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Abstract. We give a necessary condition for Galois covering singularities to be log-

terminal or log-canonical singularities, which is also su‰cient under a certain restriction

on the branch loci of the covering maps. We also give a method constructing explicitly

resolutions of 2-dimensional Abel covering singularities.

Introduction.

Let Y be an open neighborhood of 0 in C
n and let p : X ! Y be a (branched) finite

Galois covering of Y, i.e., p is a proper finite holomorphic map from a normal analytic

space X to Y and AutðpÞ :¼ fg A AutðXÞ j p � g ¼ pg acts transitively on the fiber pÿ1ðyÞ

of p for each point y in Y. We assume that p
ÿ1ð0Þ consists of only one point x0.

Professor Namba proposed to call such a singularity ðX ; x0Þ a Galois singularity and

to study it. Let B1;B2; . . . ;Bs be the irreducible components of branch locus fy A Y j

ap
ÿ1ðyÞ < deg pg ¼ pðfx A X j p is not biholomorphic around xgÞ of p and let rj be

the ramification index of p along Bj, i.e., rj ¼ deg p=maxfap
ÿ1ðyÞ j y A Bjg. Here

we note that for any point x in p
ÿ1ðBjnSingðB1 þ � � � þ BsÞÞ, p is expressed as

ðz1; z2; . . . ; znÞ 7! ðz
rj
1 ; z2; . . . ; znÞ by suitable local coordinate systems on neighborhoods

of x and pðxÞ (see [2]). Let Bp ¼ r1B1 þ r2B2 þ � � � þ rsBs. We are interested in the

following two problems.

Problem 1. Describe the properties and invariants of the singularity ðX ; x0Þ using

those of Bp and the covering transformation group GalðX=Y Þ :¼ AutðpÞ.

Problem 2. Determine all Galois coverings p : ðX ; x0Þ ! ðY ; 0Þ with Bp ¼ D for a

given divisor D on an open neighborhood Y of 0 in C
n.

Dimca showed that the set of all Abel coverings p : X ! Y of Y with Bp ¼ D is

completely described by D (Theorem 3.3 in [1]).

In this paper, we give a partial answer to these problems. In Section 1, we give a

necessary condition for ðX ; x0Þ to be a log-terminal or log-canonical singularity, which is

also su‰cient under a certain restriction on Bp. In Section 2, we give some results on

Problem 2 in the non Abel covering case. In Section 3, we construct resolutions of 2-

dimensional Abel covering singularities. The self intersection number, the genus of

each irreducible component and the dual graphs of their exceptional sets are explicitly

obtained from the data on Bp and GalðX=Y Þ. In Section 4, we give a necessary and

su‰cient condition for a Galois covering singularity to be a quasi-Gorenstein singularity.
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I would like to thank the refree who pointed out me the existence of [1].

1. On Problem 1.

Let p : X ! Y be a finite Galois covering of an open neighborhood Y of 0 in

C n and assume that pÿ1ð0Þ ¼ fx0g. Let Bp ¼ r1B1 þ r2B2 þ � � � þ rsBs be as in

Introduction.

Proposition 1. ðX ; x0Þ is a Q-Gorenstein singularity, i.e., there exists a nowhere

vanishing holomorphic r-ple n-form on XnSingðX Þ, where r is the least common multiple of

r1; r2; . . . and rs.

Proof. Let ðz1; z2; . . . ; znÞ be a coordinate system of C n and let

f ¼
ðdz1 5 dz2 5 � � � 5 dznÞ

r

f
rðr1ÿ1Þ=r1
1 f

rðr2ÿ1Þ=r2
2 � � � f rðrsÿ1Þ=rs

s

;

where f1; f2; . . . and fs are defining equations of B1;B2; . . . and Bs, respectively. Then

p�f is a nowhere vanishing holomorphic r-ple n-form on X npÿ1ðSingðB1 þ � � � þ BsÞÞ.

Since the codimension of SingðB1 þ � � � þ BsÞ is greater than 1, p�f is extended to

X nSingðXÞ, as a holomorphic r-ple n-form. r

By the above proposition, we can classify the singularity ðX ; x0Þ into the following

three types (see [3]). Let l : ð ~XX ;EÞ ! ðX ; x0Þ be a resolution of ðX ; x0Þ and let c be a

nowhere vanishing holomorphic r-ple n-form on X nSingðXÞ.

I. ðX ; x0Þ is log-terminal, i.e., the vanishing order of l�c is greater than ÿr along

all irreducible components of the exceptional set E of l.

II. ðX ; x0Þ is not log-terminal and log-canonical, i.e., the vanishing order of l�c is

not smaller than ÿr along all irreducible components of the exceptional set E of l and

equal to ÿr along at least one irredubcible component.

III. ðX ; x0Þ is not log-canonical and then limm!y sup dmðX ; x0Þ=m
nÿ1 > 0.

For example, if a cone V over a projective manifold M is a Galois covering

singularity, then it is of type I, II or III, accordingly as kðMÞ ¼ ÿy, 0 or dimM.

While, if 0 < kðMÞ < dimM, then V never can be a Galois covering singularity.

For a holomorphic function f ¼
P

v AZ n
V0

cvz
v on Y, let Suppð f Þ ¼ fv A Z n

V0 j cv 6¼ 0g

and let Gþð f Þ be the Newton polytope of f , i.e., the convex hull of 6
v A Suppð f Þ

ðvþ Rn
V0Þ, where z tðv1; v2; . . . ; vnÞ ¼ zv11 zv22 � � � zvnn .

Definition.

GþðBpÞ ¼ 1ÿ
1

r1

� �

Gþð f1Þ þ 1ÿ
1

r2

� �

Gþð f 2Þ þ � � � þ 1ÿ
1

rs

� �

Gþð f sÞ;

where f1; f2; . . . and fs are defining equations of B1;B2; . . . and Bs, respectively.

For a face D of GþðBpÞ, there exists a point u in Rn
V0 such that D ¼ DðuÞ :¼

fv A GþðBpÞ j hv; ui ¼ dðuÞg, where dðuÞ ¼ minfhv; ui j v A GþðBpÞg. Let Dj ¼ fv A Gþ

ð fjÞ j hv; ui ¼ djðuÞg, where djðuÞ ¼ minfhv; ui j v A Gþð fjÞg. Then dðuÞ ¼
Ps

j¼1ð1ÿ 1=rjÞ

djðuÞ and D ¼ ð1ÿ 1=r1ÞD1 þ ð1ÿ 1=r2ÞD2 þ � � � þ ð1ÿ 1=rsÞDs. Here we note that Dj

are determined uniquely by D, although u with D ¼ DðuÞ are not unique.
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Theorem 2. If ðX ; x0Þ is log-canonical (resp. log-terminal), then tð1; 1; . . . ; 1Þ A

GþðBpÞ (resp. IntðGþðBpÞÞ).

Moreover, the converse holds, if f1; f2; . . . and fs satisfy the condition:

ð�Þ For each proper face D of GþðBpÞ, the varieties in ðC�Þn defined by f jD ¼ 0

are non-singular and cross transversally each other, where fjD are the partial sums
P

v AZ n
V0VDj

cvz
v of fj ¼

P

v A Z
n
V0

cvz
v on Dj.

Proof. Let G �ðBpÞ be the dual Newton diagram of GþðBpÞ, i.e., G �ðBpÞ ¼

fD� jD are faces of GþðBpÞg, where D� ¼ fu A R
n
V0 jDðuÞIDg. Let

l : TZ
n embðG �ðBpÞÞ ! TZ

n embðffaces of R
n
V0gÞ ¼ C

n

be the holomorphic map between toric varieties induced from the subdivision G �ðBpÞ

of ffaces of R
n
V0g and let Z ¼ lÿ1ðYÞ. Let Es ¼ orbðsÞ for 1-dimensional cones s in

G �ðBpÞ. Then the vanishing order as along Es of the pull-back l�f of f in the proof of

Proposition 1 is equal to

r ÿ1þ h tð1; 1; . . . ; 1Þ; uiÿ
X

s

j¼1

1ÿ
1

rj

� �

djðuÞ

 !

;

because the vanishing order of l�ðdz1=z1 5 dz2=z2 5 � � � 5 dzn=znÞ is equal to ÿ1 along

all Es, where u are the primitive elements in Z
n spanning s. Hence as V ÿ r (resp.

>ÿr) for all 1-dimensional cones s in G �ðBpÞ, if and only if tð1; 1; . . . ; 1Þ A GþðBpÞ

(resp. A IntðGþðBpÞÞ).

On the other hand, let W be the normalization of X �Y Z, let ~pp : W ! Z and

y : W ! X be the projections. For any 1-dimensional cone s in G �ðBpÞ and for any

irreducible component Fs of ~ppÿ1ðEsÞ, the vanishing order ðas þ rÞrs ÿ r of ðp � yÞ�f ¼

ðl � ~ppÞ�f along Fs is greater than (resp. equal to) ÿr, if and only if as is so, where rs is

the ramification index of ~pp along Es.

Next, assume that the condition ð�Þ is satisfied. Take a subdivision S of G �ðBpÞ

consisting of non-singular cones and replace G �ðBpÞ with S in the above definition of l.

Then Z is non-singular and lÿ1ðB1 þ B2 þ � � � þ BsÞ is normal crossing near lÿ1ð0Þ.

Hence for any point p in lÿ1ð0Þ, there exist an open neighborhood Up of p and a local

coordinate system ðz1; z2; . . . ; znÞ on Up such that lÿ1ðB1 þ B2 þ � � � þ BsÞVUp H

fz1z2 � � � zn ¼ 0g. Then f ¼ ðl�fÞjUp
=ðdz1=z1 5 � � � 5 dzn=znÞ

r is a holomorphic func-

tion on Up, if the vanishing order as of l�f is not smaller than ÿr along all irreducible

components Es of lÿ1ð0Þ and vanishes along lÿ1ðB1 þ B2 þ � � � þ BsÞVUp, if as is

greater than ÿr. Therefore, W has only toric quotient singularities and for any toric

resolution $ : V ! W of W, the vanishing order of ðl � ~pp �$Þ�f is greater or not

smaller than ÿr along all irreducible components of ðy �$Þÿ1ðx0Þ, if that of l�f is so

along those of lÿ1ð0Þ, because ð~pp �$Þ�
jð~pp �$Þÿ1ðUpÞ

ðdz1=z1 5 � � � 5 dzn=znÞ has poles of

order 1 along all irreducible components of ð~pp �$Þÿ1ðfz1z2 � � � zn ¼ 0gÞ. r

Example 1. If n ¼ 2 and Bp ¼ r1B1 þ r2B2 þ r3B3, where B1;B2;B3 are defined by

z1 ¼ 0, z2 ¼ 0, za1 þ zb2 ¼ 0 (g.c.d.ða; bÞ ¼ 1), respectively and r1; r2; r3 are positive

integers, then tð1; 1Þ A IntðGþðBpÞÞ (resp. qGþðBpÞ), if and only if
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1

ar1
þ 1

br2
þ 1

r3
> 1 ðresp: ¼ 1Þ:

Here, the case that r1 ¼ 1 (resp. r1 ¼ r2 ¼ 1) implies that Bp ¼ r2B2 þ r3B3 (resp. r3B3).

Example 2. If n ¼ 2 and Bp ¼ 2fz1ðz1 þ z22Þðz1 þ cz22Þ ¼ 0g ðc 6¼ 0; 1Þ, then tð1; 1Þ
is on a 1-dimensional face of GþðBpÞ.

Example 3. If n ¼ 2 and Bp ¼ 2fðz21 þ z
p
2 Þðz22 ÿ z

q
1 Þ ¼ 0g ðp; qV 2Þ, then tð1; 1Þ A

qGþðBpÞ.

Example 4. If n ¼ 3 and Bp ¼ 2fðz21 þ z42 þ z43Þðz41 þ z22 þ z43Þðz41 þ z42 þ z23Þ ¼ 0g,
then tð1; 1; 1Þ is a vertex of qGþðBpÞ.

2. On Problem 2.

Let Y be a simply connected open neighborhood of 0 in C
n and let D ¼ r1D1 þ

r2D2 þ � � � þ rsDs be a divisor on Y. Here, we assume that rj are integers greater than 1

and that Dj are irreducible reduced. Let

~YY ¼ fðw1;w2; . . . ;ws; yÞ A C
s � Y jw r1

1 ÿ f1ðyÞ ¼ � � � ¼ w rs
s ÿ fsðyÞ ¼ 0g;

where f1; f2; . . . and fs are defining equations of D1;D2; . . . and Ds, respectively, let sj be

the automorphisms of ~YY defined by

sj : ðw1; . . . ;ws; yÞ 7! ðw1; . . . ;wjÿ1; ejwj;wjþ1; . . . ;ws; yÞ;

where ej ¼ expð2p
ffiffiffiffiffiffiffi

ÿ1
p

=rjÞ and let m : ~YY ! Y be the projection. Then m is an Abel

covering of Y with Bm ¼ D and the covering transformation group Galð ~YY=Y Þ is

generated by s1, s2; . . . ; ss.

Proposition 3. ~YY is a normal.

Proof. First, we note that ~YY0 :¼ mÿ1ðY0Þ is non-singular, where Y0 ¼ Y nSingðDredÞ.
Let U be an open neighborhood of 0 A Y , let h be a holomorphic function on ~UU0 :¼
mÿ1ðU VY0Þ and let

hc1;...;cs ¼
X

0Ua1<r1;...;0Uas<rs

eÿc1a1
1 � � � eÿcsas

s ðsa1
1 � � � sas

s Þ
�
h;

for 0U c1 < r1; . . . ; 0U cs < rs. Then

X

0Uc1<r1;...;0Ucs<rs

hc1;...;cs ¼ r1 � � � rsh

and s�
j hc1;...;cs ¼ e

cj
j hc1;...;cs . Hence hc1;...;cs=ðwc1

1 � � �wcs
s Þ is a Galð ~YY=YÞ-invariant holo-

morphic function on ~UU0. Since Y is non-singular and the codimension of Y nY0 ¼
SingðDredÞ is greater than 1, there exists a holomorphic function hc1;...;cs on U the pull-

back m�hc1;...;csjU0
of whose restriction to U0 :¼ U VY0 is equal to hc1;...;cs=ðwc1

1 � � �wcs
s Þ.

Then h ¼ 1=ðr1 � � � rsÞ
P

m�hc1;...;csw
c1
1 � � �wcs

s is a holomorphic function on mÿ1ðUÞ and

hj ~UU0
¼ h. r
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Let H be a subgroup of Galð ~YY=YÞ and let mH : ~YY=H ! Y be the natural map

induced by m. Then mH is an Abel covering. Moreover, BmH ¼ D, if and only if

s
aj
j B H for 1U aj < rj. By Theorem 3.3 in [1], we have:

Theorem 4. For any Abel covering p : X ! Y with Bp ¼ D, there exist a subgroup

H of Galð ~YY=YÞ and a biholomorphic map f : X ! ~YY=H such that mH � f ¼ p.

Next, let Y0 ¼ Y nSingðDredÞ and let ~YY0 ¼ mÿ1ðY0Þ. Let l : ~WW ! ~YY0 be a universal

covering.

Proposition 5. m � l : ~WW!Y0 is a Galois covering. The kernel of Galð ~WW=Y0Þ !

Galð ~YY0=Y0Þ is the commutators group of Galð ~WW=Y0Þ.

Proof. There exists an automorphism ~gg of ~WW satisfying l �~gg ¼ g � l for each

element g in Galð ~YY=YÞ, because l and g � l are both universal coverings of ~YY0. Hence

the subgroup of Autð ~WWÞ generated by ~gg for all g A Galð ~YY=Y Þ and p1ð ~YY0Þ acts tran-

sitively on the fibers of m � l.

Next, let H be the commutators group of Galð ~WW=Y0Þ. Since Galð ~YY0=Y0Þ is an

abelian group, there exists a surjective homomorphism Galð ~WW=Y0Þ=H ! Galð ~YY0=Y0Þ.

Suppose that this homomorphism is not isomorphic. Then the degree of the Abel

covering ~WW=H ! Y0 induced by m � l is greater than degðmÞ and the ramification index

along Dj of the covering is equal to rj . However, replacing Y in the proof of Theorem

4 with Y0, we see that the degree of any Abel covering p 0 of Y0 with Bp 0 ¼ Y0 VD is not

greater than degðmÞ, a contradiction. r

Theorem 6. For any Galois covering p : X ! Y with Bp ¼ D, there exist a subgroup

H of Galð ~WW=Y0Þ and a biholomorphic map t : ~WW=H ! X0 :¼ pÿ1ðY0Þ such that p � t :
~WW=H ! Y0 is equal to the natural map induced by m � l.

Proof. Let W 0 be an irreducible component of ~WW �Y0
X0. Then the composite of

the normalization of W 0 and the projection W 0 ! ~WW is an unramified covering. Hence

W 0 ! ~WW is biholomorphic, because ~WW is simply connected. Next, let G ¼ fg A

Galð ~WW=Y0ÞlGalðX0=Y0Þ j gW
0 ¼ W 0g and let p1 : G ! Galð ~WW=Y0Þ (resp. p2 : G !

GalðX0=Y0Þ) be the restriction to G of the projection Galð ~WW=Y0ÞlGalðX0=Y0Þ !

Galð ~WW=Y0Þ (resp. GalðX0=Y0Þ). Then p1 is an isomorphism and p2 is a surjection.

Hence the map ~WW=H ! X0 induced by the composite ~WW FW 0 ! X0 is biholomorphic,

where H ¼ p1ðkerðp2ÞÞ. r

Example 5. Let D ¼ Bp in Example 1 in Section 1. Assume that 1=ðar1Þþ

1=ðbr2Þ þ 1=r3 > 1. Then ~YY is log-terminal, by Theorem 2. Hence ~YY is a quotient

singularity because n ¼ 2 (see [4]). Therefore, Galð ~WW=Y0Þ is finite and ~WW is biho-

lomorphic to the complement of a point of a non-singular surface. Indeed, there exists

a finite subgroup G of GLð2;CÞ isomorphic to Galð ~WW=Y0Þ such that C
2=G is non-

singular and that B½C 2!C
2=G� FD. In the table below, we show generators of the group

G. Let

Ar ¼
rr 0

0 rr

� �

; Br ¼
rr 0

0 rÿ1
r

� �

; C ¼
0 1

1 0

� �

;
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S ¼ 1

2

ÿ1þ
ffiffiffiffiffiffiffi

ÿ1
p

ÿ1þ
ffiffiffiffiffiffiffi

ÿ1
p

1þ
ffiffiffiffiffiffiffi

ÿ1
p

ÿ1ÿ
ffiffiffiffiffiffiffi

ÿ1
p

0

@

1

A; V ¼

ffiffiffiffiffiffiffi

ÿ1
p

2
b ÿ

ffiffiffiffiffiffiffi

ÿ1
p

g

ÿb ÿ
ffiffiffiffiffiffiffi

ÿ1
p

g ÿ
ffiffiffiffiffiffiffi

ÿ1
p

2

0

B

B

B

@

1

C

C

C

A

;

where rr ¼ expð2p
ffiffiffiffiffiffiffi

ÿ1
p

=rÞ, b ¼ ð1ÿ
ffiffiffi

5
p

Þ=4 and g ¼ ð1þ
ffiffiffi

5
p

Þ=4.

For subgroups H of G such that B½C 2=H!C
2=G� ¼ B½C 2!C

2=G�, i.e., H have no fixed points

on C
2nf0g, the singularities C

2=H are rational double points of type Dl ;E6;E7;E8,

cyclic quotient singularities and a singularity with a resolution the dual graph of whose

exceptional set is the following:

When 1=ðar1Þ þ 1=ðbr2Þ þ 1=r3 ¼ 1, ~YY is a simple elliptic singularity.

3. Resolutions of two-dimensional Abel covering singularities.

We keep the notations of the previous section. Let n ¼ 2 and let H be a subgroup

of Galð ~YY=YÞ satisfying the condition: s
aj
j B H for 1U ajU rj ÿ 1. Let X ¼ ~YY=H and

let p ¼ mH . Then p : X ! Y is an Abel covering with Bp ¼ D. We may assume that

Y0 ¼ Y nf0g, by replacing Y with an open small neighborhood of 0. Let y : Z ! Y be

an embedded resolution of D, i.e., y is a holomorphic map such that the restriction

yjyÿ1ðY0Þ of y to yÿ1ðY0Þ is biholomorphic and that the reduced inverse image divisor

yÿ1ðDÞred ¼
P t

j¼1 Ej of D is normal crossing. Here we may assume that Ej are the

proper transformations of Dj under the the map y for 1U jU s and that Ej are

irreducible for sþ 1U jU t. Then yÿ1ð0Þ ¼
P t

j¼sþ1 Ej, because Y0 ¼ Y nf0g. Let ~ssj
be elements in p1ðY nDÞ rounding Ej once in the positive direction and let tj be their

images rð~ssjÞ under the quotient map r : p1ðY nDÞ ! F :¼ GalðX=YÞ. Then tj are

a b r1 r2 r3 Generators of G a b r1 r2 r3 Generators of G

1 * 2 * 2 A2r2B2r2 , B2br2 , C 1 4 2 1 3 A6, A12B8, S

2 odd 1 * 2 A2r2B2r2 , Bbr2 , C 2 3 2 1 2 A4, B8, S

1 * 2 1 2 B2b, C 2 3 1 1 4 A4, A8B8, S

2 odd 1 1 2 Bb, C 3 4 1 1 2 A4B8, S

1 1 2 3 3 A12, B4, S 1 1 2 3 5 A60, B4, S, V

1 2 3 1 3 A6, B4, S 1 2 3 1 5 A30, B4, S, V

1 3 3 1 2 A4, B4, A12S 1 3 2 1 5 A20, B4, S, V

2 3 1 1 3 B4, A6S 1 5 2 1 3 A12, B4, S, V

1 1 2 3 4 A24, B8, S 2 3 1 1 5 A10, B4, S, V

1 2 3 2 2 A12, B8, S 2 5 1 1 3 A6, B4, S, V

1 2 3 1 4 A12, A24B8, S 3 5 1 1 2 A4, B4, S, V

1 3 2 1 4 A8, B8, S
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the images of sj under the quotient map Galð ~YY=YÞ ! F for 1U jU s and

1=ð2p
ffiffiffiffiffiffiffi

ÿ1
p

Þ
Ð

~ssj
dfi=fi ¼ dij for 1U i, jU s. On the other hand, the zero divisors ½y� fi� of

y� fi are expressed as Ei þ
P t

j¼sþ1 cijEj, where cij are positive integers. Then

1=ð2p
ffiffiffiffiffiffiffi

ÿ1
p

Þ
Ð

~ssj
dfi=fi ¼ cij . Hence tj ¼

Ps
i¼1 cijti for sþ 1U jU t. For each positive

integer kU t, let Fk be the subgroup of F generated by tk and all tj with

Ej VEk 6¼ q. When k 6¼ l and Ek VEl 6¼ q, let Fkl be the subgroup of F generated by

tk and tl . Let n : W ! Z (resp. l : W ! X ) be the composite of the normalization

W ! X �Y Z of X �Y Z and the projection X �Y Z ! Z (resp. X). Then F naturally

acts on W and the restriction ljWnlÿ1ðx0Þ of l to Wnlÿ1ðx0Þ is biholomorphic, where

fx0g ¼ pÿ1ð0Þ.
Proposition 7. The number of the irreducible components (resp. the points) of

nÿ1ðEkÞ (resp. nÿ1ðEk VElÞ) is equal to jF=Fkj (resp. jF=Fkl j).

Proof. Let k 6¼ l and assume that Ek VEl 6¼ q. Then Ek VEl consists of one

point. Let V be a small neighborhood of the point Ek VEl and let U be a connected

component of nÿ1ðVÞ. Since Ek þ El is normal crossing, GalðU=VÞ ¼ Fkl and nÿ1ðEkÞ
VU is irreducible. Hence tl ~EEk ¼ ~EEk for any irreducible component ~EEk of n

ÿ1ðEkÞ. There-

fore, g ~EEk ¼ ~EEk for all g in Fk. Since the covering map ~EEk=Fk ! Ek is unramified and

Ek is simply connected, fg A F j g ~EEk ¼ ~EEkg ¼ Fk. r

Next, we construct the dual graph of ~EE :¼ lÿ1ðx0Þ ¼ ðy � nÞÿ1ð0Þ. Let D be the

dual graph of E 0
:¼ P t

j¼sþ1 Ej ¼ nð ~EEÞ. For a vertex (resp. an edge) a of D, let E 0
a be the

corresponding irreducible curve (resp. double point) of E 0 and let Fa ¼ Fk (resp. Fkl), if

E 0
a ¼ Ek (resp. Ek VEl). Let Fa1 ¼ Fa;Fa2; . . . ;FajF=Faj be the conjugate classes of Fa and

let a1; a2; . . . ; ajF=Faj be copies of a. Then we obtain a complex ~DD ¼ 6
a AD

6jF=Faj
i¼1

ai,

where ai is a face of bj if and only if a is a face of b and Fai IFbj.

Proposition 8. ~DD is homeomorphic to the dual graph of ~EE.

Proof. Since D is a tree, we can choose an irreducible curve or a point ~EEa1 of

nÿ1ðE 0
aÞ for each a A D so that ~EEb1 A ~EEa1, if a is a proper face of b , i.e., b is an edge of D

and a is a vertex which is an end of b. Let ~EEai ¼ g ~EEa1 for g A Fai. Then ~EEbj A ~EEai, if

and only if a is a proper face of b and Fai IFbj. r

We note that nÿ1ðZ0Þ is non-singular, where Z0 ¼ Znð6
1Uk<lUt

Ek VElÞ. How-

ever, the inverse images of the double points Ek VEl of
P t

j¼1 Ej under the map n may be

singular points on W. Let k 6¼ l and assume that Ek VEl 6¼ q. Let g : Z 2 ! F be the

homomorphism sending ða; bÞ to atk þ btl and let N ¼ kerðgÞ.

Proposition 9. For any point p in nÿ1ðEk VElÞ, there exist an open neighborhood Up

of p and an inclusion i : Up ,!TN embðffaces of R
2
V0gÞ such that iðpÞ ¼ orbðR2

V0Þ, that

iðUp V nÿ1ðEkÞÞH orbðRV0
tð1; 0ÞÞ and that iðUp V nÿ1ðElÞÞH orbðRV0

tð0; 1ÞÞ.
Proof. Let V be an open small neighborhood of the point Ek VEl . Then

there exists an inclusion i0 : V ,!T
Z

2 embðffaces of R
2
V0gÞ such that i0ðV VEkÞH

orbðRV 0
tð1; 0ÞÞ and that i0ðV VElÞH orbðRV0

tð0; 1ÞÞ. Let Up be a connected com-

ponent of nÿ1ðVÞ containning p. Then BnjUp
¼ jtkjEk þ jtl jEl . Let ~VV ! V be the

Abel covering constructed as in Section 2 for Y ¼ V and D ¼ BnjUp
. Then we have an
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inclusion i1 : ~VV ,!TN 0 embðffaces of R
2
V0gÞ, where N 0 ¼ Z

tðjtkj; 0ÞlZ
tð0; jtl jÞ and an

isomorphism h : Galð ~VV=VÞFZ
2=N 0 such that i1 � g ¼ hðgÞ � i1 for all g A Galð ~VV=VÞ.

Let H be the kernel of the homomorphism Galð ~VV=VÞ ! F sending hÿ1ðð1; 0ÞÞ and

hÿ1ðð0; 1ÞÞ to tk and tl , respectively. Then Up F ~VV=H and TN 0 embðffaces of R
2
V0gÞ=

hðHÞFTN embðffaces of R
2
V0gÞ. r

Let Y be the convex hull of ðR2
V0nf0gÞVN, let fv1; . . . ; vqg ¼ qYVR

2
>0 VN, let v0

and vqþ1 be the primitive elements in R>0
tð1; 0ÞVN and R>0

tð0; 1ÞVN, respectively.

Here we may assume that vj and vjþ1 are adjacent on qY for 0U jU q. Then

0vjvjþ1 VN ¼ f0; vj; vjþ1g. Hence fvj; vjþ1g are bases of N. Therefore, there exist

integers cj ð1U jU qÞ such that vjÿ1 þ cjvj þ vjþ1 ¼ 0, if q > 0. When q ¼ 0, Up is

non-singular.

Proposition 10. When q > 0, there exists a resolution $ : ~UUp ! Up such that each

irreducible component Cj of the exceptional set $ÿ1ðpÞ ¼
Pq

j¼1 Cj is a non-singular

rational curve, that C 2
j ¼ cj for 1U jU q, that Cj and Cjþ1 intersect at a point for

0U jU q and that Cj VCk ¼ q, if j < k ÿ 1, where C0 and Cqþ1 are the proper

transformation of Up V nÿ1ðEkÞ and Up V nÿ1ðElÞ, respectively. Moreover, ðn �$Þ�Ek ¼
Pq

j¼0 hvj; ð1; 0ÞiCj.

Proof. Let S ¼ ff0g;RV0vi;RV0vj þ RV0vjþ1 j 0U iU qþ 1; 0U jU qg, let W1 ¼

TN embðSÞ and let $ 0
: W1 ! TN embðffaces of R

2
V0gÞ be the holomorphic map

induced by the subdivision S of ffaces of R
2
V0g. Then W1 is non-singular. Let

C 0
j ¼ orbðRV0vjÞ for 0U jU qþ 1. Then C 0

j are non-singular rational curves with

ðC 0
j Þ

2 ¼ cj for 1U jU q, ð$ 0Þÿ1ðiðpÞÞ ¼
Pq

j¼1 C
0
j and C 0

j intersect C 0
jþ1 at a point

for 0U jU q. Let f0 and f1 be the holomorphic functions on W0 :¼

T
Z

2 embðffaces of R
2
V0gÞFC

2 and W1, respectively, corresponding to ð1; 0Þ A N � V

ðR2
V0Þ

�
. Then ½ f0� ¼ orbðRV0

tð1; 0ÞÞ and ½ f1� ¼
Pq

j¼0 hvj; ð1; 0ÞiC
0
j . r

Let Cp ¼
Pq

j¼1 hvj ; ð1; 0ÞiCj and let dkl ¼ hv1; ð1; 0Þi=hv0; ð1; 0Þi. Then C0 � Cp ¼

jtkjdkl , because v0 ¼ ðjtkj; 0Þ. Let

~WW ¼ W

�

6
0Uk<lUt

nÿ1ðEk VElÞ

 !

U 6
0Uk<lUt

6
p A nÿ1ðEk VElÞ

~UUp

 !

;

where ~UUp ¼ Up if Up is non-singular and let c : ~WW ! W be the natural projec-

tion. Then l � c : ~WW ! X is a resolution of X.

Proposition 11. For each kV sþ 1 and for each irreducible component ~EEk of the

proper transformation of Ek under the map n � c,

~EE2
k ¼ jFkj

E2
k

jtkj
2
ÿ

X

k 6¼l;Ek VEl 6¼q

dkl

jFkl j

 !

and

gð ~EEkÞ ¼ 1ÿ
jFkj

jtkj
þ
jFkj

2

X

k 6¼l;Ek VEl 6¼q

1

jtkj
ÿ

1

jFkl j

� �

:
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Proof. First, we note that the degree of the covering ~EEk ! Ek is equal to jFkj=jtkj,

because Fk ¼ fg A F j g ~EEk ¼ ~EEkg and htki ¼ fg A F j gx ¼ x for all x A ~EEkg. Let Uk be

a small neighborhood of Ek. Then there exists a holomorphic function f on Uk such

that the zero divisor ½ f � of f is Ek þ E 0, that E 0 VEl ¼ q for l 6¼ k and that E 0

intersects Ek transversally at ÿE2
k points, because Ek is a non-singular rational curve and

E2
k < 0. Let ~UUk be the connected component of ðn � cÞÿ1ðUkÞ containing ~EEk. Then

½ðn � cÞ�j ~UUk
f � ¼ jtkj ~EEk þ ~EE 0 þ

X

Ek VEl 6¼q

X

p A nÿ1

jcð ~UUk Þ
ðEkVElÞ

Cp

and ~EE 0 ¼ ðn � cÞÿ1
j ~UUk

ðE 0Þ intersects ~EEk transversally at ÿE2
k jFkj=jtkj points. Note that

nÿ1
jcð ~UUkÞ

ðEk VElÞ consists of jFkj=jFkl j points. The first equality follows from these facts.

On the other hand, by Riemann-Hurwitz formula, we have

2gð ~EEkÞ ÿ 2 ¼ ÿ2
jFkj

jtkj
þ

X

Ek VEl 6¼q

jFkj

jFkl j

jFkl j

jtkj
ÿ 1

� �

:

This implies the second equality. r

We can obtain the weighted dual graph of the exceptional set of the resolution l � c:
~WW ! X , by Propositions 8, 10 and 11.

Example 6. Let D ¼ Bp in Example 2 in Section 1. If H ¼ fidg, hs1s2i or

hs1s2; s2s3i, then X is a simple elliptic singularity of multiplicity 4, 2 or 1. If

H ¼ hs1s2s3i, then X is a log-canonical singularity with a resolution the dual graph of

whose exceptional set is the following:

Example 7. Let n ¼ 2 and let D ¼ 2D1 þ 2D2 þ 2D3 þ 2D4, where D1, D2, D3 and

D4 are the divisors on Y ¼ fðz1; z2Þ A C
2 j jz1j; jz2j < 1g defined by z1 ¼ 0, z1 þ z22 ¼ 0,

z2 ¼ 0 and z2 þ z21 ¼ 0, respectively. If H ¼ f0g, hs1s2s3s4i or hs1s2i, then X is a

cusp singularity with a resolution the dual graph of whose exceptional set is the

following:

If H ¼ hs1s2s3i, hs1s2s3; s2s3s4i or hs1s2s3; s1s2s4i, then X is a log-canonical

singularity with a resolution the dual graph of whose exceptional set is the following:
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4. Quasi-Gorensteiness.

Let Y be an open neighborhood of 0 in C
n, let D be a divisor on Y and let

m : ~YY ! Y be the Abel covering constructed as in Section 2. Since ~YY is the analytic

subset in C
s � Y defined by wr1

1 ÿ f1 ¼ � � � ¼ wrs
s ÿ fs ¼ 0,

f ¼ m�ðdz1 5 dz2 5 � � � 5 dznÞ
wr1ÿ1
1 wr2ÿ1

2 � � �wrsÿ1
s

is a nowhere vanishing holomorphic n-form on ~YY0 ¼ mÿ1ðY0Þ and s�
j f ¼

expð2p
ffiffiffiffiffiffiffi

ÿ1
p

=rjÞf, where ðz1; z2; . . . ; znÞ is a local coordinate system of Y and

Y0 ¼ YnSingðDredÞ. Let l : ~WW ! ~YY0 be a universal covering and let w : Galð ~WW=Y0Þ
! C

� be the composite of the quotient map Galð ~WW=Y0Þ ! Galð ~YY0=Y0Þ and the ho-

momorphism Galð ~YY0=Y0Þ ! C
� sending sj to expð2p

ffiffiffiffiffiffiffi

ÿ1
p

=rjÞ. Then g�ðl�fÞ ¼
wðgÞðl�fÞ for g A Galð ~WW=Y0Þ. On the other hand, for any Galois covering p : X ! Y

with Bp ¼ D, there exists a subgroup H of Galð ~WW=Y0Þ with pÿ1ðY0ÞF ~WW=H, by

Theorem 6. Then we have:

Proposition 12. X is a quasi-Gorenstein singularity, if and only if HH kerðwÞ.
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