mj ÿ 1Þ þ 1g

þ
X

1Ui<jUr;Ei VEj0q

f2ðmi ÿ 1Þmj þ 2ðmj ÿ 1Þ þ 1g ÿ mðP0Þ

¼
Xr

i¼1

ðmi ÿ 1ÞðmiE
2
i ÿ 2Þ þ

X

ÿr 0UiUr;1UjUr; i<j;Ei VEj0q

ð2mimj ÿ 1Þ ÿ mðP0Þ:

From this and (2.4.1), we obtain the assertion. r
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Example 2.6. Let ðV ;PÞ be the singularity defined by z45 þ xðx2 þ y3Þ ¼ 0. The

total transform of the embedded resolution of the singularity xðx2 þ y3Þ ¼ 0 is written

by
P3

i¼ÿ1 miEi where E2
1 ¼ ÿ3, E2

2 ¼ ÿ2, E2
3 ¼ ÿ1, E3E2 ¼ E3E1 ¼ E2E0 ¼ E3Eÿ1 ¼ 1,

mÿ1 ¼ m0 ¼ 1, m1 ¼ 3, m2 ¼ 5 and m3 ¼ 9. Therefore we have pgðV ;PÞ ¼ 35 and

mðV ;PÞ ¼ 308 by Corollary 2.4 and Lemma 2.5.

§3. Improved singularities.

Let ðV ;PÞ be a germ of 2-dimensional isolated singularity of cyclic type. The aim

of this section is to define a new singularity ðV4;P4Þ whose di‰culty compared with

ðV ;PÞ is improved in ‘‘a unit’’ in the following sense: If we complete the process of

blow-ups of the base surfaces just r times in the Hirzebruch-Jung resolution of ðV ;PÞ,

then the corresponding process for ðV4;P4Þ is completed in at most rÿ 1 times. Next

we calculate the di¤erence of invariants between ðV ;PÞ and ðV4;P4Þ.

3.1. We go back to the situation of 2.2. We assume rV 2 in this section. For

2U iU r, we consider the blow-up ti : Wi ! Wiÿ1 with center Piÿ1. We set biÿ1 ¼

multPiÿ1
gBiÿ1Biÿ1. According to the position of Piÿ1 in Eiÿ1, we classify ti into the following

two types:

(A) Assume that Piÿ1 is a nonsingular point of Eiÿ1. There exists an integer j1ðiÞ

with 1U j1ðiÞU i ÿ 1 which is uniquely determined by i such that Piÿ1 is contained

in Ej1ðiÞ; iÿ1. We have

mi ¼ mj1ðiÞ þ biÿ1:

In this case, ti is said to be of type A.

(B) Assume that Piÿ1 is a double point of Eiÿ1. There exist integers j1ðiÞ and

j2ðiÞ with 1U j1ðiÞ < j2ðiÞU i ÿ 1 determined by i such that Piÿ1 coincides with

Ej1ðiÞ; iÿ1 VEj2ðiÞ; iÿ1. We have

mi ¼ mj1ðiÞ
þmj2ðiÞ

þ biÿ1:

In this case, ti is said to be of type B.

3.2. We consider the blow up tr : Wr ! Wrÿ1. We define a new curve Drÿ1 on a

neighborhood of Erÿ1 in Wrÿ1 in the following way:

(A) Assume tr is of type A. Since tr is the last blow-up in order to obtain the

normal crossing property for ðBrÞred near Er, the local branch of gBrÿ1Brÿ1 at Prÿ1 consists of

brÿ1 nonsingular components C1; . . . ;Cbrÿ1
such that the tangent lines at Prÿ1 of

C1; . . . ;Cbrÿ1
and Ej1ðrÞ

are mutually distinct. Now we take any nonsingular analytic

curves C 0
1; . . . ;C

0
brÿ1

locally defined in a suitable neighborhood U of Erÿ1 in Wrÿ1 such

that

(i) C 0
1; . . . ;C

0
brÿ1

do not intersect one another,

(ii) C 0
i intersects Erÿ1 transversally at one point in Ej1ðrÞ; rÿ1nðEj1ðrÞ; rÿ1 V SingðErÿ1ÞÞ

for 1U iU brÿ1.

Then we define a new reduced curve Drÿ1 on U by
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Drÿ1 ¼ gBrÿ1Brÿ1jU ÿ
Xbrÿ1

i¼1

Ci þ
Xbrÿ1

i¼1

C
0
i
;

where gBrÿ1Brÿ1jU is the restriction of gBrÿ1Brÿ1 to U. See Figure 1.

(B) Assume tr is of type B. The local branch of gBrÿ1Brÿ1 at Prÿ1 consists of brÿ1

nonsingular components C1; . . . ;Cbrÿ1
such that the tangent lines at Prÿ1 of C1; . . . ;Cbrÿ1

,

Ej1ðrÞ
and Ej2ðrÞ

at Prÿ1 are mutually distinct. We take nonsingular analytic curves

C
0
1; . . . ;C

0
brÿ1

, C
00
1 ; . . . ;C

00
brÿ1

defined on U such that

(i) C
0
1; . . . ;C

0
brÿ1

, C
00
1 ; . . . ;C

00
brÿ1

do not intersect one another,

(ii) C
0
i

intersects Erÿ1 transversally at one point in Ej1ðrÞ; rÿ1nðEj1ðrÞ; rÿ1 V

SingðErÿ1ÞÞ, and C
00
i

intersects Erÿ1 transversally at one point in Ej2ðrÞ; rÿ1nðEj2ðrÞ; rÿ1 V

SingðErÿ1ÞÞ for 1U iU brÿ1.

Then we define a new reduced curve Drÿ1 on U by

Drÿ1 ¼ gBrÿ1Brÿ1jU ÿ
Xbrÿ1

i¼1

Ci þ
Xbrÿ1

i¼1

C
0
i
þ
Xbrÿ1

i¼1

C
00
i
:

as in Figure 2.

For 0U iU rÿ 2, we put

Di ¼ ðti; rÿ1Þ�Drÿ1:

Figure 1

Figure 2
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The curve Di is defined in a neighborhood of Ei in Wi for 1U iU rÿ 1, and is reduced

by our construction. The curve D0 is defined in a neighborhood of P0 A W0 and is also

reduced.

Remark 3.3. The above construction of Drÿ1 is a combinatorial interpretation of

the following: If we could perturb the germ at Prÿ1 of gBrÿ1Brÿ1 to the transversal direction

against Erÿ1, we would obtain Drÿ1.

This idea is already seen in A’Campo [Ac1]. Furthermore this is directly related to

the method of T. S. Röbbecke [R]. (This was pointed out to the author by Professor

Brieskorn.) For more general treatment of the argument of this type, we refer Oka [O].

Definition 3.4. As in the above situation, we put g4ðx; yÞ ¼ 0 to be the defining

equation of D0 at P0. We also define a germ of 2-dimensional isolated singularity

ðV4;P4Þ of cyclic type to be the germ at the origin of C
3 defined by the equation

f4ðx; y; zÞ :¼ zn þ g4ðx; yÞ ¼ 0:

We call ðV4;P4Þ an improved singularity of ðV ;PÞ.

Example 3.5. If gðx; yÞ ¼ x2 þ y5, then we have g4ðx; yÞ ¼ x2 þ y4 as in Figure 3.

Example 3.6. Since the definition of g4ðx; yÞ depends on the order of blow-ups to

resolve gðx; yÞ, if gðx; yÞ has many local analytic branches, then g4ðx; yÞ is not uniquely

determined. For example, if gðx; yÞ ¼ ðx2 þ y3Þfðxþ yÞ3 þ y6g, then we easily have

g4ðx; yÞ ¼ ðx2 þ y2Þfðxþ yÞ3 þ y6g or g4ðx; yÞ ¼ ðx2 þ y3Þfðxþ yÞ3 þ y3g.

3.7. The Hirzebruch-Jung resolution of ðV4;P4Þ is produced in the following

way: We may assume that g4ðx; yÞ is algebraic as a germ of an isolated singularity by

Artin [Ar]. Then by the same argument as in Lemma 2.1, there is an n-fold cyclic cover

p
0
0 : S

0
0 !W 0

0 on VðL 00Þ for some line bundle L 00 with the branch locus B4

0 such that

(i) there exist a point P 00 A W 0
0 and an open neighborhood U 0 of P 00 in W 0

0 such

that the restricted curve B4

0 jU 0 coincides with D0jU for some open neighborhood U of P0

in W0. Especially the germ of the singularity of S 00 at P 00 ¼ p
0ÿ1
0 ðP

0
0Þ coincides with

ðV4;P4Þ.

(ii) ðB4

0 Þred has normal crossing on the locus W 0
0nU

0.

Since D0 is the image of the local curve Drÿ1 induced by the succession of blow-downs

of the ambient spaces t0; rÿ1 : Wrÿ1 !W0, the embedded resolution process for the

singularity P 00 is produced by the same process locally isomorphic to these (rÿ 1)-fold

blow-ups. In other words, there exists a succession of blow-ups W 0
0  �

t
0
1

W 0
1  �

t
0
2
� � �  �

t
0
rÿ1

W 0
rÿ1 which satisfies the following properties: For 1U i < jU rÿ 1, we set t

0
i; j ¼ t

0
iþ1

� � � � � t 0j . Then:

(i) For any i ð1U iU rÿ 1Þ; ðt 00; iÞ
ÿ1ðU 0Þ is isomorphic to t

ÿ1
0; iðUÞ.

(ii) Let fB4

iB
4

i be the proper transform of B4

0 by t
0
0; i. Then fB4

iB
4

i j ðt 0
0; i
Þÿ1ðU 0Þ is iso-

morphic to Di j tÿ1
0; i
ðUÞ.

Let B4

i be the total transform of B4

0 by t
0
0; i ð0U iU rÿ 1Þ. Then the reduced

scheme of B4

rÿ1 has normal crossing. Let p 0rÿ1 : S
0
rÿ1 !W 0

rÿ1 be the n-fold cyclic cover

branched along B4

rÿ1 on Vðt 0�0; rÿ1L
0
0Þ. Let S 0rÿ1  �

r
000

ŜS  �
r
0000

S�� be the composite of the
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normalization and the resolution of cyclic quotient singularities on ŜS. This complete

the process of the Hirzebruch-Jung resolution of ðV4
;P

4Þ.

Incidentally in the resolution process for ðV4
;P

4Þ, the minimal number of times of

blow-ups so that the reduced scheme of the proper transform of the branch curve has

normal crossing need not coincide with rÿ 1 in general. For instance in Example 3.5,

we have r ¼ 4 for ðV ;PÞ while r ¼ 2 for ðV4
;P

4Þ. However, it does not matter for

our argument, because we do not need the minimality of the resolution.

From now on, since we only consider local properties satisfied in the neighborhoods

of the exceptional sets of P0 and P
0
0, we identify W

0
i
with Wi and t

0
i
with ti, respectively,

Figure 3
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for 0U iU rÿ 1, and use the symbols Pi, Ei and Ei; j as in the previous case. That is,

Piÿ1 and Ei are respectively the center and the exceptional set of the blow-up t 0i ¼ ti,

and Ei; j ð1U i < jU rÿ 1Þ is the proper transform of Ei by t 0i; j ¼ ti; j . We set E4

rÿ1 ¼

B4

rÿ1 ÿ
gB4

rÿ1B4

rÿ1. The support of E
4

rÿ1 coincides with Erÿ1 ¼
Prÿ1

k¼1 Ek; rÿ1. We set E
4

:¼

ðp 0
rÿ1 � r

000 � r 0000Þÿ1ðErÿ1Þ, which is the exceptional set of the singularity (V4;P4) by this

resolution.

Now the proof of the following lemma is due to Masataka Tomari.

Lemma 3.8. (Tomari) (i) For 0U iU rÿ 2, we have

multPi
fB4

iB
4

i ¼ multPi
eBiBi:

(ii) The divisor E
4

rÿ1 coincides with the divisor Erÿ1.

Proof. We prove (i). Let

t�i; rÿ1mPi
¼ O

Xrÿ1

j¼iþ1

njEj; rÿ1

 !

be the pull-back of the maximal ideal mPi
at Pi. Since gBrÿ1Brÿ1 (resp. gB4

rÿ1B4

rÿ1) is the proper

transform of eBiBi (resp. fB4

iB
4

i ) by ti; rÿ1, it is well-known (and easily proved by induction)

that

multPi
eBiBi ¼ gBrÿ1Brÿ1 � t

�
i; rÿ1mPi

; multPi
fB4

iB
4

i ¼ gB4

rÿ1B4

rÿ1 � t
�
i; rÿ1mPi

:

Therefore if tr is of type A, then we have

multPi
eBiBi ÿmultPi

fB4

iB
4

i ¼
Xrÿ1

j¼iþ1

njEj; rÿ1ð eBiBi ÿ fB4

iB
4

i Þ

¼ nj1ðrÞEj1ðrÞ; rÿ1

Xbrÿ1

k¼1

Ck ÿ
Xbrÿ1

k¼1

C 0
k

 !
¼ 0:

If tr is of type B, then we also have

multPi
eBiBi ÿmultPi

fB4

iB
4

i

¼ ðnj1ðrÞEj1ðrÞ; rÿ1 þ nj2ðrÞEj2ðrÞ; rÿ1Þ
Xbrÿ1

k¼1

Ck ÿ
Xbrÿ1

k¼1

C 0
k ÿ

Xbrÿ1

k¼1

C 00
k

 !
¼ 0:

Hence the assertion (i) is proved.

Next we prove (ii). Let E4

rÿ1 ¼
Prÿ1

i¼1 m
0
iEi; rÿ1 be the irreducible decomposition. It

su‰ces to prove

mi ¼ m 0
i ð3:8:1Þ

for 1U iU rÿ 1. We prove this by induction on i. If i ¼ 1, it follows from the

assertion (i) that

m 0
1 ¼ multP0

fB4

0B
4

0 ¼ multP0
fB0B0 ¼ m1:
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Assume (3.8.1) is satisfied for any j with 1U jU i ÿ 1. If ti is of type A, then it follows

from the assertion (i) that

m 0
i ¼ m 0

j1ðiÞ
þmultPiÿ1

gB4
iÿ1B4
iÿ1 ¼ mj1ðiÞ

þmultPiÿ1
gBiÿ1Biÿ1 ¼ mi:

If ti is of type B, we also have

m 0
i ¼ m 0

j1ðiÞ
þm 0

j2ðiÞ
þmultPiÿ1

gB4
iÿ1B4
iÿ1 ¼ mj1ðiÞ

þmj2ðiÞ
þmultPiÿ1

gBiÿ1Biÿ1 ¼ mi:

Thus the assertion (ii) is also proved. r

Now we compare the invariants of the improved singularity with those of the

original one. For a rational number a, we set hai ¼ aÿ ½a�, and call it the fractional

part of a.

Lemma 3.9. (a) Assume tr is of type A. Then we have

pgðV ;PÞ ÿ pgðV
4
;P4Þ ¼

brÿ1ðnÿ 1Þ

12n
fbrÿ1ð2nÿ 1Þ ÿ 3ng

ÿ
brÿ1

n

Xnÿ1

i¼1

i
mri

n

� �
ÿ

mj1ðrÞ
i

n

� �� �

ÿ
1

4
fgcdðmr; nÞ ÿ gcdðmj1ðrÞ; nÞg

þ
1

2

Xnÿ1

i¼1

mri

n

� �
ÿ

mj1ðrÞi

n

� �� �2
:

(b) Assume tr is of type B. Then we have

pgðV ;PÞ ÿ pgðV
4
;P4Þ ¼

brÿ1ðnÿ 1Þ

12n
fbrÿ1ð2nÿ 1Þ ÿ 3ng

ÿ
brÿ1

n

Xnÿ1

i¼1

i
mri

n

� �
ÿ

mj1ðrÞ
i

n

� �
ÿ

mj2ðrÞ
i

n

� �� �

ÿ
1

4
fnþ gcdðmr; nÞ ÿ gcdðmj1ðrÞ

; nÞÞ ÿ gcdðmj2ðrÞ
; nÞg

þ
1

2

Xnÿ1

i¼1

mri

n

� �
ÿ

mj1ðrÞ
i

n

� �
ÿ

mj2ðrÞ
i

n

� �� �2
:

Proof. For brevity, we write b ¼ brÿ1, ji ¼ jiðrÞ ði ¼ 1; 2Þ, Er ¼ Er; r, dr ¼

gcdðmr; nÞ, dj1 ¼ gcdðmj1ðrÞ
; nÞ and so on.

We first assume tr is of type A. It follows from Corollary 2.4 and Lemma 3.8 that
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pgðV ;PÞ ÿ pgðV
4
;P4Þ

¼ ÿ
1

2

Xnÿ1

i¼1

mj1 i

n

� �
E2
j1; r

ÿ E2
j1; rÿ1 þ

mj1 i

n

� �
ðE2

j1; r
ÿ E2

j1; rÿ1Þ þ
mri

n

� �
Ej1; rEr

� �

ÿ
1

2

Xnÿ1

i¼1

mri

n

� �
E2
r þ 2þ

mj1 i

n

� �
ErEj1; r þ

mri

n

� �
E2
r

� �

¼
1

2

Xnÿ1

i¼1

mri

n

� �
ÿ

mj1 i

n

� �� �
mri

n

� �
ÿ

mj1 i

n

� �
ÿ 1

� �

¼
1

2

Xnÿ1

i¼1

bi

n
ÿ

mri

n

� �
ÿ

mj1 i

n

� �� �� �
bi

n
ÿ 1ÿ

mri

n

� �
ÿ

mj1 i

n

� �� �� �

¼
bðnÿ 1Þ

12n
fbð2nÿ 1Þ ÿ 3ng ÿ

b

n

Xnÿ1

i¼1

i
mri

n

� �
ÿ

mj1 i

n

� �� �

þ
1

2

Xnÿ1

i¼1

mri

n

� �
ÿ

mj1 i

n

� �� �
þ
1

2

Xnÿ1

i¼1

mri

n

� �
ÿ

mj1 i

n

� �� �2
:

We set n ¼ dr~nn and mr ¼ drfmrmr. Since ~nn and fmrmr are mutually prime, we have

Xnÿ1

i¼1

mri

n

� �
¼

Xdr ~nnÿ1

i¼1

fmrmri

n

� �
¼ dr

X~nnÿ1

j¼1

j

~nn
¼

nÿ dr

2
:

By the above argument, we have

Xnÿ1

i¼1

mri

n

� �
ÿ

mj1 i

n

� �� �
¼ ÿ

1

2
dr ÿ dj1
ÿ �

:

Hence the assertion (a) is proved.

In the case of type B, we have the assertion (b) by the similar calculation. r

Lemma 3.10. (a) Assume tr is of type A. Then we have

mðV ;PÞ ÿ mðV4
;P4Þ ¼ ðnÿ 1Þbrÿ1ðbrÿ1 ÿ 1Þ:

(b) Assume tr is of type B. Then we have

mðV ;PÞ ÿ mðV4
;P4Þ ¼ ðnÿ 1Þb2

rÿ1:

Proof. We use the shortened symbol as in Lemma 3.9. We use Lemmas 2.5 and

3.8. Assume tr is of type A. Since mr is equal to mj1 þ b, we have

1

nÿ 1
fmðV ;PÞ ÿ mðV4

;P4Þg ¼ ðmr ÿ 1ÞðmrE
2
r ÿ 2Þ þ ðmj1 ÿ 1Þmj1ðE

2
j1; r

ÿ E2
j1; rÿ1Þ

þ ð2mrb ÿ 1Þ þ ð2mrmj1 ÿ 1Þ ÿ ð2mj1b ÿ 1Þ ÿ 1 ¼ b2ÿb:

Thus the assertion (a) is proved.
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In the case of type B, we have the assertion (b) by the similar calculation. r

Next we calculate the di¤erence of the first Betti number of the exceptional sets. We

consider Er on Wr. For each i ð1U iU rÞ, we set

IðiÞ ¼ f j j ÿ r0U jU r; j0 i;Ej VEi 0qg:

Let ci be the great common divisor of n, mi and all of mj ð j A IðiÞÞ.

Lemma 3.11. (a) Assume tr is of type A. Then we have

b1ð ~EEÞ ÿ b1ðE
4Þ ¼ ðbrÿ1 ÿ 1Þfgcdðmr; nÞ ÿ gcdðmj1ðrÞ

; nÞg þ cj1ðrÞ ÿ gcdðmr;mj1ðrÞ
; nÞ:

(b) Assume tr is of type B. Then we have

b1ð ~EEÞ ÿ b1ðE
4Þ ¼ brÿ1 gcdðmr; nÞ ÿ

X2

k¼1

gcdðmjkðrÞ
; nÞ þ 1

( )
þ
X2

k¼1

cjkðrÞ

ÿ 1ÿ
X2

k¼1

gcdðmr;mjkðrÞ; nÞ þ gcdðmj1ðrÞ;mj2ðrÞ; nÞ:

Proof. Adding to the simplified notation as in Lemma 3.9, we further write dj1;r ¼

gcdðmj1 ;mr; nÞ and so on.

Assume tr is of type A. We first consider S � ! Wr. The number of components

in ~EE which dominate Ej1 is cj1 . (e.g. Tsuchihashi [Ts, §3].) We write these components

by
g
E

ð1Þ
j1E
ð1Þ
j1 ; . . . ;

g
E

ðcj1 Þ
j1E
ðcj1 Þ
j1 : For each i ð1U iU cj1Þ, the natural map

g
E

ðiÞ
j1E
ðiÞ
j1 ! Ej1 is a cyclic

covering of degree dj1=cj1 whose ramification points are on the inverse image of Ej1 VEj

ð j A Iðj1ÞÞ. Since the number of the points on the inverse image of Ej1 VEj is dj1; j=cj1
and the ramification index at these points is dj1=dj1; j, it follows from the Riemann-

Hurwiz formula that

Xcj1

i¼1

b1ð
g
E

ðiÞ
j1E
ðiÞ
j1 Þ ¼ 2cj1 ÿ dj1 ÿ dj1; r þ

X

j A Iðj1Þ; j0r

ðdj1 ÿ dj1; jÞ:

Similarly there is an unique component eErEr of E which dominate Er and we have

b1ð eErErÞ ¼ 2ÿ dr ÿ dj1; r þ bðdr ÿ 1Þ:

Moreover each
g
E

ðiÞ
j1E
ðiÞ
j1 ð1U iU cj1Þ and eErEr is connected by dj1; r=cj1 Hirzebruch-Jung

strings. Therefore they contribute

cj1
dj1; r

cj1
ÿ 1

� �
¼ dj1; r ÿ cj1

to b1ðEÞ as loops of the dual graph of E.

Next we consider S�� ! Wrÿ1. There is a unique component gEj1; rÿ1Ej1; rÿ1 of E4 which

dominate Ej1; rÿ1 and we have

b1ð gEj1; rÿ1Ej1; rÿ1Þ ¼ ðb ÿ 2Þðdj1 ÿ 1Þ þ
X

j A Iðj1Þ; j0r

ðdj1 ÿ dj1; jÞ:
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It is verified that the other components of E and E
4 do not contribute to the

di¤erence of the first Betti numbers. Therefore the assertion (a) easily follows.

In the case of type B, we have the assertion (b) by the similar calculation. r

§4. The signature of the Milnor fiber.

For a germ of 2-dimensional isolated hypersurface singularity ðV ;PÞ, the signature

of smoothing sðV ;PÞ is defined as follows: Let F and qF be the Milnor fiber of ðV ;PÞ

and its natural real boundary, respectively. Then sðV ;PÞ is defined to be the signature

of the quadratic form

H 2ðF ; qF ;RÞ �H 2ðF ; qF ;RÞ !
a1

H 2ðF ; qF ;RÞ �H 2ðF ;RÞ !
a2

H 4ðF ; qF ;RÞFR;

where the map a1 is induced by the natural map between the second factors and a2 is

induced by the cup product. By using essentially the Hirzebruch theory of the signature

defect [Hi2], Durfee [D] proposed some formula for s. By combining the formulas [D,

Corollary 2.1] and Laufer [L], we have:

Theorem 4.1. (Hirzebruch, Durfee, Laufer)

sðV ;PÞ ¼ ÿmðV ;PÞ þ 4pgðV ;PÞ ÿ b1ðE Þ;

where E is the exceptional set of a good resolution of ðV ;PÞ.

Let ðV ;PÞ be a germ of 2-dimensional isolated singularity of cyclic type. The aim

of this section is to propose a formula for sðV ;PÞ by using the method in the previous

sections.

We consider the Hirzebruch-Jung resolution of ðV ;PÞ, and use the same notation as

in §2 and §3. We first formally set ðV½r�;P½r�Þ ¼ ðV ;PÞ. If rV 2, then for any integer i

with 1U iU rÿ 1, we inductively define a new germ ðV½i�;P½i�Þ of 2-dimensional isolated

singularity of cyclic type to be the improved singularity ðV½i�;P½i�Þ :¼ ðV4

½iþ1�;P
4

½iþ1�Þ of

ðV½iþ1�;P½iþ1�Þ. We note that the blow-up ti is of type A (resp. type B) as a step of the

Hirzebruch-Jung resolution of ðV ;PÞ if and only if the i-th blow up of the Hirzebruch-

Jung resolution of ðV½i�;P½i�Þ is of type A (resp. type B). Therefore by Lemmas 3.9, 3.10

and 3.11 and Theorem 4.1, we easily obtain the following:

Lemma 4.2. We simply write di ¼ gcdðmi; nÞ, di;j1ðiÞ ¼ gcdðmi;mj1ðiÞ; nÞ, cj1ðiÞ ¼

gcdðmj1ðiÞ
;mj1 ; . . . ;mjk ; nÞ where Iðj1ðiÞÞ ¼ f j1; . . . ; jkg and so on.

For 2U iU r, we have:

(a) If ti is of type A, then

sðV½i�;P½i�Þ ÿ sðV½iÿ1�;P½iÿ1�Þ ¼ ÿ
n

3
ÿ

1

3n

� �

b2
iÿ1 ÿ biÿ1ðdi ÿ dj1ðiÞÞ

þ di;j1ðiÞ þ 2
X

nÿ1

j¼1

mi j

n

� �

ÿ
mj1 j

n

� �� �2

ÿ
4biÿ1

n

X

nÿ1

j¼1

j
mi j

n

� �

ÿ
mj1 j

n

� �� �

ÿ cj1ðiÞ:
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(b) If ti is of type B, then

sðV½i�;P½i�Þ ÿ sðV½iÿ1�;P½iÿ1�Þ ¼ ÿ
n

3
ÿ

1

3n

� �
b2
iÿ1 ÿ ðbiÿ1 þ 1Þðnþ di ÿ dj1ðiÞ ÿ dj2ðiÞÞ

þ dj1ðiÞ;i þ dj2ðiÞ;i ÿ dj1ðiÞ;j2ðiÞ

þ 2
Xnÿ1

j¼1

mi j

n

� �
ÿ

mj1 j

n

� �
ÿ

mj2 j

n

� �� �2

ÿ
4biÿ1
n

Xnÿ1

j¼1

j
mi j

n

� �
ÿ

mj1 j

n

� �
ÿ

mj2 j

n

� �� �

ÿ cj1ðiÞ ÿ cj2ðiÞ þ 1:

Next we consider ðV½1�;P½1�Þ. We note that multðV½1�;P½1�Þ ¼ multðV ;PÞ ¼ b0 by

Lemma 3.7.

Lemma 4.3.

sðV½1�;P½1�Þ ¼ ÿ
1

3
ðb2

0 ÿ 3b0 ÿ 2Þnÿ b0db0 ÿ 1þ
b2
0 þ d 2

b0

3n
ÿ
4b0
n

Xnÿ1

j¼1

j
b0 j

n

� �
:

Proof. By Lemma 2.1, we construct an n-fold cyclic cover p1;0 : S1;0 !W1;0 such

that the germ ðS1;0; p
ÿ1
1;0ðP0ÞÞðP0 A W1;0Þ coincides with ðV½1�;P½1�Þ. Let

S1;0  ��� S1;1  ���
r 0
1 eS1S1  ���

r 00
1

S �1???y
???y

W1;0  ���
t1; 1

W1;1

be the Hirzebruch-Jung resolution of ðV½1�;P½1�Þ. Then the branch divisor B1;1 of

p1;1 : S1;1 !W1;1 is written in a neighborhood of E1 ¼ tÿ11;1ðP0Þ on W1;1 as

B1;1 ¼ b0E1 þ C1 þ � � � þ Cb0 ðlocallyÞ

such that Ci ð1U iU b0Þ do not intersect one another and each of Ci ð1U iU b0Þ

intersects E1 transversally at one point. Therefore by Corollary 2.4 and Lemma 2.5, we

easily have

pgðV½1�;P½1�Þ ¼
b2
0ðnÿ 1Þð2nÿ 1Þ

12n
ÿ
b0ðnÿ 1Þ

4
ÿ
b0
n

Xnÿ1

j¼1

j
b0 j

n

� �

þ
nÿ db0

4
þ
ðnÿ db0Þð2nÿ db0Þ

12n
:

mðV½1�;P½1�Þ ¼ ðnÿ 1Þðb0 ÿ 1Þ2:
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We set fE1E1 ¼ ðp1 � r
0
1 � r

00
1 Þ

ÿ1ðE1Þ, which is the exceptional set of ðV½1�;P½1�Þ by this

resolution. Then we have

b1ðfE1E1Þ ¼ 2ÿ 2db0 þ b0ðdb0 ÿ 1Þ:

Therefore from the above equalities and Theorem 4.1, the assertion follows. r

4.4. We go back to the Hirzebruch-Jung resolution of ðV ;PÞ in 2.2. We further

introduce some definitions and notation. For any integer i with 1U iU r, let TðiÞ ¼

Ei; i V eBiBi. We decompose TðiÞ into a disjoint union T1ðiÞ q T2ðiÞ where

T1ðiÞ ¼ fR A TðiÞ jR B Ej; i ð1U E jU i ÿ 1Þ and IRð eBiBi;Ei; iÞ ¼ 1g;

T2ðiÞ ¼ fR A TðiÞ jR A Ej; i ð1Ub jU i ÿ 1Þ or IRð eBiBi;Ei; iÞV 2g:

Here IRð eBiBi;Ei; iÞ is the intersection number of eBiBi and Ei; i at R. We denote the

cardinality of the set T1ðiÞ by

yi ¼ aT1ðiÞ:

Since the multiplicity biÿ1 coincides with
P

R ATðiÞ IRð
eBiBi;Ei; iÞ, we have

0U yi U biÿ1:

Moreover if rV 2, then we decompose the set f2; . . . ; rg into a disjoint union A q B

where

A ¼ f2U iU r j ti is of type Ag; B ¼ f2U iU r j ti is of type Bg:

Lemma 4.5. We have

(i) b0

Xnÿ1

j¼1

j
m1 j

n

� �
þ
X

i AA

biÿ1

Xnÿ1

j¼1

j
mi j

n

� �
ÿ

mj1ðiÞ
j

n

� �� �

þ
X

i AB

biÿ1

Xnÿ1

j¼1

j
mi j

n

� �
ÿ

mj1ðiÞ j

n

� �
ÿ

mj2ðiÞ j

n

� �� �
¼

Xr

i¼1

yi
Xnÿ1

j¼1

j
mi j

n

� �
;

(ii) b0d1 þ
X

i AA

biÿ1ðdi ÿ dj1ðiÞÞ þ
X

i AB

biÿ1ðdi ÿ dj1ðiÞ ÿ dj2ðiÞÞ ¼
Xr

i¼1

yidi:

Proof. We set GðxÞ ¼
Pnÿ1

j¼1 jhxj=ni for an integer x. For 1U iU r, we define

subsets JAðiÞ and JBðiÞ of f1; . . . ; rg by

JAðiÞ ¼ f j A Z; i þ 1U jU r j tj is of type A and j1ð jÞ ¼ ig;

JBðiÞ ¼ f j A Z; i þ 1U jU r j tj is of type B and j1ð jÞ ¼ i or j2ð jÞ ¼ ig:

We put

ai ¼ biÿ1 ÿ
X

j A JAðiÞU JBðiÞ

bjÿ1:

Then it is clear that
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b0Gðm1Þ þ
X

i AA

biÿ1fGðmiÞ ÿ Gðmj1ðiÞ
Þg þ

X

i AB

biÿ1fGðmiÞ ÿ Gðmj1ðiÞ
Þ ÿ Gðmj2ðiÞ

Þg

¼
Xr

i¼1

aiGðmiÞ:

Therefore it su‰ces to prove

ai ¼ yi ð1U iU rÞ:

We note that

yi ¼ biÿ1 ÿ
X

R AT2ðiÞ

IRð eBiBi;Ei; iÞ:

For any fixed R A T2ðiÞ, let

R0 ¼ R;R1 ¼ Ei; i1 V
~Bi1Bi1 ; . . . ;Rs ¼ Ei; is V

~BisBis ði < i1 < � � � < isU rÞ

be all the infinitely near points of R. Then by Max Noether’s theorem (e.g., [BK, §8]),

we have

IRð eBiBi;Ei; iÞ ¼
Xs

k¼0

multRk
~BikBik �multRk

Ei; ik ¼
Xs

k¼0

bis :

From this, we have
X

R AT2ðiÞ

IRð eBiBi;Ei; iÞ ¼
X

j A JAðiÞU JBðiÞ

bjÿ1:

Hence we obtain ai ¼ yi, and the assertion (i) is proved.

To prove (ii), we just replace the definition of GðxÞ by GðxÞ ¼ gcdðx; nÞ. r

4.6. We introduce some definitions. We first set

Fð1Þ ¼ ÿ
1

3
ðb2

0 ÿ 3b0 ÿ 2Þnÿ 1þ
b2
0 þ d 2

b0

3n
ÿ
4y1
n

Xnÿ1

j¼1

j
b0 j

n

� �
ÿ y1db0 :

For i A A, set

FAðiÞ ¼ ÿ
1

3
nÿ

1

n

� �
b2
iÿ1 þ di;j1ðiÞ þ 2

Xnÿ1

j¼1

mi j

n

� �
ÿ

mj1ðiÞ
j

n

� �� �2

ÿ
4yi
n

Xnÿ1

j¼1

j
mi j

n

� �
ÿ yidi ÿ cj1ðiÞ:

For i A B, set

FBðiÞ ¼ ÿ
1

3
nÿ

1

n

� �
b2
iÿ1 ÿ ðbiÿ1 þ 1Þnÿ di þ dj1ðiÞ þ dj2ðiÞ þ di;j1ðiÞ

þ di;j2ðiÞ ÿ dj1ðiÞ;j2ðiÞ þ 2
Xnÿ1

j¼1

mi j

n

� �
ÿ

mj1ðiÞ
j

n

� �
ÿ

mj2ðiÞ
j

n

� �� �2

ÿ
4yi
n

Xnÿ1

j¼1

j
mi j

n

� �
ÿ yidi ÿ cj1ðiÞ ÿ cj2ðiÞ þ 1:
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Proposition 4.7. For a 2-dimensional isolated singularity ðV ;PÞ of cyclic type with

rV 1, we have

sðV ;PÞ ¼ Fð1Þ þ
X

i AA

FAðiÞ þ
X

i AB

FBðiÞ:

Proof. Since we have

sðV ;PÞ ¼ sðV½1�;P½1�Þ þ
Xr

i¼2

fsðV½i�;P½i�Þ ÿ sðV½iÿ1�;P½iÿ1�Þg;

the assertion follows from Lemmas 4.2, 4.3 and 4.5. r

§5. The estimate concerning the fractional part symbol.

In order to estimate the formula in Proposition 4.7, we prepare some calculations

concerning the fractional part symbol h i.

Lemma 5.1. Let n1; n2 be natural numbers which are not less than 2, and we set s ¼

gcdðn1; n2Þ and N ¼ lcmðn1; n2Þ (the least common multiple). Let s1; s2 be any natural

numbers with ðn1; s1Þ ¼ 1 and ðn2; s2Þ ¼ 1. Then we have

XNÿ1

i¼0

s1i

n1

� �
s2i

n2

� �
¼

1

4s
fðn1 ÿ 1Þðn2 ÿ 1Þ ÿ ðsÿ 1Þ2g þ

Xsÿ1

i¼0

s1i

s

� �
s2i

s

� �
:

Proof. We set en1n1 ¼ n1=s and en2n2 ¼ n2=s. Since N ¼ en1n1 en2n2s ¼ n1 en2n2, we have

XNÿ1

i¼0

s1i

n1

� �
s2i

n2

� �
¼

Xn1ÿ1

i¼0

s1i

n1

� �Xen2n2ÿ1

j¼0

s2ði þ jn1Þ

n2

� �

¼
Xn1ÿ1

i¼0

s1i

n1

� �Xen2n2ÿ1

j¼0

1

en2n2
s2 en1n1 j þ

s2i

s

� �� �
þ

1

en2n2
s2i

s

� �� �
:

Since s2 en1n1 and en2n2 are mutually prime, the numbers s2 en1n1 j þ ½s2i=s� ð0U jU en2n2 ÿ 1Þ define

mutually distinct equivalence classes in Z= en2n2Z, i.e. the set fs2 en1n1 j þ ½s2i=s� j 0U jU

en2n2 ÿ 1g is congruent modulo en2n2 to f0; 1; . . . ; en2n2 ÿ 1g neglecting its order. The sets fs1i j

0U iU n1 ÿ 1g and f0; 1; . . . ; n1 ÿ 1g are congruent modulo n1 in the same sence.

Therefore we have

XNÿ1

i¼0

s1i

n1

� �
s2i

n2

� �
¼

Xn1ÿ1

i¼0

s1i

n1

� �Xen2n2ÿ1

k¼0

k

en2n2
þ

1

en2n2
s2i

s

� �� �
¼

Xn1ÿ1

i¼0

s1i

n1

� �Xen2n2ÿ1

k¼0

k

en2n2
þ

1

en2n2
s2i

s

� �� �

¼
Xn1ÿ1

i¼0

s1i

n1

� � en2n2 ÿ 1

2
þ

s2i

s

� �� �
¼

ðn1 ÿ 1Þð en2n2 ÿ 1Þ

4
þ

Xen1n1sÿ1

i¼0

s1i

en1n1s

� �
s2i

s

� �
:

Since ð en1n1s; s1Þ ¼ ðs; s2Þ ¼ 1, by the same argument as above, we have
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Xen1n1sÿ1

i¼0

s1i

en1n1s

� �
s2i

s

� �
¼

ðsÿ 1Þð en1n1 ÿ 1Þ

4
þ
Xsÿ1

i¼0

s1i

s

� �
s2i

s

� �
:

From these, the assertion follows. r

Lemma 5.2. Let s be any natural number and let s1; s2 be natural numbers with

ðs; s1Þ ¼ ðs; s2Þ ¼ 1. Then we have

ðsþ 1Þðsÿ 1Þ

6s
U

Xsÿ1

i¼0

s1i

s

� �
s2i

s

� �
U

ðsÿ 1Þð2sÿ 1Þ

6s
:

Moreover the left hand side equality holds if and only if s1 þ s2 1 0 (mod s), and the right

hand side equality holds if and only if s1 1 s2 (mod s).

Proof. For a permutation

t ¼
1; 2; . . . ; sÿ 1

tð1Þ; tð2Þ; . . . ; tðsÿ 1Þ

� �
;

we define the function

FðtÞ :¼
Xsÿ1

i¼1

itðiÞ:

We easily obtain that, when t moves all the permutations of ð1; 2; . . . ; sÿ 1Þ, the

minimal value of FðtÞ attains if and only if t coincides with

1; 2; . . . ; sÿ 1

sÿ 1; sÿ 2; . . . ; 1

� �
;

and the maximal value of F ðtÞ attains if and only if t coincides with the identity

permutation.

Now for any natural number a, we write dae as the remainder divided by s. We

put

ss1; s2 ¼
ds1e; d2s1e; . . . ; dðsÿ 1Þs1e

ds2e; d2s2e; . . . ; dðsÿ 1Þs2e

� �
:

By ðs; s1Þ ¼ ðs; s2Þ ¼ 1; ss1; s2 is considered as a permutation of ð1; 2; . . . ; sÿ 1Þ. More-

over we have

Xsÿ1

i¼0

s1i

s

� �
s2i

s

� �
¼

Fðss1; s2Þ

s2
:

Therefore the assertion easily follows. r

Lemma 5.3. Let n be an integer greater than 2 and let M1;M2 be natural numbers

with M1 2 0;M2 2 0 (mod n). Then we have

Xnÿ1

i¼1

M1i

n

� �
ÿ

M2i

n

� �� �2
U

ðnÿ 1Þðnÿ 2Þ

3n
:
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Proof. For j ¼ 1; 2, we set dj ¼ gcdðMj; nÞ; nj ¼ n=dj and sj ¼ Mj=dj. We have

njV 2 by Mj 2 0 (mod n). Moreover we set s ¼ gcdðn1; n2Þ;N ¼ lcmðn1; n2Þ and ~njnj ¼

nj=s. We have N ¼ en1n1 en2n2s. We set ~dd ¼ n=N. From d1 ¼ ~dd en2n2 and d2 ¼ ~dd en1n1, we have

Xnÿ1

i¼1

M1i

n

� �
ÿ

M2i

n

� �� �2
¼ ~dd

XNÿ1

i¼1

en2n2s1i
N

� �
ÿ

en1n1s2i
N

� �� �2
:

Now we claim

XNÿ1

i¼1

en2n2s1i
N

� �
ÿ

en1n1s2i
N

� �� �2
U

ðN ÿ 1ÞðN ÿ 2Þ

3N
: ð5:3:1Þ

The assertion (5.3.1) implies the assertion of the Lemma, because we have

ðnÿ 1Þðnÿ 2Þ

3n
ÿ

~ddðN ÿ 1ÞðN ÿ 2Þ

3N
¼

ð~dd ÿ 1Þð3~ddN ÿ ~dd ÿ 1Þ

3~ddN
V 0:

It su‰ces to prove (5.3.1). Since ðn1; s1Þ ¼ ðn2; s2Þ ¼ 1, we have

XNÿ1

i¼1

en2n2s1i
N

� �
ÿ

en1n1s2i
N

� �� �2
¼ en2n2

Xn1ÿ1

i¼1

s1i

n1

� �2

þ en1n1
Xn2ÿ1

i¼1

s2i

n2

� �2

ÿ2
XNÿ1

i¼1

s1i

n1

� �
s2i

n2

� �

¼
en2n2ðn1ÿ1Þð2n1ÿ1Þ

6n1
þ

en1n1ðn2ÿ1Þð2n2ÿ1Þ

6n2
ÿ2

XNÿ1

i¼1

s1i

n1

� �
s2i

n2

� �
:

Therefore it easily follows from Lemmas 5.1 and 5.2 that

ðN ÿ 1ÞðN ÿ 2Þ

3N
ÿ

XNÿ1

i¼1

en2n2s1i
N

� �
ÿ

en1n1s2i
N

� �� �2

¼
ðN ÿ 1Þð2N ÿ 1Þ

6N
ÿ

en2n2ðn1 ÿ 1Þð2n1 ÿ 1Þ

6n1

� �

þ
ðN ÿ 1Þð2N ÿ 1Þ

6N
ÿ

en1n1ðn2 ÿ 1Þð2n2 ÿ 1Þ

6n2

� �

þ 2
XNÿ1

i¼1

s1i

n1

� �
s2i

n2

� �
ÿ
ðN ÿ 1ÞðN þ 1Þ

6N

( )

V
1

6N
fð3N ÿ en2n2 ÿ 1Þð en2n2 ÿ 1Þ þ ð3N ÿ en1n1 ÿ 1Þð en1n1 ÿ 1Þg

þ 2
ðn1 ÿ 1Þðn2 ÿ 1Þ ÿ ðsÿ 1Þ2

4s
þ
ðsÿ 1Þðsþ 1Þ

6s
ÿ
ðN ÿ 1ÞðN þ 1Þ

6N

( )

¼
en1n1 en2n2ð en1n1 en2n2 ÿ 1Þs2 ÿ ð en1n1 þ en2n2Þ2 þ 4

6 en1n1 en2n2s
V

ð en1n12 ÿ 1Þð en2n22 ÿ 1Þ ÿ 3 en1n1 en2n2 þ 3

6 en1n1 en2n2
V 0:

by en1n1V 2 and en2n2V 2. Hence the assertion is proved. r
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We slightly generalize a part of Lemma 5.2.

Lemma 5.4 Let n;M1;M2 be any natural numbers. Then we have

Xnÿ1

i¼1

M1i

n

� �
M2i

n

� �
U

ðnÿ 1Þð2nÿ 1Þ

6n
:

Proof. If M1 1 0 or M2 1 0 (mod n), then the assertion is clear. Assume M1 2 0

and M2 2 0. We denote by dj; sj; nj; ~njnj ; ð j ¼ 1; 2Þs;N and ~dd as in the proof of Lemma

5.3. We easily have

ðnÿ 1Þð2nÿ 1Þ

6n
V

~ddðN ÿ 1Þð2N ÿ 1Þ

6N
;

Xnÿ1

i¼1

M1i

n

� �
M2i

n

� �
¼ ~dd

XNÿ1

i¼1

s1i

n1

� �
s2i

n2

� �
:

Moreover it follows from Lemmas 5.1 and 5.2 that

ðN ÿ 1Þð2N ÿ 1Þ

6N
ÿ

XNÿ1

i¼1

s1i

n1

� �
s2i

n2

� �

V
ðs en1n1 en2n2 ÿ 1Þð2s en1n1 en2n2 ÿ 1Þ

6s en1n1 en2n2
ÿ
ðs en1n1 ÿ 1Þðs en2n2 ÿ 1Þ

4s
ÿ
ðsÿ 1Þð2sÿ 1Þ

6s

¼
en1n1 en2n2 ÿ 1

12
sþ

en1n1 þ en2n2 ÿ 2

4
þ

1

6 en1n1 en2n2
ÿ
1

6

� �
1

s
V 0:

Hence the assertion follows. r

Lemma 5.5. Let n;M be natural numbers with nV 2. Then we have

4

n

Xnÿ1

i¼1

i
Mi

n

� �
þ gcdðM; nÞV

2n

3
þ 1ÿ

2

3n
:

Proof. The calculation is similar as above, and we omit it.

Remark 5.6. The statement of lemmas in this section can be translated into the

language of the Dedekind sum (e.g. Hirzebruch-Zagier [HZ ]).

§6. The estimate of the signature.

The aim of this section is to prove the following:

Theorem 6.1. Let ðC;P0Þ be a germ of an isolated plane curve singularity of

multiplicity m. Let fC1; . . . ;Ctg be the set of local analytic branches of C at P0. Let

fCi1 ; . . . ;Ciyg be the subset of fC1; . . . ;Ctg such that;

ð�Þ For any j ð1U jU yÞ, Cij is nonsingular at P0 and the tangent line of Cij at P0

is mutually distinct from the tangent line of any other one of fC1; . . . ;Ctg.
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The number y ¼ yðC;P0Þ is defined to be the maximal number which enjoy the property

(�). If such a subset fCi1 ; . . . ;Ciyg is empty, then we set y ¼ 0.

Now let ðV ;PÞ be the germ of the singularity on n-fold cyclic cover ðnV 2Þ branched

along ðC;P0Þ, i.e. ðV ;PÞ is defined by the equation f ðx; y; zÞ ¼ zn þ gðx; yÞ where gðx; yÞ

is the defining equation of ðC;P0Þ. Let sðV ;PÞ be the signature of the Milnor fiber of

ðV ;PÞ. Then we have

sðV ;PÞU ÿ
1

3
ðm2 ÿ 3mÿ 2Þnÿ 1þ

m2 þ gcdðm; nÞ2

3n

ÿ
4y

n

X

nÿ1

i¼1

i
mi

n

� �

ÿ y � gcdðm; nÞ: ð6:1:1Þ

where hmi=ni ¼ mi=nÿ ½mi=n� is the fractional part of mi=n.

Furthermore, the equality of (6.1.1) holds if and only if the singularity ðV ;PÞ satisfies

the property y ¼ m, that is, ðC;P0Þ is an ordinary singularity.

It is clear that Theorem 6.1 implies the Theorem in the introduction.

Corollary 6.2. Let ðV ;PÞ be a germ of analytic function f ðx; y; zÞ ¼ zn þ gðx; yÞ

such that ðV ;PÞ defines at most an isolated singularity. Then we have

sðV ;PÞU 0:

Furthermore, the equality sðV ;PÞ ¼ 0 holds if and only if ðV ;PÞ is a germ of a non-

singular point.

Proof. If the multiplicity of ðV ;PÞ is less than 4, the assertion is known ([To1][A]).

Therefore we may assume nV 4 and mV 4. Then we have sðV ;PÞ < 0 by an easy

calculation r

6.3. We start to prove Theorem 6.1. We produce the Hirzebruch-Jung resolution

of ðV ;PÞ. We first assume r ¼ 0. Then ðC;P0Þ is an ordinary double point and ðV ;PÞ

is a rational double point of type Anÿ1. By pg ¼ 0, m ¼ nÿ 1 and b1 ¼ 0, Theorem 4.1

imply s ¼ ÿnþ 1 in this case. On the other hand, we have

X

nÿ1

j¼1

j
2 j

n

� �

¼
ðnÿ 1Þð7nÿ 5Þ=24; if n is odd

ðnÿ 2Þð7nÿ 4Þ=24; if n is even.

�

by an easy calculation. Since we have m ¼ y ¼ 2, the right hand side of (6.1.1) also

coincides with ÿnþ 1, which prove the assertion in this case. (Another proof: Al-

though the branch curve has normal crossing, we blow up the base surface at one time

and use Proposition 4.7 by settig r ¼ 1.)

Next we assume r ¼ 1. In the notation of §4, we note that y ¼ y1 and m ¼ b0. More-

over, Fð1Þ in Proposition 4.7 coincides with the right hand side term of (6.1.1).

Therefore the equality of (6.1.1) holds. We remark that the condition r ¼ 1 occurs if

and only if y coincides with m.
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From now on, we assume rV 2. By Proposition 4.7, it su‰ces to prove

X

i AA

FAðiÞ þ
X

i AB

FBðiÞ < 0: ð6:3:1Þ

We prepare several lemmas to prove (6.3.1).

Lemma 6.4. Assume i A A. If mi 2mj1ðiÞ (mod n), then

FAðiÞU ÿ
1

3
nÿ

1

n

� �

ðbiÿ1 ÿ 2Þðbiÿ1 þ 2Þ þMax ÿ
5

12
nÿ 3þ

8

3n
;ÿ

7

12
nþ

4

3n

� �

:

If mi 1mj1ðiÞ
(mod n), then there exists an integer kV 1 with biÿ1 ¼ kn such that

FAðiÞU ÿ
1

3
k2n2 nÿ

1

n

� �

þ di ÿ 1:

Especially if biÿ1V 2, then we always have FAðiÞ < 0.

Proof. We first assume mi 2 0, mj1ðiÞ 2 0 and mi 2mj1ðiÞ (mod n). Since we have

di;j1ðiÞU gcdðn; n=2; n=4Þ ¼ n=4 and cj1ðiÞV 1, it follows from Lemma 5.3 that

FAðiÞU ÿ
4

3
nÿ

1

n

� �

ÿ
1

3
nÿ

1

n

� �

b2
iÿ1 ÿ 4

ÿ �

þ
n

4
ÿ 1þ 2

n

3
ÿ 1þ

2

3n

� �

¼ ÿ
5

12
nÿ 3þ

8

3n
ÿ
1

3
nÿ

1

n

� �

biÿ1 ÿ 2ð Þ biÿ1 þ 2ð Þ:

Next we assume mi 2 0 and mj1ðiÞ
1 0 (mod n). We have

Pnÿ1
j¼1 hmij=ni

2 ¼

ðnÿ diÞð2nÿ diÞ=6n: Therefore we have

FAðiÞU ÿ
2

3
nþ

4þ d 2
i

3n
ÿ
1

3
nÿ

1

n

� �

biÿ1 ÿ 2ð Þ biÿ1 þ 2ð Þ

U ÿ
7

12
nþ

4

3n
ÿ
1

3
nÿ

1

n

� �

biÿ1 ÿ 2ð Þ biÿ1 þ 2ð Þ

by diU n=2. In the case of mi 1 0 and mj1ðiÞ
2 0 (mod n), we have the same assertion

by a similar argument. Therefore we obtain the former assertion of the Lemma.

Assume mi 1mj1ðiÞ
(mod n). Then we also obtain the latter assertion of the

Lemma by a similar calculation. r

Lemma 6.5. We have

FBðiÞU ÿ
1

3
nÿ

1

n

� �

biÿ1 ÿ 2ð Þ biÿ1 þ 2ð Þ ÿ ðbiÿ1 ÿ 2Þnþ
d 2
j1ðiÞ

3n

þMax ÿnÿ 4þ
2

n
;ÿ

5n

3
ÿ 1þ

4

3n

� �

for any i A B. Especially if biÿ1V 2, then we have FBðiÞ < 0.

Proof. We set
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F � ¼ ÿ
1

3
nÿ

1

n

� �

b2
iÿ1 ÿ ðbiÿ1 þ 1Þnþ dj1ðiÞ þ di;j2ðiÞ ÿ 1

þ 2
X

nÿ1

j¼1

mi j

n

� �

ÿ
mj2ðiÞ

j

n

� �� �2

þ2
X

nÿ1

j¼1

mj1ðiÞ
j

n

� �2

;

F �� ¼ ÿdi þ dj2ðiÞ þ di;j1ðiÞ ÿ dj1ðiÞ;j2ðiÞ

ÿ 4
X

nÿ1

j¼1

mi j

n

� �

ÿ
mj2ðiÞ j

n

� �� �

mj1ðiÞ j

n

� �

:

Then we claim

F �
U ÿ

1

3
nÿ

1

n

� �

ðbiÿ1 ÿ 1Þðbiÿ1 þ 1Þ ÿ ðbiÿ1 ÿ 1Þnÿ
2

3
nÿ 1þ

1þ d 2
j1ðiÞ

3n
; ð6:5:1Þ

F ��
UMax

5

3
nÿ 3þ

2

3n
; n

� �

: ð6:5:2Þ

Since we have FBðiÞUF � þ F ��, the assertions (6.5.1) and (6.5.2) easily imply the

assertion of the Lemma.

We prove (6.5.1). Assume di;j2ðiÞU n=3. Then it follows from Lemma 5.3 that

F �
U ÿ

1

3
nÿ

1

n

� �

ðbiÿ1 ÿ 1Þðbiÿ1 þ 1Þ ÿ
1

3
nÿ

1

n

� �

ÿ ðbiÿ1 ÿ 1Þnÿ 2n

þ dj1ðiÞ þ
n

3
ÿ 1þ

2ðnÿ 1Þðnÿ 2Þ

3n
þ
ðnÿ dj1ðiÞÞð2nÿ dj1ðiÞÞ

3n

¼ ÿ
1

3
nÿ

1

n

� �

ðbiÿ1 ÿ 1Þðbiÿ1 þ 1Þ ÿ ðbiÿ1 ÿ 1Þnÿ
2

3
nÿ 3þ

5þ d 2
j1ðiÞ

3n
:

Assume di;j2ðiÞ > n=3. Then one of the following cases occur:

(i) ‘‘mi 1 0, mj2ðiÞ
1 n=2 (mod n)’’ or ‘‘mi 1 n=2, mj2ðiÞ

1 0 (mod n)’’,

(ii) mi 1mj2ðiÞ 1 n=2 (mod n),

(iii) mi 1mj2ðiÞ
1 0 (mod n).

We consider the case (i). Then the integer n is even, and we have

X

nÿ1

j¼1

mi j

n

� �

ÿ
mj2ðiÞ j

n

� �� �2

¼
X

nÿ1

j¼1

j

2

� �2

¼
n

8
:

Therefore we obtain

F �
U ÿ

1

3
nÿ

1

n

� �

ðbiÿ1 ÿ 1Þðbiÿ1 þ 1Þ ÿ ðbiÿ1 ÿ 1Þnÿ
11

12
nÿ 1þ

1þ d 2
j1ðiÞ

3n
:

In the case of (ii), we have

F �
U ÿ

1

3
nÿ

1

n

� �

ðbiÿ1 ÿ 1Þðbiÿ1 þ 1Þ ÿ ðbiÿ1 ÿ 1Þnÿ
7

6
nÿ 1þ

1þ d 2
j1ðiÞ

3n
:
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In the case of (iii), we have

F �
U ÿ

1

3
nÿ

1

n

� �
ðbiÿ1 ÿ 1Þðbiÿ1 þ 1Þ ÿ ðbiÿ1 ÿ 1Þnÿ

2

3
nÿ 1þ

1þ d 2
j1ðiÞ

3n
:

From them, we obtain the assertion (6.5.1).

Next we prove (6.5.2). First we have

F ��
U dj2ðiÞ ÿ 1þ 4

Xnÿ1

j¼1

mj1ðiÞ
j

n

� �
mj2ðiÞ

j

n

� �
:

We assume dj2ðiÞU n=3. By Lemma 5.4, we have

F ��
U

n

3
ÿ 1þ 4 �

ðnÿ 1Þð2nÿ 1Þ

6n
¼

5n

3
ÿ 3þ

2

3n
:

We assume dj2ðiÞ ¼ n=2. We set n ¼ 2n0. We have

F ��
U

n

2
ÿ 1þ 2

Xn 0

k¼1

mj1ðiÞ
ð2k ÿ 1Þ

n

� �
:

Since the number mj1ðiÞ
ð2k ÿ 1Þ=nþmj1ðiÞ

f2ðn0 ÿ k þ 1Þ ÿ 1g=n is an integer for 1U kU

½n=2�, we have

mj1ðiÞ
ð2k ÿ 1Þ

n

� �
þ

mj1ðiÞ
f2ðn0 ÿ k þ 1Þ ÿ 1g

n

� �
U 1:

Therefore we have

F �� <
n

2
ÿ 1þ 2

n 0

2

� �
þ 1

� �
U nþ 1:

If dj2ðiÞ ¼ n, then we have

F ��
U nÿ 1:

From these, we obtain the assertion (6.5.2) r

6.6. Assume ti0þ1 is of type B and bi0 ¼ 1 for some i0 (2U i0U rÿ 1). By our

construction, there are integers v and w with 1U v < wU i0 such that ti0þ1 is the blow-

up at the center Pi0 ¼ Ev; i0 VEw; i0 , and the curve fBi0Bi0 is nonsingular at Pi0 . We denote

by ~CC the unique local branch of fBi0Bi0 at Pi0 . Then one of the following two conditions

(I) and (II) is satisfied:

(I) i) ~CC intersect both Ev; i0 and Ew; i0 transversally at Pi0 , or

ii) ~CC is tangential to Ev; i0 at Pi0 of order tV 2.

(II) ~CC is tangential to Ew; i0 at Pi0 of order tV 2.

From now on, we consider that the case i) of (I) is the special case of the case ii) of (I)

by setting t ¼ 1.

We consider the curve gBwÿ1Bwÿ1 on Wwÿ1. In both cases (I) and (II), there exists a

local branch C of gBwÿ1Bwÿ1 at the center Pwÿ1 such that the proper transform of C by tw is

isomorphic to ~CC. More precisely, if i0 is greater than w, then any of the centers of the
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blow-ups twþ1; . . . ; ti0 does not coincide with the infinitely near point of Pwÿ1, and so

these blow-ups do not matter the analysis of the singularity at Pi0 . Therefore by

changing the order of the blow-ups if necessary, we may assume that the number w

coincides with i0.

Now assume that the case (I) occurs. Then the following two conditions are

satisfied (see Figure 4):

I-a) C is nonsingular and contacts at Pwÿ1 to Ev;wÿ1 of order tþ 1, and

I-b) If other local branches of gBwÿ1Bwÿ1 at Pwÿ1 exist, then any tangent line of them does

not coincides with Ev;wÿ1.

On the other hand, if the case (II) occurs, then the following conditions are satisfied

(see Figure 5) :

II-a) C defines at Pwÿ1 a tangential ðt; tþ 1Þ-cusp to Ev;wÿ1, i.e. the local analytic

equation of C at Pwÿ1 is given by x t þ y tþ1 ¼ 0, where Ev;wÿ1 is locally given by x ¼ 0,

and

II-b) If other local branches of gBwÿ1Bwÿ1 at Pwÿ1 exist, then any tangent line of them does

not coincides with Ev;wÿ1.

Assume that the case (I) occurs. By changing the order of the blow-ups if

necessary, we may assume that the successive blow-ups twþ1; . . . ; twþt are produced at

the infinitely near points of Pwÿ1, and therefore twþj (1U jU t) satisfies the following:

(i) twþj is the blow-up of type B with the center Pwþj ¼ Ev;wþj VEwþj;wþj ,

(ii) gBwþjBwþj is nonsingular at Pwþj and is tangent to Ev;wþj of order tÿ j at Pwþj .

After these bow-ups, the curve gBwþtBwþt þ Ewþt has normal crossing in the pull back of a

neighborhood of Pw.

If the case (II) occurs, then we have the same argument by replacing the definition

of Pwþj by Ew;wþj VEwþj;wþj.

Lemma 6.7 In the above situation, we further assume that tw is of type A. If ~CC

Figure 4

Figure 5
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satisfies the codition (I), then

FAðwÞ þ
X

t

j¼1

FBðwþ jÞU ÿ
1

3
nÿ

1

n

� �

ðbwÿ1 ÿ 1Þðbwÿ1 þ 1Þ

þ ÿ
2

3
nÿ 1þ

1þ d 2
v

3n

� �

ðtÿ 1Þ ÿ
1

3
nÿ dv ÿ 3

þ
d 2
w þ 2d 2

v þ 4

3n
< 0:

If ~CC satisfies the codition (II), then

FAðwÞ þ
X

t

j¼1

FBðwþ jÞU ÿ
1

3
nÿ

1

n

� �

ðbwÿ1 ÿ 1Þðbwÿ1 þ 1Þ

þ ÿ
2

3
nÿ 1þ

1þ d 2
w

3n

� �

ðtÿ 1Þ ÿ
1

3
nÿ dw ÿ 3

þ
d 2
v þ 2d 2

w þ 4

3n
< 0:

Proof. First we assume that ~CC satisfies the condition (I). In this case, we have

j1ðwþ jÞ ¼ v (0U jU t), j2ðwþ jÞ ¼ wþ j ÿ 1 (1U jU t), ywþj ¼ 0 (1U jU tÿ 1),

ywþt ¼ 1, bwþjÿ1 ¼ 1 (1U jU t) and cj1ðwþjÞ ¼ cj2ðwþjÞ ¼ 1 (1U jU t). We have

FAðwÞU ÿ
1

3
nÿ

1

n

� �

b2
wÿ1 þ dv;w ÿ 1þ

ðnÿ dwÞð2nÿ dwÞ

3n

þ
ðnÿ dvÞð2nÿ dvÞ

3n
ÿ 4

X

nÿ1

k¼1

mwk

n

� �

mvk

n

� �

:

On the other hand, it follows from (6.5.1) and Lemma 5.5 that

X

t

j¼1

FBðwþ jÞ ¼
X

t

j¼1

(

ÿ
1

3
nÿ

1

n

� �

ÿ 2nþ dv þ dwþjÿ1;wþj ÿ 1

þ 2
X

nÿ1

k¼1

mwþjk

n

� �

ÿ
mwþjÿ1k

n

� �� �2

þ2
X

nÿ1

k¼1

mvk

n

� �2
)

þ
X

t

j¼1

(

dwþjÿ1 ÿ dwþj ÿ dwþjÿ1; v þ dwþj; v

ÿ 4
X

nÿ1

k¼1

mwþjþ1k

n

� �

ÿ
mwþjk

n

� �� �

mvk

n

� �

)

ÿ
4

n

X

nÿ1

k¼1

k
mwþtk

n

� �

ÿ dwþt
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U ÿ
2

3
nÿ 1þ

1þ d 2
v

3n

� �
tþ dw ÿ dwþt ÿ dv;w þ dwþt; v þ 4

Xnÿ1

k¼1

mwk

n

� �
mvk

n

� �

ÿ 4
Xnÿ1

k¼1

mwþtk

n

� �
mvk

n

� �
ÿ

2

3
nþ 1ÿ

2

3n

� �

U ÿ
2

3
nÿ 1þ

1þ d 2
v

3n

� �
ðtÿ 1Þ þ dw ÿ dv;w þ 4

Xnÿ1

k¼1

mwk

n

� �
mvk

n

� �

ÿ
4

3
nÿ 2þ

d 2
v þ 3

3n
: ð6:7:1Þ

Therefore by an easy calculation, the left hand side inequality of the Lemma follows.

We prove the negativity. The claim is clear except for the case

bwÿ1 ¼ 1 and d 2
w þ 2d 2

v > n2: ð�Þ

Assume the condition ð�Þ. The inequality d 2
w þ 2d 2

v > n2 holds if and only if ‘‘dw ¼ n

or dv ¼ n’’. Suppose dw ¼ n. It follows from mv ¼ mw ÿ bwÿ1 ¼ mw ÿ 1 that dv ¼ 1.

Therefore we have

ÿ
1

3
nÿ dv ÿ 3þ

d 2
w þ 2d 2

v þ 4

3n
¼ ÿ4þ

2

n
< 0:

The case dv ¼ n is similar, and we omit it.

Secondly we assume that ~CC satisfies the condition (II). In this case, we have

j1ðwþ jÞ ¼ w (1U jU t), j2ðwþ 1Þ ¼ v, j2ðwþ jÞ ¼ wþ j ÿ 1 (2U jU t), ywþj ¼ 0

(1U jU tÿ 1) and ywþt ¼ 1. By the similar calculation as above, we obtain the desired

result. (We omit it.) r

Corollary 6.8. Assume that ti is of type A and biÿ1 ¼ 1 for some i ð2U iU rÞ.

Then gBiÿ1Biÿ1 is nonsingular at Piÿ1 and is tangent to Ev; iÿ1 at Piÿ1 of order tþ 1 for some

tV 1. Let tiþ1; . . . ; tiþt be the succession of blow-ups whose centers are infinitely near

points of Pi ¼ Ev; i VEi;i such that the curve gBiþtBiþt þ Eiþt has normal crossing in the pull

back of a neighborhood of Pi. Then we have

FAðiÞ þ
Xt

j¼1

FBði þ jÞU ÿ
2

3
nÿ 1þ

1þ d 2
i

3n

� �
ðtÿ 1Þ ÿ

1

3
nÿ di ÿ 3þ

d 2
iþ1 þ 2d 2

i þ 4

3n
< 0:

Proof. Under this situation, the blow-up tiþ1 is of type B and the unique local

branch of eBiBi at Pi satisfies the condition (I) in 6.6. Therefore the assertion follows

from Lemma 6.7 r

Lemma 6.9. In the situation of 6.6, we further assume that tw is of type B. The

point of the center Pwÿ1 of tw is written as Pwÿ1 ¼ Ev;wÿ1 VEu;wÿ1 for some u (1U uU

wÿ 1, u 6¼ v). Moreover we assume bwÿ1V 2. If ~CC satisfies the codition (I), then we

have
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Xt

j¼0

FBðwþ jÞUÿ
1

3
nÿ

1

n

� �
ðbwÿ1 ÿ 2Þðbwÿ1 þ 2Þ ÿ ðbwÿ1 ÿ 2Þn

þ ÿ
2

3
nÿ 1þ

1þ d 2
v

3n

� �
ðtÿ 1Þ ÿ

7

3
nÿ dv;u ÿ 5þ

d 2
w þ 2d 2

v þ d 2
u þ 9

3n
< 0:

If ~CC satisfies the codition (II), then we have

Xt

j¼0

FBðwþ jÞU ÿ
1

3
nÿ

1

n

� �
ðbwÿ1 ÿ 2Þðbwÿ1 þ 2Þ ÿ ðbwÿ1 ÿ 2Þn

þ ÿ
2

3
nÿ 1þ

1þ d 2
w

3n

� �
ðtÿ 1Þ ÿ

7

3
nþ dv ÿ dw ÿ dv;u ÿ 5

þ
d 2
v þ 2d 2

w þ d 2
u þ 9

3n
< 0:

Proof. First we assume that ~CC satifies the condition (I). We have

FBðwÞU ÿ
1

3
nÿ

1

n

� �
b2
wÿ1 ÿ ðbwÿ1 þ 1Þnþ 2nÿ 2dw þ dw;v þ dw;u ÿ dv;u ÿ 1

þ
d 2
w þ d 2

v þ d 2
u

3n
ÿ 4

Xnÿ1

k¼1

mwk

n

� �
mvk

n

� �
ÿ 4

Xnÿ1

k¼1

mwk

n

� �
muk

n

� �

þ 4
Xnÿ1

k¼1

mvk

n

� �
muk

n

� �
: ð6:9:1Þ

From (6.9.1), (6.7.1) and Lemma 5.4, we obtain the desired inequality by an easy

calculation.

If the curve ~CC satisfies the condition (II), then the calculation is similar as above,

and we omit it. r

6.10. In the situation of 6.6, we further assume that tw is of type B, and we write

the point Pwÿ1 :¼ Ev;wÿ1 VEu;wÿ1 as in the previous Lemma. Moreover we assume that

there exist two local branches C and C 0 of gBwÿ1Bwÿ1 at Pwÿ1 such that the following

conditions (i)@ (iii) are satisfied:

(i) C is nonsingular at Pwÿ1 and is tangent to Ev;wÿ1 at Pwÿ1 of order tþ 1 for

some tV 1, or C defines at Pwÿ1 a tangential (t; tþ 1)-cusp to Ev;wÿ1,

(ii) C 0 is nonsingular at Pwÿ1 and is tangent to Eu;wÿ1 at Pwÿ1 of order t 0 þ 1 for

some t0 V 1, or C 0 defines at Pwÿ1 a tangential ðt 0; t 0 þ 1Þ-cusp to Eu;wÿ1,

(iii) if other local branches of gBwÿ1Bwÿ1 at Pwÿ1 exist, then the tangent line of any

component of them coincides with neither Ev;wÿ1 nor Eu;wÿ1.

Let ~CC and fC 0C 0 be the proper transform of C and C 0 by the blow-up tw respectively.

Then ~CC passes through Pw :¼ Ev;w VEw;w, and fC 0C 0 passes through Pwþt :¼ Eu;w VEw;w.

Moreover any other components of fBwBw except for C and C 0 passes through neither Pw

nor Pwþt. By changing the order of the blow-ups if necessary, we may assume that the

T. Ashikaga518



succession of blow-ups twþ1; . . . ; twþt are produced at infinitely near points of Pw and the

succession of blow-ups twþtþ1; . . . ; twþtþt 0 are produced at infinitely near points of Pwþt.

After these blow-ups, the curve gBwþtþt 0Bwþtþt 0 + Ewþtþt 0 has normal crossing in the pull back of

the union of neighborhoods of Pw and Pwþt.

Lemma 6.11. In the above situation, if C and C 0 are nonsingular at Pwÿ1, then we

have

Xtþt 0

j¼0

FBðwþ jÞU ÿ
1

3
nÿ

1

n

� �
ðbwÿ1 ÿ 2Þðbwÿ1 þ 2Þ ÿ ðbwÿ1 ÿ 2Þn

þ ÿ
2

3
nÿ 1þ

1þ d 2
v

3n

� �
ðtÿ 1Þ þ ÿ

2

3
nÿ 1þ

1þ d 2
u

3n

� �
ðt 0 ÿ 1Þ

ÿ
11

3
nÿ dv;u ÿ 7þ

2d 2
u þ 2d 2

v þ d 2
w þ 12

3n
< 0:

If C is nonsingular at Pwÿ1 and C 0 defines a tangential cusp at Pwÿ1, then we have

Xtþt 0

j¼0

FBðwþ jÞU ÿ
1

3
nÿ

1

n

� �
ðbwÿ1 ÿ 2Þðbwÿ1 þ 2Þ ÿ ðbwÿ1 ÿ 2Þn

þ ÿ
2

3
nÿ 1þ

1þ d 2
v

3n

� �
ðtÿ 1Þ þ ÿ

2

3
nÿ 1þ

1þ d 2
w

3n

� �
ðt 0 ÿ 1Þ

ÿ
11

3
nþ du ÿ du;w ÿ du;v ÿ 7þ

d 2
u þ 2d 2

v þ 2d 2
w þ 12

3n
< 0:

If C and C 0 also define tangential cusps at Pwÿ1, then we have

Xtþt 0

j¼0

FBðwþ jÞU ÿ
1

3
nÿ

1

n

� �
ðbwÿ1 ÿ 2Þðbwÿ1 þ 2Þ ÿ ðbwÿ1 ÿ 2Þn

þ ÿ
2

3
nÿ 1þ

1þ d 2
w

3n

� �
ðtþ t 0 ÿ 2Þ ÿ

11

3
nþ du þ dv ÿ 2dw

ÿ dv;u ÿ 7þ
d 2
u þ d 2

v þ 3d 2
w þ 12

3n
< 0:

Proof. Assume C is nonsingular at Pwÿ1 and C 0 defines a tangential cusp at Pwÿ1.

Since fC 0C 0 is nonsingular at Pwþt and is tangent to Ew;w of order t 0, by the same argument

as (6.7.1), we have

Xtþt 0

j¼tþ1

FBðwþ jÞU ÿ
2

3
nÿ 1þ

1þ d 2
w

3n

� �
ðt 0 ÿ 1Þ þ du ÿ du;w

þ 4
Xnÿ1

k¼1

mwk

n

� �
muk

n

� �
ÿ
4

3
nÿ 2þ

d 2
w þ 3

3n
:
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On the other hand, we have the same estimates for FBðwÞ and
P t

j¼1 FBðwþ jÞ as (6.9.1)

and (6.7.1). Therefore by using Lemma 5.4, we easily obtain the desired inequality. We

omit the other two cases. r

Proof of Theorem 6.1. From Lemmas 6.4, 6.5, 6.7, 6.9, 6.11 and Corollary 6.8,

the assertion (6.3.1) follows. Hence we complete the proof of Theorem 6.1.
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[Ac2] N. A’Campo, La fonction zêta d’une monodromie, Comment. Math. Helvetici 50 (1975), 232–248.

[Ar] M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math. I.H.E.S. 36

(1969), 23–58.

[As] T. Ashikaga, Normal two-dimensional hypersurface triple points and the Horikawa type resolution,
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[D] A. Durfee, The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978),

85–98.
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