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Abstract. We study the convergence of general threshold dynamics type approx-
imation schemes to hypersurfaces moving with normal velocity depending on the normal
direction and the curvature tensor. We also present results about the asymptotic shape of
fronts propagating by threshold dynamics. Our results generalize and extend models
introduced in the theories of cellular automaton and motion by mean curvature.

Introduction.

In this paper we study the convergence of general threshold dynamics type ap-
proximation schemes to hypersurfaces moving with normal velocity depending on the
normal direction and the curvature tensor. These schemes are generalizations and
extensions of the threshold dynamics models introduced by Gravner and Griffeath
to study cellular automaton modeling of excitable media and by Bence,
Merriman and Osher to study the mean curvature evolution.

Cellular automaton models are mathematical models used to understand the
transmission of periodic waves through environments such as a network or a tissue. A
common feature of many such models is that some threshold level of excitation must
occur in a neighborhood of a location to become excited and conduct a pulse. Typical
physical systems which exhibit such phenomenology are, among others, neural networks,
cardiac muscle, Belousov-Zhabotinsky oscillating chemical reaction, etc.

Interfaces (fronts, hypersurfaces) in R" evolving with normal velocity

(0.1) V = v(Dn,n),

where n and Dn are the unit normal vector to the surface and its gradient respectively,
arise in geometry, in image processing, in the theory of turbulent flame propagation and
combustion, as well as in the study of the asymptotic behavior, as time ¢ — oo, of
general systems describing the evolution in time of some order parameter identifying the
different phases of a material or the total (averaged) magnetization of a stochastic
system, etc.

Typical examples of interface dynamics appearing in the aforementioned areas are,
among others, the anistropic motion with normal velocity
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V = —tr[E(n)Dn] + c¢(n),

where E € ¥V, &V being the space of N x N symmetric matrices, a special case of
which is the motion by mean curvature

V=—trDn=Kx1+ - -4+Kny_1,

where x,...,ky_1 are the principal curvatures of the surface, as well as the curvature-
independent motion
V = c(n).

The main mathematical characteristic of such evolutions is the development of
singularities in finite time, independently of the smoothness of the initial surface. A
great deal of work has been done during the last few years to interpret the evolution
past the singularities. A rather general approach to provide a weak formulation for the
motion past singularities, known as the level set approach, was introduced for numerical
computations by Osher and Sethian [OS]—see, also, Barles for a simple model on
flame propagation—and was developed rigorously by Evans and Spruck for mean
curvature and by Chen, Giga and Goto for more general geometric evolutions
(see also Barles, Soner, Souganidis [BSS], Soner [Sen], Ishii and Souganidis [IS] and
Goto [Go]). More recently, Barles and Souganidis [BS] introduced another equivalent
way to study the generalized evolution, which for definiteness we call the direct ap-
proach, which is more geometric and is more suitable to study asymptotic problems.

The outcome of all aforementioned work has been the development of a weak
notion of evolving fronts called generalized front propagation. The generalized front
propagation {I";},.,, with given normal velocity starting from a surface Iy in R",
is defined for all ¢ > 0, although it may become extinct in finite time. Moreover, it
agrees with the classical differential—geometric motion, as long as the latter exists. The
generalized motion may, on the other hand, develop singularities, change topological
types and exhibit various other pathologies.

In spite of these peculiarities, the generalized motion {I';},., has been proven to
be the right way to extend the classical motion past the singularities. Some of the
most definitive results in this direction are about the fact that the generalized evolution
governs the asymptotic behavior of the solution of semilinear reaction-diffusion
equations and systems. The first result in this direction for the Allen-Cahn equation
was obtained by Evans, Soner and Souganidis and later extended by Barles, Soner
and Souganidis [BSS]. See also Barles and Souganidis for a number of new and
very striking examples.

Another recent striking application of the generalized front propagation is the fact
that it governs the macroscopic behavior, for large times and in the context of grain
coarsening, of a number of stochastic interacting particle systems like the stochastic Ising
model with long-range interactions and general spin flip dynamics (see Katsoulakis and
Souganidis [KS1, 2, 3| as well as and [Soul, 2|). Such systems are standard
Gibbsian models used in statistical mechanics to describe phase transitions. It turns out
that the generalized front propagation not only describes the limiting behavior of such
systems but also provides a theoretical justification, from the microscopic point of view,
of several phenomenological sharp interface models in phase transitions.
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Next we describe the results of this paper in the context of a very simple cellular
automaton, the so-called majority voter model, which is described in detail in Griffeath
|Gr|. The voter model is set on a lattice which represents a population with two
possible political choices. Each individual (each cell), from time to time, checks the
neighborhood and joins the majority depending on the number of neighbors already
belonging to it. This mechanism creates, of course, a moving front. The threshold
dynamics here differ from the one’s in in the sense that the “‘occupied set” may
shrink.

To simplify the presentation we consider the whole space RY instead of the lattice
Z". We then fix a threshold parameter 0 e (0,1), and we choose a subset .4 < R"
such that

(0.2) " 1s an open bounded neighborhood of the origin with || =1,

where |A4| denotes the N-dimensional Lebesgue measure of 4, and we define the function
w: SN — R SN-! being the unit sphere in R", by

(0.3) up) =max{ieR:|{zeRY : (p,z> < —}NN| >0},

where (-,-> denotes the usual inner product in R".

For each & > 0, we define M), : /4 — .4, ./ being the set of measurable subsets of
R", by

(0.4) My(A) = {xeR" :|(x+hA)NA| = 00"}

The meaning of this definition is that, if 4 is the occupied set at time #, the occupied set
Mj(A) at time ¢+ h consists of those points for which the volume of the overlap
between x + h4" and A exceeds O|h.A"|.

Next for any >0 and h > 0 define the mapping C": .# — ./ by

(0.5) Cl=M/™" if (j—Dh<rt<jh, withjeN,

where M} denotes the k-times iterate of M), and M is the identity. The two-parameter
family {C/} describes an approximation for the motion with normal velocity

(0.6) V = u(n).
Indeed let Q) = RY be open and define
Q= chQy).
The following theorem is a special case of one of the main results of this paper.

Since being precise with its statement will only lead to a far less palatable and readable
introduction, here we choose to be a bit imprecise and we denote it in quotes.

“THEOREM A”  Let {I';},5, be the generalized front propagation of I'g = 02 with
normal velocity given by [0.6). Then, as h — 0,

&Q[h — I'; in the Hausdorff metric.

Next we introduce an approximation for curvature-dependent motions. To this end
assume that, in addition to (0.2),

(0.7) A7 is symmetric with respect to the origin, i.e.,—A = A,
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and define, for each p e SN~ the matrix E(p) = (En(p)) € " and the scalar B(p) € R
by

(0.8) E(p) = J IECEZARlE
and
(0.9) B(p) = AN (N ph),

Here and henceforth p' denotes the orthogonal complement of the vector p, i.e., pt =
{xeRN :{x,py =0} and A% denotes the k-dimensional Hausdorff measure.
Fix ¢ € R and introduce, for 4 > 0, the map M), : .# — ./ given by

(0.10) My(A) = {xeR" : |(x+ VhN)NA| > 6,hN/?},
where
(0.11) 0;,:%—6\/}_1,

and define, for each >0 and 4 > 0, the map C~'th c M — M by
Ch=mM]"" if (j—1)h<t<jh withjeN,

where the superscript k in M,f has the same meaning as in M,f‘ above. The two-
parameter family {C,h} describes an approximation for the motion with normal velocity

1
(0.12) V=— 5B*l (n) tr[E(n)Dn] + c¢B™ (n).
Indeed let Q) = RY be open and define
Q) = C/(Q).

The following theorem is again a special case of one of the main results in the pa-
per. As in “Theorem A” we select to state it here in a somehow imprecise way.

“THEOREM B”  Let {I';},5, be the generalized front propagation of Iy = 0Qq with
normal velocity given by (0.12). Then, as h — 0,

5.(2{1 — Iy in the Hausdorff metric.

An approximation of the type described by “Theorem B for the special case of the
motion by mean curvature was introduced in [BMO], which considered the case where,
in the definition (0.10), ¢ =0 and the Lebesgue measure of the overlap between A and
x + VhA is replaced by the average value of the characteristic function of 4 over the
Gaussian kernel centered at x. The result of was rigorously justified by Evans
[E], Mascarenhas and Barles and Georgelin [BG]. This was then extended by Ishii
for more general radially symmetric kernels.

We continue presenting, in the same informal way, another result about the
asymptotic behavior, as ¢t — oo, of fronts moving with normal velocity given by either
or [0.12). To this end, given a continuous function v e C(SV~1,(0, c0)), we define
the Wulff crystal of v by

(0.13) W ={xeR" : {x,p) <v(p) forall pe SV}
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“THEOREM C” Let Qo be a “large” bounded open subset of R". Let {I'i},s0 be
the generalized front propagation of 08y governed by

(0.14) V = —tr[E(n)Dn] + v(n),
where E e C(SN=1, 9N satisfies E(n) > 0. Then, as t — o,

I, — oW in the Hausdorff metric.

When E =0 on S¥~!, a discrete version of “Theorem C” was proved in and
a continuous one by Soravia [Ser]. “Theorem C” is also related to a conjecture by
Angenent and Gurtin [AG], which was proved in [Son]. The result of says
that, given a uniformly convex Wulff crystal, there exists a particular class of E €
C(SN-1,.#") so that the claim of the “Theorem C” holds true. It is, of course, clear
from the statement of “Theorem C” above that such a restriction on the choice is not
necessary.

The paper is organized as follows: In Section 1 we recall some basic materials. In
particular in Subsection 1.1 we recall the definition of the generalized level-set front
propagation and summarize a number of facts which are relevant to our analysis. In
Subsection 1.2 we recall an abstract formulation, introduced by Barles and Souganidis
to prove convergence of approximations to viscosity solutions of second order pde,
which will be used extensively throughout the paper. Section 2 is devoted to curvature-
independent motions, i.e., results like “Theorem A”. In Section 3 we discuss ap-
proximations to curvature dependent motions and we present results like ‘“Theorem
B”. 1In Section 4 we discuss about schemes obtained by combinations of two different
threshold dynamics. Section 5 is devoted to the asymptotic shapes of propagating
fronts obtained by the iteration of the threshold dynamics. Section 6 is devoted to
results like “Theorem C” on the asymptotic shapes of propagating fronts for large
times. In Section 7 we discuss the asymptotics, similar to Sections 5 and 6, of the
threshold dynamics on scaled lattices. Precise references and discussion of the rela-
tionship of our results with other works are presented in each section. Part of the
results presented in this paper come from the Ph.D. thesis of Pires [P] under the
supervision of Souganidis.

§1. Preliminaries.

1.1. Generalized front propagation

Here we briefly describe the basic facts about the generalized front propagation
defined by the level-set approach. Since we will not be using the direct approach in this
paper, we refer to and [Soul, 2] for its definition, its applications and relation to
the level-set approach.

Although the velocity law of the form is of common use, the derivative Dn
depends on how n is extended away from the surface, which is inappropriate for our
problems. Thus we henceforth use the following description of the velocity law

(1.1) V=v(l—-n®n)Dn(I —n® n),n),
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which does not depend on the way 7 is extended outside the surface, does not loose any
information concerning the surface carried by Dn and hence is more natural than [0.1).

For a detailed discussion on velocity laws, see [GiGo].
In what follows we assume that

(1.2) ve C(FYN x SN

and

(1.3) { v is nondecreasing, i.e., for all pe S¥~!and all X, Y e &V,

if X <Y then v(X, p) >v(Y,p).

Intuitively the monotonicity means the following avoidance inclusion-type property:
If {4,},20> {B:},»¢ are two one-parameter families of subsets of R" with boundaries
0A, and 0B, moving by [L.T}, n denoting the outward unit normal, and if in addition
Ao = By, then 4, = B, for all ¢t > 0.

We begin with the classical derivation of the level-set approach. Let {I;},., be a
smooth motion with normal velocity v, as in [I.1), let {D,},., be a family of smooth
open subsets of R" such that I, = éD, and choose n to be the normal vector of I
outward to D;. Assume that u: RY x[0,00) — R is a C* function such that

Dy ={xeR" :u(x,t) >0}, I, ={xeR" :u(x,t)=0} and |[Du|#0on| )T, x {t}.
>0
A straightforward computation—see for example [ES|—yields, under the additional
assumption that all the smooth level sets of u move with velocity given by [1.1), that u
must satisfy the pde

(1.4) u, + F(D*u,Du) =0 in RY x (0, ),
where F : Y x (R"\{0}) — R is related to v by
(1.5) F(X,p) = ~|plo(=Ip] " (I = p®P)XI ~ F @ p), ~p)-

Here and below, for all ¢ € RV\{0},

— —1
q=1lq| q.

Note that the monotonicity assumption on v yields that F is degenerate elliptic, i.e.,
it satisfies, for all X, Y € " and p e RV\{0},

(1.6) if X <Y then F(X,p)>F(Y,p).

To justify and extend the above to the case of not necessarily smooth motions it is
necessary to use the notion of viscosity solutions for fully nonlinear elliptic and par-
abolic, possibly degenerate, partial differential equations, for short pde, introduced by
Crandall and Lions. This theory provides the existence and uniqueness of viscosity
solution of (1.4) under rather general conditions on F, which are, by the way, satisfied
by the F’s considered in this paper. We refer to [ES], [CGG], [BSS], and for
such results and to the “User’s Guide” by Crandall, Ishii and Lions and the book
of Barles for a general overview of the theory of viscosity solutions.
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Next we recall the level-set approach to the generalized evolution of hypersurfaces
or sets. To this end, let & denote the collection of triples (I',D", D) of mutually
disjoint subsets of R" such that I is closed, D™ and D~ are open and RY = 'UDtU
D™,

For any (I'g,D{,Dy)e & first choose a function ge BUC(R"), the space of
bounded uniformly continuous functions on RY, such that

Df ={xeR" :g(x) >0}, Dy ={xeR" :g(x) <0} and Io={xeR":g(x)=0},

then consider the initial value problem

(i) u; + F(D*u,Du) =0 in RY x (0, 0),
(1.7 { (i) u=g on RY x {0},

where F is defined by [1.5), and let ue BUC(RY x [0, 0)) be the unique viscosity
solution of [1.7). Finally, set

Iy={xeR" :u(x,t) =0}, D = {xeR" :u(x,t) >0}, D, = {xe R" :u(x,1) < 0}.
Since F is geometric, i.e., it satisfies, for 1 >0, ue R, and (X, p) e ¥V x R¥\{0},

(1.8) F(AX +pup ® p,ip) = F(X, p),
the collection {(/';, D}, D;)},5, = & is determined, independently of the choice of g, by

the initial data (I'g, D, Dy). (See, for example, [ES], [CGG], [IS], etc.)
Next for each 7 > 0 define the mapping E,: & — & by

Et(r0>Da—7D(;) = (FUD?_?DZ_)7

and notice that {£,},., satisfies the properties: Ey = ids, E/y = E; 0 E, for all #,5 > 0—

see for example, [ES], [CGG], [IS], and [Go].

DeriNiTION 1.1, The collection {E;},., is called the generalized evolution with
normal velocity v. The collection {I";},., of closed sets is called the generalized front
propagation of Iy with normal velocity wv.

Notice that the generalized front propagation is determined not only by Iy but also
by the choice of DJ and Dj, which is related to choosing an orientation for the normal
to I'o. In particular the generalized front propagation differs, in general, if D and
Dy are interchanged or if DJ and D; are replaced by the empty set &f and D U Dy,
respectively.

For the analysis in this paper it is also important to consider discontinuous solutions
to (1) with initial data given by characteristic functions. The existence and stability
properties of such solutions were studied in detail in Barles, Soner and Souganidis [BSS]
An interesting issue regarding generalized evolution of fronts is whether the front
develops interior or not. This is related to the uniqueness of discontinuous solutions to
the initial value problem for [I.7). We refer to and for this as well as
further discussion and examples for which interior develops.

We conclude this subsection introducing some additional notation which helps the
presentation of the main results of the paper. To this end, for each (I'y,Dy,Dy) € &
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and >0, we define the maps X;,: # — % and N,: 0 — O, ¥ and (O being the
collections of closed and open subsets of R" respectively, by

(1.9) X,(DfUIy)=DfUI, and N,(D})=D;,

where (I, D}, D;) = E,(I'0, D§,Dy). It can be shown that X, is well-defined. Indeed,
the decomposition of any 4 € # into two sets DJ and Iy is not unique in general.
However, the set D UI", is independent of the choice of Dy and I'y. A similar
discussion applies to the mapping N,. We also call {X;},., and {N,},., the generalized
evolutions with normal velocity v. Hopefully, this notation will not create any con-
fusion in the presentation, although in what follows we use the same expression—
generalized evolution with normal velocity v—for the three different collections {E;},-,

{Xi}i20, and {N:},5
It is, of course, immediate that if 4 € O, Be # and 4 — B, then

N,(A) < X.(B).

1.2. An abstract formulation

Motivated by the problem of proving convergence of approximation schemes to the
viscosity solution of second order, fully nonlinear, possibly degenerate, parabolic pde,
Barles and Souganidis introduced in (see also [Sou 3, 4] for a similar formulation
for first order equations) the following abstract formulation.

For each & > 0, let G, : BUC(R") — BUC(R") be such that for all u,v € BUC(R")
and c e R,

(1.10) Gi(u+c) = Gu +c,
and
(1.11) ifu<v then Guu < Gy.

It follows, from an observation due to Crandall and Tartar [CT], that, if
holds, then (1.11) is equivalent to

(1.12) 1Ghut — G| < flu — o],

where ||¢|| denotes the sup-norm of ¢.

Assume also that there exists a continuous function F : " x (RV\{0}) — R which
is degenerate elliptic, i.e., it satisfies (1.6), such that, for all smooth function ¢ and all
xeRY, we have

(1.13) lim P~ (Ghp — 9)(x) < —F.(D?p(x), Do(x)),
and
(1.14) 12135 P~ (Ghp — 9)(x) = —F*(D*p(x), Dg(x)).

Here and henceforth, f* and f, denote the upper- and lower-semicontinuous
envelopes of the function f, i.e.,

£(x) = lim sup{f(») : & B(x,/)} and £.(x) = lim inf{f(y) : y € B(x,7)}.
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(See [Is2].) If {f°},., is a family of locally bounded functions, following [BP], we
define the generalized half-relaxed limits lim* and lim, by

lim* f(x) = lii% sup{f°(y):0<e<r,yeB(x,r)}

&e—0

and

lim, f*(x)= 1in01 inf{f“(y):0<e<r,yeB(xr)}

e—0

and finally, if ¢g is a uniformly continuous function, w, denotes its modulus of
continuity.

Given T >0, a partition P={0=1¢y<---<t,=T} of [0,7] with mesh ||P| =
max|<;<,(t; — ti_1) and g e BUC(R"Y) define up: R x [0,T] — R by
G (up(- 1)) if te (i1, 1],

. w0 = {g it 1= 0.

We need one more assumption about the way up assumes the initial condition
g. We assume that

(there exists w € C([0, 0),[0, c0)), independent of P and depending
on g only through the modulus of continuity of g,

such that w(0) = 0 and for all 7 € [0, T,

lup(-,2) = gll < ().

(1.16)

It turns out that, if the initial value problem

u, + F(D*>u,Du) =0 in RY x (0, T],
(1.17) { (+F( ) (0, 7]

u=g on RY x {0}
has a unique viscosity solution u € BUC(R" x [0, T]), then the functions up converge

to it.
Indeed the following theorem was proved in [BS2|.

THEOREM 1.1. Assume that Gy : BUC(R"Y) — BUC(R™) satisfies (1.10), (1.11),
(1.13) and (1.14). For all T >0, ge BUC(RY) and all partitions P of [0,T], let
up: RY x [0,T] — R be defined by (1.15) and assume that, in addition, (1.16) is also
satisfied. Let u be the unique viscosity solution of (1.17). Then, as ||P| — 0,

up — u uniformly in R™ x [0, T].

§2. Schemes for Curvature-Independent Motion.

We begin by formulating approximation schemes of the type described in “Theorem
A” for motions with curvature-independent normal velocity. To this end, choose f €
M(RY), M(R") being the space of measurable real-valued functions on R", and a
threshold parameter 6 € (0,1). Throughout this section we assume that
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(2.1) f>0o0nRY and J f(x)dx =1,
RN
and
(2.2) for each p e SV~ there exists a unique v(p) € R such thatj fdx=20.
{p.xy=v(p)

The assumption that | f =1 is only made to simplify the presentation. The existence
of v in (2.2) is obvious, the only real assumption being its uniqueness. It follows
immediately from (2.1) and (2.2) that ve C(SV-1).

We also define the function F e C(R") by

{ —|plo(=p) if p #0,

(23) Flr)= 0 if p=0.

It is then immediate that for all ¢ >0 and pe RV\{0},

f(x)dx >0 and f(x)dx < 0.

J poxy<F(p)te J (p.xy<F(p)-e

We are interested in describing the evolution of sets with normal velocity v. We
argue as follows:

For each />0, define the operators S, : L*(R") — L*(RY)NC(R") and M, :
M — M by

(24) Sng(x) = h" J S (x = ))g(y) dy = J S gl —hy) dy,
R R

and

(2.5) My(A) = {xeR" : S;1,4(x) > 0},

where 1, denotes the characteristic function of the set 4. As mentioned in the
Introduction, M, (A) is the location of A4, after time /4, when 4 moves with the threshold
dynamics determined by f and 6.
It is worth remarking that, if the set 4 is a half plane with outward normal vector
peSN! eg, if A= {x:<{x,p) <0}, then
My(4) = {xe RV : {p, x> < ho(p)}.

Next, for all >0 and /& > 0 define the mapping Cl’1 s M — M by
(2.6) Ch=M]", if (j—Dh<rt<jh
where M,f is the k-th iterate of M) if k € N and the identity mapping if k =0. This

two-parameter family {C"} yields an approximation scheme for the motion with normal
velocity .

Throughout the paper, for each 4 € .# and ¢ > 0, we write
(2.7) A, = {xeR" : dist(x,4°) > ¢} and A°={xeR" :dist(x,4) < ¢},

where dist(x, 4) is the usual distance from x to A.
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We have:

THEOREM 2.1.  Assume (2.1) and (2.2). Then for all ¢ >0 and T > 0, there exists a
0 >0 such that, for all Ae #, if 0 < h <9, then

Ni(4,) = CH(A4) € N(47) and  X,(Z) = C)(4) = X,(7).

has the following consequence, from the point of view of the Hausdorff
metric.

THEOREM 2.2.  Assume (2.1) and (2.2) and let K be a compact subset of RY x [0, )
and ¢ > 0. Then for every closed set A there exists 6 > 0 such that if 0 < h <9, then

(U Ch4 {z}) NK < | X,(4) x {1} + B(0,e).
t>0 t>0

Similarly for every open set A there exists 0 > 0 such that, if 0 < h <9, then

(U N,(4 {z}) NK c | ClA) x {1} + B0, ).

t>0 t>0

Following and [GrGr], we introduce, for /& > 0, the operator Gj,: M(R") —
M(R") given by

Gpy(x) = sup{A e R : Syl (x) > 0},

where here and henceforth {y > /} is the abbreviated notation for {x e RY : y(x) > A}.
Following [BS2], for 7€[0,7] and & >0, we also introduce the operator Q! :
M(RY) — M(R") given by

h—GI™" if (j-1)<t<jh (jeN).
It is clear (see, for example, and that
G (x) =inf{ie R : Splyy>,(x) <0} =sup{ie R:xe M,({y = i})}.
It is also not hard to check that, if 1= G¥(x), then
Silgy>(x) =0 and  Splyys iy (x) <0 forall e > 0.
The above inequalities imply that, for all A€ R,
G (x) > A if and only if x e M;,({y > 1}).
In particular, for all 4 € .#, we have
1y,4) = Grly and IC/Z Qt 1,.
The proofs of Theorems 2.1 and 2.2 are based on the following

TueoreM 2.3. Fix ge BUC(R™) and let ue BUC(RY x [0,0)) be the unique
viscosity solution of (1.7) with F given by (2.3). Then, for all 0 < T < o0, as h — 0,

hg(x) — u(x,t) uniformly on RN x [0, T].
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follows from provided we verify its assumptions, which

we do next. To this end, we summarize below some of the basic properties of Gj,.
Since their proof follows along the lines of the analogous statements and [Isl], we
omit them. First of all, if p e C(R) is a nondecreasing function, then

(2.8) Gi(pogp)=po(Gyp) forallpe M(RY) and h>0.
Also for any ¢,y € M(R"),

(2.9) if o<y then Gup < Gpy.
It follows that, for all ce R,y e RY and ¢ € M(R"),

(2.10) Gi(p+c)=Gp+c, Ge=c and Gug(-+ y) = (Gup)(- + ¥)-
But then (cf. [CT] and the discussion in Section 1.1), for all 2~ >0 and ¢,y €
M(R"Y),
1Ghp — G|l < llp = [l and  [|Gupll < {lo]-
Hence, if ¢ € BUC(RY),

(2.11) |Grp(x) = Gup(y)| < @(|x = ¥]),

where w, is the modulus of continuity of ¢, and hence, G, maps BUC(R") into itself.
We now proceed with the

ProOF OF THEOREM 2.3. 1. Since, for all >0, the map Gj,: BUC(R") —
BUC(R") (cf. (2.10), [2.11)) satisfies and [1.12), we may conclude, using
1.1, provided we verify (1.13), (1.14) and (1.16).

2. The fact that the generator-type inequalities and hold is an im-
mediate consequence of

LemMa 2.1. Let pe C'(RY). Then, for all ze RN and &> 0, there exists 6 > 0,
such that, for all x € B(z,0) and h e (0,0],

Grp(x) < 9(x) + (=F(Dg(2)) +e)h and  Gup(x) = ¢(x) + (=F(Dg(2)) — &)h.

Proor. 1. Since Gy is translation invariant, we may assume that z = 0.
2. Set p=Dp(0). We only show that there exists d >0 such that, for all xe
B(0,0) and & e (0,9],
Sil{p= p()+(~F(p) 4oy (X) < 0,

which yields the first inequality above. The other inequality follows similarly.
3. Setting E = {ye R" : {p,y> < F(p) —¢/2} and noting that E = ¥ if p =0, we
observe that

jEf<y) dy < 0.

4. Choose a sufficiently large R > 0 and a sufficiently small 6 > 0, so that
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J S dy < «9—[ £(3) dy,
B(0,R)° E

and, for all xe€ B(0,0), he (0,0] and y e B(0,R),

h
ol = hy) = plx) +h<p, 1| < 5

5. Tt follows that, for all x e B(0,0), he (0,6] and y e B(0,R),
: €
if p(x —hy) = ¢(x) + (=F(p) +e)h then <p,y) <F(p) 3.

Hence, for all x € B(0,0) and /€ (0,0],

f(y)dy+J f(y)dy <0,

Sil{p= px)+(~F(p)+any (X) < J |
B(0,R)

ENB(0,R)

which completes the proof. ]

3. Continuing with the proof of [Theorem 2.3 and in preparation towards proving
(1.16) we need the following lemma, in which, as it follows from its proof, we may

replace the functions =+|x| by the functions +1/|x|* + 1.

LEMMA 2.2. There exists a constant C >0 such that, if ¢(x) = |x| (respectively
o(x) = —|x|), then for all xe R" and h >0,

Gho(x) < o(x) + Ch (respectively Gyp(x) = ¢(x) — Ch)

Proor. 1. Since both inequalities are proved similarly, here we only present the
proof of the first one.
2. Fix R >0 so that

J f(x)dx < 0,
B(0,R)¢

and note that, for x, ye RY and 4 > 0,
if |x —hy| > |x| +Rh then |y|>R.

Hence, for all xe RY and >0,

Silip> x+rny (X) = J

RN

FON oo (x — hy) dy < j S()dy <0,
B(0, R)°

and therefore,
Ghp(x) < p(x) + Rh. O

4. Next we verify (1.16). To this end, fix ¢ >0 and /4 > 0 and observe that there
exists a constant C, > 0 such that, for all » > 0, w,(r) < e+ C,r. We then have, for all
x,y € RY, that

—e—Co|x =yl +9(y) <g(x) <g(y) +e+ C|x— y|.
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yields that for all x, y e R",
—C,Ch—Ci|x—y| —e+9g(y) < Grg(x) < g(y) + e+ Cs|x — y| + C.Ch.

A simple induction now gives for all (x,7) € RY x [0, o0),

—¢— C,Ct+ g(x) < Ql'g(x) < g(x) + ¢+ C.Ct.

The function w(r) =inf{e > 0:¢+ C,Cr} has the required properties.
5. The proof of Theorem 2.3 is now complete following Theorem L.1. O

We now continue with the

ProOF OF THEOREM 2.1. 1. Fix T'>0, ¢€(0,1), A€ .4, define the function ¢ :
RY — R by

min{dist(x, 4¢),1} if x€ A4,
= { —min{dist(x, 4), 1} if x e A°,
and note that g e BUC(R") and
{g>—e} =A4° and {g=>¢} = 4.

2. Let ue BUC(RY x [0,0)) be the unique viscosity solution of [1.7). Then, for
all >0, we have

NAA%) = {u(-,0) > —¢} and  X,(4,) = {u(, 1) > e}.

also yields the existence of d > 0 such that if 0 < 2 <oJ and 0 <¢ < T, then
for all xe RV,

107 g(x) — u(x,1)| < e/2.
3. Fix 0<h<o and 0 <t <T. It follows that
Cl(A) = C!'{g> —¢/2}) ={Q}g > —¢&/2} = N/(A") = X,(4°),
and
Cl(A4) > CM{g > ¢/2}) ={0}'g > ¢/2} > X\(4;) > N/(4,),
hence the claim. ]

To prove Theorem 2.2l we need
LEMMA 2.3. Let A be a closed subset of RY. Then

() U N(4%) x {1} = | Xi(4) x {1}

e>01>0 >0

Proor. The proof of yields that for some function u € C(R" x [0, 0))
and all ¢ >0,

N(A%) = {u(-,t) > —¢} and  X,(4) = {u(-,7) > 0}.
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Hence, for all ¢ > 0,

U N4 x {1} = {u= —s},

t>0

and therefore,

NUNAE) < (= (uz e} = () X4 x {1} 0

e>01>0 e>0 t>0
We now proceed with the
PrOOF OF THEOREM 2.2. 1. Fix a compact subset K of RY x [0,0) and ¢ > 0. In

view of [Theorem 2.1, to prove the first assertion we only need to show that there exists
0 > 0 such that

(U N,(4%) x {z}) NK < ) X,(4) x {1} + B(0, ).

>0 >0

2. Arguing by contradiction, we assume that for each n € N there exists (x,,?,) € K
such that

(2.12) (Xns ta) € | N(AY™)y x {t} and  (xp,1,) ¢ | Xi(A4) x {t} + B(0,¢).

t>0 t>0

Note that (2.12) yields that

>0

(2.13) B((xn, 1n), ) N (U X, (A) x {z}) = .

3. Since K is compact, we may assume that as n — oo, (x,,1,) — (X,7) for some
(x,) € K, and moreover, that (x,,?,) € B((X,7),¢) for all ne N. But then, yields
that

(%.7) ¢ | Xi(4) x {1}.

>0

On the other hand (2.12) yields that for all y >0

(%,7) e [ N(47) x {1}.

>0

These last two statements together with yield a contradiction.
4. The second assertion can be proved similarly. OJ

§3. Schemes for Anisotropic Mean Curvature Motion.

We formulate here approximation schemes of the type described in “Theorem B”
for curvature-dependent motions. To this end, fix /e M(R") such that

(3.1) f(x)=0, f(—x)= f(x) forallxeR", and J f(x)dx=1,
RY



282 H. Isui, G. E. Pires and P. E. SouGaNIDIS

(3.2) 0< J (1+[x]?)f(x)d#N " < o0 forall pe SV,
pJ_

the functions p — J F(x)dA N (x) and p J xox, £(x) d N (),

(33) pt pt
with i, j e {1,..., N}, are continuous on SV,
and
(3.4) J 2/ (x) dx < .
RN

Next we consider collections {R(p)}o.,~; = R such that
(3.9) R(p) - o and /pR(p) — 0, asp—0,
and functions ¢: RYN~! — R of the form
(3.6) g(&) =a+{AEEY withaeR and Ae sVl

Also for any U € O(N), O(N) denoting the group of N x N orthogonal matrices,
and f: RY — R we define f;,: R — R by

fux) = f(U"X).
In addition to (3.1)-{3.4), we need to assume that
for all collections {R(p)},; satisfying (3.5) and all

(3.7) functions g of the form (3.6), as p — 0

sup  sup
UeO(N) 0<r<p

[0 SolCm@u@d - [ sutcontcrde| o

Fix ce R and define the function v: " x S¥~1 — R by

o(X, p) = (j 7)) : (—;j X0 (3) o) ).

Since, for all p, xe RY, (p ® px,x)> = {p,x>?, it follows that for all (X,p)e 9" x
SNflj

(I -p@p)XUI-p®p),p)=0v(X,p) and v(X,—p)=uv(X,p).

Our goal in this section is to define threshold dynamics-type approximation scheme
for hypersurfaces or sets moving with normal velocity wv.
As in Section 2, for & >0, we define the operator S,: M(R"Y) — M(R") by

S (x) = hN/ZJ

RN

S (x = )W) dy = j SO — Vhy) dy,

RN

the mapping M,: .4 — M by

M (A) = {xeR" : S;14(x) > 0},
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where
1
ehzzz'—CﬂAa

and, for all >0 and / > 0, the mapping C!: .# — .4 by
Ch=Mm/"" if (j—Dh<rt<jh withjeN,

where as before M,f‘ is the k-th iterate of M) if ke N and the identity mapping if
k =0. This two-parameter family {C,h} yields an approximation scheme for the motion

with normal velocity v.
We have:

THEOREM 3.1.  Assume (3.1)—(3.4) and (3.7). Then for all T >0 and ¢ > 0, there
exists 0 > 0 such that if he (0,0), te[0,T] and A€ M, then

Ni(4;) = C"(4) = N(A?) and X,(4;) = C"(4) < X,(4?).

THEOREM 3.2.  Assume (3.1)—(3.4) and (3.7) and let K be a compact subset of R" x
[0,0) and &€ > 0. Then, for any closed A = R and open B = RY, there exists 6 >0
such that if 0 < h <9,

(U C"(A4) x {t}) NK < | X,(A4) x {t} + B(0,¢),

t>0 >0

and
(U N,(B) x {t}) NK c U C,”(B) x {t} + B(0,¢).
1>0 (>0

We will prove Theorems B.1 and B.2 following the same strategy as for Theorems
2.1 and 2.2 To this end, choose /y sufficiently small so that

1/6 < 6, <5/6 forallhe(0,h),

and, as before, for i € (0,h) and ¢ > 0, define the operators G, Q" M(RY) — M(R")
by

Grp(x) = sup{Z € R : Spli,> 3 (x) = O},
and
Q=G if (j-1)h<t< jh, withjeN.
Next define the function F: Y x (RV\{0}) — R by

F(X,p)=—|plo(~p|" (1 = p ®p)X(I = p ® p), D)

Y - (Jp 7(x)do V! (X)) _1 G LL K, S () A+ clp |) '

It is easy to check that F is degenerate elliptic and geometric, i.e., that it satisfies (1.6)
and [I.8). The initial value problem for a function u with level sets moving by normal
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velocity v is

u; + F(D*u,Du) = 0 in RN x (0, o0),
(39) { ‘ ) (0, 0)

on RY x {0}.
It turns out cf ) that for all ge BUC(RY), | admits a unique viscosity

solution u € BUC( X [ 00)).
We have

Tueorem 3.3. Assume (3.1)-(3.4) and (3.7), fix ge BUC(R") and let ue
BUC(R" x [0, 0)) be the unique viscosity solution of (3.9) with F given by (3.8). Then,
for all 0 < T < o0, as h— 0,

0"g(x) — u(x,t) uniformly on RN x [0, T].

Since Theorems B.1 and follow from Teorem 3.3 exactly as Theorems 2.1 and
2.2 follow from MTheorem 2.3, here we only present the proof of Theorem 3.3

Moreover, since the mapping G, satisfies (2.8), (2.9), (2.10) and [2.11), as it can be
easily checked, the proof of follows, on the basis of MTheorem 11|, exactly
the same steps as those in the proof of [Theorem 2.3 Below we only state and prove
the lemmas which are needed for the proof and refer the reader to the proof of
2.3 for the rest of the details.

We have

Lemma 3.1, Let pe C*H(RY), ze RY and ¢ > 0, and assume that Dp(z) #0. There
exists 0 € (0,hy) such that for all x € B(z,0) and h € (0,6],

Gip(x) < p(x) + (—F(D?¢(z), Dp(2)) + &)h,
and

Gup(x) = p(x) + (—F(D*p(z), Dp(z)) — e)h.
Proor. 1. Since both inequalities are proved similarly, here we present the proof of
the first one.
2. Assume, without any loss of generality, that z =0 and fix a € R such that

a > —F(D*p(0), Dp(0)).
We need to show that there exists 6 > 0 such that for all x e B(0,0) and % € (0,6],
Sil{pzp(o)any (X) < Op.

)
3. Fix 0; >0 such that Dp#0 on B(0,0;), choose a continuous family
{U(X)}ycp0.6,) = O(N) such that for all xe B(0,d),

U(x)(Do(x)) = ew,

where ey denotes the unit vector in RY with unity as its N-th component, and note that
if xe B(0,6;), then

Sty (09 = | fut M iozpisan (3= VAUR)'2) dz
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4. The inequality
a > —F(Dg,D*p) in B(0,0,),

which is valid if J; is small enough and which we assume hereafter, then reads
1 «

3| PSPV PO Sy &0V~

. Ju(&,0)dé < —c|Dy(x)],

where P denotes the N x (N — 1) matrix, whose (i, j)-th entries are unity if i = j and
zero if i # j.
5. Next choose ¢ >0 and 0, € (0,6;] such that for all x e B(0,6,),

(3.10) 3| P UO@(0) + 360 U(0) PEE i 0)

~a=0) | | ful&00dE < ~(c+29|Dp(0)].

6. According to Taylor’s theorem, there exists y > 0 such that for all # >0, y e RY
and x € B(0,5,), if vh|y| <7, then

v~ VAU()' ) < 9(x) ~ VIKDp(), U(x)" > + 5 CUD?p(x) + e U ) 7.
< ¢(x) = VAIDp(x)|yy + Chyy
FACP U (D) + 261U ()" Py, 3,
where y = (3, yy) € RN x R and C is some positive constant.
Replacing y and J, by smaller positive constants if necessary, we deduce that for

y € B(0,7/vh) and x e B(0,0,), if

(3.11) o(x — VhU(x)*y) > o(x) + ah,
then

5 N
Y7 Dp(x)| - CVhyy

, (—a+ 3P VDo) + 2 U 0P 551 )

\/E 1 % * / !
< Do(0)] <—a + 8+§<P U(0)(D?*p(0) + 3e)U(0)*Py’, y >>.
Define
A, = |p(0)| "' PFU0)(D?*p(0) + 3e)U(0)*P and g, = (a — &)|Dp(0)| "

Then, if is satisfied, we have

(312) Iy < \/Z(_as+%<A£y,7y,>)'
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7. Assumption yields the existence of a decreasing w e C([0, c0), [0, c0)) such
that w(R) — 0 as R — oo, and

J F(|yldy < w(R)* for all R > 0.
B(0,R)¢

For each 0 <t < 1, define R(?) € (0, 0), by

(3.13) w(R(1)) = tR(1)?,
and note that the collection {R(#)},_,., satisfies (3.5). Then choose 7 € (0,1) such that
(3.14) R(t) <y/t forall te(0,1].

8. Write

p=vh, T(p)=B0,R(p)) xR<=R",
and

g(é) = (_ae +%<A6575>) for & e RV

Fix /e (0,min{hg,t>}] and x e B(0,5,) and observe that

Juw(y)dy + J Jue(y)dy

Snl{p= p(x)+any (X) < J
BO,R(p))*

B(0, R(p))M{yn <pg(y")}

IA

fuaW 42| fyg(dy

JT(ﬂ)ﬂ{yzv <pg(y')} B(0,R(p))*

and

and also that

%: LN<ofU<x>(y) @ < J fuiw(¥) dy + o(R(p))p.

9. Next note that

o) dy —j Foo () dy

JT(p)ﬁ{yzv <pg(y")} T(p)N{yn <0}

pg(&

) P
| e pena={ @] p oo
B(0,R(p)) 0 0 B(0,R(p))
It follows from (3.7) that as p — 0,

1
- o) dy — o dyy — 0(E,0)g(8)de,
p{JT(p)ﬂ{yNSpg(y’)} Toe )& JT(/))ﬂ{yzvso} Toey ) y} JRN' Jue (<, 09(8)

with the convergence uniform in B(0,d,).
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Replacing 7 by a smaller constant independent of x € B(0,J,), we may assume that

1
—{j o) dy —j Fo () dy} sj S (E0)g(8) dé +e.
P Jripn{yx<pg(y')} T(p)N{yy <0} RN

Finally, noting that from (3.10),

JRNI Ju(€,0)9(8)dé < — ¢ — 2,
we get

Silips p()rany (X) < %+PL  Ju(€,0)9(8) dE+ (e 4+ 3w(R(p)))p

N-1

< l—Fp(—c — e+ 3w(R(p))).

Since we may assume that 3w(R(p)) < ¢ for all 0 < p <7, we conclude that for
some 0 > 0 and for all x e B(0,0) and /€ (0,6],

Shl{q)z o(x)+ah} (x) < O,
hence the claim. ]

LEmMmA 3.2, There exist constants C >0 and 6 € (0,hy) such that if ¢(x) =
\/ |x|2 + 1 (respectively ¢(x) = —1/ |x|2 + 1), then for all xe R" and he (0,0],

Giop(x) < ¢(x) + Ch (respectively Gyp(x) > ¢(x) — Ch).

Proor. 1. We only prove the first inequality here, since the proof of the second
one is similar.

2. Fix ¢; > |c| and choose, using (3.2) and (3.3), a positive constant C; such that for
all Ue O(N),

(3.15) |, foolPas -5 | e 0de < o

3. We first prove, using arguments similar to the ones for [Lemma 3.1], that there
exists 0 € (0,h) such that for all 4 e (0,5] and x e B(0,vVh/5)",

(316) S/11{¢Z¢(X)+C1h} ()C) < Hh'

To this end, choose a collection {U(p)},.gv-1 = O(N) such that U(p)p = ey, define
for p e S¥-!, the function f, : RY — R, by f(x) = f(U(p)"x), choose w € C([0, ), R)
and define a collection {R(p)}o.,.; = (0,0) as in the proof of Lemma 3.1l

4. Let xe RM\{0} and h e (0,h) and observe that if y e R" is such that

(3.17) p(x = VhU(X)"y) = p(x) + Cih,

then
1
sl < VB (3107 = G/l + 1),
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If in addition
(3.18) Vh|y| < |,
then (3.17) yields

(3.19) yNs(l {;‘N) ’—‘xf’<\ |—C\/|x\2+l>.

5. Assume that |x| < 1. If (3.18) holds, then

-1

1 Vhyy
. <2
2<< 2|x|> =5

and hence (3.17) and (3.18) imply that

\/E 712 C]
< — —— .
T (‘y 2)

Choose p; € (0,1) such that

pR(p) <1 forall pe (0,p],

and set p = vh|x|"' and g(&) = |¢]* — €\ /2 for Ee RV
Noting that if p e (0,p,] and y e B(0,R(p)), then VA |y|/|x| <1, we find that for
pe(0,p] and T(p) = B0, R(p)) x R = RY,

Sil{p> g+ (X) < JB(O " ))f( Mz pmran (x = VRU(X) y) dy + po(R(p))
, B’(p

< S:(y)dy +2pw(R(p)).

JT(ﬂ)ﬁ{yw <pg(»")}
Assumption (3.7) and the choice of C) yield the existence of a constant p, € (0, p,]
(see the proof of [Cemma 3.1) such that for all p e (0,p,] and pe SN,

1
| ) dy < 35— i+ pooR(p)).
T(p)M{yv <pg(y")}

where we used the fact that

| S0)dy < 5+ plR(p).
T(p)N{yy <0}

Hence, if p = vA/|x| € (0, p,], then

1
Silipzp(xrcin (¥) < 5= c1p+ 3po(R(p)).

Since v/h/|x| > v/h, we can choose p; € (0,p,] such that if 0 < vi/|x| < p;,

1
SI11{¢2¢(x)+C1h}(X) < 5 — |C|h < 9h~
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6. Now let |x| > 1. Note that if (3.17) and [3.18) hold, then

1
Vi vh (1 ¢
yy < (1 ) G G- aiten) < va(r- 3.

Set p = +/h and observe that if pe (0,p,] and ye B(0,R(p)), then by our choice of
{R(p)},

x| " Vh|y| < pR(p) < 1.

Repeating the computations in Step 5 we conclude that for some p, > 0, if Vi < p,,
then

Shl{(pz(p(x)JrCl;,}(x) < Oy,.

Thus, setting 6 = min{p;, p}, we have (3.16).
7. Fix 6 > 0 and C; > 0 such that [3.16) holds, and then x € R" and / € (0, hy) such
that |x| < v/h/5. We will show that there exists a constant C, > 0 such that

Snl{p> p(x)+-cony (X) < O

8. Choose R >0 and C, > 0 such that

1 2
J f(y)dy<— and C, > R*+=R,
B(0,R)* 6 )

and observe that if y e RY satisfies

o(x — \/Ey) > p(x) + Coh,
then

2 2 2h 2
< 1< -2 < —
Coh < O/ [x]” + 1< = 2Vh<x, ) + hly* < = [y + Ayl

ie., Cy < (2/9)y|+|y|*, which implies that |y| > R.
Therefore, we have

1
Snl{p> p(x)+cony (X) < J f(y)dy < < 0,.
B(0,R)°

Combining this last inequality with concludes the proof of the first
inequality. [

We are now in position to prove

Lemma 3.3. Let ge BUC(R™). Then there exist a constant 6 € (0,hy) and a
continuous function  : [0,00) — [0, 00), with w(0) = 0, depending only on the modulus of
continuity , of g, such that for all xe R", t >0, and he (0,6],

079(x) = 9(x)| < (1)
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Proor. The proof is similar to that of [Lemma 2.3. The only difference is that
We now use in place of and start with the inequality

l9(x) —g(»)| <&+ Cip(x — y) forallx,yeR",

where ¢ >0, C, >0, and ¢(x) = 1/|x|*+ 1 —1 and which is valid for all &> 0 with
sufficiently large C, > 0. ]

Proor oF THeOREM 3.3. 1. Since the mapping Gj satisfies (2.8), (2.9), (2.10) and
and since yields (1.16), we may conclude using Lemmas B.1], and
B3, if we verify [1.13) and [1.14), which, if Dg(x) # 0, are immediate from Cemma 3.1.

2. Next consider [(1.13) and (1.14) in the case where Dg(x) = 0 and assume (see, for
example, [BG]) that also D?p(x) =0. As a matter of fact, since the mappings G, are
translation invariant, we may assume that x =0. Moreover, careful inspection of the
proof of Proposition 1 of indicates that we may also assume that ¢(y) = 0| y|4 for
some o > 0.

3. Set (x) = 1/|x|* + 1 — 1 and note that for all xe R", |x|* = ((Y(x) +1)* = )2

4. yields the existence of § > 0 and C > 0 such that for all x € B(0,9)
and 0 < h <0,

Ghp(x) = aGu((¥ +1)° = 1)*(x) = 2((Gp(x) + 1) = 1)
< a(((x) + Ch+1)" = 1)* = a(|x|* + Ch)* = p(x) + 2(25C + Ch)h.
It follows that
lim* 5~ (Gyp — 9)(0) < 209C,
and letting 0 — 0,
lim Y (Ghp — 9)(0) <0 = —F,(0,0),

and hence, (1.13).
5. The fact that

lim, i~ (Gap — 9)(0) = 0 = —F*(0,0),
h—0

follows similarly. ]

§4. Mixed schemes.

Here we present a few examples of schemes which can be obtained as a combination
of the threshold dynamics discussed in Sections 2 and 3.

To this end, for i = 1,2, let (f;,0;) be a pair of a function and a threshold value,
satisfying (2.1) and (2.2) and define v; : S¥~! — R and for all 4 > 0 the mappings S;
and M;j, : M — M respectively by

fi(x)dx = 0 Sl-,hwx):j [ (x — hy)dy.

J Cx,p) = ui(p) RY
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and
M;p(A) ={xeR" : S; y14(x) = 0}

The first example is the scheme obtained by interchanging M; ;, and M, at each
interval of length # > 0. We thus define C!:.# — ./ by

Cl= (MypoMy,)™" if (j—1)h <1< jh, with jeN.

THeoREM 4.1.  Let {X;},., and {N},5, be the generalized evolutions with normal
velocity vy +vy. For all T >0 and ¢ > 0, there exists 6 >0 such that if 0 <h <o,
0<t<T, and A€ ., then

Ni(4;) € CM(A4) = N(4%) and X,(4;) = C*(A) < X,(47).

Assertions analogous to Theorems and 2.3 hold for the C" defined above, but
we will not discuss them here. [Theorem 4.1 is, in principle, a special case of Trotter’s
product formula in semi-group theory. The proof follows from a straightforward
adaptation of the proof in Section 2 and hence we omit it.

Next we consider another example. For 4 >0 define M), : #4 — .4 by

My(A) = My ,(A) N My ,(A4),

where, for i =1,2, M;; are as above. Then define C': il — M for t>0 by CI=
M}V f (j—1)h <t < jh with jeN.
We have

THEOREM 4.2. Let {X;},., and {N,},5, be the generalized evolutions with normal
velocity min{vy,v2}. For all T >0 and & > 0, there exists 6 > 0 such that if 0 < h <9,
0<t<T, and A€ ., then

Ni(4;) € C"(4) = N(A4%) and X,(4,) = C"(4) = X,(4°).

We remark that assertions analogous to Theorems and 2.3 hold for the above
C!". We shall not give here the details of the proof of which is again a
straightforward adaptation of the arguments in Section 2 and hence we omit it.

If we define

My(A) = My ;(A)U My 4(A)

and replace the normal velocity min{v;,v,} by max{v;,v;} in then the
resulting assertion is still valid. Moreover, in the above definitions of approximation
schemes, if we replace one or both of M;,, i =1,2, by the operators M) introduced in
Section 3, then the assertions with this replacement togehter with obvious changes of
velocity functions still hold valid.

§5. Asymptotics of iterations.

Let f,v,0,F and for 2 > 0, M) and G; be as in Section 2. In the sequel we write
M and G for M; and G) respectively.
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Throughout this section assume that

(5.1) v>0 on SN

Our goal here is to show that if a bounded measurable subset 4 of RY contains a ball
centered at the origin with sufficiently large radius, then the set M*(4) is asymptotically,
as k — oo, similar to the Wulff crystal #~ of “surface energy” v.

Recall that the Wulff crystal ¥~ of “‘surface energy” v, which is defined by

(5.2) W =W,={xeR" :{x,p)<v(p) forall pe S},

is a bounded, closed convex subset of R" having the origin as its interior point.

The concept of the Wulff crystal (shape) is an important one in the study of phase
transitions. Equilibrium problems for material that may change phase usually lead to
the minimization of functionals involving bulk and surface energies ([F], [FM], [T1]). It
is known (see, for example, [T1, 2, 3], [F], and and the references therein) that the
Wulff crystal # is the solution of the Wulff problem, which is about minimizing
functionals of form

j o(n(x)) dN ! (x),
oF

among all smooth domains E with a given volume, n being the outward unit normal to
its boundary JF and v representing the energy density per unit area.
Consider next the function K : RY — R given by

(5.3) K(x) = sup {{x,p>—v(p)}

pe SN
It is immediate that K is a convex continuous function and that
W ={xeR":K(x)<0}, int# ={xeR": K(x)<0} and
W ={xeR": K(x)>0}.
The main result in this section is

THEOREM 5.1.  There exists R >0 such that if A€ # is bounded and contains
B(0, R) and if ¢ > 0, then for a sufficiently large number J € N and for all k € N such that
k>J,

W,k ' M*(4) <.

Recall that M denotes M), with 4 =1 in the above and in what follows.

is proved as Theorems 2.1 and B.I once we establish what plays the
role of Theorems and B.3 in this context.

To this end we define for each k € N the operator R; : L*(R") — L*(R") by

Rip(x) = G p(kx).

The next theorem corresponds to Theorems 2.3 and B3l
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THEOREM 5.2. There exists R >0 such that if A€ # is bounded and contains
B(0,R), then as k — oo,

1 if xemt?,

Rila(x) = {o if xewe

with the convergence uniform outside any neighborhood of 0W .

In preparation for the proof of we need to consider the stationary first
order pde

(5.4) —{x,Duy 4+ F(Du) =0 in R",
together with the conditions
i)  wu:RY —{0,1},

(5.5) (i)  u.(0) =1,
(iii) w*(x) =0 if |x| is sufficiently large.

Here, as usual, u* and u, denote the upper and lower semicontinuous envelopes of u,
respectively.
We will prove the following.

THEOREM 5.3. Let u be a viscosity supersolution (respectively subsolution) of (5.4)
satisfying (5.5) (i), (i) (respectively (5.5) (1), (iii)). Then

u=1 inintW" (respectively u=0 in W°).
ProoF. 1. Let K be the function defined by [5.3) Then

(i) xeint#” if and only if K(x) <0,
(5.6) (i) xedw”  if and only if K(x) =0,
(iii) xew“ if and only if K(x) > 0.

2. Let u be a supersolution of (5.4), set
U=int# and Uy=UN{u, =1},

and observe that Uy # J, Uy is open, and U is connected.

To conclude it is enough to show that Uy is closed in U, since then U = U, hence
u, =1 in U, and therefore u =1 in U.

3. Fix ye UNU, and choose r > 0 such that B(y,2r) = U. Choose z € B(y,r/2)
N Uy and set

p(x)=1—rtx—z
Note that B(z,r) < U, y € intB(z,r), and
p=0<u, ondB(z,r) and ¢(z)=1=u.lz).
Let 0 = —maxp. ,K. It follows that for all x € B(z,r) and pe SN-1

x,py—v(p) < —6<0.
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Furthermore, the definition of F also yields for all x € B(z,r) and p e RV,

X py+F(=p) < =d|pl.
Therefore, if x € B(z,r)\{z}, then

—{x, Dp(x)) + F(Dg(x)) < = d|Dp(x)| = —r~'4.

4. If ming(. ,(u. — @) <0, let X be a minimum point of u, — ¢ over B(z,r). Then,
x eint B(z,r)\{z} and, since u, is a viscosity supersolution of (5.4),

—(%, Dg(%)) + F(Dg(x)) > 0,
which is a contradiction. Hence, u, > ¢ on B(z,r) and, in particular,
u.(x) >0 if xeintB(z,r).

It follows that z e U, and therefore U, is closed in U.
5. Assume that u is a subsolution of (5.4). It follows from (i) that for each
ze 0 there exists p. e SV such that

{z,p.> = v(p.).

Moreover, note also that <{x, p.> <wv(p.) for all xe #" and ze€ oW .
Next for each z e 0¥ define the half space

Lz = {X € RN : <X, pz> < U(pz)}

The convexity of #" yields that » = ()__,, L. and hence, # = 1{]J__,,(L:)".
6. Fix z € 0%, choose a g € C!(R) such that g =1 on (—0,0], ¢’ < 0 in (0, 00) and
g >0 in (0,0), and define p € C'(R") by

gp(X) = g(<x7 pz> - U(pz)>
If xe(L.), then

—<X, D¢<X>> + U(D(p(X)) = |g/<<xapz> - U(pz))|(<xapz> - U(pz)) > 0.

7. Fix R > 0 such that u*(x) =0 if |x| > R, and set Q = (L.)“Nint B(0, R). Since
u* < ¢ on 0Q, an argument similar to the one in Step 4 yields that u* < ¢ on Q. Hence,
u=01in Q. Since R can be taken arbitrarily large, it follows that

u(x) =0 on (L.)",
which implies that « =0 in % °. ]
We need the following lemmas for the proof of Theorems B.I and

LemmaA 5.1. Let A € M be bounded. Then there exists R > 0 such that for all x €
B(0,R)‘ and ke N,

RklA (x) =0.

Proor. 1. Let S (=S)) be the operator defined by
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SUC0 = | S0 = ) dy
Then for all Be ./,

Glp(x) =0 if and only if S1(x) < 0.

2. Choose L > 0 so that 4 = B(0,L). Since 14 < 1p( ) on RY, it follows that for
all ke N,

Rily < Relpo ) on RY.

Select R > L so that

j Sy dy <.
B(0,R)°

Then for all x e B(0,L + R),

St = | SOmon(c-ndr< [ fdr<o,
RY B(0,R)¢
and hence
GIB(()’L) < 1B(0,L+R) on RV.
3. A simple induction argument yields that for all k € NV,
G"150,1) < 10 4kr) on RV,
hence
Rid g0 1)(x) < Vg0, 1kr) (kx) < 1p0,2r)(x) on RN
and therefore, Ry1,=0 on B(0,2R)". |

LEMMA 5.2. There exist R>0 and ¢ >0 such that if A€ ./ contains the ball
B(0, R), then for all ke N,

Rl,=1 in B(0,e).

Proor. 1. Let S be the operator defined in the proof of [Cemma 3.1 and fix y > 0
such that y < min),—; v(p).
It follows that

minJ f(y)dy > 0.
‘p|:1 <1’:J’>Z"/
Moreover, set
s=min | f()dr-0(>0)
[pl=1J<{p,y> =y

choose R > 0 so that
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| rmar<s,
B(0,R)"
and finally set ¢ = y/3 and L = max{2R +¢,¢ ' R?}.
2. If J > L, then
(57) SIB((),J) >0 on B(O,J + 8).
Indeed, fix J > L and observe that if x e B(0,(J +¢)/2) and y e B(0, R), then

J
x— | < $+R£J,

and if x e B(0,J +¢)\B(0,(J +¢)/2), ye B(0,R), and {(X,y) >y, then
=y =P -2y < (T + R~ (J+e)y < TP —e] + RE < J2
Therefore, we have

SIB(()"]) = J

f()dy>1-6>0 on B<0,ﬂ>,
B(0,R)

2
and for all x e B(0,J + ¢)\B(0, (J +¢)/2),

mmmej ﬂw@>j F(y)dy—d> 0.

B(0, R)N{<¥,y> =y} {x,p>=7}

3. It follows from (5.7) that if J > L, then
Glpo,) =1 on B(0,J +e¢),
and hence
Glpo.s) = 1p0.s1) on R".
A simple induction yields that for all ke NV,
G*1p0 1) > 1p0, 24k on RY,
and hence for all ke N and xe RY,
Ridgo,1)(x) = 1p(0, 1+ke) (kx) = 1p10,5)(X).

Finally, if B(0,L) = 4, then Ryl > Rilp 1) > 150, on RY and hence for all
keN,

Ril4,=1 on B(0,¢). O

LemMaA 5.3. Let Ae . Then u" =lim;_  Ril, (respectively u~ = lim, j—o Ril4)
is a viscosity subsolution (respectively a viscosity supersolution) of (5.4).

Proor. 1. We only show that u™ is a viscosity subsolution of (5.4) and leave it to
the reader to check that u~ is a viscosity supersolution of (5.4).

2. Fix p e C'(R") and let % be a strict maximum point of u* — ¢. Without loss of
generality we may assume that Dg(X) # 0, since otherwise there is nothing to prove, and
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that (u" — ¢)(%) =0 and lim_,¢(x) = . Then,

ut <p onRY and lim (u" — ¢)(x) = —o0.

|x|— 00
3. Fix any a > —F(Dg¢(x)) and choose ¢ > 0 according to Lemma 2.1 such that
(5.8) Grop(x) < @o(x) +ah forall xe B(x,0) and he(0,0].
Fix any ¢€ (0,0/2], set

y=— sup (u" —¢) (>0), Ly =sup(Rils—9),
B(%,6)¢ RY

and

I = {kEN:k > 2,Lk+£ >Ly 1, Ly > —g}
It is easily seen that #1 = oo, where #1 denotes the number of elements of 7, and

that there exists kg € N such that for all k > k,

sup (Rely —¢) < —%.
B(x,¢)¢
4. Fix any k eI such that k > ky. Then,
I € V 14
K+ =Ly, Lig>—5, and  sup (Rely—9) < — 5.
k 2 it 2

Choose also X € B(x,¢) such that
(Rels — 0)(F) > —% and  (Rely— 0)(%) = Ly — ek,
and observe that we may assume by choosing k sufficiently large that

(k—1)"'<¢ and (k—1)"kxe B(%,9).
5. Using (5.8) and the fact that

Lio1 > (Reeig—9) on RY,

we obtain
Rilg(%) = Gy 0 R 1 ((k — 1)7'k5)
< Gy (k= 1)7'k%) + Ly < p((k—1)7kX) + (k= 1) la+ L+ k7',
and hence
Ly — 2 < (Rely — 9)(%) < (k= 1)'k%) — p(%) + (k= 1) 'a+ Ly + ke

< (k=17 Dp(R)>+ (k—1)a+ L +k'e+o((k — 1)),

where o(r) is a function satisfying lim,_o(r)/r = 0.
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Sending k — oo along a sequence in I, ¢ — 0 and a — —F(D¢(x)), we conclude that
—(X, Dp(%)) + F(Dp(x)) < 0. O

PrROOF OF THEOREMS 5.1 AND 5.2. is an immediate consequence of
Lemmas 5.1, 5.2, and and and then follows immediately
from [Theorem 5.2l O

§6. Large times asymptotics.

Consider vy € C(#Y x SV¥-1) and vy e C(SV~!) and assume that v; is monotone,
i.e., that it satisfies [1.3), so that the function ve C(#" x S¥~!) given by

v(X, p) = v1(X, p) + va2(p)
is also monotone.

In this section we are concerned with the asymptotics, in the limit ¢ — oo, of the
motion of hypersurfaces or sets with normal velocity v. We show that, under ap-
propriate hypotheses on the v;’s, if the initial set is bounded and large enough, the
corresponding generalized front propagation is asymptotically similar to the Wulff
crystal of the energy function v;.

Our precise assumptions on v; and v, are:

(6.1) vy >0 on SN
and
(6.2) vi(AX, p) = vy (X,p) forall A>0 and (X,p)e sV x SN

Let # denote the Wulff crystal of the energy v;, i.e.,

W ={xeRY :{x,pd <uv(p) forall peS¥ 1}

As noted in Section 5, %" is a bounded, closed convex subset of RY with the origin as
its interior point.
The main result in this section is:

THEOREM 6.1. (i) There exists R > 0 such that if ¢ >0 and A = R" is bounded and
contains B(0, R), then for some T >0 and for all t > T,

W, t'Ni(intd) and (X, (A) < W
(i) As t— oo, 7Y (X,(A)\N,(intA)) — OW in the Hausdorff metric.

The initial value problem in the level-set approach corresponding to the motion with
normal velocity v is given by

(63) { (1) u; + F (DZU,DM) + Fz(Du) —0 in RN % (0, OO),

(i) u=yg on RY x {0},

where

Fi(X,p) = —Iploi(~|p| "I - p®p)X(I - p®p), —p),
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and

F(p) = =[ploa(=p)-
Below we write
F(Xap) :FI(X7p)+F2(p)7
and note that, in view of (6.2), for all (X, p)e " x (RM\{0}),
F(X,p)=-u(-U-p@p)XI—p®p),—p)

We continue with a number of observations and lemmas which set the ground for
the proof of Mheorem 6.1. To this end, note that for each R > 0,

(6.4) Fy is bounded on {X € &V : || X| < R} x (RV\{0}),

and

(6.5)  Fi(A°X,ip)=2*F(X,p) forall A>0 and (p,X)e " x (RN\{0}).
Finally, if u: RY x (0,00) — R, we define

it(x) = limsup{u(sy,s) : s > & ', y € B(x,¢)}

¢—0
and

u(x) = liminf{u(sy,s) : s > ¢!, y € B(x,¢)}.

e—0

We have

LEMMA 6.1. Let u be a bounded viscosity subsolution (respectively supersolution) of
(6.3) (). Then u (respectively u) is a viscosity subsolution (resp. supersolution) of

—{x,Duy + F>,(Du) =0 in R".

Proor. 1. We only consider here the case where u is a subsolution, the other claim
being proved similarly.
2. Set

w(x, 1) = u(tx, 1),

and observe that at least formally,
0 > u;(1x, 1) + F(D?u(tx, 1), Du(tx, t))
= w(x, 1) — t1x, Dw(x, 1)) + F(2D*w(x, 1), t ' Dw(x, 1))
= w, + t 1 (={x, Dw) + F>o(Dw)) + t 2F;(D*w, Dw).
Indeed, it is easily justified that

(6.6) tw, — {x, DwY + F>(Dw) + t ' F{(D*w,Dw) <0 in R" x (0, 0)

holds in the viscosity sense.



300 H. Isui, G. E. Pires and P. E. SouGANIDIS

3. For ne N and t>n, set g,(t) = e /"= Then for all t>n,

(6.7) g, ()] < 1.

4. Now fix ¢ e C>(R") and assume that & — ¢ has a strict maximum at % € R".
Since we may assume that

lim p(x) =0 and @(%) = @),

|x|— o0
it follows that
i<p onRY and lim (@—¢)= —o0.

|x|— 00

5. Set
&= sup  (wi(x,1) — o(x)),

xeRNJZn

and observe that since #(x) = ¢(x), & — 0 as n — oo.
Set d, =¢,+ 1/n. It is then clear that for xeRY and t=n,

w*(x, 1) — p(x) — Fpe” 1M < 2

Since
lim sup (w*(x,t) —p(x) — 5ne—(1/n)(t—n)> —0,

n— ye RN t>n

there exists o, > 0 such that

sup (W (x, 1) — p(x) — 0, VM _ g ) > ——.

xeRY t>n

Note also that

lim (w*(x,1) — p(x) — §,e~(1/mi=n) _ ot) = — 0,

|x|+t—0

and that if 1 =n,

|
w¥(x, 1) — p(x) — Gue” MU= _ g p <~
n
It follows from above that the function

w¥(x, 1) — p(x) — due” (I/m(=n) _ 5 ¢

achieves a maximum over R" x [n, 00) at some (x,,%,) € R x (n, 0).
Since w* is a subsolution of (6.6), it follows that there exists a constant C > 0 such
that

+ 1, 'F1(D*¢(x4), D (x4))

> — 3, — {Xp, Dp(x)> + Fi(Dop(x,)) — 1, ' C.
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The choice of o, yields

1
(6.9) -7 < W* (%, 1) — @(xy) — Ope VM= _ g 1 < 8, — ot.

Hence, a,t, <, + 1/2n and so, lim,_,,a,t, = 0. Since the set {x,} is clearly bounded,
we may assume that x, — y as n — oo for some y € RY. Then we find from that
0 <u(y) — o).

Since x 1s a strict maximum point of & — ¢, it follows that y = Xx. Letting n — o0 in

(6.8), we conclude
—(X,Dp(X)) + F1(Dg(%)) < 0. O

LEMMA 6.2. Let u be an upper semicontinuous viscosity subsolution of (6.3) (i)
satisfying for some Ry,

(6.10) 0<u<l onRY x[0,00) and u=0 on B(0,Ry)¢ x {0}.
Then there exists R >0 such that for all (x,t) e B(0,R) x [1, ),
u(tx,t) = 0.

Proor. 1. Let n e C*(R) be such that n =1 on (—o0,0], #” <0 on R, and =0
on [1,00) and set

Cy = max |Fi(—1,p)] and C, = max |F(p)|.
pesh-1 peSN-1

Choose R > Ry so that
R> IC;—:) + G
and define we C*(R" x [0, w0)) by
w(x, 1) =n(]x| — Rt — Ry).
2. If x #0, we have, with ' denoting the value of n' at |x| — Rt — Ry,
wi(x, 1) + F(D*w(x, 1), Dw(x,1)) = =R+ F(5'|x| '(I =@ %) + "X ® %,7'%)
= ' (R+ |x|"'Fi(~1,-%) + F2(-X))
> —5'(R— CiRy' — ) = 0.
It is also obvious that
w;(0,1) + F(D*w(0, 1), Dw(0,1)) >0 for ¢ > 0.

3. Since w > u on R" x {0}, the standard comparison results (see, e.g., [IS]) yield
that w>u on R" x [0, ), which shows that

u(x,1) =0 for (x,£) e RY x[0,00) if |x| > Rt+ Ry+1.
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Therefore, noting that if (x,7) € B(0,2(R+ 1)) x [1,00), then
2tx| = |x[t+ |x| = 2(Rt+ Ry + 1),
we obtain

u(tx, 1) =0 for all (x,7) € B(0,2(R+ 1)) x [1, c0). O

LemmA 6.3. There exist constants R >0 and ¢ >0 such that if u is a lower
semicontinuous viscosity supersolution of (6.3) (i) such that

(6.11) 0<u<l onRY x[0,0) and u=1 on B(0,R) x {0},
then

u(tx,t) =1 for all (x,t) € B(0,¢) x [0, c0).
Proor. 1. Fix ge C*(R) as in the proof of and set

C= max |Fi(—1,p)|, y=-maxF(=minv;), and &=y/2.
peSN-1 SN-1 SN-1

Choose R >0 so that C/R < y/2 and define we C*(R" x [0, x0)) by
w(x, 1) = g(|x| — & = R),

where # i1s a function as in the previous proof.

2. It follows that if #’ denotes the value #'(|x| — et — R),

wi(x, 1) + F(D*w(x, 1), Dw(x,1)) < —n'(e + |x| ' Fi (=1, -X) + F>(~X))
< —5'(e+ CR'—y) <0.
3. By comparison we conclude that for all (x,7) e R x [0, 00), with |x| <et+ R,
u(x,t) > n(|x| —et— R) = 1.
Hence,
u(tx,t) =1 for all (x,7) € B(0,¢) x [0, o0). O
We may now present the

PrOOF OF THEOREM 6.1. 1. Fix R >0 to be a constant as in Lemma 6.3, fix a
bounded 4 = R" so that B(0,R) cint4 and set

Q=) N(int4) x {r} and u=1o.
t=0
2. It is well-known (see, e.g., [BSS]) that u is a lower semicontinuous viscosity

supersolution of (i) satisfying (6.11). yields the existence of § > 0 such
that

u=1 1in intB(0,9).
Then, using [Lemma 6.1 and [Theorem 5.3, we conclude that

u=1 1n int#.
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3. Noting that for all (x,7) e R" x (0, 0),

u(tx, 1) = 1y, (ing ) (X),

we see from the above that for each ¢ > 0 there exists 7 > 0 such that for all 1 > T,

W, <t 'N,(int 4).
4. Next set

=) X,(4)x{t} and u=1;.

t=>0

Then u is an upper semicontinuous viscosity subsolution of (i). It follows from
that for some L > 0,

=0 1in B(0,L)".

5. We then conclude, using [Lemma 6.1 and [Theorem 5.3 that # =0 in #°¢, and
furthermore that for each & > 0 there exists 7 > 0 such that for all t > T,

1 X,(A) < W O

§7. Asymptotics of threshold dynamics on scaled lattices.

In this section we study the asymptotics of iterations of threshold dynamics on
lattices. The threshold dynamics considered are of the type discussed in Section 2 and
the result to be established is similar to the one in Section 5. The situation here is,
however, a bit restrictive compared to the one in Section 5. Indeed the functions
(denoted below by 1) here corresponding to f'in Section 5 are characteristic functions
of sets. This restriction is made just to simplify the presentation.

To this end consider sequences {#7;};.n < (0,0), { N iens {Aitien < ZV and
{O0c}icn = (0,1), a threshold parameter 6 € (0,1) and a set A" € .4.

If Q denotes the unit cube [—1/2,1/2]" = R, throughout this section we assume:

(7.1) N — 0 ask — oo,

(72) #Ak<ooforallkeN, | 4| < oo, and as k — oo, 1, (40 — Li in L'(RY),

73) there exist o9 > 0 and Ry > 0 such that
' B(0,60) Ny ZN < Ak = B(0,Ry) for all ke N,
(7.4) O — 0 ask— oo,
75 { for all p e SN~! there exists a unique v(p) € R such that
| {xeRY: x,p) = o(p)} NA| = 0.4,
and finally,

(7.6) v>0 on SN



304 H. Isui, G. E. Pires and P. E. SouGaNIDIS

Note that the condition is exactly the same as (2.2) with f replaced by
R e
For each k € N define the mapping M, of the set of all subsets of Z” into itself by
M(A)={xeZ" : #((x— N )NA) > O # N}
Our result here i1s

THEOREM 7.1.  There exists R > 0 such that if 69 = R, then for all ¢ > 0 there exists
J €N such that for all n>J and k > J,
7,0 ’;—kZN c %"M,f(Ak) cwe,
where M| denotes the n-th iterate of My and W is the Wullf crystal defined by (5.2).

The underlying idea here is the following. The threshold dynamics we are con-
sidering, which are parametrized by k, evolve subsets of the scaled lattice 7, Z". In this
space the initial set #,A; evolves by the iteration of the mapping

A {xemZ" : #((x =N K) NA) = O # (N 1) }-

The resulting set, after n iterations, is exactly the set », M['(Ax). The asymptotic
shape of the evolving set 1, M'(Ax) is roughly similar to the Wulff crystal as n — oo,
and the larger k is, the more the shape is similar to the Wulff crystal.

Since the proof of Mheorem 7.1 is similar to that of [heorem 5.1, here we only

present the outline of the proof.
For each ke N and h > 0 define the operator Gy, on M (RN ) by

Grnp(x) = sup{ie R : #[(x — iy N) N{p > 2}] > O # Ny},
and the function F € C(R") by
—[plo(=p) if p#0
F(p) = .
0 if p=0.

Lemma 7.1. Let pe CY(RY) and ze RN. Then for all ¢ > 0 there exist J € N and
0 >0 such that for all k>J, 0 <h<6 and x € B(z,9),

Giap(x) < p(x) + (=F(Dp(2)) + e)h

and Gr.np(x) = o(x) + (—F(Dp(2)) — )h.

Proor. 1. We only present the proof of the first inequality.
2. It is enough to show that for any a € R such that a > —F(D¢(z)), there exist
JeN and 6 >0 such that if k >J, he (0,0] and x € B(z,0), then

#[(x — hipe Vi) N {9 = p(x) + ah}] < Op# N
3. Set p = D¢(z), fix a > —F(p) and choose ¢ > 0 such that
a> —F(p)+3e.
In view of (7.2), (7.4) and [7.5), choose J € N and J > 0 such that for all k > J,
#[{xe RV : {x,p) < F(p) — e} N Vi) < (Ox = 0) # Nk,
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and choose R > 0 such that for any k > J,
#[B0,R) Ny N k] <O# N}
4. For each ke N set
N =N NBO,7;'R) and N7 = A, NB0,7,'R) .
Let 0<y<1, 0<h<y, xeB(z,y) and
v e (x—=hnye ) N {p = p(x) + ah},

and choose (e A" ,lc so that y = x — hn, (. Then, assuming that y is sufficiently small
enough, by Taylor’s theorem we have

p(x) +ah < p(x — hiy ()
< p(x) — hi{Dep(x),(> + eh

< gﬂ(X) - h’7k<Pa C> + 28h>

ie.,
hipp, &> < (—a+ 2e)h.
Our choice of ¢ yields that

’7k<PaC> < F(p) — &
which shows
# (o — b /) N { = p(x) + ah}] < # [Nk N {x: {x, p) < F(p) — &}
< (O —O)# N .
Thus we have
#[(x — hie Vi) Vo = o(x) + ah}]
< (O =) # Nk + #[(x — b V)N {9 = p(x) + ah}]
< (Op —O)# Nk +O0# Nk = Ok # Nk O

To continue, we define u*,u~ : R — R by

ut(x) = limsup{l(,?k/,,)MAn(Ak)(y) kneNn>r L k>r! yeBxrn n—kZN},
' n

r—0

and

u (x) = liminf{l(nk/n)Mz(Ak)(y) ckneNn>r"'k>r' yeB(xrnN I;—kZN}.

r—0

LEMMA 7.2.  The function u™ (respectively u~) is a viscosity subsolution (respectively
supersolution) of

(7.7) —{x,Duy + F(Du) =0 in R.
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Proor. 1. We only check here that u™ is a subsolution of (7.7).
2. Fix p e C'(R") and assume that x e R is such that

(U™ —@)(X) =0 and (u" —¢)(x) <0 forall xe RV\{0},
and

lim (u" — ¢)(x) = —o0.
|x|— o0

3. We may assume that Dg(x) # 0, since otherwise we are done.

4. Fix any a > —F(Dg¢(x)) and, according to Lemma 7.1, choose 6 >0 and J € NV
such that for all k > J, he (0,0] and x € B(x,9),
(7.8) G np(x) < p(x) + ah.

Fix any ¢ € (0,0/2] and set

y=— sup (u" —¢),
B(%,¢)¢

and for k,ne N,

in = Vg mmpary,  Zin = (e /m)ZN, Ly = sup(ug, — ),
Zk‘n

and

Iy = {nEN:nZZa l’n,k‘{’E ZLk,n—l; Ln7k> —%}
n

It is easily seen that #1I; = oo for infinitely many k’s and that there exists J € N such
that

N~

sup sup  (ukn—o9) < —
k>J,n>J Z, ,NB(%,¢)¢

5. Now choose k, ne N so that nel;, k >J and n>J. It follows that

&
Lk,n +; > Lk,n—laLk,n > _Z and sup (uk,n - ¢) < -

7
2 7 Zk.”ﬂB(fc,s)‘ 2

We conclude arguing exactly as in Steps 4 and 5 of the proof of Lemma 3.3.

]
The next two lemmas are proved as Lemmas B.I and B2l

LemMA 7.3. For all R > 0 there exist L >0 and J € N such that for all k > J and
neN, if n.Ax < B(0,R), then

(7/n) My (Ax) = B(0, L).

LeMMA 7.4. There exist R >0, ¢ > 0 and J € N such that for all k > J and n e N, if
Ak © B(0,R)N Zy. 1, then

(”k/n>Ml?(Ak) > B(078) N Zk7n-
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Since the proof of is an immediate consequence of Lemmas [7.2] [Z.3]
and [7.4 and [Theorem 5.3, we omit it.
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