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Abstract. For the signature of the Milnor fiber of a surface singularity of cyclic
type, we prove a certain inequality, which naturally induce an answer of Durfee’s
conjecture in this case. For the proof, we use a certain perturbation method on the way
of Hirzebruch’s resolution process.

Introduction.

Let (B, Py) be a germ of a plane curve singularity g(x, y) = 0 at the origin of C>.
By a germ (V, P) of an n-fold cyclic cover (n > 2) branched along (B, Pj), we mean a
germ of 2-dimensional isolated hypersurface singularity defined by the equation f(x, y,z)
:=z" 4+ ¢g(x, y) at the origin of C 3. which we simply call a singularity of cyclic type. The
aim of this paper is to describe analytic and topological invariants of (7, P) via a certain
algebra-geometric method. Especially, for the signature of the Milnor fiber o(V, P), we
prove a certain inequality, which naturally induce an affirmative answer to the negativity
conjecture for the signature posed by Durfee [D, p. 96] in the case of a singularity of
cyclic type.

In §1, we investigate the invariants of a complete surface S which is a cyclic covering
over a nonsingular surface, where we admit non-normal singularities on S. Especially
we define the “Milnor number” of such a non-normal surface in some sense, and prove
a Noether type formula in [Proposition 1.5,

In §2, we first realize a singularity of cyclic type on a complete surface, and resolve
it by the method of Hirzebruch [Hil]. Next we express the Milnor number and the
geometric genus of (¥, P) in terms of the non-reduced divisor which naturally appears at
the final step of the resolution process by using [Proposition 1.5 and the Esnault-Viehweg
formula [E], [V]

We note that, by the reason that these invariants are essentially described in
A’Campo and in Esnault [E |, our contribution in §1, §2 is only to propose another
formalism. Our motivation of this formulation is to generalize to the arbitrary covering
degree of Horikawa’s method [Ho, §2| for double covering in some sence.

In §3, we define the improved singularity (V'V,P") of (V,P) which has the fol-
lowing property: The number of times needed of blow-ups of the branch curve of
(V'¥,PY) such that the reduced scheme of its total transform has normal crossing is one
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less than that of (7, P) in general. We also calculate the difference of the invariants
between (V,P) and (V'V,PY)

The method of the construction of the improved singularity is a combinatorial
interpretation of the “local perturbation method” on the way of the embedded res-
olution process of a plane curve singularity appeared in A’Campo [AcI], and has some
natural connection to A’Campo and Gusein-Zade theory [Acl], [G]. We will publish
the topological meaning of this process as well as another application in our forth-
coming paper.

In §4, by using Hirzebruch-Durfee-Laufer’s formula [Hi2], [D], and our previous
result, we prove a certain formula for (7, P) in [Proposition 4.7.

§5 and §6 are devoted to estimate the signature. Our method is, roughly speaking,
to show that the signature of the improved singularity is not less than that of the
original singularity. We note that, after producing our process inductively, we finally
reach the singularity (W, P) whose branch curve is an ordinary singularity. Therefore
we can compare o(V,P) with (W, ,P). Our main result is the following:

THEOREM. Let (B, Py) be a germ of a plane curve singularity. Let (C,Py) be a
germ of an ordinary plane curve singularity whose multiplicity coincides with the mul-
tiplicity of (B, Py). Let (V,P) and (W, P) be germs of n-fold cyclic cover branched along
(B, Py) and (C,Py), respectively. Let a(V,P) (resp. a(W,P)) be the signature of the
Milnor fiber of (V,P) (resp. (W,P)). Then we have

a(V,P) <a(W,P).

Furtherover, the equality o(V,P)=a(W,P) holds if and only if (B,Py) itself is an
ordinary singularity.

We remark that o(W, P) is explicitly calculated and its negativity is well-known.
Therefore the above theorem induce an answer to the problem of Durfee [D, p. 96] in
the case of a singularity of cyclic type as follows:

COROLLARY. Let (V,P) be a germ of analytic function f(x,y,z) =z" + g(x, y) such
that (V,P) defines at most an isolated singularity. Then we have

a(V,P)<0.

Furthermore, the equality a(V,P) =0 holds if and only if (V,P) is a germ of a non-
singular point.

As a topological approach to the signature of a singularity of cyclic type, Neumann
and Wahl showed that, under the assumption that the link ¥ of the singularity
is a Z-homology sphere, ¢ coincides with the (1/8)-time the Casson invariant of . As
they proved in [NW, Proposition 2.1], the assumption for .# to be a homology sphere is
somewhat strong, and so it seems an interesting problem to avoid it by extending the
notion of the Casson invariant. We note that, in the double point case z2 + g(x, y), it
is classically known that ¢ coincides with the signature of the symmetrized Seifert form
of the classical link of the branch curve g(x, y), which is the compound torus link (cf.
[Sh]). In this case, since the signature of the Seifert form changes sign when the link
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changes into its mirror image, the negativity of ¢ means that the mirror image of a
classical algebraic link cannot be algebraic. Therefore one can imagine that our result
corresponds to some feature of the “one-sided chirality” of the non-classical link arising
from such a surface singularity.

From another point of view, the Durfee problem is directly connected with the
upper bound problem of the geometric genus of the singularity as is mentioned in [D,
p. 97]. For instance, we refer to [XY1], [XY2], [Tol], [To2], for some types of
singularities, whereas Wahl found a non-complete intersection singularity whose
signature of the Milnor fiber is positive.

On the other hand, general and powerful approaches for the signature of singularity
have been done via mixed Hodge theory and Seifert geometry ([Ne], [StI], [St2], [SSS] etc.).

For the signature of weighted homogeneous singularities, many work have been
done (B, [AZ], [AM], [SE2], [E], [XY2], [FMS], [NW] ctc.).

For recent global study of cyclic coverings of surfaces, we refer Sakai [Sa]. For
singularities on Galois coverings, we refer Tsuchihashi [Ts].
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§1. Cyclic coverings.

1.1 Let W be a complete nonsingular analytic surface and L — W a line bundle on
W. For an integer n greater than 1, let B be a divisor on W which is linearly equivalent
to nL. We construct an n-fold cyclic cover S of W branched along B in the total space
V(L) of L in a usual manner as follows:

Suppose B is defined by the equation b; = 0 on a chart U; of W. Let &; be the fiber
coordinate of V(L) — W on a local trivialization U; x C. Then the equations &' + b;
=0 on U; x C for all i patched and define the surface S on V(L).

We remark that if B is reduced, then S is normal.

Let 7: V(L) =P(Ow(L)® Oy) — W be the associated P'-bundle. It is con-

venient to consider the above S as a hypersurface on V(L). The dualizing sheaf wg

is isomorphic to @m(l(m +S) ® Os and the self-intersection number w3 is defined as

(K +5)°S on V(L)

LEmMA 1.2. Let S be an n-fold cyclic cover of W on V(L). Then we have
@) x(Os) = 1/Hn(n — DKL+ (1/12)n(n —1)(2n — 1)L? + ny(Ow),
(i) o}=n{(n—1)L+Ky}*

ProoF. We first prove the assertion [if]. We set X = V(L) and let T be the
tautological line bundle on X. Since Ky is linearly equivalent to —27 + @*(Ky + L),
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we have
wi={n-2)T+ 7" (Kw+L)}*-nT (on X)
= (n—2)*nL*+2n(n —2)KyL+n(Ky + L)* (on W)
=n{(n— 1)L+ Ky}’

by the formula 77 = T(z*L)>.
Next we prove the assertion (i). Since we have

R'7,0x(Ky +S) =0,
n—1
7.0x(Ky + S) ~ Symm" (0 ® O(L)) ® O(Kw + L) ~ P O(Kyw + jL),
j=1
it follows from Leray’s spectral sequence and the Riemann-Roch formula that

n—1

2(X,O0(Kx +8)) = > _x(W,0(Kw +jL))

(KwL+ jL*) + (n— 1)x(Ow)

= %n(n - I)KWL—I—%n(n —D@2n—1DL> + (n—Dy(Oy). (1.2.1)

On the other hand, it follows from the exact sequence 0 — ((Ky) — O(Ky + S) —
0 (605) — 0 that

x(Os) = y(ws) = (O(Kx + S)) — x(0(Kx))
= x(O(Kx +8)) + x(Ow). (1.2.2)
Therefore the assertion (i) follows. O
DerFINITION 1.3, (i) For a divisor B on W, we define the number u(B) by
H(B) = ~2(C5) +(B),

where e(B) is the topological Euler number of the reduced scheme B4 of B.
For an n-fold cyclic cover S of W branched along B, we define the number

u(S) by
w(S) = (n—1)u(B)

Lemma 1.4. (S. L. Tan) If B is a reduced divisor on W, then the number p(B)
coincides with the total Milnor number of B, i.e. the sum of the Milnor numbers of all the
isolated singularities on B.

Moreover in this case, for an n-fold cyclic cover S of W branched along B (which is
automatically normal), the number u(S) coincides with the total Milnor number of S.
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Proor. The first assertion is proved in [Ta, Lemma 1.1] by Milnor’s formula [M,
p. 85]. The second assertion is clear from the first assertion because the equation of an
isolated singularity P on S is written as f(x, y,z) = z" + ¢g(x, y) and we have

N(P) = dim C{x7 )/,Z}/<fx,fy,fz)

= (l’l - 1) dim C{x7 y}/(fx?fy) = (I/l - l)ﬂ(P)a
where P is the singularity defined by g(x, y) =0. O
ProposiTION 1.5. (The Noether type formula). Let S be an n-fold cyclic cover of
W with branch locus B on V(L). Then we have
1

1(0s) = 35 (@5 +e(S) + u(S)).

ProoOF. Since S is topologically obtained by patching n copies of W along B for
n— 1 times, it follows from the Mayer-Vietoris exact sequence that

e(S)=ne(W)—(n—1)e(B). (1.5.1)
On the other hand, by the Riemann-Roch formula and the duality theorem, it follows
from the exact sequence 0 — O(Ky) — O(Ky + B) — O(wp) — 0 that

1(08) = £(0(w3)) = ~(0(Kw + B)) + £(0(Kw)) = — 3 (Kn + B)B.

Therefore it follows from and the usual Noether formula for W that

105) ~ 35 (@3 +elS) = 150~ L+ snn — )KL+ 33 (1~ De(W)
= 0 DKy B+ B+ e(B)
= 5= D{=24(05) + e(B)} = 15 (5) m

REMARK 1.6. In the situation of [Proposition 1.5, we add the assumption that S is
normal. Then the assertion directly follows from Laufer’s formula (see Brenton

[BD.

§2. The invariant formula via the Hirzebruch-Jung resolution.

Let (V,P) be a germ of 2-dimensional isolated hypersurface singularity defined at
the origin of C* by the equation

f(x,,2) = 2"+ g(x, p),
where ¢(x, y) is an analytic function with respect to the variables x, y, and n is an
integer greater than 1. Such a singularity (V,P) is said to be of cyclic type in this
paper. The aim of this section is to describe the geometric genus p,(V,P) and the
Milnor number u(V, P) in terms of the data on a branch curve which naturally appears
in the process of the Hirzebruch-Jung resolution of (7, P). We note that this resolution
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process is a special case of the original one introduced by Hirzebruch [Hil| for the
solution of the resolution problem of any 2-dimensional analytic space.

LemMA 2.1. Let (V,P) be as above. Then there exist a nonsingular surface Wy, a
line bundle Ly on Wy and an n-fold cyclic cover my: Sy — Wy on V(Ly) such that

(1) there exists a point Py €Sy such that the germ of the singularity at Py of Sy
coincides with (V, P),

(i) the reduced scheme of the branch locus By of ny has normal crossing outside a
neighborhood of Py = mto(Py).

Proor. By Artin’s theorem [Ar|, we may assume that g(x, y) is algebraic. Let D
be the closure in P? of the affine curve g(x, y) = 0. The curve D is reduced since (V, P)
is an isolated singularity. Let Qy € P? be the point corresponding to the origin of C?
in the open immersion C? — P>,

We choose general hyperplanes Hi, ..., H, of P> which do not pass through Qp in
such a way that the degree of the reduced divisor

D* =D+ H +---+H,

is a multiple of n. We set deg D# =nu and L% =0p(2) for aeZ. Let
n#:S# — P> be the n-fold cyclic cover branched along D# on V(L#). Let
{Q0,01,...,0s} (s=0) be the set of all isolated singularities on D#. The fiber
(z#)'(Q;) consists of one point for a fixed i (0 < i < s), which we denote by @;. Then
S# is a normal surface whose singularities are on Qy,...,Q,. Moreover, the germ of
the singularity of S# at Qo coincides with (V, P).

Now let t# : Wy — P? be the succession of blow-ups whose centers are infinitely
near points of Qp,..., Qs such that the reduced scheme of the divisor

By = («#)*D*

has normal crossing except in a neighborhood of Py := (T#)_I(Q()). Set Lo
(t#) Op2(2). Let 7y : Sy — Wy be the n-fold cyclic cover branched along By on V(L
and we put Py =mr;!(Py). Then the desired properties are satified.

~—

5

O

2.2, Let V(Ly) oSy — Wy be the n-fold cyclic cover branched along Bj as in
Cemma 2.1. Let Wy < W; <= ... << W, be the succession of blow-ups at infinitely
near points of Py such that the reduced scheme (B,) .4 of the total transform B, of B
by 7y 0--- o1, has normal crossing. We take the smallest such number » which enjoys
the above property and fix it from now on.

We note that, if r coincides with 0, then B defines an ordinary double point at Py.
In this case, (V/, P) is a rational double point of type A4,_;, whose properties concerning
our problem are well-known. From now on, we assume r > 1 in this section.

For 1 <i <r, let S; be the fiber product of S;,_; and W; over W;_, and let 7; : S; —
Si—1 and 7; : S; — W; be the natural maps. We set L; = t7L;_;. Then S; is realized on
V(L;) and the map 7; is also induced by the restriction of the natural map V(L;) —
V(Li-y). Letp': S — S, be the normalization. We set p =7, 0p’. Then the surface
S has at most isolated cyclic quotient singularities. Let p” : S* — S be the resolution
of such singularities. We note that this process p” is performed by using the so-called
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Hirzebruch-Jung string ((Hil|, [BPV, Chap. III]). Therefore we obtain the following
diagram:

V(L*) V(L) V(L) V(L)
U U U U
st s s e s L s s
l l l l
2 i W A 14} — & W,

The nonsingular surface S* itself is not uniquely determined by the germ (¥, P) since it
depends on the compactification S# in [Cemma 2.1. Although locally, i.e. over an open
neighborhood which is the inverse image of the affine neighborhood of the original
singularity, the structure of S* is uniquely determined. Moreover, the above process is
also uniquely determined up to order in the selection of the centers of blow-ups
Ty,...,7. We call this process the Hirzebruch-Jung resolution of (V,P).

For later use, we introduce some definitions and notation. For 0 <j<i<r,
we put 7,;, = Tjp10---01: Wi— W;. For 1 <i<vr, let B; (resp. E,—) be the total
transform (resp. the proper transform) of By by 7p,. Then B; coincides with the branch
locus of the n-fold cyclic cover #; : S; — W;. Let P,_; € W;_; be the center of the blow-
up 7;, and let m; = multp,_, B; | be the multiplicity of B, | at P;_. Let E;; =7, '(P;i_1)
be the exceptional curve of 7;, and let E;; be the proper transform of E;; by 7;; for
i<j<r. LetE; be the (scheme-theoretic) exceptional divisor for 7o;. Then we have
the irreducible decomposition

Ei = Zlij},
J=1

We put &; = (E;),,y- Moreover we decompose By into Bj + B, where By is the divisor
consisting of the components of By which pass through Py and B = By — B),. Note
that B is a reduced divisor since Py is an isolated singularity. We formally write the
irreducible decompositions as Bj, = Z?}r, Ejy and B = Z;:':,] m;E;y. For 1 <i<r
and —r" < j <0, let E;; be the proper transform of Ej by 79;,. We also formally put
mj =1 for —r' <j<0. Then we have the irreducible decomposition

i 0
B = Z m;E; ;, B; = Z m;E; ;.

J=—r" J=—r"

Now we look at the branch curve B, = Z;}r,, m;E; . on W,. The following lemma
essentially comes from the Esnault-Viehweg formula:

LEMMA 2.3. In the above situation, we have
() x(0s,) =x1(0s,) = 2(Os#), w3, = @y, —nr,

(i) x(%)—xw&,):%f 3 [”%"sz%ﬁ 3 {””—ﬂEkE}

i=1 j=—r" fe=—r"
(iii)  x(Os-) = 2(Og),
where [mji/n] is the greatest integer not exceeding the number mji/n.
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Proor. Since Ky, =t/Kw, , +E;; and L; =1;L;_y for 1 <i<r, we easily have
2(0s,) = x(Os,,) and w3 = w3 —n by Cemma T2 Therefore we have y(Us,)=
%(0s,) and w3 = w3 —nr. We remark that the birational morphism Sy — S# is
similarly constructed as for S, — Sy with respect to the isolated singularities {Qi}; ;.
which appear in the proof of Lemma 2.1. Therefore we have y(0s,) = x(Os#) sim-
ilarly.

The assertion (iii) is clear because p” is the resolution of isolated rational singu-
larities.

It remains to prove i} For 0<i<n—1, let #% be the line bundle on W,
defined by

- - ~ [myi
20 = [® @Oy (— > lﬁ} E,)
Jj=—r"

Since (B;),.q has normal crossing, it follows from [E, Lemma 2] or [V, §1] that

where (#7)Y is the dual bundle of &1,
Since RYp,0g vanishes for ¢ > 1, it follows from the Riemann-Roch formula that

n—1 g
2(05) = x(p.0g) = ZX(Wr, 0 (—z‘Lr +) {'"7’] b})
i=0 J

n—1

S (e ) (e 2] ) |

i=0

n—1

1
= EZ iL,(iL, + K ) + ny(Ow,)
i=0

182 & [md] | 2i ) "\ [myi
+§Z Z [7]{_;BrEj,r+2+Ej7r+ Z [T]Ek,rEj,r )

i=1 j=—r" k=—r"

On the other hand, by (1.2.1) and [1.2.2), we have

—

n—

iL,.(iLr + KWr) + nX((QW,)-

N —

1(Os,) =

Il
=)

i
Moreover if E;, is an exceptional curve for t#ot7i0---01,, then we have

B.E;;=0. If E;, 1s not an exceptional curve for t# ot 0---01, then we have
mji/n] =0 (1 <i< n—1) by m; =1. Therefore we obtain the assertion (11). ]

/l

COROLLARY 2.4.

pg(V,P) = -

N =

n—1 r . r .
mji ) Myl
E — <2+ E; E — N\ Ex  E;i ) p.

=l j= k=1
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Proor. We put t=1% 01, : W, — P>. We first decompose the set of integers
J={-r",—r"+1,...,r} into the disjoint union Jg Il Jp, where
Je={jeJ|m =2}, Jp={jeJ|m=1}

Since D# is a reduced divisor on P?, > ety Ej.r coincides with the proper transform B,

of D¥ by 7, and >_jes, MiE; » coincides with the exceptional divisor of U)_o Qs for .
We next decompose Jg into the disjoint union [],_,_,Js, where

=/ eJelt(E;r) = O}
It follows from that

N

> p,(00) = 1(Os4) = 2(Cs)

=0

A5 2R £ )

pa k=—r"
1 S = 1 i mri
_ L2+ B 4+ > =5 BBy
=0 i=1 jeJ; kel

We remark that, for any isolated singularity, its geometric genus is a local invariant
and is independent of the compactification of its ambient space. Hence pg(@ ) is
determined by the resolution data of O, themselves, i.e. we have

p,(0 :—%Z‘iz;[mf 1{2+E2 +l;[ kl]Ek, ],}

Since we have p,(P) = p,(Qp) and Jo = {1,...,r}, the assertion is proved. ]

LemMma 2.5.

w(V,P)=(n—1) {—r—f—z i — 1)(m;E}, - 2)

+ E (2mm; — 1)}
—r'<i<r,1<j<ri<j, E ,NE; , #J

Proor. For brevity, we write E; := E;, for —r" <i<r.
Since e(W,) = e(Wy) +r and e(B,) = e(By) +r, we have e(S,) = e(Sy) +r by
1.5.1}. Therefore it follows from [Proposition 1.3 and that

u(S;) = 1(So) = 12{x(0s,) = 2(0s,)} = (@5, — w5,) = {e(S;) —e(So)} = (n— Dr. (2.4.1)

Now for an integer i with 0 <i <r, we define a divisor B”) on W, by

—r'—1

Zm]E~I—ZE+Zm]

j=—r" j=—r j=i+1
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Then we have B, = B© and E + &= B"). Now we claim
(By,) — u(B, + &) _22 i — 1)(EBY —1) +Z (m; —2)E2. (242

Indeed, if m; =1, then we clearly have y(Opin) = x(COpn). Let us assume m; > 2.
Then for any integer k (1 <k <m; — 1), we consider the exact sequence

0— (QEI(_B(i) —(k=1E)— Opo ke, = Opose-nys, = 0.

We note that E; is isomorphic to P' for 1 <i<r. Therefore, by using the above
sequence inductively and by the Riemann-Roch formula, we have

m,-—2
2(Ogin) = 2(Ogiryryp) = 2(Og0) + > 2(Or(~BY — kEy))
k=0
mf—2 .
= 2(Ogo) + Y _{E(-BY — kE;) + 1}
k=0
; 1
= 2(Og0) = (m; = 1)(EBY — 1) = 5 (mi = 1) (m; — 2)E}.

From this, we obtain (2.4.2).

Next we compare u(By) with u(B,+&,). Let Uy be a suitable affine neigh-
borhood of Py in Wy and set U, =1 1(Up). Then the restricted curves By|y,,y, and
(B, + &, )w,\u, are mutually 1somorphlc On the other hand, &, and B, meet trans-
versally at 4 := &, B, points. Moreover &, has just r — 1 ordinally double points as its
singularities. Therefore the set of singularities on (B, + &,)| y, consists of r+4—1
ordinally double points, while the set of singulariries on By, consists of only Py
itself. Hence it follows from [Cemma 1.4 that

[(By + &) — u(Bo) =1+ A —1— u(Py). (2.4.3)
Therefore from (2.4.2) and (2.4.3), we have

u(B,) — u(Bo) = 3" (20m; — 1)(E> — 1) + (my — 1)(m; — 2)E2)
i=1

+2§r:(ml~ (ZE+Zm] >E+r+,1—1— 1(Po)
i=1

j=—r j=i+l1
_Z i — D) (mE? —2) + > {@m;—1)+1}
—1'<i<0,1<j<r,E;NE;# &
+ > {2(m;i — 1)mj +2(m; — 1) + 1} — u(Po)
1<i<j<rENE#J
= (i = 1) (miE} —2) + > (Zmm; — 1) — u(Po).
i=1 ' <i<r, 1<j<ri<j, ENE#J

From this and (2.4.1), we obtain the assertion. O
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ExaMPLE 2.6. Let (¥, P) be the singularity defined by z* + x(x? + y3) =0. The
total transform of the embedded resolution of the singularity x(x? + y*) = 0 is written
by S0 | mE; where E} = =3, E} = -2, E} = —1, EsEy = EsEy = EsEy = E3E_; = 1,
m_y=my=1, m =3, my=35 and m3=9. Therefore we have p, (V,P)=35 and

u(V,P) =308 by and [Cemma 2.3.

§3. Improved singularities.

Let (¥, P) be a germ of 2-dimensional isolated singularity of cyclic type. The aim
of this section is to define a new singularity (VV,P") whose difficulty compared with
(V,P) is improved in “a unit” in the following sense: If we complete the process of
blow-ups of the base surfaces just r times in the Hirzebruch-Jung resolution of (V, P),
then the corresponding process for (V'¥, P") is completed in at most » — 1 times. Next
we calculate the difference of invariants between (V,P) and (VV,PV).

3.1. We go back to the situation of 2.2. We assume r > 2 in this section. For
2 <i<r, we consider the blow-up 7;: W; — W,_; with center P,_;. We set f,_| =
multpl.flé:l. According to the position of P;_; in &;_1, we classify 7; into the following
two types:

(A) Assume that P;_; is a nonsingular point of &; ;. There exists an integer ¢, (i)
with 1 < ¢,(i) <i—1 which is uniquely determined by i such that P;_; is contained

in E, ;1. We have
mi = my, ) + fiy-

In this case, 7; is said to be of type A.

(B) Assume that P;_; is a double point of &;_;. There exist integers ¢, (i) and
@,(i) with 1 <¢,(i) < ¢,(i) <i—1 determined by i such that P; ; coincides with
E(pl(i)vi_l mE(ﬂz(i)»f—l‘ We have

mi = My, (i) + My, (i) + By
In this case, 7; i1s said to be of type B.

3.2. We consider the blow up 7, : W, — W,_;. We define a new curve D, | on a
neighborhood of &,_; in W, ; in the following way:

(A) Assume 7, is of type A. Since 7, is the last blow-up in order to obtain the
normal crossing property for (B,),4 near &, the local branch of B,_y at P,_; consists of
p,_1 nonsingular components Cj,...,Cg ~ such that the tangent lines at P,_; of
Ci,...,Cp , and E, () are mutually distinct. Now we take any nonsingular analytic
curves C{,..., CéH locally defined in a suitable neighborhood U of &, 1 in W,_; such
that

i cj,..., C/’),’_i1 do not intersect one another,

C/ intersects &, transversally at one point in E, () ,—1\(E, ),-—1 N Sing(&,-1))
for 1 <i<p, ;.

Then we define a new reduced curve D, ; on U by



496 T. ASHIKAGA

E(p; (r),r-1

Cﬂr—x / f C{
/ /
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Figure 1

E,, (r),r—l\ AN >< y _105
Gy
X > XK

Efa(r)ir-1 / Cb,-,

Figure 2

o ﬂrfl ﬁrfl
D,y =B,_1|y — Z Ci + Z i,
i=1 i=1

where E,\_/]| v 1s the restriction of B._i to U. See Figure 1.

(B) Assume 7, is of type B. The local branch of B,_; at P,_; consists of f§,_,
nonsingular components Ci, ..., Cg , such that the tangent lines at P,_; of Cy,...,Cp |,
E, ) and E, ) at P, are mutually distinct. We take nonsingular analytic curves
Cj,....,Cp , Cf,...,Cf defined on U such that

i) ¢ "”’Cér—l’ c/ ,...,C/’f”;l do not intersect one another,

C! intersects &,_; transversally at one point in E, ) ,—1\(Ep ),r—1
Sing(&,-1)), and C/ intersects &,_; transversally at one point in E, () ,—1\(Ep,(),-—1
Sing(&,-1)) for 1 <i<f,_,.

Then we define a new reduced curve D, ; on U by

o ﬂrfl ﬁrfl ﬁr—l
Dy =B |y =Y G+> Cl+> C
i=1 i=1 i=1

as in Figure 2.
For 0 <i<r-—2, we put

Di (Ti,r—l)*Dr—l-
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The curve D; is defined in a neighborhood of &; in W; for 1 <i <r— 1, and is reduced
by our construction. The curve Dy is defined in a neighborhood of Py € W, and is also
reduced.

Remark 3.3. The above construction of D, ; is a combinatorial interpretation of
the following: If we could perturb the germ at P, ; of 15:1 to the transversal direction
against &, 1, we would obtain D, ;.

This idea is already seen in A’Campo [Acl]. Furthermore this is directly related to
the method of T. S. Robbecke [R]. (This was pointed out to the author by Professor
Brieskorn.) For more general treatment of the argument of this type, we refer Oka [O].

DEerINITION 3.4.  As in the above situation, we put g" (x,y) = 0 to be the defining
equation of Dy at Py. We also define a germ of 2-dimensional isolated singularity
(VV,PV) of cyclic type to be the germ at the origin of C° defined by the equation

fxp,z)=2"+g"(x,y) =0.
We call (VV,PY) an improved singularity of (V,P).
ExampLE 3.5. If g(x,y) = x> + »°, then we have ¢V (x, y) = x> + »* as in Figure 3.

ExampLE 3.6. Since the definition of ¢V (x, y) depends on the order of blow-ups to
resolve g(x, y), if g(x, y) has many local analytic branches, then ¢g" (x, y) is not uniquely
determined. For example, if g(x, y) = (x2+ y){(x+y)’ + »°}, then we easily have
9" (x,5) = (2 + y{(x+ ) + ¥} or g¥(x,p) = (F+ ) (x+ ) + 7}

3.7. The Hirzebruch-Jung resolution of (V'V,P") is produced in the following
way: We may assume that ¢ (x, y) is algebraic as a germ of an isolated singularity by
Artin [Ar]. Then by the same argument as in [Lemma 2.1, there is an n-fold cyclic cover
my Sy — Wy on V(L;) for some line bundle L) with the branch locus By’ such that

(i) there exist a point Pje W and an open neighborhood U’ of P in W such
that the restricted curve By |, coincides with Dy|,, for some open neighborhood U of Py
in W,. BEspecially the germ of the singularity of S; at P} = r,~'(P}) coincides with
(VV,PY).

(By );eq has normal crossing on the locus Wj\U'.

Since Dy is the image of the local curve D, ; induced by the succession of blow-downs
of the ambient spaces 7o ,_;: W,_1 — Wy, the embedded resolution process for the
singularity P; is produced by the same process locally isomorphic to these (r/— l)-fqld
blow-ups. In other words, there exists a succession of blow-ups W il W] .. o
W), which satisfies the following properties: For 1 <i<j<r—1, we set 7/, =1/,
o---o*c;. Then:

(i) Forany i(l<i<r— 1),(1671.)*1(U’) is isomorphic to T&}(U).

Let EIT’ be the proper transform of By by 7y, Then l§7 |(T(3 PRt
morphic to Di|r(;li(U)- ’

Let B be the total transform of By by 75, (0<i<r—1). Then the reduced
scheme of B,” | has normal crossing. Let 7, _, : S/ | — W/, be the n-fold cyclic cover

branched along BY, on V(zg, |Lj). Let S/ L 82 §* be the composite of the

U 1S 1SO-
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normalization and the resolution of cyclic quotient singularities on S. This complete
the process of the Hirzebruch-Jung resolution of (Vv PY).

Incidentally in the resolution process for (V¥ ,P"), the minimal number of times of
blow-ups so that the reduced scheme of the proper transform of the branch curve has
normal crossing need not coincide with » — 1 in general. For instance in Example 3.5,
we have r =4 for (V,P) while r =2 for (VV,P"). However, it does not matter for
our argument, because we do not need the minimality of the resolution.

From now on, since we only consider local properties satisfied in the neighborhoods
of the exceptional sets of Py and P|, we identify W/ with W; and 7] with 7;, respectively,
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for 0 <i<r—1, and use the symbols P;, E; and E;; as in the previous case. That is,
P;_; and E; are respectively the center and the exceptional set of the blow-up 7/ = 7;,
and E;; (1 <i<j<r—1)is the proper transform of E; by 7;; =1;;. We set E,/| =
B, — EZI The support of E,”, coincides with &,_; = ,’(;11 Ei,—1. Weset EV :=
(n/_ o p” o p™) ' (&,-1), which is the exceptional set of the singularity (V'¥,P") by this
resolution.

Now the proof of the following lemma is due to Masataka Tomari.

LemMa 3.8. (Tomari) (i) For 0 <i<r—2, we have
mUItpié? :multpl. E,'.
(i) The divisor E," | coincides with the divisor E,_,.
Proor. We prove (i). Let
r—1
= @( $ E)
j=itl

be the pull-back of the maximal ideal mp, at P;. Since B, (resp. l?f_/l) is the proper
transform of B; (resp. B)Y) by 7;,_1, it is well-known (and easily proved by induction)
that

multp, El- = l/?:jl -1;,_ymp,, multp, BNZV = BE -1, mp,.
Therefore if 7, is of type A, then we have

r—1
multp, B; — multp, BY = Y nE;, (B;— BY)
j=i+l1

ﬂr—l ﬂr—l
= Ny, (1) Ep, (1), r-1 (Z Cr — Z C,i) =0.
k=1 k=1
If 7, is of type B, then we also have

mult P; Ei — mult P; B\l\//

B B By
= (1,0 Epy().r-1 + M) B, r-1) (Z Ce—> CGi=) Cg) =0.
=1 k=1 k=1

Hence the assertion (i) is proved.
Next we prove [[i). Let EY, = >./") m/E;, | be the irreducible decomposition. Tt
suffices to prove

m; =m. (3.8.1)

for 1 <i<r—1. We prove this by induction on i. If i=1, it follows from the
assertion (i) that

mj = multp, By = multp, By = m.
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Assume is satisfied for any j with 1 < j <i—1.
from the assertion (i) that

If 7; is of type A, then it follows

m; =m, ; +multp_, BY =m, ; +multp_, By =m;.

If 7; is of type B, we also have

= my oy g+ multp | BY | =y )+ my, )+ multp, By = m;.

Thus the assertion is also proved. ]
Now we compare the invariants of the improved singularity with those of the

original one. For a rational number o, we set {a) = o — [o, and call it the fractional

part of .
LemMA 3.9. (a) Assume 7, is of type A. Then we have

s =D g, an 1)~ 3n)

8-

—— {ng(mru l/l) - ng<m(01 (r)s I’l)}

PV, P) = p, (V7 P") =

(b) Assume t, is of type B. Then we have

p,(V,P)—p,(VY,P") = brs l(2n ){ﬁ 1(2n—1) = 3n}

L) ()-2)

1
— Z{n + ged(my, n) — ged(my, (), n)) — ged(my, ), n)}

1 /myi My, ()i My, i \\
e (5 - (") - ("))

(pi(r) (i:1,2), Er:Er,r: d, =

Proor. For brevity, we write f=p,_,, ¢ =

ged(m,,n), d, = ged(m, (y,n) and so on.
It follows from |Corollary 2.4 and [Lemma 3.8 that

We first assume 7, is of type A.
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- B
- (5)-()

_|_

()15

We set n =d.n and m, = dm,. Since 71 and m, are mutually prime, we have

S _drﬁ—l i _dﬁilj_n_dr
(o) S et

i=1 i=1

By the above argument, we have

S((2) - (o)) 0.

Hence the assertion (a) is proved.
In the case of type B, we have the assertion (b) by the similar calculation. []

LemMa 3.10. (a) Assume 1, is of type A. Then we have
u(V,P)—u(V",P") = (n—1F (B, —1).
(b) Assume 7, is of type B. Then we have
u(V,P)y—u(V¥,PY)=(n—1)B .

Proor. We use the shortened symbol as in [Lemma 3.9. We use Lemmas and
B.8. Assume 7, is of type A. Since m, is equal to m, + f, we have

n—1 {ﬂ(Va P) _:u<VV7PV)} = (WZ,, - 1)(mrE;2 - 2) + (m(m - l)m(ﬂl (Etﬁm’ o Efilﬂ"—l)

+ (2m B — 1) + 2mm,, — 1) — 2my f—1) — 1 = f2—B.

Thus the assertion (a) is proved.
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In the case of type B, we have the assertion (b) by the similar calculation. []

Next we calculate the difference of the first Betti number of the exceptional sets. We
consider E, on W,. For each i (1 <i<r), we set

10) ={jl—ro<j<rj#iL,ENE # J}.
Let ¢; be the great common divisor of n, m; and all of m; (j e I(i)).

Lemma 3.11. (a) Assume 1, is of type A. Then we have

bi(E) — by (EV) = (f,_; — 1){gcd(m,,n) — ged(my, ), 1)} + ¢4 () — ged(my, my, (), 1).
(b) Assume 7, is of type B. Then we have

2

2
bi(E)—=bi(EY)=p,_, {gcd(mr, n) — chd(mwk(,.), n) + 1} + Z Cop (1)
k=1

k=1

2
—1- Zg0d<mram(pk(r)vn) + ng(m%(V)’m(/’z(V)’n)‘
k=1

ProOF. Adding to the simplified notation as in [Lemma 3.9, we further write d,, , =
ged(mg, ,m,,n) and so on.

Assume 7, is of type A. We first consider S* — W,. The number of components
in E which dominate E, is ¢,. (e.g. Tsuchihashi [Ts, §3].) We write these components

by Eé}), . ,Eé,f“’l). For each i (1 <i<c¢, ), the natural map Eé? — E, is a cyclic
covering of degree d,, /c,, whose ramification points are on the inverse image of E, N E;
(jeI(py)). Since the number of the points on the inverse image of E, NE; is d,, ;/c,,
and the ramification index at these points is d, /d,, ;, it follows from the Riemann-
Hurwiz formula that

Cpy

Zbl(E((ﬂll)) = 2c(ﬂ1 - d(ﬂl - d(”l,” + Z (d(ﬂl - dfﬂluj)‘
i=1

jGI((ﬂl).,j?él’

Similarly there is an unique component E, of E which dominate E, and we have

bi(E) =2—d, —d, ,+B(d —1).

Moreover each E(S,i) (1<i<c,) and E, is connected by d,, ,/c, Hirzebruch-Jung
strings. Therefore they contribute

d
(481 _
C(/’1<C -1 _dwlvr_cwl
91

to bi(E) as loops of the dual graph of E. -
Next we consider $** — W,_;. There is a unique component E, ,_; of E” which
dominate E, , ; and we have

bi(Epr1) = (B=2)(dp = 1)+ > (dy —dy, )

J'EI((/’I)J?EV
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It is verified that the other components of E and EY do not contribute to the
difference of the first Betti numbers. Therefore the assertion (a) easily follows.
In the case of type B, we have the assertion (b) by the similar calculation. []

§4. The signature of the Milnor fiber.

For a germ of 2-dimensional isolated hypersurface singularity (¥, P), the signature
of smoothing a(V, P) is defined as follows: Let F and 0F be the Milnor fiber of (V, P)
and its natural real boundary, respectively. Then o(V, P) is defined to be the signature
of the quadratic form

H?(F,0F;R) x H*(F,0F;R) = H?(F,0F;R) x H*(F;R) > H*(F,0F;R) ~ R,

where the map o, is induced by the natural map between the second factors and o is
induced by the cup product. By using essentially the Hirzebruch theory of the signature
defect [Hi2], Durfee [D] proposed some formula for 6. By combining the formulas [D,
Corollary 2.1] and Laufer [L], we have:

THEOREM 4.1. (Hirzebruch, Durfee, Laufer)
a(V,P)=—u(V.P)+4p,(V,P) —bi(E),
where E is the exceptional set of a good resolution of (V,P).

Let (V,P) be a germ of 2-dimensional isolated singularity of cyclic type. The aim
of this section is to propose a formula for a(V, P) by using the method in the previous
sections.

We consider the Hirzebruch-Jung resolution of (7, P), and use the same notation as
in §2 and §3. We first formally set (V}, Pjy) = (V,P). If r > 2, then for any integer i
with 1 <i <r— 1, we inductively define a new germ (V};, Pj;) of 2-dimensional isolated
singularity of cyclic type to be the improved singularity (V}y, Py) := (V[iVH],P[lYH]) of
(Viis1]s Ppir1))- - We note that the blow-up 7; is of type A (resp. type B) as a step of the
Hirzebruch-Jung resolution of (7, P) if and only if the i-th blow up of the Hirzebruch-
Jung resolution of (V}y, P}y) is of type A (resp. type B). Therefore by Lemmas 3.9,
and B0 and Theorem 4.1, we easily obtain the following:

LemmA 4.2. We simply write d; = ged(mi,n), d;, i) = ged(mi,my, iy,1n), ¢y i) =
ged(my, iy, mj, . ..,m;,n) where I(p(i)) = {jy,...,jx} and so on.

For 2 <i<r, we have:

(@) If ; is of type A, then

n 1
o(Vigs Pig) = o(Vij-1y, P-1)) = — (g - 5):51‘21 = Pii(di — dy, )
n—1 mij m(plj 2
+dipn+2) ((=7) (==
=1
4B;_ = m;j My, J
. ;]« . . (i)
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(b) If 7; is of type B, then

n 1
a(Viy, Piy) — o(Vii-n), Piicy) = _(g_ﬂ)ﬁiz—l = (Bioy + D(n+di — dy i) — dy, )

=1
4ﬂl—l i mij m(”lj Wl%]
o Z‘] n/ \ n n
j=1
= Cpy(i) — Cpp(i) T 1.

Next we consider (¥, Pjyj). We note that mult(Vyy, Ppyy) = mult(V, P) =, by
Lemma 3.7.

LemMa 4.3.
2 +d2
(Vi Ppy) = (ﬁo = 3py = 2)n — Podp, — 1 + b ﬁo ~dhy Z <ﬁ0j>

Proor. By [Lemma 2.1, we construct an n-fold cyclic cover 7y o : Si,0 — Wi o such
that the germ (S170,7tf710(P0))(P0 € W1,0) coincides with (¥, Pyj).  Let

Py 1
S0 «— Si1 — S ; S|

L

71,1

Wio «—— Wi,

be the Hirzebruch-Jung resolution of (V[,Py). Then the branch divisor By of
12811 — Wi is written in a neighborhood of Ej = rill(Po) on W, as

Bi1 =BoE1 + Ci +---+ Cg,  (locally)

such that C; (1 <i<pf,) do not intersect one another and each of C; (1 <i<f,)
intersects E; transversally at one point. Therefore by [Corollary 2.4 and [Lemma 2.5, we
easily have

(Vs Pry) = il 1;,(12”_1) ol n_l Z <ﬁo‘]>

n— dﬁo (I’l — d,;o)(Zn — dﬁo)
tg T 12n '

u(Viny, Ppy) = (n = 1)(By — 1),
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We set E, = (m o pj op{’)_l(El), which is the exceptional set of (¥, Py;) by this
resolution. Then we have

bi(Er) =2 — 2dg, + Bo(dp, — 1).
Therefore from the above equalities and [Theorem 4.1, the assertion follows. ]

4.4. We go back to the Hirzebruch-Jung resolution of (V,P) in 2.2. We further
introduce some definitions and notation. For any integer i with 1 <i<r, let T(i) =
E; iNB;. We decompose 7'(i) into a disjoint union 77 (i) LI 7>(i) where

Ti(i)={ReT()|R¢E; (1<Vj<i—1)and Ix(B;, E;;) =1},
Tr(i) ={ReT()|ReE; (1<3j<i—1)orIg(B;,E) =2}

Here IR(E,EM) 1s the intersection number of El- and E;; at R. We denote the
cardinality of the set 7(i) by

0, = # Tl(i).
Since the multiplicity f;_; coincides with 3 7, IR(E,E,;‘,»), we have
0<0,<p_,

Moreover if r > 2, then we decompose the set {2,...,r} into a disjoint union 411 B
where

A={2<i<r|tisof type A}, B={2<i<r|tisof type B}.

LemMmA 4.5. We have

DUCHIVID(CHRES)
S S () - () - (5) =50 S

ieB

(i) Bocdi + > Bii(di = dyyi) + D Biy(di — dyy iy — diyi)) = Z 0:d;.

ied ieB i=1

Proor. We set G(x) = Z]’.:ll j<{xj/ny for an integer x. For 1 <i<r, we define
subsets J4(i) and Jg(i) of {1,...,r} by

Ju(i)={jeZ,i+1<j<r|tis of type A and ¢,(j) = i},
Jp(i)={jeZ,i+1<j<r|tis of type B and ¢,(j) =i or p,(j) = i}.
We put

a;i =Py — Z B

JjeJa(i)UJp(i)

Then it is clear that
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BoGlm) + Y B {G(mi) = Glmy, )} + D fi{Glmi) — Glmy, ) — Glmyy)}

ieA ieB
-
= ZaiG(mi).
i=1

Therefore it suffices to prove
a=0; (1<i<r).
We note that
O:=PFi1— Y Ir(Bi Eiy).
Re Ty (i)
For any fixed R e T»(i), let

Ry=R,R =E;;NB;,....R,=E;; NB, (i<ij<---<ig<r)

be all the infinitely near points of R. Then by Max Noether’s theorem (e.g., [BK, §8]),
we have

IR(EI', Em‘) = Z multRk lfik . multRk Ei,ik = Zﬂi.r'
k=0 k=0

From this, we have

Z_ Ir(Bi E;;) = Y. B

ReT;(i) jeda(i)UJp(i)

Hence we obtain a; = 0;, and the assertion (i) is proved.
To prove [ii), we just replace the definition of G(x) by G(x) = ged(x,n). O

4.6. We introduce some definitions. We first set

1 Bo+d; 40, 2=L /B ;
F1) = = 306 - 30— = 1+ 2 B SUS7 () gy,

n n =

For ie A, set

j=1
40; 2 . /mj
- J< >—0,-d,- Cou (i)
J=1
For i e B, sct
, 1 1
Ful) = =5 (1= 3 B0 = (B + 1= e oy + o + s
[ /mij My, ()] WOVANY
+ dig, (i) = dp,(i).9,(0) +2; )\, )\,
40,32 /myj
- J< " > = Oidi — ¢, (i) = Cpy) + 1.

J=1
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PRrOPOSITION 4.7.  For a 2-dimensional isolated singularity (V', P) of cyclic type with
r>1, we have

o(V,P)=F(1)+ Y Fa(i)+ Y _ Fa(i)

ieAd ieB
Proor. Since we have
a(V,P)=a(Vy, Py +Z{0 Vi, Piy) — o(Viimy), Piie1)) 1
the assertion follows from Lemmas 4.2, and 4.3. O

§5. The estimate concerning the fractional part symbol.

In order to estimate the formula in [Proposition 4.7, we prepare some calculations
concerning the fractional part symbol { >.

LEMMA 5.1. Let ny,ny be natural numbers which are not less than 2, and we set s =
ged(ny,ny) and N = lem(ny,ny) (the least common multiple). Let s1,s, be any natural
numbers with (ny,s1) =1 and (ny,s,) = 1. Then we have

S () - S (30(E)

ProOF. We set nj =n;/s and n; =mny/s. Since N = nynps = njny, we have

NEYIRDACIIICE S

S S en ) 5 ()

Since syn; and np are mutually prime, the numbers syn1j + [s2i/s] (0 < j < np — 1) define
mutually distinct equivalence classes in Z/mZ, i.e. the set {sn;j+ [s2i/s]|0<j <
ny — 1} is congruent modulo 7, to {0,1,...,n; — 1} neglecting its order. The sets {s;i|
0<i<n —1} and {0,1,...,n — 1} are congruent modulo n; in the same sence.
Therefore we have

GG - S S E ) -EEE &)

—o \' np = \"1/ =5\ 1y pare 1/ = \m 1>

ni—1 \ ~ ;z\Isfl . .
i\ (my —1 $i\\ _ (m —1D(m—1) sii\ /5

() e ()= S G0

Since (nys,s1) = (s,52) = 1, by the same argument as above, we have

o)

S
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(e )

From these, the assertion follows. ]

LemMA 5.2. Let s be any natural number and let sy,s, be natural numbers with
(s,81) = (s,82) = 1. Then we have

D=1 _ <_><_> _ ==

6s . K K 6s
i=0

(]

Moreover the left hand side equality holds if and only if s\ + s, = 0 (mod s), and the right
hand side equality holds if and only if s; = s, (mod s).

ProoOF. For a permutation
1, 2, ..., s—1
T —
(1), =(2), ..., z=(s—1))’

s—1

F(r) =Y _ir(i).

i=1

we define the function

We easily obtain that, when 7 moves all the permutations of (1,2,...,s—1), the
minimal value of F(r) attains if and only if ¢ coincides with

L2 L os—1
s—1, s=2, ..., 1 )

and the maximal value of F(r) attains if and only if ¢ coincides with the identity
permutation.

Now for any natural number o, we write o) as the remainder divided by s. We
put

o <<<S1>>, 251, ooy L(s— 1)S1>>)
e <<S2>>, <<2S2>>7 ) <<<S - 1)S2>>
By (s,81) = (s,52) = 1,0y, 5, 1s considered as a permutation of (1,2,...,5s—1). More-
over we have
) -2
<\ s s 52
Therefore the assertion easily follows. ]

LemMA 5.3. Let n be an integer greater than 2 and let M, M, be natural numbers
with My # 0, M, #0 (mod n). Then we have
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Proor. For j=1,2, we set d; = ged(M;,n),n; =n/d; and s; = M;/d;. We have

nj>2 by M;#0 (mod n). Moreover we set s = ged(ni,n2), N = lem(ni,n2) and n; =
n;/s. We have N =mnims. We set d =n/N. From d; = dny and dy = dnl, we have

g«mv%%§)gjwﬁ§%%gf

o (CONC) BT CE R

The assertion (5.3.1) implies the assertion of the Lemma, because we have

=

Now we claim

(n—1)(n-2) dN-1)(N-2) (d-1)3dN—-d-1)
3n a 3N B 3dN

> 0.

It suffices to prove (5.3.1). Since (n1,s1) = (n2,52) =1, we have
N=1/ ~ . n—1 m—1 N-1
nySi1 I’l1S21 S1 I ) S11 Szl
— -2
() -0 RS G S () =S )

_mm-1)m-1) 1(712—1 )(2ny—1) 2N1<sll><szz>

6n; n

i=1

Therefore it easily follows from Lemmas 5.1 and 5.2 that

S5 - (%)

_ <(N— DN =1)  mp(m —1)(2m — 1))
6N 61

(WbEN D)t = Dion - )

6N 61>
+2{NZ:<%><%> C(N- 16)](VN+1)}

> (BN i~ 1) — 1)+ (3N — i — )i — 1)}
+2{(n1 — 1)(n —4S1)— (s — 1)2+(s— lé§s+l) C(N- 16)](VN+1)}

(i — 1)s2 — (i + )+ 4 . (M2 — 1) (M2 — 1) = 3am + 3

—— > > 0.
6n1nys 6n1n,

by n; > 2 and ny > 2. Hence the assertion is proved. O



510 T. ASHIKAGA

We slightly generalize a part of [Lemma 3.2l

LemMMmA 54 Let n, My, M, be any natural numbers. Then we have

e

i=1

Proor. If M; =0 or M, =0 (mod n), then the assertiop is clear. Assume M; # 0
and M, #0. We denote by d;,s;,n;,7n;, (j=1,2)s,N and d as in the proof of [Lemmal
5.3. We easily have

(n=D@n—-1) d(N —1)2N - 1)
6n - 6N ’

5 ) 20

Moreover it follows from Lemmas 5.1 and 5.2 that

LENCEI T

i=1

_ (wim = D)@sim —1) (i = Dsm—1) (5= 1D@s—1)

- 6sn1n> 4s 6s
nmn, — 1 nm+ny—2 1 1
= ———]->0.
2z * 4 (6n1n2 6) s
Hence the assertion follows. ]

LEMMA 5.5. Let n,M be natural numbers with n > 2. Then we have

—Z< >+gchn) 2?”+1—%.

Proor. The calculation is similar as above, and we omit it.

REMARK 5.6. The statement of lemmas in this section can be translated into the
language of the Dedekind sum (e.g. Hirzebruch-Zagier [HZ]).

§6. The estimate of the signature.
The aim of this section is to prove the following:

THEOREM 6.1. Let (C,Py) be a germ of an isolated plane curve singularity of
multiplicity m.  Let {C,,...,C,} be the set of local analytic branches of C at Py. Let
{Ci,...,Cy} be the subset of {Ci,...,C,} such that;

(x) Forany j (1 <j<0), Cy is nonsingular at Py and the tangent line of C; at Py

is mutually distinct from the tangent line of any other one of {Ci,...,C}.
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The number 0 = 0(C, Py) is defined to be the maximal number which enjoy the property
(%). If such a subset {C;,...,C;} is empty, then we set 0 = 0.

Now let (V,P) be the germ of the singularity on n-fold cyclic cover (n > 2) branched
along (C, Py), i.e. (V,P) is defined by the equation f(x,y,z) =z"+ g(x, y) where g(x, y)
is the defining equation of (C,Py). Let a(V,P) be the signature of the Milnor fiber of
(V,P). Then we have

3 3n
40=L mi
3 z<%> — 0 ged(m, n). (6.1.1)

where {mi/ny = mi/n — [mi/n] is the fractional part of mi/n.
Furthermore, the equality of (6.1.1) holds if and only if the singularity (V, P) satisfies
the property 0 =m, that is, (C,Py) is an ordinary singularity.

It is clear that Theorem 6.1 implies the [Theoreml in the introduction.

COROLLARY 6.2. Let (V,P) be a germ of analytic function f(x,y,z) =z"+ g(x, y)
such that (V,P) defines at most an isolated singularity. Then we have

a(V,P)<0.

Furthermore, the equality o(V,P) =0 holds if and only if (V,P) is a germ of a non-
singular point.

Proor. If the multiplicity of (7, P) is less than 4, the assertion is known ((Tol|A]).
Therefore we may assume n >4 and m >4. Then we have a(V,P) <0 by an easy
calculation O

6.3. We start to prove [Theorem 6.1. We produce the Hirzebruch-Jung resolution
of (V,P). We first assume r =0. Then (C, Py) is an ordinary double point and (V, P)
is a rational double point of type A,_1. By p, =0, u=n—1and b; =0,
imply ¢ = —n+ 1 in this case. On the other hand, we have

— ./2j _ [ (n=1)(Tn—5)/24, if nis odd
jzlj<n> {(n—2)(7n—4)/24, if n is even.

by an easy calculation. Since we have m = 0 = 2, the right hand side of also
coincides with —n + 1, which prove the assertion in this case. (Another proof: Al-
though the branch curve has normal crossing, we blow up the base surface at one time
and use [Proposition 4.7 by settig r = 1.)

Next we assume r = 1. In the notation of §4, we note that 0 = 0, and m = f§,. More-
over, F(1) in [Proposition 4.7 coincides with the right hand side term of [[6.I1.1).
Therefore the equality of holds. We remark that the condition r =1 occurs if
and only if 6 coincides with m.
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From now on, we assume r > 2. By [Proposition 4.7, it suffices to prove

> Fa(i)+ ) Fa(i) <0. (6.3.1)

ieA ieB

We prepare several lemmas to prove (6.3.1).
LEMMA 6.4. Assume i€ A. If m; #m, ;) (mod n), then

. 1 1 5 8 7 4
Fu(i) < —3 <n—£) (Bii1 —2)(Bi1 +2) -I-Max{—ﬁn— 3+§,—En+§}.

If mi =m, ;) (mod n), then there exists an integer k > 1 with B, | = kn such that
F(z’)<—lk2n2 n—l +d; — 1
A= 73 n S

Especially if f;_; =2, then we always have F4(i) <0.

Proor. We first assume m; # 0, m,, ;y # 0 and m; # m,, ;) (mod n). Since we have
< ged(n,n/2,n/4) =n/4 and c, ; =1, it follows from that

Fu(i) < —g(n—a —%(ﬂ—%)(ﬁf_1—4)+g—l+2<g—1+%>

= —%n—3+%—% (n_%>(ﬁil —2)(Bi1 +2).

i, (i)

Next we assume m; #0 and m,; =0 (mod n). We have Z]’;l {mg/ny? =
(n—d;)(2n — d;)/6n. Therefore we have

d?
Rl < =3t = (- 1) B - 20+ 2

< —%’H'%—%(”—%)(ﬁi—l —2)(Bis1 +2)

by d; <n/2. In the case of m; =0 and m,, ;) #0 (mod n), we have the same assertion

by a similar argument. Therefore we obtain the former assertion of the Lemma.
Assume m; =m, ;) (mod n). Then we also obtain the latter assertion of the

Lemma by a similar calculation. ]

LeMMA 6.5. We have

: 1 1 o0
Fp(i) < _§<”_Z) Bior —=2)Bioi +2) = (Bioy —2)n + gl’(l)
+ Max —n—4+%,—5—n—17Li
n 3 3n

for any i€ B. Especially if p,_; =2, then we have Fg(i) < 0.

Proor. We set
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A
Fr=-3 (” - ;)ﬂizq = By + Dt dy iy + di g, = 1

- () RS,

/:

n—1
+2§:(<
j=1

—di + dy, i) + di g, (i) — dp, (1), 0,()

e

Then we claim

2

RS VA 2 I+4d,q

F* < —3\" (ﬁi—l—1)(ﬁi—1+1)—(ﬁi—1—l)n_§”_1+Tv (6.5.1)
. 5 2

F™ < Max gn—3+—3n,n . (6.5.2)

Since we have Fg(i) < F* + F*, the assertions (6.5.1) and (6.5.2) easily imply the
assertion of the Lemma.
We prove (6.5.1). Assume d;, ;) <n/3. Then it follows from that

Ps—%@—awﬂ—mmrm);G—s (Biy — Dn—2n

n 20— 1)(n—2) (n—dy)(2n—d, )
+dy, i) "’g I+ 3n + 3n

1 1 2 S5+d? .
:—§<n—ﬁ><ﬁi1_1)<ﬁi1+1)_(ﬂil—l)n—gn_3_|_37n€”1().

Assume d;, ;) > n/3. Then one of the following cases occur:
(i) m, = 0, My, ;) =n/2 (mod n)” or “m; =n/2, my; =0 (mod n)”,
m; = my, ;) =n/2 (mod n),
(iii) m; = my,; =0 (mod n).

We consider the case (i). Then the integer n is even, and we have

SR (i _ (eI \Y_SRUIN
= n n = 2 8"

14 d? .
AT (I [/ SRR I W R )

Therefore we obtain

In the case of [ii], we have

< _%<” _%) Bioi = DBy +1) = (Bimy —Dn—n—1 y—n0
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In the case of (iii), we have

R VA 2 L+ 4y,
F < 3 <’7—E>(ﬂi—1 DB+ 1) = (B - 1)"—§”— 1 TR,

From them, we obtain the assertion (6.5.1).
Next we prove (6.5.2). First we have

F* <dy —1+4Z<m‘”1 ><m‘”;“]>.

We assume d,, ; <n/3. By [Lemma 5.4, we have

w I (m—=1)2n—-1) 5n 2
< _ _ . _
Fr=3-1+4 on 3 33,

We assume d,,; =n/2. We set n=2n". We have

o n " m (,)(2/(—1)
F*<=—_142 S IV
<oy z< -

Since the number m,, ;y(2k — 1)/n +m, ;{2(n' —k + 1) — 1}/n is an integer for 1 <k <
[n/2], we have

n n

<m<m (2k — 1)> N <m¢](,-){2(n/ —k+1)— 1}> <1
Therefore we have

n n'
F*"<——142(|= 1] < 1.
S (M+ )_n+

If d,,;y = n, then we have
F*<n-1.
From these, we obtain the assertion (6.5.2) O

6.6. Assume 7;, is of type B and g, =1 for some iy (2 <iy<r—1). By our
construction, there are integers v and w with 1 < v < w < iy such that 74 1s the blow-
up at the center P, = E, ;, N E, j,, and the curve BTO is nonsingular at P;,. We denote
by C the unique local branch of E,/O at Pj,. Then one of the following two conditions
(I) and (II) is satisfied:

(I) 1) C intersect both E, i, and E, ; transversally at P;, o
ii) C is tangential to E,, at P; of order ¢ > 2.
(1) C is tangential to E, ; at P; of order 7> 2.
From now on, we consider that the case i) of (I) is the special case of the case ii) of (I)
by setting ¢ = 1.

We consider the curve B,_; on W,_;. In both cases (I) and (II), there exists a
local branch C of B/v:l at the center P,,_; such that the proper transform of C by 7, is
isomorphic to C. More precisely, if iy is greater than w, then any of the centers of the
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C E
z +yttl \"l’y T+t
——= Ev,w—l P R Ev,w
_1:

Figure 4

Figure 5

blow-ups 7,1,...,7;, does not coincide with the infinitely near point of P,_;, and so
these blow-ups do not matter the analysis of the singularity at P;. Therefore by
changing the order of the blow-ups if necessary, we may assume that the number w
coincides with .

Now assume that the case (I) occurs. Then the following two conditions are

satisfied (see Figure 4):

I-a) C is nonsingular and contacts at P,,_; to E,,_; of order r+1, and

I-b) If other local branches of B;:l at P,_; exist, then any tangent line of them does
not coincides with E, ,,_;.

On the other hand, if the case (II) occurs, then the following conditions are satisfied
(see Figure 5) :

II-a) C defines at P,_; a tangential (t,t+ 1)-cusp to E,,_;, i.e. the local analytic
equation of C at P,_; is given by x’ + y*! =0, where E, ,,_; is locally given by x = 0,
and

II-b) If other local branches of li:l at P, exist, then any tangent line of them does
not coincides with E, 1.

Assume that the case (I) occurs. By changing the order of the blow-ups if
necessary, we may assume that the successive blow-ups 7,.1,...,7,; are produced at
the infinitely near points of P,_;, and therefore 7,4; (1 <j < 1) satisfies the following:

(i) 7wy is the blow-up of type B with the center P, ; = E; i N Eyij i

Ev;j is nonsingular at P,,; and is tangent to E, ,; of order t—j at P,;.
After these bow-ups, the curve E;t + &+, has normal crossing in the pull back of a
neighborhood of P,.

If the case (II) occurs, then we have the same argument by replacing the definition
of Pyij by Eyyij N Eyij ).

LEMMA 6.7 In the above situation, we further assume that t,, is of type A. If C
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satisfies the codition (1), then

FA<W) + ZFB(W +]) < _% <I’l _%> (ﬁw—l - 1)(ﬁw—l + 1)

J=1

2 1+ d? 1
—|—<—§n—1+ T )(t—l)—gn—dv—3

d? +2d% + 4
+—

W < 0.
If C satisfies the codition (1), then
d 1 1
Faw) 4 3 Falw-t) < =3 (n=2 ) By = DB+ )
=1
+ —2n—1—|—1+d‘% (t—l)—ln—d -3
3 3n 3 "
d? +2d% + 4

+———F<0.

3n

Proor. First we assume that C satisfies the condition (I). In this case, we have
pv i) =0 (0<j<0), pw+j)=wj—1 (1<j<d), ;=0 (1<j<i—1),
Owie =1, By =1 (1 <j<1) and ¢ (psj) = Cpyaj) =1 (1 <j<1). We have

1 1 , (n—d,)(2n—d,)
FA(W> < _g(n_z>ﬂwl ‘l’dv,w_ 1+ 3n

N (n—dy)(2n—d,) 4§<mwk> <mbk>
3n =\ n n

On the other hand, it follows from (6.5.1) and that

4 . 4 1 1
jZIFB(W+]) = ]Zl{ —3 (n—;) —2n+dy +dyyj1,w4j — 1

2R () - () 5

t

+ E { wHj—1 — W+/’ - derjfl,v + derj,v

() () ) S

o
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2 1+ d? [k [mok
S ——=n — 1 —I'_ + v t + dw - dw+[ - dz) w + dw«H v + 4 Z z r
3 3n 7 ’ =1\ " "

SO0 ()

< (—%n—lqtl;rnd”z)(t—l) - Lw+4z<m“ >< k>

_in_2+d§+3
3 3n

(6.7.1)

Therefore by an easy calculation, the left hand side inequality of the Lemma follows.
We prove the negativity. The claim is clear except for the case

f.-1 =1 and di —|—2dv2 > n. (%)

Assume the condition (). The inequality d? + 2d? > n® holds if and only if “d, =n
or d,=n". Suppose d, =n. It follows from m, =m, —f,_  =m, —1 that d, = 1.
Therefore we have

1 d* 4+ 2d*> + 4 2
——I’l—dv—3+M:—4+—<0.
3 3n n

The case d, = n is similar, and we omit it.

Secondly we assume that C satisfies the condition (II). In this case, we have
prw+j)=w (1<j<1), p(w+1) =0, py(w+j)=w+j-1 2<j<1), 04y; =0
(1<j<t-1)and 0,,,=1. By the similar calculation as above, we obtain the desired
result. (We omit it.) L]

COROLLARY 6.8.  Assume that t; is of type A and p,_, =1 for some i (2 <i<r).
Then l?:l is nonsingular at P;_; and is tangent to E, ;| at P,_y of order t+ 1 for some
t>1. Let ti1,...,7i be the succession of blow-ups whose centers are infinitely near
points of P; = E, ;N E;; such that the curve l?,:, + &iy has normal crossing in the pull
back of a neighborhood of P;. Then we have

d 2 1+ d? 1 d? | +2d? + 4
Fu(i) + FB(i+j)s(——n—1+ ’)(z—l)——n—di—3 s 2 S SR }
; 3 3n 3 3n

Proor. Under this situation, the blow-up 7;,; is of type B and the unique local
branch of B; at P; satisfies the condition (I) in 6.6. Therefore the assertion follows

from O

LEMMA 6.9. In the situation of 6.6, we further assume that t,, is of type B. The
point of the center P,y of t, is written as P,y = E, ,,_1 N Ey 1 for some u (1 <u <
w—1, u#v). Moreover we assume 5, >2. If C satisfies the codition (1), then we
have
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S Fawt7) < =5 (2 ) (s = DB+ = (g~ D

j=0
2 1+ d? 7 d>+2d? +d? +9
~|—(—§n—1+ . )(l—l)—gn—dw—SJr = <0.

If C satisfies the codition (11), then we have

ZFB<W +]> < - % (I’l - l) (ﬁw—l - 2)(ﬁw—l + 2) - (ﬂw—l - 2)”
j=0 "

2 1+d? 7
+ (—gn—1+7)(z—1)—§n+dv—dw—dv,u—5

+d§+2d§+d§+9

0.
3n <

Proor. First we assume that C satifies the condition (I). We have

1

1
Fp(w) < — 3 (n — ;)ﬁﬁ,_l — P+ n+2n—-2d,+dyy+dyy—dyy— 1

d2+d2+d2 1 <m > < k> i1 <mk> <mk>
4 4

+4§<m;k> <mnk> (6.9.1)

From (6.9.1), (6.7.1) and [Lemma 5.4, we obtain the desired inequality by an easy
calculation.

If the curve C satisfies the condition (II), then the calculation is similar as above,
and we omit it. ]

6.10. In the situation of 6.6, we further assume that z,, is of type B, and we write
the point P, := E, ,—1 N E, ,—1 as in the previous Lemma. Moreover we assume that
there exist two local branches C and C’ of Bfw\_/l at P,,_; such that the following
conditions (i) ~ (iii) are satisfied:

(i) C is nonsingular at P,_; and is tangent to E,,_; at P,_; of order ¢+ 1 for
some ¢>1, or C defines at P,_; a tangential (¢,¢+ 1)-cusp to E, 1,

C' is nonsingular at P,_; and is tangent to E, ,_; at P,_; of order ¢’ + 1 for
some ¢ > 1, or C' defines at P,_; a tangential (¢#,¢ + 1)-cusp to E, 1,

(iii) if other local branches of va:l at P, ; exist, then the tangent line of any
component of them coincides with neither E,,_; nor E, 1.

Let C and C' be the proper transform of C and C’ by the blow-up t,, respectively.
Then C passes through P, :=E, ﬂEw w, and C’ passes through P, :=E,,NE, .
Moreover any other components of B, except for C and C’ passes through neither P,
nor P,.;. By changing the order of the blow-ups if necessary, we may assume that the
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succession of blow-ups 7,.1,...,7,., are produced at infinitely near points of P,, and the
succession of blow-ups 7,.si1,--., 7w are produced at infinitely near points of P,,.
After these blow-ups, the curve B;L;ﬂ + &1 has normal crossing in the pull back of
the union of neighborhoods of P, and P,.,.

LEMMA 6.11. In the above situation, if C and C' are nonsingular at P, i, then we
have

t+t'

;FB(W +]) < —% (I’l - %) (ﬁwfl - 2)(ﬁw71 +2) — (ﬁwfl _ 2)1/1

2 1 +d? 2 1+d>
+<—§n—1—|— W )(z—1)+<—§n—1+ W )(z—l)

11 2d? +2d?> + d* + 12
_?n_dv7u_7_|_ u+ b3: w+ <

If C is nonsingular at P,,_| and C' defines a tangential cusp at P,,_, then we have

0.

t+t'
+ 1

> Fawt) € =3 (n= 3 ) (s = Do +2) = (s = D

Jj=0
2 2
4 (—%n—1+1+d”>(t—l)+ (—%n—1+1+—dw>(z'—1)

3 3n 3 3n

1 d? +2d2 4 2d2 + 12
_—n—l—du_du,w_du,v_7+ o U;I_’l - =

0.
3

If C and C' also define tangential cusps at P,_i, then we have

1+t
ZFB(W +]) < - % (72 - %) (ﬂw—l - 2>(ﬂw—1 + 2) - (ﬁw—l - 2)”
j=0

2 1 +d? 11
Y _1 = /_2 5 u v_2w
+< 3" + n )(t+t ) 3n+a’ +d, — 2d,

d? +d? +3d>+ 12
+ <

w

_dvu_7
’ 3n

0.

Proor. Assume C is nonsingular at P,,_; and C’ defines a tangential cusp at P,,_.
Since C’ is nonsingular at P,.,, and is tangent to E,, ,, of order ¢/, by the same argument
as (6.7.1), we have

i 2 1+ d?
Z FB<W+]) < <_§n_ 1 +%>(ll - 1) ‘I‘du _du,w
j=rt1 n

n—1 2
myk\ /m,k 4 d>+3
4 ——n-—-24+2 -
+ k§1< ; >< ; > n -2+
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On the other hand, we have the same estimates for Fp(w) and Ejt:l Fg(w+j) as (6.9.1)
and (6.7.1). Therefore by using [Lemma 5.4, we easily obtain the desired inequality. We
omit the other two cases. U

PrOOF OF THEOREM 6.1. From Lemmas 6.4, 6.3, 6.7, 6.9, and Corollary 6.8,
the assertion (6.3.1) follows. Hence we complete the proof of Theorem 6.1.

[Acl]

[Ac2]
[Ar]

[As]
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