Galois covering singularities I

By Hiroyasu Tsuchinashi

(Received Feb. 28, 1996)
(Revised Jan. 24, 1997)

Abstract

We give a necessary condition for Galois covering singularities to be logterminal or log-canonical singularities, which is also sufficient under a certain restriction on the branch loci of the covering maps. We also give a method constructing explicitly resolutions of 2-dimensional Abel covering singularities.

Introduction.

Let Y be an open neighborhood of 0 in C^{n} and let $\pi: X \rightarrow Y$ be a (branched) finite Galois covering of Y, i.e., π is a proper finite holomorphic map from a normal analytic space X to Y and $\operatorname{Aut}(\pi):=\{g \in \operatorname{Aut}(X) \mid \pi \circ g=\pi\}$ acts transitively on the fiber $\pi^{-1}(y)$ of π for each point y in Y. We assume that $\pi^{-1}(0)$ consists of only one point x_{0}. Professor Namba proposed to call such a singularity (X, x_{0}) a Galois singularity and to study it. Let $B_{1}, B_{2}, \ldots, B_{s}$ be the irreducible components of branch locus $\{y \in Y \mid$ $\left.\# \pi^{-1}(y)<\operatorname{deg} \pi\right\}=\pi(\{x \in X \mid \pi$ is not biholomorphic around $x\})$ of π and let r_{j} be the ramification index of π along B_{j}, i.e., $r_{j}=\operatorname{deg} \pi / \max \left\{\# \pi^{-1}(y) \mid y \in B_{j}\right\}$. Here we note that for any point x in $\pi^{-1}\left(B_{j} \backslash \operatorname{Sing}\left(B_{1}+\cdots+B_{s}\right)\right), \pi$ is expressed as $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \mapsto\left(z_{1}^{r_{j}}, z_{2}, \ldots, z_{n}\right)$ by suitable local coordinate systems on neighborhoods of x and $\pi(x)$ (see [2]). Let $B_{\pi}=r_{1} B_{1}+r_{2} B_{2}+\cdots+r_{s} B_{s}$. We are interested in the following two problems.

Problem 1. Describe the properties and invariants of the singularity (X, x_{0}) using those of B_{π} and the covering transformation group $\operatorname{Gal}(X / Y):=\operatorname{Aut}(\pi)$.

Problem 2. Determine all Galois coverings $\pi:\left(X, x_{0}\right) \rightarrow(Y, 0)$ with $B_{\pi}=D$ for a given divisor D on an open neighborhood Y of 0 in C^{n}.

Dimca showed that the set of all Abel coverings $\pi: X \rightarrow Y$ of Y with $B_{\pi}=D$ is completely described by D (Theorem 3.3 in [1]).

In this paper, we give a partial answer to these problems. In Section 1, we give a necessary condition for $\left(X, x_{0}\right)$ to be a log-terminal or log-canonical singularity, which is also sufficient under a certain restriction on B_{π}. In Section 2, we give some results on Problem 2 in the non Abel covering case. In Section 3, we construct resolutions of 2dimensional Abel covering singularities. The self intersection number, the genus of each irreducible component and the dual graphs of their exceptional sets are explicitly obtained from the data on B_{π} and $\operatorname{Gal}(X / Y)$. In Section 4, we give a necessary and sufficient condition for a Galois covering singularity to be a quasi-Gorenstein singularity.

[^0]I would like to thank the refree who pointed out me the existence of [1].

1. On Problem 1.

Let $\pi: X \rightarrow Y$ be a finite Galois covering of an open neighborhood Y of 0 in \boldsymbol{C}^{n} and assume that $\pi^{-1}(0)=\left\{x_{0}\right\}$. Let $B_{\pi}=r_{1} B_{1}+r_{2} B_{2}+\cdots+r_{s} B_{s}$ be as in Introduction.

Proposition 1. $\left(X, x_{0}\right)$ is a \boldsymbol{Q}-Gorenstein singularity, i.e., there exists a nowhere vanishing holomorphic r-ple n-form on $X \backslash \operatorname{Sing}(X)$, where r is the least common multiple of r_{1}, r_{2}, \ldots and r_{s}.

Proof. Let $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be a coordinate system of \boldsymbol{C}^{n} and let

$$
\phi=\frac{\left(d z_{1} \wedge d z_{2} \wedge \cdots \wedge d z_{n}\right)^{r}}{f_{1}^{r\left(r_{1}-1\right) / r_{1}} f_{2}^{r\left(r_{2}-1\right) / r_{2}} \cdots f_{s}^{r\left(r_{s}-1\right) / r_{s}}},
$$

where f_{1}, f_{2}, \ldots and f_{s} are defining equations of B_{1}, B_{2}, \ldots and B_{s}, respectively. Then $\pi^{*} \phi$ is a nowhere vanishing holomorphic r-ple n-form on $X \backslash \pi^{-1}\left(\operatorname{Sing}\left(B_{1}+\cdots+B_{s}\right)\right)$. Since the codimension of $\operatorname{Sing}\left(B_{1}+\cdots+B_{s}\right)$ is greater than $1, \pi^{*} \phi$ is extended to $X \backslash \operatorname{Sing}(X)$, as a holomorphic r-ple n-form.

By the above proposition, we can classify the singularity $\left(X, x_{0}\right)$ into the following three types (see [3]). Let $\lambda:(\tilde{X}, E) \rightarrow\left(X, x_{0}\right)$ be a resolution of $\left(X, x_{0}\right)$ and let ψ be a nowhere vanishing holomorphic r-ple n-form on $X \backslash \operatorname{Sing}(X)$.
I. $\left(X, x_{0}\right)$ is log-terminal, i.e., the vanishing order of $\lambda^{*} \psi$ is greater than $-r$ along all irreducible components of the exceptional set E of λ.
II. $\left(X, x_{0}\right)$ is not log-terminal and log-canonical, i.e., the vanishing order of $\lambda^{*} \psi$ is not smaller than $-r$ along all irreducible components of the exceptional set E of λ and equal to $-r$ along at least one irredubcible component.
III. $\left(X, x_{0}\right)$ is not \log-canonical and then $\lim _{m \rightarrow \infty} \sup \delta_{m}\left(X, x_{0}\right) / m^{n-1}>0$.

For example, if a cone V over a projective manifold M is a Galois covering singularity, then it is of type I, II or III, accordingly as $\kappa(M)=-\infty, 0$ or $\operatorname{dim} M$. While, if $0<\kappa(M)<\operatorname{dim} M$, then V never can be a Galois covering singularity.

For a holomorphic function $f=\sum_{v \in \mathbf{Z}_{\geq 0}^{n}} c_{v} z^{v}$ on Y, let $\operatorname{Supp}(f)=\left\{v \in \boldsymbol{Z}_{\geq 0}^{n} \mid c_{v} \neq 0\right\}$ and let $\Gamma_{+}(f)$ be the Newton polytope of f, i.e., the convex hull of $\bigcup_{v \in \operatorname{Supp}(f)}$ $\left(v+\boldsymbol{R}_{\geq 0}^{n}\right)$, where $z^{t}\left(v_{1}, v_{2}, \ldots, v_{n}\right)=z_{1}^{v_{1}} z_{2}^{v_{2}} \cdots z_{n}^{v_{n}}$.

Definition.

$$
\Gamma_{+}\left(B_{\pi}\right)=\left(1-\frac{1}{r_{1}}\right) \Gamma_{+}\left(f_{1}\right)+\left(1-\frac{1}{r_{2}}\right) \Gamma_{+}\left(f_{2}\right)+\cdots+\left(1-\frac{1}{r_{s}}\right) \Gamma_{+}\left(f_{s}\right),
$$

where f_{1}, f_{2}, \ldots and f_{s} are defining equations of B_{1}, B_{2}, \ldots and B_{s}, respectively.
For a face Δ of $\Gamma_{+}\left(B_{\pi}\right)$, there exists a point u in $\boldsymbol{R}_{\geq 0}^{n}$ such that $\Delta=\Delta(u):=$ $\left\{v \in \Gamma_{+}\left(B_{\pi}\right) \mid\langle v, u\rangle=d(u)\right\}$, where $d(u)=\min \left\{\langle v, u\rangle \mid v \in \Gamma_{+}\left(B_{\pi}\right)\right\}$. Let $\Delta_{j}=\left\{v \in \Gamma_{+}\right.$ $\left.\left(f_{j}\right) \mid\langle v, u\rangle=d_{j}(u)\right\}$, where $d_{j}(u)=\min \left\{\langle v, u\rangle \mid v \in \Gamma_{+}\left(f_{j}\right)\right\}$. Then $d(u)=\sum_{j=1}^{s}\left(1-1 / r_{j}\right)$ $d_{j}(u)$ and $\Delta=\left(1-1 / r_{1}\right) \Delta_{1}+\left(1-1 / r_{2}\right) \Delta_{2}+\cdots+\left(1-1 / r_{s}\right) \Delta_{s}$. Here we note that Δ_{j} are determined uniquely by Δ, although u with $\Delta=\Delta(u)$ are not unique.

Theorem 2. If $\left(X, x_{0}\right)$ is log-canonical (resp. log-terminal), then ${ }^{t}(1,1, \ldots, 1) \in$ $\Gamma_{+}\left(B_{\pi}\right)\left(\right.$ resp. $\left.\operatorname{Int}\left(\Gamma_{+}\left(B_{\pi}\right)\right)\right)$.

Moreover, the converse holds, if f_{1}, f_{2}, \ldots and f_{s} satisfy the condition:
(*) For each proper face Δ of $\Gamma_{+}\left(B_{\pi}\right)$, the varieties in $\left(\boldsymbol{C}^{\times}\right)^{n}$ defined by $f_{j \Delta}=0$ are non-singular and cross transversally each other, where $f_{j \Delta}$ are the partial sums $\sum_{v \in Z_{\geq 0}^{n} \cap \Lambda_{j}} c_{v} z^{v}$ of $f_{j}=\sum_{v \in \boldsymbol{Z}_{\geq 0}^{n}} c_{v} z^{v}$ on Δ_{j}.

Proof. Let $\Gamma^{*}\left(B_{\pi}\right)$ be the dual Newton diagram of $\Gamma_{+}\left(B_{\pi}\right)$, i.e., $\Gamma^{*}\left(B_{\pi}\right)=$ $\left\{\Delta^{*} \mid \Delta\right.$ are faces of $\left.\Gamma_{+}\left(B_{\pi}\right)\right\}$, where $\Delta^{*}=\left\{u \in \boldsymbol{R}_{\geq 0}^{n} \mid \Delta(u) \supset \Delta\right\}$. Let

$$
\lambda: T_{\boldsymbol{Z}^{n}} \operatorname{emb}\left(\Gamma^{*}\left(B_{\pi}\right)\right) \rightarrow T_{\boldsymbol{Z}^{n}} \operatorname{emb}\left(\left\{\text { faces of } \boldsymbol{R}_{\geq 0}^{n}\right\}\right)=\boldsymbol{C}^{n}
$$

be the holomorphic map between toric varieties induced from the subdivision $\Gamma^{*}\left(B_{\pi}\right)$ of $\left\{\right.$ faces of $\left.\boldsymbol{R}_{\geq 0}^{n}\right\}$ and let $Z=\lambda^{-1}(Y)$. Let $E_{\sigma}=\overline{\operatorname{orb}(\sigma)}$ for 1-dimensional cones σ in $\Gamma^{*}\left(B_{\pi}\right)$. Then the vanishing order α_{σ} along E_{σ} of the pull-back $\lambda^{*} \phi$ of ϕ in the proof of Proposition 1 is equal to

$$
r\left(-1+\left\langle^{t}(1,1, \ldots, 1), u\right\rangle-\sum_{j=1}^{s}\left(1-\frac{1}{r_{j}}\right) d_{j}(u)\right)
$$

because the vanishing order of $\lambda^{*}\left(d z_{1} / z_{1} \wedge d z_{2} / z_{2} \wedge \cdots \wedge d z_{n} / z_{n}\right)$ is equal to -1 along all E_{σ}, where u are the primitive elements in \boldsymbol{Z}^{n} spanning σ. Hence $\alpha_{\sigma} \geq-r$ (resp. $>-r$) for all 1 -dimensional cones σ in $\Gamma^{*}\left(B_{\pi}\right)$, if and only if ${ }^{t}(1,1, \ldots, 1) \in \Gamma_{+}\left(B_{\pi}\right)$ $\left(\right.$ resp. $\left.\in \operatorname{Int}\left(\Gamma_{+}\left(B_{\pi}\right)\right)\right)$.

On the other hand, let W be the normalization of $X \times_{Y} Z$, let $\tilde{\pi}: W \rightarrow Z$ and $\theta: W \rightarrow X$ be the projections. For any 1-dimensional cone σ in $\Gamma^{*}\left(B_{\pi}\right)$ and for any irreducible component F_{σ} of $\tilde{\pi}^{-1}\left(E_{\sigma}\right)$, the vanishing order $\left(\alpha_{\sigma}+r\right) r_{\sigma}-r$ of $(\pi \circ \theta)^{*} \phi=$ $(\lambda \circ \tilde{\pi})^{*} \phi$ along F_{σ} is greater than (resp. equal to) $-r$, if and only if α_{σ} is so, where r_{σ} is the ramification index of $\tilde{\pi}$ along E_{σ}.

Next, assume that the condition $(*)$ is satisfied. Take a subdivision Σ of $\Gamma^{*}\left(B_{\pi}\right)$ consisting of non-singular cones and replace $\Gamma^{*}\left(B_{\pi}\right)$ with Σ in the above definition of λ. Then Z is non-singular and $\lambda^{-1}\left(B_{1}+B_{2}+\cdots+B_{s}\right)$ is normal crossing near $\lambda^{-1}(0)$. Hence for any point p in $\lambda^{-1}(0)$, there exist an open neighborhood U_{p} of p and a local coordinate system $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ on U_{p} such that $\lambda^{-1}\left(B_{1}+B_{2}+\cdots+B_{s}\right) \cap U_{p} \subset$ $\left\{z_{1} z_{2} \cdots z_{n}=0\right\}$. Then $f=\left(\lambda^{*} \phi\right)_{\mid U_{p}} /\left(d z_{1} / z_{1} \wedge \cdots \wedge d z_{n} / z_{n}\right)^{r}$ is a holomorphic function on U_{p}, if the vanishing order α_{σ} of $\lambda^{*} \phi$ is not smaller than $-r$ along all irreducible components E_{σ} of $\lambda^{-1}(0)$ and vanishes along $\lambda^{-1}\left(B_{1}+B_{2}+\cdots+B_{s}\right) \cap U_{p}$, if α_{σ} is greater than $-r$. Therefore, W has only toric quotient singularities and for any toric resolution $\varpi: V \rightarrow W$ of W, the vanishing order of $(\lambda \circ \tilde{\pi} \circ \varpi)^{*} \phi$ is greater or not smaller than $-r$ along all irreducible components of $(\theta \circ \varpi)^{-1}\left(x_{0}\right)$, if that of $\lambda^{*} \phi$ is so along those of $\lambda^{-1}(0)$, because $(\tilde{\pi} \circ \varpi)_{\mid(\tilde{\pi} \circ \varpi)^{-1}\left(U_{p}\right)}^{*}\left(d z_{1} / z_{1} \wedge \cdots \wedge d z_{n} / z_{n}\right)$ has poles of order 1 along all irreducible components of $(\tilde{\pi} \circ \varpi)^{-1}\left(\left\{z_{1} z_{2} \cdots z_{n}=0\right\}\right)$.

Example 1. If $n=2$ and $B_{\pi}=r_{1} B_{1}+r_{2} B_{2}+r_{3} B_{3}$, where B_{1}, B_{2}, B_{3} are defined by $z_{1}=0, \quad z_{2}=0, \quad z_{1}^{a}+z_{2}^{b}=0$ (g.c.d. $\left.(a, b)=1\right)$, respectively and r_{1}, r_{2}, r_{3} are positive integers, then ${ }^{t}(1,1) \in \operatorname{Int}\left(\Gamma_{+}\left(B_{\pi}\right)\right)$ (resp. $\partial \Gamma_{+}\left(B_{\pi}\right)$), if and only if

$$
\frac{1}{a r_{1}}+\frac{1}{b r_{2}}+\frac{1}{r_{3}}>1 \quad(\text { resp. }=1)
$$

Here, the case that $r_{1}=1$ (resp. $r_{1}=r_{2}=1$) implies that $B_{\pi}=r_{2} B_{2}+r_{3} B_{3}$ (resp. $r_{3} B_{3}$).
Example 2. If $n=2$ and $B_{\pi}=2\left\{z_{1}\left(z_{1}+z_{2}^{2}\right)\left(z_{1}+c z_{2}^{2}\right)=0\right\}(c \neq 0,1)$, then ${ }^{t}(1,1)$ is on a 1 -dimensional face of $\Gamma_{+}\left(B_{\pi}\right)$.

Example 3. If $n=2$ and $B_{\pi}=2\left\{\left(z_{1}^{2}+z_{2}^{p}\right)\left(z_{2}^{2}-z_{1}^{q}\right)=0\right\}(p, q \geq 2)$, then ${ }^{t}(1,1) \in$ $\partial \Gamma_{+}\left(B_{\pi}\right)$.

Example 4. If $n=3$ and $B_{\pi}=2\left\{\left(z_{1}^{2}+z_{2}^{4}+z_{3}^{4}\right)\left(z_{1}^{4}+z_{2}^{2}+z_{3}^{4}\right)\left(z_{1}^{4}+z_{2}^{4}+z_{3}^{2}\right)=0\right\}$, then ${ }^{t}(1,1,1)$ is a vertex of $\partial \Gamma_{+}\left(B_{\pi}\right)$.

2. On Problem 2.

Let Y be a simply connected open neighborhood of 0 in C^{n} and let $D=r_{1} D_{1}+$ $r_{2} D_{2}+\cdots+r_{s} D_{s}$ be a divisor on Y. Here, we assume that r_{j} are integers greater than 1 and that D_{j} are irreducible reduced. Let

$$
\tilde{Y}=\left\{\left(w_{1}, w_{2}, \ldots, w_{s}, y\right) \in \boldsymbol{C}^{s} \times Y \mid w_{1}^{r_{1}}-f_{1}(y)=\cdots=w_{s}^{r_{s}}-f_{s}(y)=0\right\},
$$

where f_{1}, f_{2}, \ldots and f_{s} are defining equations of D_{1}, D_{2}, \ldots and D_{s}, respectively, let σ_{j} be the automorphisms of \tilde{Y} defined by

$$
\sigma_{j}:\left(w_{1}, \ldots, w_{s}, y\right) \mapsto\left(w_{1}, \ldots, w_{j-1}, \varepsilon_{j} w_{j}, w_{j+1}, \ldots, w_{s}, y\right)
$$

where $\varepsilon_{j}=\exp \left(2 \pi \sqrt{-1} / r_{j}\right)$ and let $\mu: \tilde{Y} \rightarrow Y$ be the projection. Then μ is an Abel covering of Y with $B_{\mu}=D$ and the covering transformation group $\operatorname{Gal}(\tilde{Y} / Y)$ is generated by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}$.

Proposition 3. \tilde{Y} is a normal.
Proof. First, we note that $\tilde{Y}_{0}:=\mu^{-1}\left(Y_{0}\right)$ is non-singular, where $Y_{0}=Y \backslash \operatorname{Sing}\left(D_{\text {red }}\right)$. Let U be an open neighborhood of $0 \in Y$, let h be a holomorphic function on $\tilde{U}_{0}:=$ $\mu^{-1}\left(U \cap Y_{0}\right)$ and let

$$
h_{c_{1}, \ldots, c_{s}}=\sum_{0 \leq \alpha_{1}<r_{1}, \ldots, 0 \leq \alpha_{s}<r_{s}} \varepsilon_{1}^{-c_{1} \alpha_{1}} \cdots \varepsilon_{s}^{-c_{s} \alpha_{s}}\left(\sigma_{1}^{\alpha_{1}} \cdots \sigma_{s}^{\alpha_{s}}\right)^{*} h
$$

for $0 \leq c_{1}<r_{1}, \ldots, 0 \leq c_{s}<r_{s}$. Then

$$
\sum_{0 \leq c_{1}<r_{1}, \ldots, 0 \leq c_{s}<r_{s}} h_{c_{1}, \ldots, c_{s}}=r_{1} \cdots r_{s} h
$$

and $\sigma_{j}^{*} h_{c_{1}, \ldots, c_{s}}=\varepsilon_{j}^{c_{j}} h_{c_{1}, \ldots, c_{s}}$. Hence $h_{c_{1}, \ldots, c_{s}} /\left(w_{1}^{c_{1}} \cdots w_{s}^{c_{s}}\right)$ is a $\operatorname{Gal}(\tilde{Y} / Y)$-invariant holomorphic function on \tilde{U}_{0}. Since Y is non-singular and the codimension of $Y \backslash Y_{0}=$ $\operatorname{Sing}\left(D_{\text {red }}\right)$ is greater than 1, there exists a holomorphic function $\overline{h_{c_{1}, \ldots, c_{s}}}$ on U the pullback $\mu^{*} \overline{h_{c_{1}, \ldots, c_{s} \mid U_{0}}}$ of whose restriction to $U_{0}:=U \cap Y_{0}$ is equal to $h_{c_{1}, \ldots, c_{s}} /\left(w_{1}^{c_{1}} \cdots w_{s}^{c_{s}}\right)$. Then $\bar{h}=1 /\left(r_{1} \cdots r_{s}\right) \sum \mu^{*} \overline{h_{c_{1}, \ldots, c_{s}}} w_{1}^{c_{1}} \cdots w_{s}^{c_{s}}$ is a holomorphic function on $\mu^{-1}(U)$ and $\bar{h}_{\mid \tilde{U}_{0}}=h$.

Let H be a subgroup of $\operatorname{Gal}(\tilde{Y} / Y)$ and let $\mu_{H}: \tilde{Y} / H \rightarrow Y$ be the natural map induced by μ. Then μ_{H} is an Abel covering. Moreover, $B_{\mu_{H}}=D$, if and only if $\sigma_{j}^{\alpha_{j}} \notin H$ for $1 \leq \alpha_{j}<r_{j}$. By Theorem 3.3 in [1], we have:

Theorem 4. For any Abel covering $\pi: X \rightarrow Y$ with $B_{\pi}=D$, there exist a subgroup H of $\operatorname{Gal}(\tilde{Y} / Y)$ and a biholomorphic map $\phi: X \rightarrow \tilde{Y} / H$ such that $\mu_{H} \circ \phi=\pi$.

Next, let $Y_{0}=Y \backslash \operatorname{Sing}\left(D_{\text {red }}\right)$ and let $\tilde{Y}_{0}=\mu^{-1}\left(Y_{0}\right)$. Let $\lambda: \tilde{W} \rightarrow \tilde{Y}_{0}$ be a universal covering.

Proposition 5. $\mu \circ \lambda: \tilde{W} \rightarrow Y_{0}$ is a Galois covering. The kernel of $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right) \rightarrow$ $\operatorname{Gal}\left(\tilde{Y}_{0} / Y_{0}\right)$ is the commutators group of $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$.

Proof. There exists an automorphism \tilde{g} of \tilde{W} satisfying $\lambda \circ \tilde{g}=g \circ \lambda$ for each element g in $\operatorname{Gal}(\tilde{Y} / Y)$, because λ and $g \circ \lambda$ are both universal coverings of \tilde{Y}_{0}. Hence the subgroup of $\operatorname{Aut}(\tilde{W})$ generated by \tilde{g} for all $g \in \operatorname{Gal}(\tilde{Y} / Y)$ and $\pi_{1}\left(\tilde{Y}_{0}\right)$ acts transitively on the fibers of $\mu \circ \lambda$.

Next, let H be the commutators group of $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$. Since $\operatorname{Gal}\left(\tilde{Y}_{0} / Y_{0}\right)$ is an abelian group, there exists a surjective homomorphism $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right) / H \rightarrow \operatorname{Gal}\left(\tilde{Y}_{0} / Y_{0}\right)$. Suppose that this homomorphism is not isomorphic. Then the degree of the Abel covering $\tilde{W} / H \rightarrow Y_{0}$ induced by $\mu \circ \lambda$ is greater than $\operatorname{deg}(\mu)$ and the ramification index along D_{j} of the covering is equal to r_{j}. However, replacing Y in the proof of Theorem 4 with Y_{0}, we see that the degree of any Abel covering π^{\prime} of Y_{0} with $B_{\pi^{\prime}}=Y_{0} \cap D$ is not greater than $\operatorname{deg}(\mu)$, a contradiction.

Theorem 6. For any Galois covering $\pi: X \rightarrow Y$ with $B_{\pi}=D$, there exist a subgroup H of $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$ and a biholomorphic map $\tau: \tilde{W} / H \rightarrow X_{0}:=\pi^{-1}\left(Y_{0}\right)$ such that $\pi \circ \tau$: $\tilde{W} / H \rightarrow Y_{0}$ is equal to the natural map induced by $\mu \circ \lambda$.

Proof. Let W^{\prime} be an irreducible component of $\tilde{W} \times_{Y_{0}} X_{0}$. Then the composite of the normalization of W^{\prime} and the projection $W^{\prime} \rightarrow \tilde{W}$ is an unramified covering. Hence $W^{\prime} \rightarrow \tilde{W}$ is biholomorphic, because \tilde{W} is simply connected. Next, let $G=\{g \in$ $\left.\operatorname{Gal}\left(\tilde{W} / Y_{0}\right) \oplus \operatorname{Gal}\left(X_{0} / Y_{0}\right) \mid g W^{\prime}=W^{\prime}\right\}$ and let $p_{1}: G \rightarrow \operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$ (resp. $p_{2}: G \rightarrow$ $\left.\operatorname{Gal}\left(X_{0} / Y_{0}\right)\right)$ be the restriction to G of the $\operatorname{projection} \operatorname{Gal}\left(\tilde{W} / Y_{0}\right) \oplus \operatorname{Gal}\left(X_{0} / Y_{0}\right) \rightarrow$ $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$ (resp. $\operatorname{Gal}\left(X_{0} / Y_{0}\right)$). Then p_{1} is an isomorphism and p_{2} is a surjection. Hence the map $\tilde{W} / H \rightarrow X_{0}$ induced by the composite $\tilde{W} \simeq W^{\prime} \rightarrow X_{0}$ is biholomorphic, where $H=p_{1}\left(\operatorname{ker}\left(p_{2}\right)\right)$.

Example 5. Let $D=B_{\pi}$ in Example 1 in Section 1. Assume that $1 /\left(a r_{1}\right)+$ $1 /\left(b r_{2}\right)+1 / r_{3}>1$. Then \tilde{Y} is log-terminal, by Theorem 2. Hence \tilde{Y} is a quotient singularity because $n=2$ (see [4]). Therefore, $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$ is finite and \tilde{W} is biholomorphic to the complement of a point of a non-singular surface. Indeed, there exists a finite subgroup G of $G L(2, C)$ isomorphic to $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$ such that C^{2} / G is nonsingular and that $B_{\left[C^{2} \rightarrow C^{2} / G\right]} \simeq D$. In the table below, we show generators of the group G. Let

$$
A_{r}=\left(\begin{array}{cc}
\rho_{r} & 0 \\
0 & \rho_{r}
\end{array}\right), \quad B_{r}=\left(\begin{array}{cc}
\rho_{r} & 0 \\
0 & \rho_{r}^{-1}
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right),
$$

$$
S=\frac{1}{2}\left(\begin{array}{cc}
-1+\sqrt{-1} & -1+\sqrt{-1} \\
1+\sqrt{-1} & -1-\sqrt{-1}
\end{array}\right), \quad V=\left(\begin{array}{cc}
\frac{\sqrt{-1}}{2} & \beta-\sqrt{-1} \gamma \\
-\beta-\sqrt{-1} \gamma & -\frac{\sqrt{-1}}{2}
\end{array}\right)
$$

where $\rho_{r}=\exp (2 \pi \sqrt{-1} / r), \beta=(1-\sqrt{5}) / 4$ and $\gamma=(1+\sqrt{5}) / 4$.

a	b	r_{1}	r_{2}	r_{3}	Generators of G	a	b	r_{1}	r_{2}	r_{3}	Generators of G
1	$*$	2	$*$	2	$A_{2 r_{2}} B_{2 r_{2}}, B_{2 b r_{2}}, C$	1	4	2	1	3	$A_{6}, A_{12} B_{8}, S$
2	odd	1	$*$	2	$A_{2 r_{2}} B_{2 r_{2}}, B_{b r_{2}}, C$	2	3	2	1	2	A_{4}, B_{8}, S
1	$*$	2	1	2	$B_{2 b}, C$	2	3	1	1	4	$A_{4}, A_{8} B_{8}, S$
2	odd	1	1	2	B_{b}, C	3	4	1	1	2	$A_{4} B_{8}, S$
1	1	2	3	3	A_{12}, B_{4}, S	1	1	2	3	5	A_{60}, B_{4}, S, V
1	2	3	1	3	A_{6}, B_{4}, S	1	2	3	1	5	A_{30}, B_{4}, S, V
1	3	3	1	2	$A_{4}, B_{4}, A_{12} S$	1	3	2	1	5	A_{20}, B_{4}, S, V
2	3	1	1	3	$B_{4}, A_{6} S$	1	5	2	1	3	A_{12}, B_{4}, S, V
1	1	2	3	4	A_{24}, B_{8}, S	2	3	1	1	5	A_{10}, B_{4}, S, V
1	2	3	2	2	A_{12}, B_{8}, S	2	5	1	1	3	A_{6}, B_{4}, S, V
1	2	3	1	4	$A_{12}, A_{24} B_{8}, S$	3	5	1	1	2	A_{4}, B_{4}, S, V
1	3	2	1	4	A_{8}, B_{8}, S						

For subgroups H of G such that $B_{\left[C^{2} / H \rightarrow C^{2} / G\right]}=B_{\left[C^{2} \rightarrow C^{2} / G\right]}$, i.e., H have no fixed points on $\boldsymbol{C}^{2} \backslash\{0\}$, the singularities \boldsymbol{C}^{2} / H are rational double points of type $D_{l}, E_{6}, E_{7}, E_{8}$, cyclic quotient singularities and a singularity with a resolution the dual graph of whose exceptional set is the following:

When $1 /\left(a r_{1}\right)+1 /\left(b r_{2}\right)+1 / r_{3}=1, \tilde{Y}$ is a simple elliptic singularity.

3. Resolutions of two-dimensional Abel covering singularities.

We keep the notations of the previous section. Let $n=2$ and let H be a subgroup of $\operatorname{Gal}(\tilde{Y} / Y)$ satisfying the condition: $\sigma_{j}^{\alpha_{j}} \notin H$ for $1 \leq \alpha_{j} \leq r_{j}-1$. Let $X=\tilde{Y} / H$ and let $\pi=\mu_{H}$. Then $\pi: X \rightarrow Y$ is an Abel covering with $B_{\pi}=D$. We may assume that $Y_{0}=Y \backslash\{0\}$, by replacing Y with an open small neighborhood of 0 . Let $\theta: Z \rightarrow Y$ be an embedded resolution of D, i.e., θ is a holomorphic map such that the restriction $\theta_{\mid \theta^{-1}\left(Y_{0}\right)}$ of θ to $\theta^{-1}\left(Y_{0}\right)$ is biholomorphic and that the reduced inverse image divisor $\theta^{-1}(D)_{\text {red }}=\sum_{j=1}^{t} E_{j}$ of D is normal crossing. Here we may assume that E_{j} are the proper transformations of D_{j} under the the map θ for $1 \leq j \leq s$ and that E_{j} are irreducible for $s+1 \leq j \leq t$. Then $\theta^{-1}(0)=\sum_{j=s+1}^{t} E_{j}$, because $Y_{0}=Y \backslash\{0\}$. Let $\tilde{\sigma}_{j}$ be elements in $\pi_{1}(Y \backslash D)$ rounding E_{j} once in the positive direction and let τ_{j} be their images $\rho\left(\tilde{\sigma}_{j}\right)$ under the quotient map $\rho: \pi_{1}(Y \backslash D) \rightarrow F:=\operatorname{Gal}(X / Y)$. Then τ_{j} are
the images of σ_{j} under the quotient map $\operatorname{Gal}(\tilde{Y} / Y) \rightarrow F$ for $1 \leq j \leq s$ and $1 /(2 \pi \sqrt{-1}) \int_{\tilde{\sigma}_{j}} d f_{i} / f_{i}=\delta_{i j}$ for $1 \leq i, j \leq s$. On the other hand, the zero divisors $\left[\theta^{*} f_{i}\right]$ of $\theta^{*} f_{i}$ are expressed as $E_{i}+\sum_{j=s+1}^{t} c_{i j} E_{j}$, where $c_{i j}$ are positive integers. Then $1 /(2 \pi \sqrt{-1}) \int_{\tilde{\sigma}_{j}} d f_{i} / f_{i}=c_{i j}$. Hence $\tau_{j}=\sum_{i=1}^{s} c_{i j} \tau_{i}$ for $s+1 \leq j \leq t$. For each positive integer $k \leq t$, let F_{k} be the subgroup of F generated by τ_{k} and all τ_{j} with $E_{j} \cap E_{k} \neq \varnothing$. When $k \neq l$ and $E_{k} \cap E_{l} \neq \varnothing$, let $F_{k l}$ be the subgroup of F generated by τ_{k} and τ_{l}. Let $v: W \rightarrow Z$ (resp. $\lambda: W \rightarrow X$) be the composite of the normalization $W \rightarrow X \times_{Y} Z$ of $X \times_{Y} Z$ and the projection $X \times_{Y} Z \rightarrow Z$ (resp. X). Then F naturally acts on W and the restriction $\lambda_{\mid W \backslash \lambda^{-1}\left(x_{0}\right)}$ of λ to $W \backslash \lambda^{-1}\left(x_{0}\right)$ is biholomorphic, where $\left\{x_{0}\right\}=\pi^{-1}(0)$.

Proposition 7. The number of the irreducible components (resp. the points) of $v^{-1}\left(E_{k}\right)\left(\right.$ resp. $\left.v^{-1}\left(E_{k} \cap E_{l}\right)\right)$ is equal to $\left|F / F_{k}\right|\left(\right.$ resp. $\left.\left|F / F_{k l}\right|\right)$.

Proof. Let $k \neq l$ and assume that $E_{k} \cap E_{l} \neq \varnothing$. Then $E_{k} \cap E_{l}$ consists of one point. Let V be a small neighborhood of the point $E_{k} \cap E_{l}$ and let U be a connected component of $v^{-1}(V)$. Since $E_{k}+E_{l}$ is normal crossing, $\operatorname{Gal}(U / V)=F_{k l}$ and $v^{-1}\left(E_{k}\right)$ $\cap U$ is irreducible. Hence $\tau_{l} \tilde{E}_{k}=\tilde{E}_{k}$ for any irreducible component \tilde{E}_{k} of $v^{-1}\left(E_{k}\right)$. Therefore, $g \tilde{E}_{k}=\tilde{E}_{k}$ for all g in F_{k}. Since the covering map $\tilde{E}_{k} / F_{k} \rightarrow E_{k}$ is unramified and E_{k} is simply connected, $\left\{g \in F \mid g \tilde{E}_{k}=\tilde{E}_{k}\right\}=F_{k}$.

Next, we construct the dual graph of $\tilde{E}:=\lambda^{-1}\left(x_{0}\right)=(\theta \circ v)^{-1}(0)$. Let Δ be the dual graph of $E^{\prime}:=\sum_{j=s+1}^{t} E_{j}=v(\tilde{E})$. For a vertex (resp. an edge) α of Δ, let E_{α}^{\prime} be the corresponding irreducible curve (resp. double point) of E^{\prime} and let $F_{\alpha}=F_{k}$ (resp. $F_{k l}$), if $E_{\alpha}^{\prime}=E_{k}$ (resp. $E_{k} \cap E_{l}$). Let $F_{\alpha 1}=F_{\alpha}, F_{\alpha 2}, \ldots, F_{\alpha\left|F / F_{\alpha}\right|}$ be the conjugate classes of F_{α} and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\left|F / F_{\alpha}\right|}$ be copies of α. Then we obtain a complex $\tilde{\Delta}=\bigcup_{\alpha \in \Delta} \bigcup_{i=1}^{\left|F / F_{\alpha}\right|} \alpha_{i}$, where α_{i} is a face of β_{j} if and only if α is a face of β and $F_{\alpha i} \supset F_{\beta j}$.

Proposition 8. $\tilde{\Delta}$ is homeomorphic to the dual graph of \tilde{E}.
Proof. Since Δ is a tree, we can choose an irreducible curve or a point $\tilde{E}_{\alpha 1}$ of $v^{-1}\left(E_{\alpha}^{\prime}\right)$ for each $\alpha \in \Delta$ so that $\tilde{E}_{\beta 1} \in \tilde{E}_{\alpha 1}$, if α is a proper face of β, i.e., β is an edge of Δ and α is a vertex which is an end of β. Let $\tilde{E}_{\alpha i}=g \tilde{E}_{\alpha 1}$ for $g \in F_{\alpha i}$. Then $\tilde{E}_{\beta j} \in \tilde{E}_{\alpha i}$, if and only if α is a proper face of β and $F_{\alpha i} \supset F_{\beta j}$.

We note that $v^{-1}\left(Z_{0}\right)$ is non-singular, where $Z_{0}=Z \backslash\left(\bigcup_{1 \leq k<l \leq t} E_{k} \cap E_{l}\right)$. However, the inverse images of the double points $E_{k} \cap E_{l}$ of $\sum_{j=1}^{t} E_{j}$ under the map v may be singular points on W. Let $k \neq l$ and assume that $E_{k} \cap E_{l} \neq \varnothing$. Let $\gamma: \boldsymbol{Z}^{2} \rightarrow F$ be the homomorphism sending (a, b) to $a \tau_{k}+b \tau_{l}$ and let $N=\operatorname{ker}(\gamma)$.

Proposition 9. For any point p in $v^{-1}\left(E_{k} \cap E_{l}\right)$, there exist an open neighborhood U_{p} of p and an inclusion $i: U_{p} \hookrightarrow T_{N} \operatorname{emb}\left(\left\{\right.\right.$ faces of $\left.\left.\boldsymbol{R}_{\geq 0}^{2}\right\}\right)$ such that $i(p)=\operatorname{orb}\left(\boldsymbol{R}_{\geq 0}^{2}\right)$, that $i\left(U_{p} \cap v^{-1}\left(E_{k}\right)\right) \subset \overline{\operatorname{orb}\left(\boldsymbol{R}_{\geq 0}{ }^{t}(1,0)\right)}$ and that $i\left(U_{p} \cap v^{-1}\left(E_{l}\right)\right) \subset \overline{\operatorname{orb}\left(\boldsymbol{R}_{\geq 0}{ }^{t}(0,1)\right)}$.

Proof. Let V be an open small neighborhood of the point $E_{k} \cap E_{l}$. Then there exists an inclusion $i_{0}: V \hookrightarrow T_{Z^{2}} \operatorname{emb}\left(\left\{\right.\right.$ faces of $\left.\left.\boldsymbol{R}_{\geq 0}^{2}\right\}\right)$ such that $i_{0}\left(V \cap E_{k}\right) \subset$ $\overline{\operatorname{orb}\left(\boldsymbol{R}_{\geq 0}{ }^{t}(1,0)\right)}$ and that $i_{0}\left(V \cap E_{l}\right) \subset \overline{\operatorname{orb}\left(\boldsymbol{R}_{\geq 0}{ }^{t}(0,1)\right)}$. Let U_{p} be a connected component of $v^{-1}(V)$ containning p. Then $B_{v_{\mid U_{p}}}=\left|\tau_{k}\right| E_{k}+\left|\tau_{l}\right| E_{l}$. Let $\tilde{V} \rightarrow V$ be the Abel covering constructed as in Section 2 for $Y=V$ and $D=B_{v_{\mid U_{p}}}$. Then we have an
inclusion $i_{1}: \tilde{V} \hookrightarrow T_{N^{\prime}} \operatorname{emb}\left(\left\{\right.\right.$ faces of $\left.\left.\boldsymbol{R}_{\geq 0}^{2}\right\}\right)$, where $N^{\prime}=\boldsymbol{Z}^{t}\left(\left|\tau_{k}\right|, 0\right) \oplus \boldsymbol{Z}^{t}\left(0,\left|\tau_{l}\right|\right)$ and an isomorphism $h: \operatorname{Gal}(\tilde{V} / V) \simeq \boldsymbol{Z}^{2} / N^{\prime}$ such that $i_{1} \circ g=h(g) \circ i_{1}$ for all $g \in \operatorname{Gal}(\tilde{V} / V)$. Let H be the kernel of the homomorphism $\operatorname{Gal}(\tilde{V} / V) \rightarrow F$ sending $h^{-1}((1,0))$ and $h^{-1}((0,1))$ to τ_{k} and τ_{l}, respectively. Then $U_{p} \simeq \tilde{V} / H$ and $T_{N^{\prime}} \operatorname{emb}\left(\left\{\right.\right.$ faces of $\left.\left.\boldsymbol{R}_{\geq 0}^{2}\right\}\right) /$ $h(H) \simeq T_{N} \mathrm{emb}\left(\left\{\right.\right.$ faces of $\left.\left.\boldsymbol{R}_{\geq 0}^{2}\right\}\right)$.

Let $\boldsymbol{\Theta}$ be the convex hull of $\left(\boldsymbol{R}_{\geq 0}^{2} \backslash\{0\}\right) \cap N$, let $\left\{v_{1}, \ldots, v_{q}\right\}=\partial \boldsymbol{\Theta} \cap \boldsymbol{R}_{>0}^{2} \cap N$, let v_{0} and v_{q+1} be the primitive elements in $\boldsymbol{R}_{>0}{ }^{t}(1,0) \cap N$ and $\boldsymbol{R}_{>0}{ }^{t}(0,1) \cap N$, respectively. Here we may assume that v_{j} and v_{j+1} are adjacent on $\partial \Theta$ for $0 \leq j \leq q$. Then $\overline{0 v_{j} v_{j+1}} \cap N=\left\{0, v_{j}, v_{j+1}\right\}$. Hence $\left\{v_{j}, v_{j+1}\right\}$ are bases of N. Therefore, there exist integers $c_{j}(1 \leq j \leq q)$ such that $v_{j-1}+c_{j} v_{j}+v_{j+1}=0$, if $q>0$. When $q=0, U_{p}$ is non-singular.

Proposition 10. When $q>0$, there exists a resolution $\varpi: \tilde{U}_{p} \rightarrow U_{p}$ such that each irreducible component C_{j} of the exceptional set $\varpi^{-1}(p)=\sum_{j=1}^{q} C_{j}$ is a non-singular rational curve, that $C_{j}^{2}=c_{j}$ for $1 \leq j \leq q$, that C_{j} and C_{j+1} intersect at a point for $0 \leq j \leq q$ and that $C_{j} \cap C_{k}=\varnothing$, if $j<k-1$, where C_{0} and C_{q+1} are the proper transformation of $U_{p} \cap v^{-1}\left(E_{k}\right)$ and $U_{p} \cap v^{-1}\left(E_{l}\right)$, respectively. Moreover, $(v \circ \varpi)^{*} E_{k}=$ $\sum_{j=0}^{q}\left\langle v_{j},(1,0)\right\rangle C_{j}$.

Proof. Let $\Sigma=\left\{\{0\}, \boldsymbol{R}_{\geq 0} v_{i}, \boldsymbol{R}_{\geq 0} v_{j}+\boldsymbol{R}_{\geq 0} v_{j+1} \mid 0 \leq i \leq q+1,0 \leq j \leq q\right\}$, let $W_{1}=$ $T_{N} \mathrm{emb}(\Sigma)$ and let $\varpi^{\prime}: W_{1} \rightarrow T_{N} \mathrm{emb}\left(\left\{\right.\right.$ faces of $\left.\left.\boldsymbol{R}_{\geq 0}^{2}\right\}\right)$ be the holomorphic map induced by the subdivision Σ of $\left\{\right.$ faces of $\left.\boldsymbol{R}_{\geq 0}^{2}\right\}$. Then W_{1} is non-singular. Let $C_{j}^{\prime}=\overline{\operatorname{orb}\left(\boldsymbol{R}_{\geq 0} v_{j}\right)}$ for $0 \leq j \leq q+1$. Then C_{j}^{\prime} are non-singular rational curves with $\left(C_{j}^{\prime}\right)^{2}=c_{j}$ for $1 \leq j \leq q, \quad\left(\varpi^{\prime}\right)^{-1}(i(p))=\sum_{j=1}^{q} C_{j}^{\prime}$ and C_{j}^{\prime} intersect C_{j+1}^{\prime} at a point for $0 \leq j \leq q$. Let f_{0} and f_{1} be the holomorphic functions on $W_{0}:=$ $T_{\boldsymbol{Z}^{2}} \mathrm{emb}\left(\left\{\right.\right.$ faces of $\left.\left.\boldsymbol{R}_{\geq 0}^{2}\right\}\right) \simeq \boldsymbol{C}^{2}$ and W_{1}, respectively, corresponding to $(1,0) \in N^{*} \cap$ $\left(\boldsymbol{R}_{\geq 0}^{2}\right)^{*}$. Then $\left[f_{0}\right]=\overline{\operatorname{orb}\left(\boldsymbol{R}_{\geq 0}{ }^{t}(1,0)\right)}$ and $\left[f_{1}\right]=\sum_{j=0}^{q}\left\langle v_{j},(1,0)\right\rangle C_{j}^{\prime}$.

Let $C_{p}=\sum_{j=1}^{q}\left\langle v_{j},(1,0)\right\rangle C_{j}$ and let $d_{k l}=\left\langle v_{1},(1,0)\right\rangle /\left\langle v_{0},(1,0)\right\rangle$. Then $C_{0} \cdot C_{p}=$ $\left|\tau_{k}\right| d_{k l}$, because $v_{0}=\left(\left|\tau_{k}\right|, 0\right)$. Let

$$
\left.\tilde{W}=(W\rangle_{0 \leq k<l \leq t} v^{-1}\left(E_{k} \cap E_{l}\right)\right) \cup \bigcup_{0 \leq k<l \leq t}\left(\bigcup_{p \in v^{-1}\left(E_{k} \cap E_{l}\right)} \tilde{U}_{p}\right),
$$

where $\tilde{U}_{p}=U_{p}$ if U_{p} is non-singular and let $\psi: \tilde{W} \rightarrow W$ be the natural projection. Then $\lambda \circ \psi: \tilde{W} \rightarrow X$ is a resolution of X.

Proposition 11. For each $k \geq s+1$ and for each irreducible component \tilde{E}_{k} of the proper transformation of E_{k} under the map $v \circ \psi$,

$$
\tilde{E}_{k}^{2}=\left|F_{k}\right|\left(\frac{E_{k}^{2}}{\left|\tau_{k}\right|^{2}}-\sum_{k \neq l, E_{k} \cap E_{l} \neq \varnothing} \frac{d_{k l}}{\left|F_{k l}\right|}\right)
$$

and

$$
g\left(\tilde{E}_{k}\right)=1-\frac{\left|F_{k}\right|}{\left|\tau_{k}\right|}+\frac{\left|F_{k}\right|}{2} \sum_{k \neq l, E_{k} \cap E_{l} \neq \varnothing}\left(\frac{1}{\left|\tau_{k}\right|}-\frac{1}{\left|F_{k l}\right|}\right) .
$$

Proof. First, we note that the degree of the covering $\tilde{E}_{k} \rightarrow E_{k}$ is equal to $\left|F_{k}\right| /\left|\tau_{k}\right|$, because $F_{k}=\left\{g \in F \mid g \tilde{E}_{k}=\tilde{E}_{k}\right\}$ and $\left\langle\tau_{k}\right\rangle=\left\{g \in F \mid g x=x\right.$ for all $\left.x \in \tilde{E}_{k}\right\}$. Let U_{k} be a small neighborhood of E_{k}. Then there exists a holomorphic function f on U_{k} such that the zero divisor $[f]$ of f is $E_{k}+E^{\prime}$, that $E^{\prime} \cap E_{l}=\varnothing$ for $l \neq k$ and that E^{\prime} intersects E_{k} transversally at $-E_{k}^{2}$ points, because E_{k} is a non-singular rational curve and $E_{k}^{2}<0$. Let \tilde{U}_{k} be the connected component of $(v \circ \psi)^{-1}\left(U_{k}\right)$ containing \tilde{E}_{k}. Then

$$
\left[(\nu \circ \psi)_{\mid \tilde{U}_{k}}^{*} f\right]=\left|\tau_{k}\right| \tilde{E}_{k}+\tilde{E}^{\prime}+\sum_{E_{k} \cap E_{l} \neq \varnothing} \sum_{p \in v_{| |\left(\tilde{U}_{k}\right)}^{-1}\left(E_{k} \cap E_{l}\right)} C_{p}
$$

and $\tilde{E}^{\prime}=(v \circ \psi)_{\mid \tilde{U}_{k}}^{-1}\left(E^{\prime}\right)$ intersects \tilde{E}_{k} transversally at $-E_{k}^{2}\left|F_{k}\right| /\left|\tau_{k}\right|$ points. Note that $v_{\mid \psi\left(\tilde{U}_{k}\right)}^{-1}\left(E_{k} \cap E_{l}\right)$ consists of $\left|F_{k}\right| /\left|F_{k l}\right|$ points. The first equality follows from these facts.

On the other hand, by Riemann-Hurwitz formula, we have

$$
2 g\left(\tilde{E}_{k}\right)-2=-2 \frac{\left|F_{k}\right|}{\left|\tau_{k}\right|}+\sum_{E_{k} \cap E_{l} \neq \varnothing} \frac{\left|F_{k}\right|}{\left|F_{k l}\right|}\left(\frac{\left|F_{k l}\right|}{\left|\tau_{k}\right|}-1\right) .
$$

This implies the second equality.
We can obtain the weighted dual graph of the exceptional set of the resolution $\lambda \circ \psi$: $\tilde{W} \rightarrow X$, by Propositions 8, 10 and (11.

Example 6. Let $D=B_{\pi}$ in Example 2 in Section 1. If $H=\{i d\},\left\langle\sigma_{1} \sigma_{2}\right\rangle$ or $\left\langle\sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{3}\right\rangle$, then X is a simple elliptic singularity of multiplicity 4,2 or 1 . If $H=\left\langle\sigma_{1} \sigma_{2} \sigma_{3}\right\rangle$, then X is a log-canonical singularity with a resolution the dual graph of whose exceptional set is the following:

Example 7. Let $n=2$ and let $D=2 D_{1}+2 D_{2}+2 D_{3}+2 D_{4}$, where D_{1}, D_{2}, D_{3} and D_{4} are the divisors on $Y=\left\{\left(z_{1}, z_{2}\right) \in \boldsymbol{C}^{2}| | z_{1}\left|,\left|z_{2}\right|<1\right\}\right.$ defined by $z_{1}=0, z_{1}+z_{2}^{2}=0$, $z_{2}=0$ and $z_{2}+z_{1}^{2}=0$, respectively. If $H=\{0\},\left\langle\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}\right\rangle$ or $\left\langle\sigma_{1} \sigma_{2}\right\rangle$, then X is a cusp singularity with a resolution the dual graph of whose exceptional set is the following:

If $H=\left\langle\sigma_{1} \sigma_{2} \sigma_{3}\right\rangle,\left\langle\sigma_{1} \sigma_{2} \sigma_{3}, \sigma_{2} \sigma_{3} \sigma_{4}\right\rangle$ or $\left\langle\sigma_{1} \sigma_{2} \sigma_{3}, \sigma_{1} \sigma_{2} \sigma_{4}\right\rangle$, then X is a log-canonical singularity with a resolution the dual graph of whose exceptional set is the following:

4. Quasi-Gorensteiness.

Let Y be an open neighborhood of 0 in C^{n}, let D be a divisor on Y and let $\mu: \tilde{Y} \rightarrow Y$ be the Abel covering constructed as in Section 2. Since \tilde{Y} is the analytic subset in $\boldsymbol{C}^{s} \times Y$ defined by $w_{1}^{r_{1}}-f_{1}=\cdots=w_{s}^{r_{s}}-f_{s}=0$,

$$
\phi=\frac{\mu^{*}\left(d z_{1} \wedge d z_{2} \wedge \cdots \wedge d z_{n}\right)}{w_{1}^{r_{1}-1} w_{2}^{r_{2}-1} \cdots w_{s}^{r_{s}-1}}
$$

is a nowhere vanishing holomorphic n-form on $\tilde{Y}_{0}=\mu^{-1}\left(Y_{0}\right)$ and $\sigma_{j}^{*} \phi=$ $\exp \left(2 \pi \sqrt{-1} / r_{j}\right) \phi$, where $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is a local coordinate system of Y and $Y_{0}=Y \backslash \operatorname{Sing}\left(D_{\text {red }}\right)$. Let $\lambda: \tilde{W} \rightarrow \tilde{Y}_{0}$ be a universal covering and let $\chi: \operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$ $\rightarrow \boldsymbol{C}^{\times}$be the composite of the quotient map $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right) \rightarrow \operatorname{Gal}\left(\tilde{Y}_{0} / Y_{0}\right)$ and the homomorphism $\operatorname{Gal}\left(\tilde{Y}_{0} / Y_{0}\right) \rightarrow \boldsymbol{C}^{\times}$sending σ_{j} to $\exp \left(2 \pi \sqrt{-1} / r_{j}\right)$. Then $g^{*}\left(\lambda^{*} \phi\right)=$ $\chi(g)\left(\lambda^{*} \phi\right)$ for $g \in \operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$. On the other hand, for any Galois covering $\pi: X \rightarrow Y$ with $B_{\pi}=D$, there exists a subgroup H of $\operatorname{Gal}\left(\tilde{W} / Y_{0}\right)$ with $\pi^{-1}\left(Y_{0}\right) \simeq \tilde{W} / H$, by Theorem 6. Then we have:

Proposition 12. X is a quasi-Gorenstein singularity, if and only if $H \subset \operatorname{ker}(\chi)$.

References

[1] A. Dimca, On analytic abelian coverings, Math. Ann., 279 (1988), 501-515
[2] S. Roan, Branched covering spaces, Chinese J. Math., 7 (1979), 177-206
[3] M. Tomari and K. Watanabe, On L^{2}-plurigenera of not log-canonical Gorenstein isolated singularities, Proceedings of the Amer. Math. Soc., Vol. 109, No. 4 (1990), 931-935
[4] K. Watanabe, On plurigenera of normal isolated singularities I, Math. Ann., 250 (1980), 65-94

[^0]: 1991 Mathematics Subject Classification: Primary 32S05; Secondary 14E20, 32S45.
 Key Words and Phrases: Singularities, Galois coverings, log-canonical, resolutions.

