On commutators of foliation preserving homeomorphisms

Dedicated to Professor Hiroyasu Ishimoto on his 60th birthday

By Kazuhiko FUKUI and Hideki IMANISHI

(Received Nov. 15, 1996) (Revised Apr. 25, 1997)

Abstract. We consider the group of foliation preserving homeomorphisms of a foliated manifold. We compute the first homologies of the groups for codimension one foliations. Especially, we show that the group for the Reeb foliation on the 3-sphere is perfect and the groups for irrational linear foliations on the torus are not perfect.

1. Introduction.

Let *M* be an *n*-dimensional connected closed topological manifold. By $\mathscr{H}(M)$ we denote the group of all homeomorphisms of *M* which are isotopic to the identity by an isotopy fixed outside a compact set.

In this note we treat certain subgroups of $\mathscr{H}(M)$. Let $\mathbb{R}^n = \{(x_1, \ldots, x_n) | x_i \in \mathbb{R}\}$ be an *n*-dimensional Euclidean space and \mathscr{F}_0 the *p*-dimensional foliation of \mathbb{R}^n whose leaves are defined by $x_{p+1} = constant, \ldots, x_n = constant$ $(1 \le p \le n)$. A *p*-dimensional topological foliation \mathscr{F} of M is defined to be a maximal set of C^0 -charts: $\{(U_\lambda, h_\lambda), U_\lambda \text{ is open in } M, h_\lambda : U_\lambda \to \mathbb{R}^n, \lambda \in \Lambda\}$ of M such that $h_\lambda \circ h_\mu^{-1} : h_\mu(U_\lambda \cap U_\mu)$ $\to h_\lambda(U_\lambda \cap U_\mu)$ preserves the leaves of foliations which are restrictions of \mathscr{F}_0 to $h_\mu(U_\lambda \cap U_\mu)$ and $h_\lambda(U_\lambda \cap U_\mu)$.

A homeomorphism $f: M \to M$ is called a foliation preserving homeomorphism (resp. a leaf preserving homeomorphism) if for each point x of M, the leaf through x is mapped into the leaf through f(x) (resp. x), that is, $f(L_x) = L_{f(x)}$ (resp. $f(L_x) = L_x$), where L_x is the leaf of \mathscr{F} which contains x. Let $F(M, \mathscr{F})$ (resp. $L(M, \mathscr{F})$) denote the group of foliation (resp. leaf) preserving homeomorphisms of (M, \mathscr{F}) which are isotopic to the identity by a foliation (resp. leaf) preserving isotopy fixed outside a compact set.

In §2, we consider the homologies of $L(M, \mathscr{F})$, that is, the homology groups of the group $L(M, \mathscr{F})$ and show that the homologies of $L(\mathbb{R}^n, \mathscr{F}_0)$ vanish in all dimension >0. This is a generalization of a result of Mather[M] to the case of foliated manifolds.

In §3, first we show that any $f \in L(M, \mathscr{F})$ can be expressed as $f = f_1 \circ f_2 \circ \cdots \circ f_r$, where each f_i is a leaf preserving homeomorphism with support in a small ball. Next we show from the above result and the result in §2 that $L(M, \mathscr{F})$ is perfect, *i.e.*, is equal to its own commutator subgroup.

In §4, we consider $F(M, \mathscr{F})$ and compute the first homology of $F(M, \mathscr{F})$ for codimension one foliations. Especially we show that for the Reeb foliation \mathscr{F}_R of S^3 , $F(S^3, \mathscr{F}_R)$ is perfect and for a foliation \mathscr{F} of T^n defined by a 1-form $\omega = \sum a_i dx_i$,

¹⁹⁹¹ Mathematics Subject Classification. Primary 57R30.

Key words and phrases. Commutator, homology, perfect, homeomorphisms, foliation.

 $F(T^n, \mathscr{F})$ is not perfect if one of a_i/a_j is irrational, indeed in this case the first homology of $F(T^n, \mathscr{F})$ is isomorphic to $\mathbf{R}/a_1\mathbf{Z} + \cdots + a_n\mathbf{Z}$.

2. Homologies of $L(\mathbb{R}^n, \mathscr{F}_0)$.

We recall that if G is any group, then there is a standard chain complex C(G) whose homology is the homology of G.

Let $C_r(G)$ be the free abelian group on the set of all *r*-tuples (g_1, \ldots, g_r) , where $g_i \in G$. The boundary operator $\partial : C_r(G) \to C_{r-1}(G)$ is defined by

$$\partial(g_1,\ldots,g_r) = (g_1^{-1}g_2,\ldots,g_1^{-1}g_r) + \sum_{i=1}^r (-1)^i (g_1,\ldots,\check{g}_i,\ldots,g_r).$$

Then we have $\partial^2 = 0$. The symbol $H_r(G)$ will stand for the *r*-th homology group of this chain complex.

Let $\mathbf{R}^n = \{(x_1, \ldots, x_n) | x_i \in \mathbf{R}\}$ be an *n*-dimensional Euclidean space and \mathscr{F}_0 the *p*-dimensional foliation of \mathbf{R}^n whose leaves are defined by $x_{p+1} = constant, \ldots, x_n = constant (1 \le p \le n)$. Let $L(\mathbf{R}^n, \mathscr{F}_0)$ denote the group of leaf preserving homeomorphisms of $(\mathbf{R}^n, \mathscr{F}_0)$ which are isotopic to the identity by a leaf preserving isotopy fixed outside a compact set.

If $c = \sum k_j(g_{1j}, \ldots, g_{rj})$, $(k_j \in \mathbb{Z})$ be an element of the chain group $C_r(L(\mathbb{R}^n, \mathscr{F}_0))$, we define the support of c, supp(c), by $supp(c) = \bigcup_{i,j} supp(g_{ij})$.

Let $U = U' \times \mathbf{R}^{n-p}$, where U' is an open rectangle in \mathbf{R}^p ($\subset \mathbf{R}^p \times \mathbf{R}^{n-p} = \mathbf{R}^n$). Then $supp(c) \subset U$ if and only if $supp(g_{ij}) \subset U$ for each i, j. We put $L_U(\mathbf{R}^n, \mathscr{F}_0) = \{f \in L(\mathbf{R}^n, \mathscr{F}_0) | supp(f) \subset U\}.$

THEOREM 2.1. The homology groups $H_r(L(\mathbf{R}^n, \mathcal{F}_0)) = 0$ for r > 0.

Before we prove this theorem, we need a lemma. Let $\iota : L_U(\mathbb{R}^n, \mathscr{F}_0) \to L(\mathbb{R}^n, \mathscr{F}_0)$ denote the inclusion map, and let $\iota_* : H_r(L_U(\mathbb{R}^n, \mathscr{F}_0)) \to H_r(L(\mathbb{R}^n, \mathscr{F}_0))$ denote the induced homomorphism. We have the following.

LEMMA 2.2. ι_* is an isomorphism.

PROOF. First we show that ι_* is surjective. Let $h \in H_r(L(\mathbb{R}^n, \mathscr{F}_0))$, and let $c \in C_r(L(\mathbb{R}^n, \mathscr{F}_0))$ be a cycle representing h. Choose a homeomorphism $\varphi \in L(\mathbb{R}^n, \mathscr{F}_0)$ which satisfies $\varphi(supp(c)) \subset U$.

Let I_{φ} be the inner automorphism of $L(\mathbb{R}^{n}, \mathscr{F}_{0})$, given by $I_{\varphi}(g) = \varphi g \varphi^{-1}$. Since any inner automorphism induces the identity on homology, $(I_{\varphi})_{*}(h) = h$. $(I_{\varphi})_{*}(h)$ is represented by the cycle $I_{\varphi}(c)$ and $supp(I_{\varphi}(c)) = \varphi(supp(c)) \subset U$. Hence $h = \iota_{*}h'$, where $h' \in H_{r}(L_{U}(\mathbb{R}^{n}, \mathscr{F}_{0}))$ is the homology class represented by $I_{\varphi}(c)$.

Next we show that ι_* is injective. Suppose that $h \in H_r(L_U(\mathbb{R}^n, \mathscr{F}_0))$ satisfies $\iota_* h = 0$ and let c be a cycle in $C_r(L_U(\mathbb{R}^n, \mathscr{F}_0))$ representing h. Then there is a chain $c' \in C_{r+1}(L(\mathbb{R}^n, \mathscr{F}_0))$ such that $\partial(c') = c$. Since $supp(c) \subset U$, it is easy to see that there is a homeomorphism $\phi \in L(\mathbb{R}^n, \mathscr{F}_0)$ such that ϕ is the identity in a neighborhood of supp(c)and $\phi(supp(c')) \subset U$.

Then we have $\partial(I_{\phi}(c')) = I_{\phi}(\partial c') = I_{\phi}(c) = c$ and $I_{\phi}(c') \in C_{r+1}(L_U(\mathbb{R}^n, \mathscr{F}_0))$. This completes the proof. PROOF OF THEOREM 2.1. We put $U = (1,2) \times (-1,1)^{p-1} \times \mathbb{R}^{n-p} \subset \mathbb{R}^n$. Take a homeomorphism $\phi \in L(\mathbb{R}^n, \mathcal{F}_0)$ given by

$$\phi(x_1,\ldots,x_n) = \left(\frac{1}{3}x_1,\ldots,\frac{1}{3}x_p,x_{p+1},\ldots,x_n\right)$$

for $(x_1, \ldots, x_p, x_{p+1}, \ldots, x_n) \in B(0, p+3) \times C(0, K)$ for some K > 0, where $B(0, p+3) = \{(x_1, \ldots, x_p) \in \mathbb{R}^p \mid (x_1)^2 + \cdots + (x_p)^2 < (p+3)^2\}$ and $C(0, K) = \{(x_{p+1}, \ldots, x_n) \mid |x_i| < K \ (i = p+1, \ldots, n)\}$. We set $U_j = \phi^j(U) = (1/3^j, 2/3^j) \times (-1/3^j, 1/3^j)^{p-1} \times \mathbb{R}^{n-p}$, $(j = 0, 1, 2, \ldots)$. Note that $U_0 = U$.

Then we have that $\overline{U}_j \cap \overline{U}_k = \emptyset$ if $j \neq k$ and $\{\overline{U}_j\}$ shrinks to the (n-p)-dimensional subspace $0 \times \mathbf{R}^{n-p} \subset \mathbf{R}^n$ as j goes to ∞ .

For any $g \in L_U(\mathbb{R}^n, \mathscr{F}_0)$ and i = 0, 1, we define $\psi_i(g)$ as follow;

$$\psi_i(g)(x) = \begin{cases} \phi^j g \phi^{-j}(x) & (x \in \overline{U}_j, j \ge i) \\ x & (x \notin \bigcup_{j \ge i} \overline{U}_j). \end{cases}$$

Note that $\psi_i(g)$ is a well-defined element of $L(\mathbb{R}^n, \mathscr{F}_0)$ and $\psi_i : L_U(\mathbb{R}^n, \mathscr{F}_0) \to L(\mathbb{R}^n, \mathscr{F}_0)$ is a homomorphism for i = 0, 1.

Since $\psi_1(g) = \phi \psi_0(g) \phi^{-1}$, ψ_0 and ψ_1 are conjugate, so we have

$$(\psi_0)_* = (\psi_1)_* : H_r(L_U(\mathbf{R}^n, \mathscr{F}_0)) \to H_r(L(\mathbf{R}^n, \mathscr{F}_0)).$$

Following Mather [M], we define

$$\eta: L_U(\mathbf{R}^n, \mathscr{F}_0) \times L_U(\mathbf{R}^n, \mathscr{F}_0) \to L(\mathbf{R}^n, \mathscr{F}_0)$$

by $\eta(g,h) = g\psi_1(h)$.

As two homeomorphisms with disjoint supports commute and $supp(g) \subset U$, $supp(\psi_1(h)) \subset \bigcup_{j \ge 1} U_j$, we have $g\psi_1(h) = \psi_1(h)g$. Hence η is a group homomorphism.

Let $\Delta: L_U(\mathbb{R}^n, \mathscr{F}_0) \to L_U(\mathbb{R}^n, \mathscr{F}_0) \times L_U(\mathbb{R}^n, \mathscr{F}_0)$ denote the diagonal homomorphism. We have easily that $\psi_0 = \eta \circ \Delta$.

Now the proof proceeds by an induction on r. It is vacuous for r = 0. For the inductive step, we assume that $H_s(L(\mathbb{R}^n, \mathcal{F}_0)) = 0$ for $1 \le s \le r - 1$.

By Lemma 2.2, it follows that $H_s(L_U(\mathbb{R}^n, \mathcal{F}_0)) = 0$ for $1 \le s \le r-1$.

By the Künneth formula, we have

$$H_r(L_U(\mathbf{R}^n,\mathscr{F}_0)\times L_U(\mathbf{R}^n,\mathscr{F}_0))=H_r(L_U(\mathbf{R}^n,\mathscr{F}_0))\oplus H_r(L_U(\mathbf{R}^n,\mathscr{F}_0))$$

For any $h \in H_r(L_U(\mathbb{R}^n, \mathscr{F}_0))$, $\Delta_* h = h \oplus h$, thus $(\psi_0)_*(h) = \eta_* \Delta_*(h) = \eta_*(h \oplus h) = \iota_*(h)$ $+(\psi_1)_*(h) = \iota_*(h) + (\psi_0)_*(h)$. Hence $\iota_*(h) = 0$. From Lemma 2.2, it follows that h = 0. Thus we have $H_r(L_U(\mathbb{R}^n, \mathscr{F}_0)) = 0$. From Lemma 2.2, it follows that $H_r(L(\mathbb{R}^n, \mathscr{F}_0)) = 0$, which completes the induction.

COROLLARY 2.3. $L_U(\mathbb{R}^n, \mathscr{F}_0)$ and $L(\mathbb{R}^n, \mathscr{F}_0)$ are perfect groups.

PROOF. This is an immediate consequence of Theorem 2.2 because that $H_1(G) = G/[G, G]$ for any group G.

3. Commutators of leaf preserving homeomorphisms.

In this section, first we show the following theorem following the proof of Lemma 4.1 in [E-K].

THEOREM 3.1. Let (M, \mathcal{F}) be a foliated manifold. Any $f \in L(M, \mathcal{F})$ can be expressed as $f = f_1 \circ f_2 \circ \cdots \circ f_r$, where each f_i is a leaf preserving homeomorphism with support in a small ball.

PROOF. First we prepare some notations. Let $B^p = [-1, 1]^p \subset \mathbb{R}^p$. In general, let $aB^p = [-a, a]^p$ for a > 0. We regard S^1 as the space obtained by identifying the endpoints of [-4, 4] and we let $e : \mathbb{R} \to S^1$ denote the natural covering projection, that is, $e(x) = (x + 4) \pmod{8} - 4$. Let T^p be the *p*-fold product of S^1 . Then aB^p can be regarded as a subset of T^p for a < 4. Let $e = e^p : \mathbb{R}^p \to T^p$ denote the product covering projection.

We prove the above theorem in the following three steps.

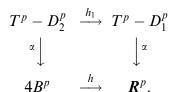
Step 1. Let $\eta: 4B^p \to \mathbb{R}^p$ be the inclusion and let $I(4B^p, \mathbb{R}^p)$ denote the space of imbeddings of $4B^p$ into \mathbb{R}^p with the compact open topology. Let $N(\varepsilon) = \{h \in I(4B^p, \mathbb{R}^p) \mid ||h(x) - x|| < \varepsilon \ (x \in 4B^p)\}$ for $\varepsilon > 0$.

In the following, for a sufficiently small ε , we will construct an isotopy $\Psi(h, t)$ of h to the identity, which satisfies $\Psi(h, t) = h$ on $\partial 4B^p$ and $\Psi(h, 1) = id$ on B^p .

Let D_1^p, D_2^p, D_3^p and D_4^p be four concentric *p*-cells in $T^p - 2B^p$ such that $D_j^p \subset int D_{i+1}^p$ for each *j*.

As is well-known, there exists an immersion $\alpha : T^p - D_1^p \rightarrow int \, 3B^p$. Then we can assume that $\alpha e = id$ on $2B^p$.

If $h \in N(\varepsilon)$ for a small ε , then h can be covered in a natural way by an imbedding $h_1: T^p - D_2^p \to T^p - D_1^p$ as follows:



Note that h_1 is an imbedding lifting h and depends continuously on h. It is an inclusion map if h is the one.

We have that $h_1(int D_4^p - D_2^p) \supset \partial D_3^p$ if ε is small. From the canonical Schoenflies theorem (Proposition 3.1 of [E-K]), we see that $h_1(\partial D_3^p)$ bounds canonically a *p*-ball in D_4^p . By coning, we can extend $h_1|_{T^p - D_3^p}$ to a homeomorphism $h_2 : T^p \to T^p$ canonically if ε is small.

Note that h_2 depends continuously on h and if h is the inclusion, then $h_2 = id$.

Now if h_2 is sufficiently close to *id*, then h_2 lifts in a natural way to a bounded homeomorphism $h_3: \mathbb{R}^p \to \mathbb{R}^p$ so that the following diagram commutes:

$$egin{array}{cccc} {m R}^p & \stackrel{h_3}{\longrightarrow} & {m R}^p & & & \ e^e & & & \ & & & \ & & & \ & & \ & & T^p & \stackrel{h_2}{\longrightarrow} & T^p, \end{array}$$

where bounded means that $|h_3(x) - x| < constant$ for any $x \in \mathbb{R}^p$. Note that h_3 depends continuously on h_2 and if $h_2 = id$, we assume $h_3 = id$.

Let $\gamma : int 3B^p \to \mathbb{R}^p$ be a homeomorphism which is a radial expansion outside a neighborhood of $2B^p$ and is the identity on $2B^p$. Define a homeomorphism $h_4 : \mathbb{R}^p$

 $\rightarrow \mathbf{R}^p$ by

$$h_4(x) = \begin{cases} \gamma^{-1} \circ h_3 \circ \gamma(x) & (x \in int \, 3B^p) \\ x & (x \in \mathbf{R}^p - int \, 3B^p). \end{cases}$$

The continuity of h_4 follows from the fact that h_3 is bounded. Note that (1) h_4 depends continuously on h and if $h = \eta$, then $h_4 = id$, and (2) $\alpha e \gamma h_4(x) = h \alpha e \gamma(x) = h(x)$ for $x \in 2B^p \cap h_4^{-1}(2B^p)$.

From (1), we have $h_4(B^p) \subset 2B^p$ for a small ε . Since $\alpha e\gamma = id$ on $2B^p$, we have that $h_4 = h$ on B^p .

We put $g = h_4$. Using the Alexander trick, we define an isotopy

$$g_t: \mathbf{R}^p \to \mathbf{R}^p, \quad t \in [0, 1],$$

from the identity to g,

$$g_t(x) = \begin{cases} tg\left(\frac{1}{t}x\right) & (t>0) \\ x & (t=0). \end{cases}$$

Define a deformation

$$\Psi: N(\varepsilon) \times [0,1] \to I(4B^p, \mathbf{R}^p)$$

by $\Psi(h,t) = g_t^{-1} \circ h$.

If ε is small, we may assume that $h(\partial 4B^p) \cap 3B^p = \emptyset$ for $h \in N(\varepsilon)$. Thus we have $\Psi(h, t) = h$ on $\partial 4B^p$.

Note that (1) $\Psi(\eta, t) = \eta$ for any t, and (2) $\Psi(h, 0) = h$ and $\Psi(h, 1) = g^{-1} \circ h$, which is the identity on B^p .

Step 2. Now we consider a foliated version. Let $4B^p \times 2B^{n-p}$ be a foliated chart, that is, $\{(x, y) = (x_1, \ldots, x_p, y_1, \ldots, y_{n-p}) \in 4B^p \times 2B^{n-p} | y_1 = c_1, \ldots, y_{n-p} = c_{n-p}\}$ gives a connected component of a leaf in this chart. Let $h: 4B^p \times 2B^{n-p} \to \mathbb{R}^p \times \mathbb{R}^{n-p}$ be of the form (h(x, y), y) $(x \in 4B^p, y \in 2B^{n-p})$ and close to the inclusion. We put $h_y =$ h(, y). Note that for each $y \in 2B^{n-p}$, $h_y: 4B^p \to \mathbb{R}^p$ is close to the inclusion η . Then performing the procedure in Step 1, we construct g_y canonically from h_y for each $y \in 2B^{n-p}$. Using the Alexander trick again, we define

$$g_{y,t}(x) = \begin{cases} tg_y\left(\frac{1}{t}x\right) & (t > 0)\\ x & (t = 0), \text{ where } x \in 4B^p. \end{cases}$$

Note that $g_{y,t}$ is continuous on y.

Let $\lambda: 2B^{n-p} \to [0,1]$ be a continuous function such that

$$\lambda(y) = \begin{cases} 1 & (\|y\| \le 1) \\ 0 & (\|y\| = 2). \end{cases}$$

For the deformation $\Psi(h,t)(x,y) = (g_{y,t}^{-1} \circ h_y(x), y)$, we define a new deformation Φ by

$$\Phi(h,t)(x,y) = \Psi(h,\lambda(y)t)(x,y) \quad (x \in 4B^p, y \in 2B^{n-p}).$$

This satisfies that (1) $\Phi(h,0) = h$, (2) $\Phi(h,1)(x,y) = (g_{y,\lambda(y)}^{-1} \circ h_y(x), y)$, which is the identity on $B^p \times B^{n-p}$, and (3) $\Phi(h,t) = h$ on $\partial(4B^p \times 2B^{n-p})$.

Step 3. Now we prove the theorem. Take a foliated chart $U_1 (\cong int(5B^p \times 3B^{n-p}) \Rightarrow 4B^p \times 2B^{n-p})$, for (M, \mathscr{F}) . Let $f \in L(M, \mathscr{F})$. We can assume that f is close to the identity. We put $h = f|_{4B^p \times 2B^{n-p}}$. Then we can regard h as the map in Step 2. We put $\overline{f}_1 = \Phi(h, 1)$ and $f_1 = f \circ \overline{f}_1^{-1}$. Since $\overline{f}_1 = f$ on $\partial(4B^p \times 2B^{n-p})$, \overline{f}_1 can be extended to an element of $L(M, \mathscr{F})$ by using f. Then $supp(f_1)$ is contained in $4B^p \times 2B^{n-p} \subset U_1$.

Next taking another chart $U_2 (\cong int(5B^p \times 3B^{n-p}))$, we perform the procedure in Step 2 for $f_1^{-1} \circ f$ and U_2 to get \overline{f}_2 and $f_2 = f_1^{-1} \circ f \circ \overline{f}_2^{-1}$. Then $supp(f_2)$ is contained in U_2 . Note that the identity part of \overline{f}_2 increases definitely than that of \overline{f}_1 , since the deformation Φ keeps the identity part of \overline{f}_1 fixing. Since the support of f is compact, continuing this procedure finite times, we can get leaf preserving homeomorphisms f_1, f_2, \ldots, f_r such that the support of each f_i is contained in a small ball and $f = f_1 \circ f_2 \circ \cdots \circ f_r$.

This completes the proof.

We have the following theorem from Corollary 2.3 and Theorem 3.1.

THEOREM 3.2. $L(M, \mathcal{F})$ is perfect.

PROOF. Let $f \in L(M, \mathscr{F})$. We may assume that f is close to the identity. From Theorem 3.1, we have $f = f_1 \circ f_2 \circ \cdots \circ f_r$, where each f_i is a leaf preserving homeomorphism whose support is contained in a small ball.

Hence we can assume that $f_i \in L(\mathbb{R}^n, \mathscr{F}_0)$ for each *i*. From Corollary 2.3, we have that f_i is in the commutator subgroup of $L(\mathbb{R}^n, \mathscr{F}_0)$ and hence *f* is in the commutator subgroup of $L(M, \mathscr{F})$. Thus $L(M, \mathscr{F})$ is perfect.

4. $H_1(F(\mathscr{F}))$ for codimension one foliations.

In this section, we consider the first homology of $F(M, \mathscr{F})$ for a codimension one foliation \mathscr{F} . Let M be a compact topological manifold without boundary and \mathscr{F} a codimension one foliation of M. Hereafter we simply write $F(\mathscr{F})$, $L(\mathscr{F})$ instead of $F(M, \mathscr{F})$, $L(M, \mathscr{F})$ respectively.

By Theorem 6.26 of [S], there exists a one dimensional foliation \mathscr{T} of M transverse to \mathscr{F} . The following lemma is easy to prove.

LEMMA 4.1. Let f be an element of $F(\mathcal{F})$ sufficiently close to the identity. Then f is uniquely decomposed as $f = g \circ h$, where h (resp. g) is an element of $F(\mathcal{F}) \cap L(\mathcal{F})$ (resp. $L(\mathcal{F})$) and h and g are also close to the identity.

LEMMA 4.2. Let f be an element of $F(\mathcal{F})$ and L a leaf of \mathcal{F} . If $f(L) \neq L$, then the holonomy group of L is trivial.

PROOF. It is sufficient to prove the lemma for f close to the identity. Consider a path $\{f_t\}_{0 \le t \le 1}$ in $F(\mathscr{F})$ from the identity to f. Let $f_t = g_t \circ h_t$ be the decomposition of Lemma 4.1 and C be a closed curve in L. Then $h_t(C)$ is closed for any t ($0 \le t \le 1$), hence the holonomy along C is trivial. This proves the lemma.

We define the subset S_0 of M by

 $S_0 = \{x \in M \mid \text{there exists an element } f \text{ of } F(\mathscr{F}) \text{ such that } f(L_x) \neq L_x \}.$

By definition, S_0 is an open \mathscr{F} -saturated set and by Lemma 4.2, all leaves in S_0 have trivial holonomy.

THEOREM 4.3. Let S be a connected component of S_0 . Then clearly S is invariant under the action of $F(\mathcal{F})$ and S is one of the following three types.

Type P: S is homeomorphic to $L \times (0, 1)$ and the foliations $\mathscr{F}|_S$ and $\mathscr{T}|_S$ correspond to the product structure of $L \times (0, 1)$.

Type R: There exists a closed transverse curve C in S such that C meets each leaf of $\mathcal{F}|_S$ *at exactly one point and the natural map*

$$p: S \to C, \quad p(x) = L_x \cap C$$

is a fibration and $\mathcal{T}|_{S}$ is a connection of the fibration p.

Type D: All leaves of \mathcal{F} *in* S *are dense in* S *and there exists a one parameter subgroup* $\{\varphi_t\}$ *of* $F(\mathcal{F}|_S)$ *whose orbits are leaves of* $\mathcal{F}|_S$.

Here we make some preparations. By the results of Siebenmann [S], many devices used in the study of differentiable codimension one foliations are available in topological case. For example if C is a closed curve transverse to \mathscr{F} , then a transversal foliation \mathscr{T}' is chosen so that C is a leaf of \mathscr{T}' . So the argument of [I] works for topological case. Since we are interested in the set S_0 of the leaves with trivial holonomy, we can assume that \mathscr{T} is orientable. Then it is easy to construct a topological flow $\{\psi_t\}$ on Mwhose orbits are leaves of \mathscr{T} . By using $\{\psi_t\}$, we can define the notion of holonomy map and we have the following facts.

Fact I. Let x be a point of M, $y = \psi_{t_0}(x)$ and suppose that the holonomy of $L_{\psi_t(x)}$ is trivial for $0 \le t \le t_0$, then L_y is homeomorphic to L_x via holonomy maps. (This follows from [I] Corollary 3.1.)

Fact II. Let C be a closed curve transverse to \mathscr{F} . Suppose that any leaf in the \mathscr{F} -saturation of C, S(C), has trivial holonomy, then a leaf in $\partial S(C)$ has a non-trivial holonomy. (This is a special case of [I] Lemma 3.6.)

Fact III. Let C be as above. Suppose that there exists a leaf L such that $L \cap C$ is infinite, then either (i) there exists an exceptional leaf L_0 in S(C) and all leaves in $S(C) - \overline{L}_0$ are proper leaves or (ii) all leaves in S(C) are dense in S(C) and there exists a one parameter group $\{\varphi_t\}$ of \mathscr{F} -preserving homeomorphisms of S(C) whose orbits are leaves of $\mathscr{F}|_{S(C)}$. (This follows from the proof of [I] Lemma 2.1 and Theorem 1.3.)

PROOF OF THEOREM 4.3. Suppose that there is no closed curve transverse to $\mathscr{F}|_S$, then any leaf T of $\mathscr{T}|_S$ is homeomorphic to an open interval (0,1) and $T \cap L$ is one point. So by Fact I, S is homeomorphic to $L \times (0,1)$.

If there exists a closed transverse curve C in S, then we have S = S(C) by Fact II. Suppose that $C \cap L$ is finite. Then we can modify C to C' such that $C' \cap L$ is one point. Then for any leaf L' in S, we have $L' \cap C' = one \ point$. In fact if $L' \cap C'$ has two points, then we can construct a closed transverse curve C'' such that $S(C'') \cap L = \emptyset$. But this contradicts to S = S(C''). So we have a natural map $p: S \to C'$ and this is a fibration by Fact I.

Suppose that $C \cap L$ is infinite. If there exists an exceptional leaf L_0 in S, then as in the proof of Lemma 4.2, all nearby leaves of L_0 must be exceptional but this contradicts to Fact III. So by Fact III, all leaves in S are dense in S. This completes the proof.

LEMMA 4.4. An orientation preserving homeomorphism f of [0,1] is a commutator.

PROOF. Suppose that f(x) > x for any $x \in (0,1)$. Then there exists a homeomorphism h of (0,1) onto \mathbf{R} such that $h \circ f \circ h^{-1}(t) = t + 1$. Let r be a rotation of $S^1 = \mathbf{R}/\mathbf{Z}$ of angle $2\pi\alpha$. If $\alpha \neq 1/2$, then by Proposition 5.1 of [W] we have $r = [g_1, g_2]$, where $g_{\varepsilon} \in \mathscr{H}(S^1)$ (the homeomorphism group of S^1), ($\varepsilon = 1, 2$). Let \tilde{g}_{ε} be the lift of g_{ε} to a homeomorphism of \mathbf{R} and define $\tilde{r} = [\tilde{g}_1, \tilde{g}_2]$. Then we have $\tilde{r}(s) = s + n + \alpha$ for some integer n. By changing the coordinate s to t by $(n + \alpha)t = s$, we have $\tilde{r}(t) = t + 1$. Thus $f = h^{-1} \circ [\tilde{g}_1, \tilde{g}_2] \circ h$ is a commutator. If f(x) < x for any $x \in (0, 1)$, then consider f^{-1} . If f has fixed points in (0, 1), consider the restriction of f to each connected component of $\{x \mid f(x) \neq x\}$ and we see that any f is a commutator.

LEMMA 4.5. Let $\mathcal{PH}(\mathbf{R})$ be the group of periodic homeomorphisms of \mathbf{R} of period 1. Then any element of $\mathcal{PH}(\mathbf{R})$ which is close to the identity is expressed as a product of two commutators.

PROOF. Let f be an element of $\mathscr{PH}(\mathbf{R})$ close to the identity. If f has a fixed point, then as in the proof of Lemma 4.4, f is a commutator. If f has no fixed points, there exists a small translation t of **R** such that $t \circ f$ has a fixed point. Then t is a commutator ([W]). Thus f is represented by two commutators.

THEOREM 4.6. Let \mathcal{F} be a codimension one foliation of a compact manifold M. Suppose that \mathcal{F} has no components of type D and has only a finite number of components of type R. Then $F(\mathcal{F})$ is perfect.

PROOF. We can suppose that the transverse foliation \mathscr{T} has a closed leaf C_i on each component S_i of type R which intersects each leaf of $\mathscr{F}|_{S_i}$ at one point. Moreover we can define an \mathscr{F} -preserving flow φ_t on S_i such that orbits are leaves of $\mathscr{T}|_{S_i}$ and $L_{\varphi_t(x)} = L_{\varphi_{t+1}(x)}$. Suppose that f is close to identity and let $f = g \circ h$ be the decomposition of Lemma 4.1. Then choosing a leaf L of $\mathscr{F}|_{S_i}$, h induces a periodic homeomorphism \hat{h}^i of \mathbf{R} such that $h(\varphi_t(x)) = \varphi_{\hat{h}^i(t)}(x)$ for any $x \in L$ and $t \in \mathbf{R}$. Since \hat{h}^i is close to the identity, by Lemma 4.5 we have $\hat{h}^i = [h_1^i, h_2^i][h_3^i, h_4^i]$, where $h_{\varepsilon}^i \in \mathscr{PH}(\mathbf{R})$ ($\varepsilon = 1, 2, 3, 4$). For any $y \in S_i$, we choose t satisfying $\varphi_{-t}(y) \in L$ and put $\tilde{h}_{\varepsilon}^i(y) = \varphi_{h_{\varepsilon}^i(t)}(\varphi_{-t}(y))$. Then we have $h|_{S_i} = [\tilde{h}_1^i, \tilde{h}_2^i][\tilde{h}_3^i, \tilde{h}_4^i]$.

Similarly we can define $\tilde{h}_{\varepsilon}^{i} \in F(\mathscr{F}|_{S_{j}}) \cap L(\mathscr{F}|_{S_{j}})$ on each component S_{j} of type P such that $h|_{S_{j}} = [\tilde{h}_{1}^{j}, \tilde{h}_{2}^{j}][\tilde{h}_{3}^{j}, \tilde{h}_{4}^{j}]$, where \tilde{h}_{3}^{i} and \tilde{h}_{4}^{i} are the identity. Then we can define $h_{\varepsilon} \in F(\mathscr{F}) \cap L(\mathscr{F})$ by $h_{\varepsilon} = \tilde{h}_{\varepsilon}^{i}$ on component S_{i} of type R and P and by $h_{\varepsilon}(x) = x$ for $x \notin S_{0}$. Then we have $h = [h_{1}, h_{2}][h_{3}, h_{4}]$ and by Theorem 3.2, $F(\mathscr{F})$ is perfect. This completes the proof.

REMARK 4.7. From Theorem 4.6, we see that $F(S^3, \mathscr{F}_R)$ is perfect for the Reeb foliation \mathscr{F}_R of S^3 . In contrast with topological case, differentiable case is as follows. Let $F^r(S^3, \mathscr{F}_R)$ be the group of foliation preserving C^r -diffeomorphisms of

 (S^3, \mathscr{F}_R) isotopic to the identity by a foliation preserving isotopy. Then Lemma 1 of [F-U] implies that $F^r(S^3, \mathscr{F}_R)$ is not perfect for $r \ge 1$.

For a type D-component S, we define a submodule Per(S) of **R** by

$$Per(S) = \{t \in \mathbf{R} \mid \varphi_t(L) = L \text{ for one and all leaves } L \text{ in } S\}$$

Per(S) depends on the parametrization of $\{\varphi_t\}$ but the quotient group $\mathbb{R}/Per(S)$ is determined by $\mathscr{F}|_S$ and, as a set, this is the space of leaves of $\mathscr{F}|_S$.

THEOREM 4.8. Let S be a type D-component. Then there exists a homomorphism π of $F(\mathcal{F})$ onto $\mathbb{R}/\operatorname{Per}(S)$ and we have $\ker \pi = \{f \in F(\mathcal{F}) \mid f(L) = L \text{ for any leaf } L \text{ in } S\}$.

PROOF. Let f be an \mathscr{F} -preserving homeomorphism of M and suppose that f is sufficiently close to the identity and $f = g \circ h$ be the decomposition of Lemma 4.1. Then $h(x) = \varphi_t(x)$ for some $t \in \mathbf{R}$ and any $x \in S$ and we define $\pi(f) = t$. For general f, f is decomposed as $f = \prod f_i$, where f_i are sufficiently close to the identity and we define $\pi(f) = \sum \pi(f_i)$. This depends on the decomposition of f but $\pi(f) \mod Per(S)$ is uniquely determined by f and clearly π is a homomorphism. For any $t \in \mathbf{R}$ we define $f \in F(\mathscr{F})$ by $f(x) = \varphi_t(x)$ for $x \in S$ and f(x) = x for $x \notin S$. Then $\pi(f) \equiv t \mod Per(S)$, so π is surjective.

Let $\pi: F(\mathscr{F}) \to \prod \mathbb{R}/Per(S_i)$ denote the homomorphism defined by $\pi(f) = \prod \pi_i(f)$ for $f \in F(\mathscr{F})$, where π_i is a homomorphism in the above lemma for a type Dcomponent S_i and the product is taken for all type D-components S_i of \mathscr{F} . Then π induces a homomorphism π_* of $H_1(F(\mathscr{F}))$ to $H_1(\prod \mathbb{R}/Per(S_i)) \cong \prod \mathbb{R}/Per(S_i)$. Then we have the following.

THEOREM 4.9. The homomorphism π_* of $H_1(F(\mathscr{F}))$ to $\prod \mathbb{R}/Per(S_i)$ is surjective.

This is an easy consequence of Theorem 4.8 and a non-zero element of ker π_* is represented by a leaf preserving homeomorphism which is not isotopic to the identity via leaf preserving homeomorphisms. For a very simple case, we have the following.

THEOREM 4.10. Let \mathscr{F} be a foliation of the torus T^n defined by a 1-form $\omega = \sum a_i dx_i$. If one of a_i/a_j is irrational, then $H_1(F(\mathscr{F}))$ is isomorphic to $\mathbf{R}/a_1\mathbf{Z} + \cdots + a_n\mathbf{Z}$.

PROOF. In this case, T^n is the component of type D, $Per(T^n) = a_1 \mathbb{Z} + \dots + a_n \mathbb{Z}$ and \mathcal{T} and φ_t can be defined by $\partial/\partial x^1$ if $a_1 \notin 0$. Let f be an element of ker π . We can suppose that f is close to the identity and let $f = g \circ h$ be the decomposition of Lemma 4.1. Then $h(x) = \varphi_t(x)$ for some $t \in Per(T^n)$. Since φ_t is a parallel translation on each leaf of \mathcal{F} , f is contained in $L(\mathcal{F})$. So by Theorem 3.2, f is in the commutator subgroup of $L(\mathcal{F})$. In particular, f represents a zero element. This completes the proof.

References

- [E-K] R. D. Edwards, R. C. Kirby, Deformations of spaces of imbeddings, Ann. of Math., 93 (1971), 63– 88.
- [F-U] K. Fukui, S. Ushiki, On the homotopy type of $FDiff(S^3, \mathscr{F}_R)$, J. Math. Kyoto Univ., 15-1 (1975), 201–210.

K. Fukui and H. Imanishi

- H. Imanishi, On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ., 14 (1974), 607–634.
- [M] J. N. Mather, The vanishing of the homology of certain groups of homeomorphisms, Topology, 10 (1971), 297–298.
- [S] L. C. Siebenmann, Deformations of homeomorphisms on stratified sets, Comment. Math. Helv., 47 (1972), 123–163.
- [W] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv., 46 (1971), 257–277.

Kazuhiko Fukui	Hideki Imanishi
Department of Mathematics,	Faculty of Integrated Human Studies,
Kyoto Sangyo University,	Kyoto University,
Kyoto 603-8555,	Kyoto 606-8501,
Japan.	Japan.
e-mail: fukui@cc.kyoto-su.ac.jp	e-mail: imanishi@math.h.kyoto-u.ac.jp