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Abstract. In this article, let k=0 or 1 (mod4) be a fundamental discriminant, and let
x(n) be the real even primitive character modulo k. The series

_yon

can be divided into groups of k consecutive terms. Let v be any nonnegative integer, j an
integer, 0 < j <k —1, and let

Then L(1,x) = 3220 T(v,0, x) = 325 x(n)/n+ 322 T(v, j; 2.

In section 2, Theorems 2.1 and 2.2 reveal a surprising relation between incomplete
character sums and partial sums of Dirichlet series. For example we will prove that
T(v,j,x) M <0 for integer v > max{l,Vk/|M|} if M =37" 1,/( m) + 1/2x(j) # 0 and
|M| > 3/2. In section 3, we will derive algorithm and formula for calculating the class
number of a real quadratic field. In section 4, we will attempt to make a connection
between two conjectures on real quadratic fields and the sign of 7(0,20, y).

1. Introduction.

In this article, let £ =0 or 1 (mod 4) be a fundamental discriminant, and let y(n) be
the real even primitive character modulo k. The series

= x(n)
_;7

can be divided into groups of k consecutive terms. Let v be any nonnegative integer, j
an integer, 0 < j <k —1, and let

]+k X Uk +n ]+k X(l’l)
T(v E = E )
Jo X Cvk+n et vk +n

n=j+1
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Then L(1,x) =320 T(v,0,%) =>"7_ 1( (n)/n) +>.7°0T(v,], x). The following are
some of the known results related to T'(v,J, x):

e If k>3 is a prime integer, then 7'(v,j, y) # 0 for nonnegative integers v and j
(cf. [8]).
e T(v,0,%) >0 for all nonnegative integers v and k (cf. [4]).
e T(v,[k/2],x) <0 for all nonnegative integers v and k, where [x] denotes the
greatest integer <x (cf. [9]).
Combining the results of [4] and [9], which are mentioned above, we have the
following interesting and important inequalities:

k /2]
Z@<L(1,X)<Z’%”). (1.1)
n=1 n=1

In section 2, Theorems 2.1 and reveal a surprising relation between incomplete
character sums and partial sums of Dirichlet series. For example we will prove that
T(v,j,x)-M <0 for integer v > max{l,Vk/|M|} if M= Zm 1){( m)+ (1/2)y(j) #0
and |M | >3/2. Roughly speaking, the sign of T'(v,/, y) is dependent on the value of
Zm yx(m) + (1/2)x(j). This result tells us more information about T(v,j, y) than
Theorem 2 of [9] does. Sections 3 and 4 illustrate the importance of Theorems 2.1 and
2.2. In section 3, we will derive algorithm and formula for calculating the class number
of a real quadratic field. In section 4, we will attempt to make a connection between
two conjectures on real quadratic fields and the sign of 7(0,20, y).

2' T(U7j) X)'

In this section we show that the sign of T'(v,j, y) has close relation to the sign of

Sy a(n) + (1/2)7())-

For integer j in the closed interval [1,k — 1], write

Jtk

T o)=Y, =

n=j+1

M»

vk+n l/k

where w=v+ (j/k). For w=uv+ (j/k) >0, consider the function

1
=— fined fi 1.
f(x) i defined for 0 < x <

Over the interval (0,1), it has Fourier expansion

| - .
f(x) = 5 ap + mz_:l(am cos 2zmx + by, sin 2nmx),

where

1 | 1 I cos2
—aO:J dx:10g<1+—>, am=2J COSZRIMX. e
oW+ Xx w 0o W+x

and

1 .
sin 2zmx
m:2 — f. 11, .1 .
b =2| ST dx (. 11, pp. 189)
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Using integration by parts, we have, for m > 1,

2 1 1 4 (' cos2mmx
(2mm)” |W*  (w+1) (2mm)~ Jo (w+ x)

Let I, = 4/(2rnm) fo cos27zmx/(w—l— x)*dx and J,, = 2/(2nm) {1/w? - 1/(W+ R
is casy to see that I, =4/(2rnm) fo cos 2mx/(w + x)° dx = 12/(2am) fo sin 2mmx/
(w + x)*dx > 0 by looking at the graph of y = sin 2zmx/(w + x)* on the interval [0, 1].
Since 0 < I,,=|IL,| < J,,, we have a,, = J,, — I,=J,,0,,, where 0,, = (J,, — m)/] and
0< 0, <1. Similarly, we have b, =2/2am){l/w—1/(w+1)} — 4/(27zm) {1/w? —

1/(w+ 1)} +12/2am)’ J"Ol cos2mmx/(w + x)*dx. Let X, = 12/Q2am)’ f()l cos 2mmx/
(w+x)* dx and Y,, = 4/(2mm)*{1/w3 = 1/(w + 1)*}. Then X,, = 12/(2am)* [ cos 2mmx/
(w + x)* dx = 48/(2zm)* f()l sin 2zzmx/(w + x)° dx > 0 and X,, < Y,,. Hence, we have

, 2 (1 1 ) 4 1 I
" 2mm\w w1 Q2am)* | W (w+1)° -

where 7,, = (Y, — X;n)/ Y and 0 <7, < 1. Now
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(cf. Lemma 23).
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Hence

J - J
VKT (v, ], x fE-i—Z(amX cos2nmE—bmx(m) sm2nmz>

~ Vi (- WL){(zi)z($+%+1)§jl"(m>"”“°‘;jf”m(f/">

2 I y(m)sin2am(j/k
_ZZX() 2 (J/k)

m=1

where 0 < 0,,, 7, <1. Let

NS

v (27[)2 w W+ 1 m=1
N R .
@2n)* \w* ww+1) (w4 1)?

2 &K y(m)sin2mm(j/k)
20 2

zoo:)((m)ﬁm cos 2mm(j/k) ‘

m2

0

Zx(m)ﬂm sin 2zm(j/k) ‘

m3

m=1

and

j =

>~l

j—1
= % Z)((m) + %)((j)‘ (cf. [Proposition 2.4)).

Then we have

If y(j)=0 and M = Zm 1;(( m) #0, then E=0 and P; = |M|/vk. We thus have

M
||>——>S

P = Vk 4w

for integer v > max{1, vk/4|M|}.
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To sum up, we have proved the following:

THEOREM 2.1. Let k=0 or 1 (mod 4) be a fundamental dzscriminanl and y the real
even primitive character modulo k. If y(j) =0 and M = Zm L x(m) #0, then

j—1
1o {5 s} <o
m=1

for integer v > max{1,Vk/4M|}.

For the case y(j) # 0, we can obtain similar result as follows.
By the similar argument used earlier, we have, for m > 1,

I IR U G L_;}
Qam)* | W? (w+ D2 @mm)* |t w+1)?

SO T S
" 2nm)* | W (w4 1)

2 1 1 “01 12 1 1 “01

—~

This gives
1 1 =1
< am < D E— —.
Z {WZ (W—|—1>2}’;m2
Since > ,(1/m?) = (7?/6) and > 7 (1/m*) = (z*/90), we have
1|1 1 X
) S N S N (2.2)
12 {W2 (W+ 1)2} ’;

1 |1 1 | 1 L—I— 1
TRl U0 )

For w> 1 (that is v > 1), by (2.2) and [Lemma 2.3, we have

0<lo l—l—1 ! -I—ia
£ w w1 — "

a1
wow+ 112\ wr o (w4 1)

(LU N[,
wo w41 R2\w w+1)]"

This implies that, for w > 1 and y(j) # 0,
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1 1 1 -
|E| {log(l W) _W——l—l_i_mzlam}

U N (1
k\w w+1 R2\w w+1)/|"

Hence, for k> 5, w>1 and y(j) #0,

Vk|E| 1 1 /1 1
vj = ~ |\ SL'
Dw— 1wt D) o < 5T \/_(w+w+1>+ i
SRRV
VE ek w dw
SRR
\/‘ 2w 4w
_ L
VEk 3w

If |M] =322 2(m) + (1/2)7(j)] = (3/2), then

P-—|M|>3+|M‘:L+M
TUVE T 3wk vk 3k

1 1
Z Uk 3w
1 1 1 1
>—p—— (4 + Sy
Vi 12f(w W+1)
for integer v > max{1, vVk/|M|}.

By (2.1), we have the following theorem.

THEOREM 2.2. Let k>5 and k=0 or 1 (mod 4) be a fundamental discrimi-
nant and y the real even primitive character modulo k. If x(j)#0 and |M|=

| 202 xm) + (1/2)2()] = (3/2), then

T(v,j, x {Zx } <0
for integer v > max{1,Vk/|M|}.

ReEMARK 1. Theorems and 2.2 tell us more information about T(v,j, y) than
Theorem 2 of [9] does.

Finally, to close this section, we need to supply the following lemmas and
proposition.

LemMA 23, SSK y(j + DeXmimllk = y(m)y/ke=2mimi/k
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ProOF. Multiplying e~2#"//% on both sides of the Gauss sum for real even
primitive character y modulo k, we have

X(m)\/Eeonimj/k — ( ) 2nimn/k —2nimj/k

) men/k —2zimj/k

x(n
]—|—l 2nim(j+1)/k —2mm]/k
x(j

_|_ l 2mml/k 0

k
Z%
=1
J+k
=2
n=j+1
k
2.
k
B

To obtain [Proposition 2.4, we apply a method used in [10].

PROPOSITION 2.4. Let j be any integer in the closed interval [1,k —1]. Then

j—1 o0 . .
1 . Vk y(n)sin2zn(j/k)
;X(”)‘FEX(J)—?; " :

Proor. For fixed integer j, we define the periodic function ¢ with period 27z as
follows:

) .
I, if0<x<2l.
k
1. 2nj
P(x) =< =, if x=0orx=" or x =2
2 k
0 if%<x<2n.

Then 3207 1(n) + (1/2)2()) = Xy $2an/k)x(n).
By exercise 17(c) of [11, Chapter 8], we have

. 1 1
Jim sy (g:0) = 5 ($(04) + $(0-)) = 5 (1+0) = 4(0)
and
2mj 1 271] 27z] 1 _(2n
where sN(¢, x) =j/k+ 2N (a,cosnx + b, sinnx), l/njo x)cosnxdx and b, =
l/n j() )sinnxdx. Hence, over the interval [0 27z] ¢ has Fourler expansion

a~|\-

H(x) = Z a, cos nx + b, sinnx),
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where a, = l/njozn ¢(x) cosnx dx = (1/nn)sin2zn(j/k) and b, = 1/7tf027Z $(x) sin nx dx =
1/nn — (1/nn) cos2nn(j/k). Now

kK (: o
- 7 2nmn . 2mmn
= Z{k + Z(an cos —— + b, sin . ) })((m)
k(oo
- Z{Z (X(m)an COS 27-[]’:/”1 + X(m)bn sin 272:]]:17’1) }

n=1 \um=1 m=1
= i a i (m) cos o +5b i (m) sin 2
n=1 ’ mzl){ ’ m:IX k
- Zan)((n)\/%
n=1
B \/_E i y(n) sin2zn(j/k)
o o n '

Here we used the fact that Gauss sum Z,ﬁzl)((m) exp (2nimn/k) = y(n)vVk since
x(=1) =1

LEmMMA 2.5. For x>0, 1/x>1log(l+1/x) > 1/(x+1).

Proor. For x>0, from the inequality e*>1+x, it is easy to derive

1/x >log(l+ 1/x). Next, for x > 0, consider G(x) =log(l +1/x) —1/(x+1). Then
G'(x) <0 for x > 0. Suppose there exists xo > 0 such that G(xy) =0, then

2 n
R PR NV Ch ) LY. Y
Xo xo+ 1 2! n!

which gives

1 1 1 1

—< + +o it

xo  Xo+1 (xg+1)2 (xo+1)"
1/(X0+1) B 1

T1-1/(x+1D) x’

a contradiction. Since G(1/2) =log3 —2/3 >0, we have G(x) >0 for x> 0. The
lemma is proved. ]



Character sums 159

3. Class numbers of real quadratic fields.

The main results of this section are derived from the inequalities (1.1):

[k/2]
ZM<L(1,X)<§M.

n=1 n n=1 n

For t >0, let A(z) = Z,[f]:l y(n). Then, by (1.1) and Abel’s identity (cf. Theorem 2
of [8]), we have

ZM_A(M1)+J’k $d1<L(l,x) (3.1)

[m] [k/2]
x(n) _ Alm) J A(1)
< ; . e o dt,

where 1 <m; <k and 1 <my < [k/2]. Let r < [k/2] be a positive number such that
A(r) =0. Then we have

k
ZM+J %dmw,x) (3.2)

2

<ZT+

n=1 r

By (3.2) and Polya’s inequality |A4(¢)| < vklogk [1, pp. 173], we derive

[r]
k_
ZM‘% Vilogk < L(1,7) o
n=1 n 4
1]
xn) | (k= 2r)
klogk.
<; . + T Vk og
Hence

N [r] z(n)  (k—r)logk vk
2logs,; n 2r loge <h_2loggL(1’X> o

< Vk f:x(n)_f_(k—%) logk

n 2r  loge’

where / is the class number, and ¢ (>1) is the fundamental unit of Q(vk).
To sum up, we have proved the following:

TueoreM 3.1. For a real quadratic field Q(\k) with fundamental unit & (>1), if
there exists positive number r< [k /2] such that A(r)=0 and ((2k—3r)/2r)(logk/loge) <1,
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then, by (3.4), the class number h of Q(Wk) is

NG f:)(n (k — 2r) logk (35)

210g8 o 2r  logel’

where [t| denotes the greatest integer <t.

ExaMPLE. Let k = 521, then, by [13], ¢ = 138377240 + 5624309v/521. For r = 178,
we have )7 y(m) =0. Hence, by [3.5], h = [1.1511] = 1.

REMARK 2. For an effective method to calculate ¢, the fundamental unit of a real
quadratic number field, see, for example, Theorem 15 of [2]. In [2], one also can find
explicit formulas for the fundamental unit of Q(+/C) for some particular types of natural
numbers C.

To continue our investigation, we quote a well-known result (Cemma 3.7) and
results of Johnson and Mitchell [5]:

LemmA 3.2, If the discriminant of a quadratic field contains only one prime factor,
then the class number of the field is odd.

The proof can be found in (3, pp. 187].

LemmA 3.3.

(1) If prime p =5 (mod 8), then A(p/6) =317 y(n) = 0.

(2) If prime p =5 (mod 24), then A(p/12) = Y172 5(m) = 0.
In both cases, y is the real even primitive character modulo p.

PrOOF. See Johnson and Mitchell [5]. O
By[Lemma 3.3, inequalities and (3.4}, we have immediately the following theorems.

THEOREM 3.4.
(1) If prime p =5 (mod 8), then

(p/ 1 (/6] 41
Z—n)—SOgP<L(1,X)< xn) | 4logp
n=1 n \/ﬁ n=1 n p
(2) If prime p =5 (mod 24), then
[im x(n) 11 logp [&12} z(n) IOlogp
n=1 n \/ﬁ n=1 \/ﬁ '

In both cases, y is the real even primitive character modulo p.

THEOREM 3.5.
(1) If prime p=5 (mod 8), then

6 6]
”z/:]x Slogp _ “'i/:x 4 log p
2loge“ n 2 loge 210ge n T3 loge
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(2) If prime p =5 (mod 24), then
VP R () _Mlogp _ [%2 x(n) 10 log p
210g8 n

2loge n 2 logs 2 loge”

In both cases, h is the class number, and ¢ (>1) is the fundamental unit of Q(,/p).

ReEMARK 3. Since the class number % of Q(,/p) is odd for prime p =5 (mod 8)
(cf. Lemma 3.2), as an illustration of [Theorem 3.3, we know that the class number / is
equal to the only odd integer lying in the closed interval [(\/p/2loge) Z,[f’ /1] y(n)/n—

(5/2)log p/loge, (\/p/21oge) 7% y(n) /n + (4/2) log p/loge] if logp/loge < 4/9. As
an example, p = 2389 gives that log p/loge < 4/9 [13].

REMARK 4. Let e=(r+u,/p)/2>1 be the fundamental unit of Q(,/p) (p =5
(mod 8) a prime). Then the integers t > 1 and u>1. Ifu > p, thene = (1 +u/p)/2 >
p¥?/2 + py/p/2 = p*/* whichgives2/3 > log p/loge. Ifprime p =5 (mod 8) andu > p,
then, by (1) of Mheorem 3.5, the class number 4 of Q(,/p) is an odd integer lying in the
closed interval [(y/p/2loge) an/1]){( )/n—(5/2)log p/loge, (\/p/2loge) ZL‘”/I])(( )/n+
(4/2)log p/loge] which contains at most three integers. If prime p =5 (mod 24) and
u > p, then, by (2) of , the class number / of Q(,/p) is an odd integer
lying in the closed interval [V W] = [(y/P/21oge) Z[”/ 2 y(n)/n— (11/2)log p/loge,
(v/p/2loge) ZE’/I ])(( )/n + (10/2)log p/loge] with W —V = (21/2)logp/loge <
(21/2)(2/3) = 7. Since W — V < 8, we can use Corollary 1 (iii) of [12] (cf. [12, page 388
and page 390]) to determine exactly value of 4. To be more precise, we quote Corollary
1 (ii1) of as follows: If prime p =5 (mod 8), then h(—p) =3gTUh(p) + (p —9)
(mod 16), where h(n) is the class number of the quadratic field Q(v/n), &9 = ((t+
uyp)/2)! =T+ U/p, g=3 if t=u=1 (mod 2), and g =1 otherwise.

For prime p = 5 (mod 8) and p > e, by a slight improvement in Pdlya’s inequality,
we can obtain better estimates for L(1,y) than [Theorem 3.4 does. Therefore, we can
obtain better estimates for the class number 4 of Q(,/p) than does.

PROPOSITION 3.6. If yo is any primitive character modulo C and C > e3*, then

2
n) <§\/ElogC

for any positive integer m.
Proor. See, for example, [1, Chapter 8, Exercise 14]. O

If r<][k/2] is a positive number such that Z,[il)((n) =0, then, by (3.2) and
[Proposition 3.6, we have, for k > e,

G
ZXS’)—% (kr;cr)\/lzlogk<L(l,;{) (3.6)

<2X” k= 2r)\/ilogk



162 M.-G. Lru

for the real even primitive character y modulo k. Hence, for k > e,

x(n)  (k—r)logk
210gs Z 3r loge <h (37

vk i 1) | (k—2r) logk
2loge &~ n 3r loge’

where 4 is the class number, and ¢ (>1) is the fundamental unit of Q(vk).
To sum up, we have proved the following:

THEOREM 3.7. For a real quadratic field Q(vV'k) with fundamental unit & (>1), if
k > e and there exists positive number r < [k/2] such that A(r) =0 and ((2k —3r)/
3r)logk/loge < 1, then the class number h of Q(Vk) is

Vk i x(n) k 2r) logk
210ge 3r loge|

n=1

REMARK 5. If the norm & = —1, then, by and the genus theory of
quadratic number field (cf. Corollary 3 of [8]), the condition ((2k—3r)/3r)logk/loge < 1
in [Theorem 3.7 can be replaced by ((2k — 3r)/3r)logk/loge < 2 and the conclusion

x(n k 2r) logk
[2 loge £ Z 3r loge

should be replaced by

N f:)(n (k —2r) logk|
210g8n1 n 3r  loge

where i = 0 or i = 1 depends on whether [(v/k/2loge) Zn L x(n)/n+ ((k—2r)/3r)logk/
loge] + E(k)isaneveninteger or an odd integer, where E (k) is 1 or 0 depending on whether & is

a prime or not a prime. For the case ¢z = —1, the similar replacement is also applied to
MTheorem 3.1.

By [Lemma 3.3, inequalities (3.6) and [3.7), we have immediately the following
theorems.

THEOREM 3.8.
(1) If prime p=5 (mod 8) and p > &**, then

(p/6]
x(m) 10 logp x(n)
< L(l,y) < .
2 T3 <M< TS
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(2) If prime p =5 (mod 24) and p > e**, then

12
(p/12] X(”)

(p/12]
221 201
x(n) 22 P _ 11y < Y L Vlogp
n=1 n 3 \/ﬁ n=1 n 3 \/ﬁ

In both cases, y is the real even primitive character modulo p.
THEOREM 3.9.

(1) If prime p =5 (mod 8) and p > e**, then

6 6
VP “J”x(n)_glogp<h< VP “’”x(n)ﬁlogp
2loge ~= n 6 loge 2loge <= n 6 loge

(2) If prime p =5 (mod 24) and p > e**, then

VP [p/12 y(m) 221logp VP [p/lz]x(n) 20 log p
-= <h< +— :
2loge <~ n 6 loge 2loge = n 6 loge

In both cases, h is the class number, and ¢ (>1) is the fundamental unit of Q(,/p).

COROLLARY 3.10. If prime p =5 (mod 8), p > e** and u > p, then

(/6]
_ | VP x(n) 8logp| .
h= [210g8 nz + .

where & = (t4+u\/p)/2 > 1 is the fundamental unit of Q(./p) and

[p/
x(n 8 logp
= [210g8Z n ] is odd;

1, otherwise.

Proor. By Remark 4, we have (2/3) >1log p/loge. Since (18/6)log p/loge < 2, there
are at most 2 positive integers lying in the closed interval [(,/p/2loge) Z,[f’ /1] y(n)/n—
(10/6)log p/loge, (/p/2loge) S () /n + (8/6) log p/loge]. By [Lemma 3.2, the
class number & of Q(,/p) is odd. Hence the corollary is proved. O

REMARK 6. As before, let ¢ = (14 u,/p)/2 > 1 be the fundamental unit of Q(,/p)
(p=5 (mod 8) a prime). Then it is well-known that the norm N(¢)=ee=—1. Ifu > 1,
then 2 > log p/loge. If u=1, then p=1r>*+4. Since the function g(x) = (vVx—4+
Vx)/2 — x1921 is positive and strictly increasing for x > 29, we have 2.1 > log p/loge
for prime p=1>+4>29. Therefore we have that 2.1 > log p/loge for prime p =
5 (mod 8) and p >29. Now, for prime p=5 (mod 8) and p>e3*, by (1) of [Theoreml
3.9, the class number 4 of Q(,/p) is an odd integer lying in the closed interval [V, W] =
[(y/7/21oge) S (n)/n—(10/6) log p/loge, (/B/2loge) S y(n)/n+(8/6) log p/loge]
with W — 1V = (18/6)log p/loge < (18/6)(2.1) = 6.3. Again, since W — V' < 8, we can
use Corollary 1 of to determine exactly value of /.
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4. Chowla’s conjecture and Yokoi’s conjecture.

For x > 0, set

B(x)—l— 1 B 1 n 1 B 1 n 1 B 1
x x+1 x+2 x+4+3 x+4 x+5 x+6
1 N 1 n 1 1 1
x+7 x+8 x+9 x+10 x+11
1 1 1 1 1 1 1 1

XTI X3 x4 xi15 X416 x+17 x+18 xt19
Then we have the following lemma.

LemmA 4.1.
(1) B(x) <0 for x > 2.
(2) |B(x)| > |B(t+ x)| for x > 12 and t > 0.

Proor. For x > 2, it is easy to verify the following inequalities:

L —— S .
x x+1 x+4 7 x+2 x+3 7
L N
x+7 x+8 x+9 x+10 7
R N 1 N 1 N 11 <0
x+11 x+12 x+13 x+14 x+15 x+16
and
1 1 1 1 1
— - - - < 0.
x+5 x+6 x+17 x+18 x+19
Thus, the statement (1) is proved.
Using the proof of statement (1) and the easy exercise:
_1_|_1+1_1_ —10 — 4x
x+1 x4+2 x+3 x+4| |[(x+D(x+2)(x+3)(x+4)

1 1 1 1
'_x+t+l+x+t+2+x+t+3_x+t+4

for x >0 and #> 0, we can derive statement (2) without difficulty. O

Note.  B(1) ~ 0.0585302.

Using Davenport’s result 7'(v,0,y) > 0 [4] and [Lemma 4.1, we have the following
proposition.

PrROPOSITION 4.2. Let d =0 or 1 (mod 4) be a fundamental discriminant such that
24(q) = =1 for prime q <19, where y, is the real even primitive character modulo d.
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Then
T(v,20, ;) >0
for integer v > 1.

Proor. The integer d such that y,(¢) = —1 for prime ¢ < 19 is greater than 9172
[7]. For integer v > 1,

204-d

)(d (vd +n
U 207%(1
nZZl vd+n

Xa(vd +n) xqa(vd +d + n)
Z Z vd +d +n

20 20
Za(n) Za(n)
— T(1,0,7,)
(2,0, 74) — vd+n+; vd+d+n

= T(v,0,y;) — Blvd + 1) + B(vd + d + 1).

Since T'(v,0,%,) > 0 for v >0 [4] and, by Lemma 4.1, —B(vd + 1) + B(vd +d +1) > 0
for integer v > 1, therefore we have T'(v,20, y;) > 0 for integer v > 1. ]

PrOBLEM 1. Let y be a real even primitive character modulo k such that y(g) = —1
for prime ¢ <19. Is T(0,20,y) > 0 always true?

Before proposing the next problem, we recall the following conjectures on the class
number of real quadratic fields:

(C1) (S.Chowla): Let D bea square-free rational integer of the form D= (2n)* + 1 for
natural number n. Then, there exist exactly 6 real quadratic fields Q(v/D) of class number
one, that is (D,n) = (5,1),(17,2),(37,3),(101,5),(197,7), (677,13).

(G;) (H. Yokoi): Let D be a square-free rational integer of the form D = n® +4
for natural number n. Then, there exist exactly 6 real quadratic fields Q(v/D) of class
number one, that is (D,n) = (5,1),(13,3),(29,5),(53,7),(173,13),(293,17). 1In [6], H.
K. Kim. M.-G. Leu and T. Ono proved that at least one of the two conjectures (C)),
(C) is true and that for the other case there are at most 7 quadratic fields Q(v/D) of
class number one.

In relation to these two conjectures, we propose the following problem:

ProOBLEM 2. Is T(0,20,yxp) > 0 true for any square-free integer D (>8844444) of
the form D = (2n)? + 1 or n2 +4 (ne N) with real even primitive character y; having
xp(q) = —1 for prime g < 19?

ReEMARK 7. If Problem 2 is true, then L(1,y)>B(1). Hence, by applying
Dirichlet’s class number formula and following the easy procedure used in [6], one can
prove the conjectures (Cj) and (C,) without condition.
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