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Abstract. A W-transform of an operator on white noise functionals is introduced
and then characterizations for operators on white noise functionals are given in terms of
their W-transforms. A simple proof of the analytic characterization theorem for operator
symbol and convergence of operators are also discussed.

1. Introduction.

The concept of the symbol of an operator is of fundamental importance in the
theory of operators on white noise functionals. N. Obata proved an analytic
characterization theorem for symbols of operators on white noise functionals, which is
an operator version of the characterization theorem for white noise functionals [4],
[8]. This characterization theorem provides a very useful criterion for checking whether
or not an operator on Fock space defined only on the exponential vectors becomes
a continuous linear operator on the space of white noise functionals.

The purpose of this paper is threefold: we first define a W-transform of an operator
on white noise functionals and then obtain a characterization theorem for operators on
white noise functionals in terms of their W-transforms. We next apply our charac-
terization theorem to give a simple proof of the analytic characterization theorem for
operator symbols due to Obata [7]. We finally give a criterion for the convergence
of operators on white noise functionals in terms of their W-transforms.

2. Preliminaries.

Let H be a real separable Hilbert space. Let 4 be an operator on H such that
there exists an orthonormal basis {e;};., for H satisfying the conditions:

(1) Aej-:ﬂ‘jej',]':()’1727”'7

2) I<hsh<h< - — o0,

(3) HA*IHHS — (Ejoio /1];2)1/2 < o
For each p >0, define

1/2

], =147y = | Y A< ey’ |, Eed,
j=0
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where |- |y is the norm on H. Then E, = {C € H;[¢|, < o} is a real separable Hilbert
space with norm |-|,. Let E be the projective limit of {E,;p >0} and E* the
topological dual of E. Then E becomes a nuclear space and we have a Gel’fand triple
E c H < E*, and a continuous inclusion: for each p > 0,

ECEPCHCE;CE*.

We note that the norm of a Hilbert space E; is given by

. 1/2
&, =1477¢]g = (Z e e./>2) :
j=0

Let u be the standard Gaussian measure on E*, i.e., its characteristic function is
given by

/ ¢ Op(dv) = P EeE,

where {-,-) is the canonical bilinear form on E* x E. Then (E*,u) is called the white
noise space. We denote by (L?) the complex Hilbert space of u-square integrable
functions on E*. By the Wiener-Ito decomposition theorem, each ¢ e (L?) admits
an expansion:

o0

px)=> &x®mify, S eHEN, (2.1)
n=0
where HCC%) " is the n-fold symmetric tensor product of the complexification of H.
Moreover, the (L?)-norm ||4||, of ¢ is given by

o 1/2
l¢llo = (Z n!|fn!§> :
n=0

where the norm on Hg) " is denoted by the same symbol |- |,.
Let I'(4) be the second quantization operator of 4 defined by

0

C(A)p(x) =y x®": A",
n=0
where ¢ € (L?) is given by the expansion (2.1). Then we note that I"(4) is a positive
self-adjoint operator with Hilbert-Schmidt inverse. For each p > 0, define

61, = 17 (4) Bllo, P e (L?). (2.2)

Then (E,) = {¢ € (L?); ¢, < co} is a complex Hilbert space with norm ||-|,. Let
(E) be the projective limit of {(E,); p >0} and (E)" the topological dual of (E). Then

(E) is a nuclear space and we have a Gel'fand triple (E) c (L?) < (E)", and a
continuous inclusion: for each p >0,

(E) = () = (L?) = (E,)" = (E)".
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Elements ¢ e (E) and ® e (E)" are called a test white noise functional and a
generalized white noise functional (or Hida distribution), respectively.

It is known (see [2], [7]) that for each & e (E)", there exists a unique sequence
{(F}, =0, Fae(ER")},, such that

sym

(D.4y =S nkE, £5 de(E), (2.3)
n=0

where ¢ is given by the expansion (2.1) and (:,-) is the canonical bilinear form on

*

(E)" x (E). 1In view of (2.3) we use a formal expression for @ e (E)":

o0

D(x) =Y x®"F).

n=0

For each ¢ € Ec, an exponential vector ¢: is defined by
=1

pe(x) = —(x®m oy,

|
=0 n:

Then it is well-known that {¢;;¢ e Ec} spans a dense subspace of (E).
The S-transform S® of ® e (E)* is a function on Ec defined by

Sé(é) = <<¢7§05>>7 £EEC~

We need the characterization theorem for white noise functionals due to Potthoff—
Streit and Kuo—Potthoff-Streit [4] with norm estimate due to Kubo-Kuo [3].

THEOREM 2.1. The S-transform F = S® of ® e (E)" satisfies the following con-
ditions:

(F1) For each & n€ Ec, the function z v F(zE+n) is an entire function on C.

(F2) There exist K >0, a>0 and p >0 such that

F(E)] < Ke®Sh,  ¢eEe.

Conversely, assume that a C-valued function F defined on Ec satisfies the above two
conditions. Then there exists a unique @ € (E)™ such that F = S®. Moreover, for any
q > p with 2aez||A_(‘1_1’)Hf,S <1, we have the following norm estimate:

@, < K(1 —2ae?|| A~ 3) "/,

THEOREM 2.2. The S-transform F = S¢ of ¢ € (E) satisfies the following conditions:
(F1')  For each &,n € Ec, the function z v F(zE+n) is an entire function on C.
(F2') For any p >0 and a > 0, there exists a constant K > 0 such that

F(E)| < Ke" S, ¢eEe.

Conversely, assume that a C-valued function F defined on Ec¢ satisfies the above two
conditions. Then there exists a unique ¢ € (E) such that F = S¢. Moreover, for any
q =0 and for a >0 and p > q with 2ae2|\A_(f”_")||iIS < 1, we have the following norm
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estimate:

Ig]l, < K(1 = 2ae*|| A== 36) ",

3. Characterization theorems of operators.

Let L((E),(E)") (resp. L((E),(E))) denote the space of all continuous linear op-
erators from (E) into (E)" (resp. (E)). In this section we shall prove a characterization
theorem for an operator = e L((E),(E)") and for an operator = e L((E), (E)).

The W-transform of an operator = € L((E), (E)") is defined to be an (E)"-valued
function on E¢ defined by

WE(6>:E¢57 éEEC-

We first note that the W-transform is injective and that for any ¢ € (E) and &5 € Ec,
we have {WE(zE+1),¢y = S(E*P)(zE+1n), ze C, where £ is the adjoint operator

*

of Z, ie., Z* is the continuous linear operator from (E) into (E)" such that

KEG ) =KE", ¢, ¥ e(E).

It then follows from Theorem 2.1 that the function z > { WE(z& + 1), ¢) is an entire
function on C.
We note that there exist p >0 and K > 0 such that

1291, < Kligll,,  ¢e(E)

Hence we have the following growth condition:
IWE©E)|_, < Ke'Ph,  ¢eEc.

THEOREM 3.1. Let E€ L((E),(E)") and G= WE. Then the function G satisfies
the following conditions:
(Gl) For each &, n € Ec, the function z — G(z& + n) is weakly holomorphic, i.e., for
any ¢ € (E) the function z+— {G(zE+n),$Y is an entire function on C.
(G2) There exist ¢ =0, p>0, a>0 and K >0 such that

G|, < ke, ¢eEe.

Conversely, assume that an (E)"-valued function G on Ec satisfies the above conditions.
Then there exists a unique = e L((E),(E)") such that G is the W-transform of Z.
Moreover, for any r > p with 2aezHA_("_1’)H?{S <1, we have

12¢)_, < K(1 =244 5)" Pligll,,  de (E).

PrOOF. The first assertion was shown above. Now, let G be an (E)"-valued
function on E¢ satisfying (G1) and (G2). The uniqueness part of the second assertion
is obvious since the W-transform is injective. To prove the existence of =, fix an
arbitrary ¢ € (E). Define a C-valued function F; on Ec by

Fy(&) =KG(S), 4,  {ekc.
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Then F, satisfies (F1) and (F2) in [Theorem 2.1: In fact, for any &, 7 € E¢, the function
Fy(zE+1n) =LG(zE+n),¢) of ze C is holomorphic on C and we have, for ¢ e Ec

2
[F5O] < 1G] _lIgll, < (Kl )e .
Hence, by Mheorem 2.1, there exists a unique @, € (E)" such that
SDy(S) = Fy(&) =KG(¢), ¢y,  Cekc.
Moreover, by Theorem 2.1 we have, for any r > p with 2ae?||4~2)||}. < 1
HS
|24l < K91l (1 = 2ae* | A7)~

This inequality implies that the operator ¢+ @, is a continuous linear operator
from (E,) into (E,)". Let Z be the adjoint operator of this operator. Then Z is
a continuous linear operator from (E,) into (E,)", and hence = e L((E),(E)") and
Zp: = G(&). Furthermore, we have the following norm estimate:

12911y < K(1 24> | A~ P ) I,
as desired. L]
For any 5 e L((E),(E)"), the symbol Z of Z is defined by
é(fa”):<<5(p§7goq>>7 é7’7€EC-
The next result has been proved in [7, p. 91]. We here give a simple proof.

COROLLARY 3.2. Suppose that a C-valued function F on Ec X Ec satisfies the
following conditions:
(S1) For each &,&',n and n' in Ec, the function (z,w)w F(zE+E  wnp+17') is
an entire function on C x C.
(S2) There exist p>0, a>0 and K >0 such that

F(& )] < Kelh i, &y e Ee.
Then there exists a unique = € L((E),(E)") such that F is the symbol of Z.

Proor. For a fixed ¢ e Ec, define a C-valued function F; on Ec by F:(n) =
F(¢,n), ne Ec. Then the function F: satisfies (F1) and (F2) in [Theorem 2.1: In fact,
clearly the function z+— F:(zn+n') = F(&,zn+n') is holomorphic on C, and

|F(n)| = |F(& )| < (Ke“Slryehly.

Hence there exists a ®: e (E)" such that S®: = F:. Now, define an (E)”-valued
function G on E¢c by G(&) = @, € Ec. Then we have

SG(&)(n) = SPe(n) = Fe(n) = F(&n),  &ne ke

Moreover, for any ¢ > p such that 2ae®|| 4~ ?)|2 ¢ < 1, we have

1G] < (Keh)(1 = 2ae? || 4= )", (3.1)
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Now we shall verify that the function G satisfies (G1) and (G2) in [Theorem 3.1.
Take any &, ¢ € Ec. Then clearly the function F(z&+ ¢, n) = €G(z6+&'),9,) of z
is holomorphic on C for each € Ec. Hence (G1) is satisfied for all ¢ € V, where V
is the linear span of {¢,;n7€ Ec}. Since V is dense in (E), for any ¢ € (E), we can
choose a sequence {¢,} in V such that ¢, — ¢ in (E). Note that

KG(2E + &),y — Y] < Ke "<l (1 — 24| 4~ 25) " |6 — 9,

So, the function {G(z& + &), 4,y of ze C converges to {G(zE+ &), ¢y uniformly on
every compact subset of C, and hence the function z > {G(z& +¢&'),¢) is holomor-

phic on C. Moreover by [3.1}, (G2) is satisfied. Hence by [Theorem 3.1, we obtain a
continuous linear operator = from (E) into (E)" such that
Zp = Ge), ek (3.2

But by (3.2), we have, for each &5 € Ec

F(&n) = SG(&)(n) = KG(&),0,) = (Z0e, 0,) = E(E 1)
This completes the proof. O

REMARK. It can be shown that implies the second assertion of
MTheorem 3.1.

The W-transform of an operator = e L((E),(E)) is defined to be an (E)-valued
function on E¢ defined by

WE(&)=Zp:;, <CeEc.

Then for any @ € (E)" and &,57 € Ec, we see that (@, WE(zE + )y = S(E*®)(z¢ + 1),
ze C. Hence z+> D, WE(zE + 1)) is holomorphic on C. Moreover, we note that
for each ¢ > 0, there exist p >0 and K > 0 such that

124, < Kllgll,,  de(E).
In particular, for all ¢ € E¢,

IWE(&)|, < Ke"/2h,

THEOREM 3.3. Let € L((E),(E)) and G = WE. Then the function G satisfies the
following conditions:
(Gl')  For each &,y € E¢, the function z — G(z& + ) is weakly holomorphic, i.e., for
any @ e (E)", the function z+ {D,G(zE +n)Y is an entire function on C.
(G2') For any q >0, there exist p >0, a >0 and K >0 such that

IG@E)|l, < ke, ¢eEc.

Conversely, assume that an (E)-valued function G on E¢ satisfies the above conditions.
Then there exists a unique = € L((E),(E)) such that G is the W-transform of Z. More-
over, for any r> p with 2ae*||A~0P)|2 ¢ < 1,

12¢]l, < K(1=2ae* |4~ |75) 214, e ().
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Proor. The proof is similar to the proof of [Theorem 3.1. So we shall only prove
the existence of Z. To show this, fix arbitrary @ € (E)*. Define a C-valued function
Fg on Ec by

F@(é) = <<¢7 G(§)>>7 £€EC-
Then clearly Fyp satisfies (F1) and (F2) in [Theorem 2.1. Hence, by [Theorem 2.1, there

exists a unique ¥¢ € (E)* such that

Syjlp(é) = <<¢7 G(é)>>7 éEEC~

Moreover, for any r > p with 2aez||A‘(r_”)||%,S <1,
1¥all_, < KI|D]_ (1 = 2a?|[ 4~ 7). (3.3)

Hence the operator @ — ¥y is a continuous linear operator from (E)* into (E)*. Now,

let Z be the adjoint of this operator. Then Z is the desired operator in L((E),
(E)). O

The following corollary can be proved by similar arguments of the proof of

Corolfary 32

COROLLARY 3.4. Suppose that a C-valued function F on Ec X Ec satisfies the
following conditions:
(S1')  For each &,&',n and n' in Ec, the function (z,w) — F(zE+ &' wyp+1') is an
entire function on C x C.
(S2")  For any r > 0,a > 0, there exist p>r and K >0 such that

F(&m)| < KeWhtWE) ¢ pe B
Then there exists a unique = € L((E),(E)) such that F is the symbol of =.
REmMARK. It can be shown that |Corollary 3.4 implies the second assertion of

N1COTCIN
ExampLE. (1) For a,f e C, we define an (E)-valued function %, on Ec by

Cop(l) =" Vg5, CeEc.

Then it is easy to show that this %, p satisfies (G1’) and (G2’). Hence there exists a
unique operator ¥, s € L((E),(E)) such that

Gupp: = Cop(l) = Vg, EeEc.

This operator %, s has the following integral representation (see [1]):

G, poh(x) = /E d(\/ 20— B>+ 1 y+ Bx) du(y), x € E¢.

(2) Let =y and 5, € L((E),(E)"). Let G; and G, be the W-transform of Z; and =,
respectively. Define an (E)*-valued function G on Ec by

G(&) = Gi(&) o Gr(&), ¢ e Ec,
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where @ o ¥ is the Wick product of @ and ¥ e (E)*. 1t is well-known [3] that for any
p =0, there exists ¢ > p such that

|@o?ll_, <[PPI, @ ¥e(E). (3.4)

)l
Since G| and G, satisfy (G2), it follows from that there exist p >0, g > p, K >0
and a > 0 such that

#12
1GE)N_, < 1GIE)_,IG2(E)]_, < Keh
Hence G again satisfies (G2). Now for ¢, &', e Ec,

KG(zE+E), 9, = SG(zE+ &) (n)
= S(G(zE + &) o Ga(zE 4+ E)) ()

= SG\(zE+ &) - SGa(zE + &N (n).

Hence the function z — {G(z¢ + f’),(pn>> is entire on C for each n# € E¢c. Further we
can show that the function z+— {G(z& + &), ¢) is entire on C for each ¢ € (E). By
Theorem 3.1, there is a unique = e L((E),(E)") such that G = WZ. We denote =
by Z| ¢ =, and is called the Wick product of Z| and Z,. Similarly using [Theorem 3.3,
we can define the Wick product &) ¢ 5, of 5},5, € L((E), (E)).

4. Convergence of operators.

In this section we will find a criterion for the convergence of operators on white
noise functionals in terms of their W-transform and symbol.

TuEOREM 4.1. Let {&,},2, and E be in L((E),(E)*). Let G,= WE,, ne N and
G = WE. Then =, converges to = strongly in L((E),(E)") if and only if the following
conditions hold:

(01) G,(&) converges to G(&) in (E)" for each &€ Ec.

(O2) There exist ¢ >0, p>0, K >0 and a >0 such that

1GA(&)||_, < K, EeEc, neN.

PrOOF. Suppose that =, converges to = strongly in L((E),(E)*). Then for each
$ e (E), Z,¢4 converges to Z¢ in (E)*. Hence (Ol) is satisfied. To prove (02), we put

X, ={¢e(E); su}\)lHEnqﬁHW < k}.

Then we have (E) = Uq‘ v e nXq.k- Since (E) is a Fréchet space, by the Baire’s category
theorem there exist ¢ and k in N such that X, ;, contains an open set of (E). So we can
see that there exist p € N and ¢ > 0 such that {¢ € (E); <e} < X, . Then for an
p 4 q, y
€ (E), we have || Z,¢||_, <k/e for all n e N, where 0 < &’ <e. In particular, we
q P
have
_ k k 412
1Ga (g = 1Enpell g < Slloell, < ;el/z'g‘ﬂ-

This completes the proof of the “only if” part.
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Conversely, assume that {G,} satisfies the given conditions. Then by (O1), for each
¢eEc and Y € (E),

Since the linear span of {¢:;¢ e Ec} is dense in (E), it follows by using (O2) and
that for any ¢,y € (E), {Z,¢,¥) converges to =, . This means that
for any ¢ € (E), Z,¢ converges to Z¢ weakly in (E)". But the weak convergence of
a sequence in (E)” is equivalent to strong convergence. Therefore for any ¢ € (E), =,¢
converges to Z¢ strongly in (E)*. This completes the proof. O

COROLLARY 4.2. Let {E,}”, and = be in L((E),(E)*). Let F,=5%,, neN and
F=ZE. Then E, converges to = strongly in L((E),(E)") if and only if the following
conditions hold:

(Ul) For each &, ne Ec, F,(& n) converges to F(&,n).

(U2) There exist p >0, K >0 and a >0 such that

Fy(&, )| < Ke®VbWh) & pe Ec, neN.

Proor. To prove the corollary, it suffices to prove that (Ol1) and (O2) are
equivalent to (Ul) and (U2). Clearly (O1) and (O2) imply (Ul) and (U2). Now
assume that (Ul) and (U2) are satisfied. Using (U2), we see that for &, € E¢ and for
nen,

1SG(E) ()] = |Eu(E )] < KeFheh.

Hence by [Theorem 2.1, we have for ¢ > p with 2ae2||A‘(q‘P)||iIS <1

[GA)I -y < Ke¥r (1 = 20| AP lp) 2, ¢e B neN.
On the other hand, using (Ul) we can show that for ¢ e Ec,

KGu(S), ¢ — KG(E), 9D
for all ¢ € (E). Hence (O1) and (O2) are satisfied. O
THEOREM 4.3. Let {Z,},-, and Z be in L((E),(E)). Let G,= WZE,, ne N and
G=WE. Then E, converges to Z strongly in L((E),(E)) if and only if the following
conditions hold:

(O1")  For each ¢ € Ec, G,(&) converges to G(&) in (E).
(O2)  For each q >0, there exist p >0, K >0, a> 0 such that

1GA(E)]l, < Ke™®lr, e Ec, neN.

Proor. Suppose that =, converges to = € L((E), (E)) strongly in L((E), (E)). Then
for any ¢ € (E), Z,¢ converges to Z¢ strongly in (E). Hence (O1’) is obvious. To
prove (0O2'), for ¢ > 0 being given, we put

Vi = (e (E)isup |2, < k).



446 D. M. Caung, T. S. CHUNG and U. C. J1

Then Yy is closed and (E) = () ven Yi.  Hence by using the similar arguments of the
proof of [Theorem 4.1, we can prove that (O2’) holds.

Conversely, assume that {G,} satisfies the given conditions. Let ¢ >0 be given.
Then by (O1’), we have

Hence by using (O2’) and [Theorem 3.3, we can prove that for any ¢ € (E)
lim || Z,¢ — :qﬁHq =0.
n—aoo

Hence we complete the proof. O

COROLLARY 4.4. Let {Z,}°, and Z be in L((E),(E)). Let F,=Z%, neN and
F=ZE. Then E, converges to E strongly in L((E),(E)) if and only if the following
conditions hold:

(ULl")  For each &, ne Ec, F,(&,n) converges to F(E,n).

(U2")  For each q >0 and a > 0, there exist p > q, K >0 such that

Fa(m)] < Ke" Wb IE) g peEe, neN.
ProOF. By similar arguments of the proof of [Corollary 4.2, we can prove that
(O1’) and (O2') are equivalent to (Ul’) and (U2'). O

ExampLE. (1) Let T, € L((E),(E)) be such that T,p; =< p.. We will prove
that (7p, —I)/0 converges to D, strongly in L((E),(E)) as 6 — 0 using Theorem 4.3.

Put Go(&) = (Tiyp: — 9:)/0 = 9o —1)/6, and G(&) = Dyp; = (y,>p;. Then
clearly for each ¢ e E¢, Gy(&) converges to G(&) in (E). By mean value theorem,

00 _ '

0 < Ky, Epelr o) < (elylfp)e\é|,37

for |y|_, < oo and |6p] < [0] < 1. Hence for each ¢ >0, choose p > ¢ with [y|_, < c0.
Then we have, for |0] <1

1Ga(E)]l, < (eF)elh g, < (¥)e (147,27)1¢l2

Thus by Mheorem 4.3, (Ty, — I)/6 converges to D, strongly in L((E),(E)) as § — 0.

(2) Let o(f) and f(6) be differentiable C-valued functions defined on R with
B(0) #0 for all e R. Then it is known [I] that {%,q) g }gcg is @ one-parameter
subgroup of SGL((E)) = {Yy 50, C,f # 0} if and only 1f o and f are given by either

a(0) = 2ab( e — 1) and p(0) = e for some a,b e C with b # 0,

or

#(0) =af and f(0) =1 for some a e C.
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For any a,be C, consider a one-parameter subgroup {I, ;g Oof SGL((E))
defined by

Y (aj2p)(@-1),e0, D F0

Ia7b;9 =
Gao.1, b=0.

Now we will show that I, ».g converges to I, .9 strongly in L((E),(E)) as b — 0. To
see this, fix ae C, 0 e R, and for any b, put G, = WI, 9. Then for each ¢ >0,

1Go(&) — Go(&)]l, < el PP DD g — o],

+ |e(a/2b)(€2b“*1)<éé> _ ea0<é,c“>| ||(ﬂ¢||
.

We note that the map ¢ ¢ from Ec into (E) is continuous. Hence
limy—o[|G»(&) — Go(¢)||, = 0 for all ¢ > 0. By mean value theorem on complex variable
b, we obtain that for each ¢ >0 and for each b with 0 < |b| <1,

1G5 (&), = |4/ 2N~ 1)<, 8 lpemell, < o< M1a12,%+1/2)l¢]

Therefore, by Theorem 4.3, 1, ¢ converges to I, .o strongly in L((E),(E)) as b — 0.
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