Galois covering singularities I

By Hiroyasu Tsuchihashi

(Received Feb. 28, 1996) (Revised Jan. 24, 1997)

Abstract. We give a necessary condition for Galois covering singularities to be logterminal or log-canonical singularities, which is also sufficient under a certain restriction on the branch loci of the covering maps. We also give a method constructing explicitly resolutions of 2-dimensional Abel covering singularities.

Introduction.

Let Y be an open neighborhood of 0 in \mathbb{C}^n and let $\pi: X \to Y$ be a (branched) finite Galois covering of Y, i.e., π is a proper finite holomorphic map from a normal analytic space X to Y and Aut $(\pi) := \{g \in Aut(X) \mid \pi \circ g = \pi\}$ acts transitively on the fiber $\pi^{-1}(y)$ of π for each point y in Y. We assume that $\pi^{-1}(0)$ consists of only one point x_0 . Professor Namba proposed to call such a singularity (X, x_0) a Galois singularity and to study it. Let B_1, B_2, \ldots, B_s be the irreducible components of branch locus $\{y \in Y \mid \#\pi^{-1}(y) < \deg \pi\} = \pi(\{x \in X \mid \pi \text{ is not biholomorphic around } x\})$ of π and let r_j be the ramification index of π along B_j , i.e., $r_j = \deg \pi/\max\{\#\pi^{-1}(y) \mid y \in B_j\}$. Here we note that for any point x in $\pi^{-1}(B_j \setminus Sing(B_1 + \cdots + B_s))$, π is expressed as $(z_1, z_2, \ldots, z_n) \mapsto (z_1^{r_j}, z_2, \ldots, z_n)$ by suitable local coordinate systems on neighborhoods of x and $\pi(x)$ (see [2]). Let $B_{\pi} = r_1B_1 + r_2B_2 + \cdots + r_sB_s$. We are interested in the following two problems.

PROBLEM 1. Describe the properties and invariants of the singularity (X, x_0) using those of B_{π} and the covering transformation group $\operatorname{Gal}(X/Y) := \operatorname{Aut}(\pi)$.

PROBLEM 2. Determine all Galois coverings $\pi : (X, x_0) \to (Y, 0)$ with $B_{\pi} = D$ for a given divisor D on an open neighborhood Y of 0 in \mathbb{C}^n .

Dimca showed that the set of all Abel coverings $\pi : X \to Y$ of Y with $B_{\pi} = D$ is completely described by D (Theorem 3.3 in [1]).

In this paper, we give a partial answer to these problems. In Section 1, we give a necessary condition for (X, x_0) to be a log-terminal or log-canonical singularity, which is also sufficient under a certain restriction on B_{π} . In Section 2, we give some results on Problem 2 in the non Abel covering case. In Section 3, we construct resolutions of 2-dimensional Abel covering singularities. The self intersection number, the genus of each irreducible component and the dual graphs of their exceptional sets are explicitly obtained from the data on B_{π} and Gal(X/Y). In Section 4, we give a necessary and sufficient condition for a Galois covering singularity to be a quasi-Gorenstein singularity.

¹⁹⁹¹ Mathematics Subject Classification: Primary 32S05; Secondary 14E20, 32S45.

Key Words and Phrases: Singularities, Galois coverings, log-canonical, resolutions.

I would like to thank the refree who pointed out me the existence of [1].

1. On Problem 1.

Let $\pi: X \to Y$ be a finite Galois covering of an open neighborhood Y of 0 in C^n and assume that $\pi^{-1}(0) = \{x_0\}$. Let $B_{\pi} = r_1B_1 + r_2B_2 + \cdots + r_sB_s$ be as in Introduction.

PROPOSITION 1. (X, x_0) is a **Q**-Gorenstein singularity, i.e., there exists a nowhere vanishing holomorphic r-ple n-form on $X \setminus \text{Sing}(X)$, where r is the least common multiple of r_1, r_2, \ldots and r_s .

PROOF. Let (z_1, z_2, \ldots, z_n) be a coordinate system of C^n and let

$$\phi = \frac{(dz_1 \wedge dz_2 \wedge \cdots \wedge dz_n)^r}{f_1^{r(r_1-1)/r_1} f_2^{r(r_2-1)/r_2} \cdots f_s^{r(r_s-1)/r_s}},$$

where f_1, f_2, \ldots and f_s are defining equations of B_1, B_2, \ldots and B_s , respectively. Then $\pi^* \phi$ is a nowhere vanishing holomorphic *r*-ple *n*-form on $X \setminus \pi^{-1}(\operatorname{Sing}(B_1 + \cdots + B_s))$. Since the codimension of $\operatorname{Sing}(B_1 + \cdots + B_s)$ is greater than 1, $\pi^* \phi$ is extended to $X \setminus \operatorname{Sing}(X)$, as a holomorphic *r*-ple *n*-form.

By the above proposition, we can classify the singularity (X, x_0) into the following three types (see [3]). Let $\lambda : (\tilde{X}, E) \to (X, x_0)$ be a resolution of (X, x_0) and let ψ be a nowhere vanishing holomorphic *r*-ple *n*-form on $X \setminus \text{Sing}(X)$.

I. (X, x_0) is log-terminal, i.e., the vanishing order of $\lambda^* \psi$ is greater than -r along all irreducible components of the exceptional set E of λ .

II. (X, x_0) is not log-terminal and log-canonical, i.e., the vanishing order of $\lambda^* \psi$ is not smaller than -r along all irreducible components of the exceptional set E of λ and equal to -r along at least one irreducible component.

III. (X, x_0) is not log-canonical and then $\lim_{m\to\infty} \sup \delta_m(X, x_0)/m^{n-1} > 0$.

For example, if a cone V over a projective manifold M is a Galois covering singularity, then it is of type I, II or III, accordingly as $\kappa(M) = -\infty$, 0 or dim M. While, if $0 < \kappa(M) < \dim M$, then V never can be a Galois covering singularity.

For a holomorphic function $f = \sum_{v \in \mathbb{Z}_{\geq 0}^{n}} c_{v} z^{v}$ on Y, let $\operatorname{Supp}(f) = \{v \in \mathbb{Z}_{\geq 0}^{n} | c_{v} \neq 0\}$ and let $\Gamma_{+}(f)$ be the Newton polytope of f, i.e., the convex hull of $\bigcup_{v \in \operatorname{Supp}(f)} (v + \mathbb{R}_{\geq 0}^{n})$, where $z^{t}(v_{1}, v_{2}, \dots, v_{n}) = z_{1}^{v_{1}} z_{2}^{v_{2}} \cdots z_{n}^{v_{n}}$.

DEFINITION.

$$\Gamma_{+}(B_{\pi}) = \left(1 - \frac{1}{r_{1}}\right)\Gamma_{+}(f_{1}) + \left(1 - \frac{1}{r_{2}}\right)\Gamma_{+}(f_{2}) + \dots + \left(1 - \frac{1}{r_{s}}\right)\Gamma_{+}(f_{s}),$$

where f_1, f_2, \ldots and f_s are defining equations of B_1, B_2, \ldots and B_s , respectively.

For a face Δ of $\Gamma_+(B_{\pi})$, there exists a point u in $\mathbb{R}^n_{\geq 0}$ such that $\Delta = \Delta(u) := \{v \in \Gamma_+(B_{\pi}) | \langle v, u \rangle = d(u)\}$, where $d(u) = \min\{\langle v, u \rangle | v \in \Gamma_+(B_{\pi})\}$. Let $\Delta_j = \{v \in \Gamma_+(f_j) | \langle v, u \rangle = d_j(u)\}$, where $d_j(u) = \min\{\langle v, u \rangle | v \in \Gamma_+(f_j)\}$. Then $d(u) = \sum_{j=1}^s (1 - 1/r_j) d_j(u)$ and $\Delta = (1 - 1/r_1)\Delta_1 + (1 - 1/r_2)\Delta_2 + \cdots + (1 - 1/r_s)\Delta_s$. Here we note that Δ_j are determined uniquely by Δ , although u with $\Delta = \Delta(u)$ are not unique.

THEOREM 2. If (X, x_0) is log-canonical (resp. log-terminal), then ${}^t(1, 1, ..., 1) \in \Gamma_+(B_\pi)$ (resp. Int $(\Gamma_+(B_\pi))$).

Moreover, the converse holds, if f_1, f_2, \ldots and f_s satisfy the condition:

(*) For each proper face Δ of $\Gamma_+(B_{\pi})$, the varieties in $(\mathbf{C}^{\times})^n$ defined by $f_{j\Delta} = 0$ are non-singular and cross transversally each other, where $f_{j\Delta}$ are the partial sums $\sum_{v \in \mathbf{Z}_{\geq 0}^n \cap \Delta_j} c_v z^v$ of $f_j = \sum_{v \in \mathbf{Z}_{\geq 0}^n} c_v z^v$ on Δ_j .

PROOF. Let $\Gamma^*(B_{\pi})$ be the dual Newton diagram of $\Gamma_+(B_{\pi})$, i.e., $\Gamma^*(B_{\pi}) = \{\Delta^* | \Delta \text{ are faces of } \Gamma_+(B_{\pi})\}$, where $\Delta^* = \{u \in \mathbb{R}^n_{>0} | \Delta(u) \supset \Delta\}$. Let

$$\lambda: T_{\mathbf{Z}^n} \operatorname{emb}(\Gamma^*(B_{\pi})) \to T_{\mathbf{Z}^n} \operatorname{emb}(\{ \text{faces of } \mathbf{R}_{>0}^n \}) = \mathbf{C}^n$$

be the holomorphic map between toric varieties induced from the subdivision $\Gamma^*(B_{\pi})$ of {faces of $\mathbb{R}^n_{\geq 0}$ } and let $Z = \lambda^{-1}(Y)$. Let $E_{\sigma} = \overline{\operatorname{orb}(\sigma)}$ for 1-dimensional cones σ in $\Gamma^*(B_{\pi})$. Then the vanishing order α_{σ} along E_{σ} of the pull-back $\lambda^* \phi$ of ϕ in the proof of Proposition 1 is equal to

$$r\left(-1+\langle t(1,1,\ldots,1),u\rangle-\sum_{j=1}^{s}\left(1-\frac{1}{r_{j}}\right)d_{j}(u)\right),$$

because the vanishing order of $\lambda^*(dz_1/z_1 \wedge dz_2/z_2 \wedge \cdots \wedge dz_n/z_n)$ is equal to -1 along all E_{σ} , where *u* are the primitive elements in \mathbb{Z}^n spanning σ . Hence $\alpha_{\sigma} \geq -r$ (resp. >-r) for all 1-dimensional cones σ in $\Gamma^*(B_{\pi})$, if and only if ${}^t(1,1,\ldots,1) \in \Gamma_+(B_{\pi})$ (resp. $\in \operatorname{Int}(\Gamma_+(B_{\pi})))$.

On the other hand, let W be the normalization of $X \times_Y Z$, let $\tilde{\pi} : W \to Z$ and $\theta : W \to X$ be the projections. For any 1-dimensional cone σ in $\Gamma^*(B_{\pi})$ and for any irreducible component F_{σ} of $\tilde{\pi}^{-1}(E_{\sigma})$, the vanishing order $(\alpha_{\sigma} + r)r_{\sigma} - r$ of $(\pi \circ \theta)^* \phi = (\lambda \circ \tilde{\pi})^* \phi$ along F_{σ} is greater than (resp. equal to) -r, if and only if α_{σ} is so, where r_{σ} is the ramification index of $\tilde{\pi}$ along E_{σ} .

Next, assume that the condition (*) is satisfied. Take a subdivision Σ of $\Gamma^*(B_{\pi})$ consisting of non-singular cones and replace $\Gamma^*(B_{\pi})$ with Σ in the above definition of λ . Then Z is non-singular and $\lambda^{-1}(B_1 + B_2 + \dots + B_s)$ is normal crossing near $\lambda^{-1}(0)$. Hence for any point p in $\lambda^{-1}(0)$, there exist an open neighborhood U_p of p and a local coordinate system (z_1, z_2, \dots, z_n) on U_p such that $\lambda^{-1}(B_1 + B_2 + \dots + B_s) \cap U_p \subset \{z_1 z_2 \cdots z_n = 0\}$. Then $f = (\lambda^* \phi)_{|U_p|}/(dz_1/z_1 \wedge \dots \wedge dz_n/z_n)^r$ is a holomorphic function on U_p , if the vanishing order α_{σ} of $\lambda^* \phi$ is not smaller than -r along all irreducible components E_{σ} of $\lambda^{-1}(0)$ and vanishes along $\lambda^{-1}(B_1 + B_2 + \dots + B_s) \cap U_p$, if α_{σ} is greater than -r. Therefore, W has only toric quotient singularities and for any toric resolution $\varpi : V \to W$ of W, the vanishing order of $(\lambda \circ \tilde{\pi} \circ \varpi)^* \phi$ is greater or not smaller than -r along all irreducible components of $(\theta \circ \varpi)^{-1}(x_0)$, if that of $\lambda^* \phi$ is so along those of $\lambda^{-1}(0)$, because $(\tilde{\pi} \circ \varpi)_{|(\tilde{\pi} \circ \varpi)^{-1}(U_p)}(dz_1/z_1 \wedge \dots \wedge dz_n/z_n)$ has poles of order 1 along all irreducible components of $(\tilde{\pi} \circ \varpi)^{-1}(\{z_1 z_2 \cdots z_n = 0\})$.

EXAMPLE 1. If n = 2 and $B_{\pi} = r_1B_1 + r_2B_2 + r_3B_3$, where B_1, B_2, B_3 are defined by $z_1 = 0$, $z_2 = 0$, $z_1^a + z_2^b = 0$ (g.c.d.(a, b) = 1), respectively and r_1, r_2, r_3 are positive integers, then ${}^t(1, 1) \in \text{Int}(\Gamma_+(B_{\pi}))$ (resp. $\partial \Gamma_+(B_{\pi})$), if and only if

$$\frac{1}{ar_1} + \frac{1}{br_2} + \frac{1}{r_3} > 1$$
 (resp. = 1).

Here, the case that $r_1 = 1$ (resp. $r_1 = r_2 = 1$) implies that $B_{\pi} = r_2 B_2 + r_3 B_3$ (resp. $r_3 B_3$).

EXAMPLE 2. If n = 2 and $B_{\pi} = 2\{z_1(z_1 + z_2^2)(z_1 + cz_2^2) = 0\}$ $(c \neq 0, 1)$, then t(1, 1) is on a 1-dimensional face of $\Gamma_+(B_{\pi})$.

EXAMPLE 3. If n = 2 and $B_{\pi} = 2\{(z_1^2 + z_2^p)(z_2^2 - z_1^q) = 0\}$ $(p, q \ge 2)$, then $t(1, 1) \in \partial \Gamma_+(B_{\pi})$.

EXAMPLE 4. If n = 3 and $B_{\pi} = 2\{(z_1^2 + z_2^4 + z_3^4)(z_1^4 + z_2^2 + z_3^4)(z_1^4 + z_2^4 + z_3^2) = 0\}$, then ${}^t(1,1,1)$ is a vertex of $\partial \Gamma_+(B_{\pi})$.

2. On Problem 2.

Let Y be a simply connected open neighborhood of 0 in \mathbb{C}^n and let $D = r_1D_1 + r_2D_2 + \cdots + r_sD_s$ be a divisor on Y. Here, we assume that r_j are integers greater than 1 and that D_j are irreducible reduced. Let

$$\hat{Y} = \{(w_1, w_2, \dots, w_s, y) \in C^s \times Y | w_1^{r_1} - f_1(y) = \dots = w_s^{r_s} - f_s(y) = 0\},\$$

where f_1, f_2, \ldots and f_s are defining equations of D_1, D_2, \ldots and D_s , respectively, let σ_j be the automorphisms of \tilde{Y} defined by

$$\sigma_j: (w_1,\ldots,w_s,y) \mapsto (w_1,\ldots,w_{j-1},\varepsilon_j w_j,w_{j+1},\ldots,w_s,y),$$

where $\varepsilon_j = \exp(2\pi\sqrt{-1}/r_j)$ and let $\mu: \tilde{Y} \to Y$ be the projection. Then μ is an Abel covering of Y with $B_{\mu} = D$ and the covering transformation group $\operatorname{Gal}(\tilde{Y}/Y)$ is generated by $\sigma_1, \sigma_2, \ldots, \sigma_s$.

PROPOSITION 3. \tilde{Y} is a normal.

PROOF. First, we note that $\tilde{Y}_0 := \mu^{-1}(Y_0)$ is non-singular, where $Y_0 = Y \setminus \text{Sing}(D_{\text{red}})$. Let U be an open neighborhood of $0 \in Y$, let h be a holomorphic function on $\tilde{U}_0 := \mu^{-1}(U \cap Y_0)$ and let

$$h_{c_1,...,c_s} = \sum_{0 \leq lpha_1 < r_1,...,0 \leq lpha_s < r_s} arepsilon_1^{-c_1 lpha_1} \cdots arepsilon_s^{-c_s lpha_s} (\sigma_1^{lpha_1} \cdots \sigma_s^{lpha_s})^* h,$$

for $0 \le c_1 < r_1, \dots, 0 \le c_s < r_s$. Then

$$\sum_{0 \le c_1 < r_1, \dots, 0 \le c_s < r_s} h_{c_1, \dots, c_s} = r_1 \cdots r_s h$$

and $\sigma_j^* h_{c_1,...,c_s} = \varepsilon_j^{c_j} h_{c_1,...,c_s}$. Hence $h_{c_1,...,c_s}/(w_1^{c_1}\cdots w_s^{c_s})$ is a $\operatorname{Gal}(\tilde{Y}/Y)$ -invariant holomorphic function on \tilde{U}_0 . Since Y is non-singular and the codimension of $Y \setminus Y_0 = \operatorname{Sing}(D_{\operatorname{red}})$ is greater than 1, there exists a holomorphic function $\overline{h_{c_1,...,c_s}}$ on U the pullback $\mu^* \overline{h_{c_1,...,c_s}} |_{U_0}$ of whose restriction to $U_0 := U \cap Y_0$ is equal to $h_{c_1,...,c_s}/(w_1^{c_1}\cdots w_s^{c_s})$. Then $\overline{h} = 1/(r_1\cdots r_s) \sum \mu^* \overline{h_{c_1,...,c_s}} w_1^{c_1}\cdots w_s^{c_s}$ is a holomorphic function on $\mu^{-1}(U)$ and $\overline{h}_{|\tilde{U}_0} = h$. Let *H* be a subgroup of $\operatorname{Gal}(\tilde{Y}/Y)$ and let $\mu_H : \tilde{Y}/H \to Y$ be the natural map induced by μ . Then μ_H is an Abel covering. Moreover, $B_{\mu_H} = D$, if and only if $\sigma_i^{\alpha_j} \notin H$ for $1 \le \alpha_j < r_j$. By Theorem 3.3 in [1], we have:

THEOREM 4. For any Abel covering $\pi : X \to Y$ with $B_{\pi} = D$, there exist a subgroup H of $\text{Gal}(\tilde{Y}/Y)$ and a biholomorphic map $\phi : X \to \tilde{Y}/H$ such that $\mu_H \circ \phi = \pi$.

Next, let $Y_0 = Y \setminus \text{Sing}(D_{\text{red}})$ and let $\tilde{Y}_0 = \mu^{-1}(Y_0)$. Let $\lambda : \tilde{W} \to \tilde{Y}_0$ be a universal covering.

PROPOSITION 5. $\mu \circ \lambda : \tilde{W} \to Y_0$ is a Galois covering. The kernel of $\operatorname{Gal}(\tilde{W}/Y_0) \to \operatorname{Gal}(\tilde{Y}_0/Y_0)$ is the commutators group of $\operatorname{Gal}(\tilde{W}/Y_0)$.

PROOF. There exists an automorphism \tilde{g} of \tilde{W} satisfying $\lambda \circ \tilde{g} = g \circ \lambda$ for each element g in $\text{Gal}(\tilde{Y}/Y)$, because λ and $g \circ \lambda$ are both universal coverings of \tilde{Y}_0 . Hence the subgroup of $\text{Aut}(\tilde{W})$ generated by \tilde{g} for all $g \in \text{Gal}(\tilde{Y}/Y)$ and $\pi_1(\tilde{Y}_0)$ acts transitively on the fibers of $\mu \circ \lambda$.

Next, let H be the commutators group of $\operatorname{Gal}(\tilde{W}/Y_0)$. Since $\operatorname{Gal}(\tilde{Y}_0/Y_0)$ is an abelian group, there exists a surjective homomorphism $\operatorname{Gal}(\tilde{W}/Y_0)/H \to \operatorname{Gal}(\tilde{Y}_0/Y_0)$. Suppose that this homomorphism is not isomorphic. Then the degree of the Abel covering $\tilde{W}/H \to Y_0$ induced by $\mu \circ \lambda$ is greater than $\operatorname{deg}(\mu)$ and the ramification index along D_j of the covering is equal to r_j . However, replacing Y in the proof of Theorem 4 with Y_0 , we see that the degree of any Abel covering π' of Y_0 with $B_{\pi'} = Y_0 \cap D$ is not greater than $\operatorname{deg}(\mu)$, a contradiction.

THEOREM 6. For any Galois covering $\pi: X \to Y$ with $B_{\pi} = D$, there exist a subgroup H of $\text{Gal}(\tilde{W}/Y_0)$ and a biholomorphic map $\tau: \tilde{W}/H \to X_0 := \pi^{-1}(Y_0)$ such that $\pi \circ \tau: \tilde{W}/H \to Y_0$ is equal to the natural map induced by $\mu \circ \lambda$.

PROOF. Let W' be an irreducible component of $\tilde{W} \times_{Y_0} X_0$. Then the composite of the normalization of W' and the projection $W' \to \tilde{W}$ is an unramified covering. Hence $W' \to \tilde{W}$ is biholomorphic, because \tilde{W} is simply connected. Next, let $G = \{g \in$ $\operatorname{Gal}(\tilde{W}/Y_0) \oplus \operatorname{Gal}(X_0/Y_0) | gW' = W'\}$ and let $p_1 : G \to \operatorname{Gal}(\tilde{W}/Y_0)$ (resp. $p_2 : G \to$ $\operatorname{Gal}(X_0/Y_0)$) be the restriction to G of the projection $\operatorname{Gal}(\tilde{W}/Y_0) \oplus \operatorname{Gal}(X_0/Y_0) \to$ $\operatorname{Gal}(\tilde{W}/Y_0)$ (resp. $\operatorname{Gal}(X_0/Y_0)$). Then p_1 is an isomorphism and p_2 is a surjection. Hence the map $\tilde{W}/H \to X_0$ induced by the composite $\tilde{W} \simeq W' \to X_0$ is biholomorphic, where $H = p_1(\ker(p_2))$.

EXAMPLE 5. Let $D = B_{\pi}$ in Example 1 in Section 1. Assume that $1/(ar_1) + 1/(br_2) + 1/r_3 > 1$. Then \tilde{Y} is log-terminal, by Theorem 2. Hence \tilde{Y} is a quotient singularity because n = 2 (see [4]). Therefore, $\operatorname{Gal}(\tilde{W}/Y_0)$ is finite and \tilde{W} is biholomorphic to the complement of a point of a non-singular surface. Indeed, there exists a finite subgroup G of $GL(2, \mathbb{C})$ isomorphic to $\operatorname{Gal}(\tilde{W}/Y_0)$ such that \mathbb{C}^2/G is non-singular and that $B_{[\mathbb{C}^2 \to \mathbb{C}^2/G]} \simeq D$. In the table below, we show generators of the group G. Let

$$A_r = \begin{pmatrix} \rho_r & 0\\ 0 & \rho_r \end{pmatrix}, \quad B_r = \begin{pmatrix} \rho_r & 0\\ 0 & \rho_r^{-1} \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix},$$

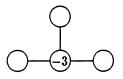
$$S = \frac{1}{2} \begin{pmatrix} -1 + \sqrt{-1} & -1 + \sqrt{-1} \\ 1 + \sqrt{-1} & -1 - \sqrt{-1} \end{pmatrix}, \quad V = \begin{pmatrix} \frac{\sqrt{-1}}{2} & \beta - \sqrt{-1}\gamma \\ -\beta - \sqrt{-1}\gamma & -\frac{\sqrt{-1}}{2} \end{pmatrix},$$

$$\rho = \exp(2\pi\sqrt{-1}/r), \quad \beta = (1 - \sqrt{5})/4, \text{ and } \gamma = (1 + \sqrt{5})/4.$$

where $\rho_r = \exp(2\pi\sqrt{-1/r}), \ \beta = (1 - \sqrt{5})/4$ and $\gamma = (1 + \sqrt{5})/4$.

а	b	r_1	r_2	r_3	Generators of G	а	b	r_1	r_2	r_3	Generators of G
1	*	2	*	2	$A_{2r_2}B_{2r_2}, B_{2br_2}, C$	1	4	2	1	3	$A_6, A_{12}B_8, S$
2	odd	1	*	2	$A_{2r_2}B_{2r_2}, B_{br_2}, C$	2	3	2	1	2	A_4, B_8, S
1	*	2	1	2	B_{2b}, C	2	3	1	1	4	A_4, A_8B_8, S
2	odd	1	1	2	B_b, C	3	4	1	1	2	A_4B_8, S
1	1	2	3	3	A_{12}, B_4, S	1	1	2	3	5	A_{60}, B_4, S, V
1	2	3	1	3	A_6, B_4, S	1	2	3	1	5	A_{30}, B_4, S, V
1	3	3	1	2	$A_4, B_4, A_{12}S$	1	3	2	1	5	A_{20}, B_4, S, V
2	3	1	1	3	B_4, A_6S	1	5	2	1	3	A_{12}, B_4, S, V
1	1	2	3	4	A_{24}, B_8, S	2	3	1	1	5	A_{10}, B_4, S, V
1	2	3	2	2	A_{12}, B_8, S	2	5	1	1	3	A_6, B_4, S, V
1	2	3	1	4	$A_{12}, A_{24}B_8, S$	3	5	1	1	2	A_4, B_4, S, V
1	3	2	1	4	A_8, B_8, S						

For subgroups *H* of *G* such that $B_{[C^2/H\to C^2/G]} = B_{[C^2\to C^2/G]}$, i.e., *H* have no fixed points on $C^2 \setminus \{0\}$, the singularities C^2/H are rational double points of type D_l, E_6, E_7, E_8 , cyclic quotient singularities and a singularity with a resolution the dual graph of whose exceptional set is the following:



When $1/(ar_1) + 1/(br_2) + 1/r_3 = 1$, Y is a simple elliptic singularity.

3. Resolutions of two-dimensional Abel covering singularities.

We keep the notations of the previous section. Let n = 2 and let H be a subgroup of $\operatorname{Gal}(\tilde{Y}/Y)$ satisfying the condition: $\sigma_j^{\alpha_j} \notin H$ for $1 \leq \alpha_j \leq r_j - 1$. Let $X = \tilde{Y}/H$ and let $\pi = \mu_H$. Then $\pi : X \to Y$ is an Abel covering with $B_{\pi} = D$. We may assume that $Y_0 = Y \setminus \{0\}$, by replacing Y with an open small neighborhood of 0. Let $\theta : Z \to Y$ be an embedded resolution of D, i.e., θ is a holomorphic map such that the restriction $\theta_{|\theta^{-1}(Y_0)}$ of θ to $\theta^{-1}(Y_0)$ is biholomorphic and that the reduced inverse image divisor $\theta^{-1}(D)_{\text{red}} = \sum_{j=1}^t E_j$ of D is normal crossing. Here we may assume that E_j are the proper transformations of D_j under the the map θ for $1 \leq j \leq s$ and that E_j are irreducible for $s + 1 \leq j \leq t$. Then $\theta^{-1}(0) = \sum_{j=s+1}^t E_j$, because $Y_0 = Y \setminus \{0\}$. Let $\tilde{\sigma}_j$ be elements in $\pi_1(Y \setminus D)$ rounding E_j once in the positive direction and let τ_j be their images $\rho(\tilde{\sigma}_j)$ under the quotient map $\rho : \pi_1(Y \setminus D) \to F := \operatorname{Gal}(X/Y)$. Then τ_j are the images of σ_j under the quotient map $\operatorname{Gal}(\bar{Y}/Y) \to F$ for $1 \leq j \leq s$ and $1/(2\pi\sqrt{-1}) \int_{\tilde{\sigma}_j} df_i/f_i = \delta_{ij}$ for $1 \leq i, j \leq s$. On the other hand, the zero divisors $[\theta^* f_i]$ of $\theta^* f_i$ are expressed as $E_i + \sum_{j=s+1}^t c_{ij}E_j$, where c_{ij} are positive integers. Then $1/(2\pi\sqrt{-1}) \int_{\tilde{\sigma}_j} df_i/f_i = c_{ij}$. Hence $\tau_j = \sum_{i=1}^s c_{ij}\tau_i$ for $s+1 \leq j \leq t$. For each positive integer $k \leq t$, let F_k be the subgroup of F generated by τ_k and all τ_j with $E_j \cap E_k \neq \emptyset$. When $k \neq l$ and $E_k \cap E_l \neq \emptyset$, let F_{kl} be the subgroup of F generated by τ_k and all τ_j with $W \to X \times_Y Z$ of $X \times_Y Z$ and the projection $X \times_Y Z \to Z$ (resp. X). Then F naturally acts on W and the restriction $\lambda_{|W\setminus\lambda^{-1}(x_0)}$ of λ to $W\setminus\lambda^{-1}(x_0)$ is biholomorphic, where $\{x_0\} = \pi^{-1}(0)$.

PROPOSITION 7. The number of the irreducible components (resp. the points) of $v^{-1}(E_k)$ (resp. $v^{-1}(E_k \cap E_l)$) is equal to $|F/F_k|$ (resp. $|F/F_{kl}|$).

PROOF. Let $k \neq l$ and assume that $E_k \cap E_l \neq \emptyset$. Then $E_k \cap E_l$ consists of one point. Let V be a small neighborhood of the point $E_k \cap E_l$ and let U be a connected component of $v^{-1}(V)$. Since $E_k + E_l$ is normal crossing, $\operatorname{Gal}(U/V) = F_{kl}$ and $v^{-1}(E_k)$ $\cap U$ is irreducible. Hence $\tau_l \tilde{E}_k = \tilde{E}_k$ for any irreducible component \tilde{E}_k of $v^{-1}(E_k)$. Therefore, $g\tilde{E}_k = \tilde{E}_k$ for all g in F_k . Since the covering map $\tilde{E}_k/F_k \to E_k$ is unramified and E_k is simply connected, $\{g \in F | g\tilde{E}_k = \tilde{E}_k\} = F_k$.

Next, we construct the dual graph of $\tilde{E} := \lambda^{-1}(x_0) = (\theta \circ v)^{-1}(0)$. Let Δ be the dual graph of $E' := \sum_{j=s+1}^{t} E_j = v(\tilde{E})$. For a vertex (resp. an edge) α of Δ , let E'_{α} be the corresponding irreducible curve (resp. double point) of E' and let $F_{\alpha} = F_k$ (resp. F_{kl}), if $E'_{\alpha} = E_k$ (resp. $E_k \cap E_l$). Let $F_{\alpha 1} = F_{\alpha}, F_{\alpha 2}, \ldots, F_{\alpha |F/F_{\alpha}|}$ be the conjugate classes of F_{α} and let $\alpha_1, \alpha_2, \ldots, \alpha_{|F/F_{\alpha}|}$ be copies of α . Then we obtain a complex $\tilde{\Delta} = \bigcup_{\alpha \in \Delta} \bigcup_{i=1}^{|F/F_{\alpha}|} \alpha_i$, where α_i is a face of β_j if and only if α is a face of β and $F_{\alpha i} \supset F_{\beta j}$.

PROPOSITION 8. $\tilde{\Delta}$ is homeomorphic to the dual graph of \tilde{E} .

PROOF. Since Δ is a tree, we can choose an irreducible curve or a point $\tilde{E}_{\alpha 1}$ of $\nu^{-1}(E'_{\alpha})$ for each $\alpha \in \Delta$ so that $\tilde{E}_{\beta 1} \in \tilde{E}_{\alpha 1}$, if α is a proper face of β , i.e., β is an edge of Δ and α is a vertex which is an end of β . Let $\tilde{E}_{\alpha i} = g\tilde{E}_{\alpha 1}$ for $g \in F_{\alpha i}$. Then $\tilde{E}_{\beta j} \in \tilde{E}_{\alpha i}$, if and only if α is a proper face of β and $F_{\alpha i} \supset F_{\beta j}$.

We note that $v^{-1}(Z_0)$ is non-singular, where $Z_0 = Z \setminus (\bigcup_{1 \le k < l \le t} E_k \cap E_l)$. However, the inverse images of the double points $E_k \cap E_l$ of $\sum_{j=1}^{t} E_j$ under the map v may be singular points on W. Let $k \ne l$ and assume that $E_k \cap E_l \ne \emptyset$. Let $\gamma : \mathbb{Z}^2 \to F$ be the homomorphism sending (a, b) to $a\tau_k + b\tau_l$ and let $N = \ker(\gamma)$.

PROPOSITION 9. For any point p in $v^{-1}(E_k \cap E_l)$, there exist an open neighborhood U_p of p and an inclusion $i: U_p \hookrightarrow T_N \operatorname{emb}(\{\text{faces of } \mathbb{R}^2_{\geq 0}\})$ such that $i(p) = \operatorname{orb}(\mathbb{R}^2_{\geq 0})$, that $i(U_p \cap v^{-1}(E_k)) \subset \operatorname{orb}(\mathbb{R}_{\geq 0}, t(1, 0))$ and that $i(U_p \cap v^{-1}(E_l)) \subset \operatorname{orb}(\mathbb{R}_{\geq 0}, t(0, 1))$.

PROOF. Let V be an open small neighborhood of the point $E_k \cap E_l$. Then there exists an inclusion $i_0: V \hookrightarrow T_{\mathbb{Z}^2} \operatorname{emb}(\{\operatorname{faces of} \mathbb{R}_{\geq 0}^2\})$ such that $i_0(V \cap E_k) \subset \overline{\operatorname{orb}(\mathbb{R}_{\geq 0}^t(1,0))}$ and that $i_0(V \cap E_l) \subset \overline{\operatorname{orb}(\mathbb{R}_{\geq 0}^t(0,1))}$. Let U_p be a connected component of $v^{-1}(V)$ containing p. Then $B_{v|U_p} = |\tau_k|E_k + |\tau_l|E_l$. Let $\tilde{V} \to V$ be the Abel covering constructed as in Section 2 for Y = V and $D = B_{v|U_p}$. Then we have an inclusion $i_1: \tilde{V} \hookrightarrow T_{N'} \operatorname{emb}(\{ \text{faces of } \mathbb{R}^2_{\geq 0} \})$, where $N' = \mathbb{Z}^t(|\tau_k|, 0) \oplus \mathbb{Z}^t(0, |\tau_l|)$ and an isomorphism $h: \operatorname{Gal}(\tilde{V}/V) \simeq \mathbb{Z}^2/N'$ such that $i_1 \circ g = h(g) \circ i_1$ for all $g \in \operatorname{Gal}(\tilde{V}/V)$. Let H be the kernel of the homomorphism $\operatorname{Gal}(\tilde{V}/V) \to F$ sending $h^{-1}((1,0))$ and $h^{-1}((0,1))$ to τ_k and τ_l , respectively. Then $U_p \simeq \tilde{V}/H$ and $T_{N'} \operatorname{emb}(\{ \text{faces of } \mathbb{R}^2_{\geq 0} \})/h(H) \simeq T_N \operatorname{emb}(\{ \text{faces of } \mathbb{R}^2_{\geq 0} \})$.

Let Θ be the convex hull of $(\mathbb{R}^2_{\geq 0} \setminus \{0\}) \cap N$, let $\{v_1, \ldots, v_q\} = \partial \Theta \cap \mathbb{R}^2_{>0} \cap N$, let v_0 and v_{q+1} be the primitive elements in $\mathbb{R}_{>0}$ ${}^t(1,0) \cap N$ and $\mathbb{R}_{>0}$ ${}^t(0,1) \cap N$, respectively. Here we may assume that v_j and v_{j+1} are adjacent on $\partial \Theta$ for $0 \leq j \leq q$. Then $\overline{0v_jv_{j+1}} \cap N = \{0, v_j, v_{j+1}\}$. Hence $\{v_j, v_{j+1}\}$ are bases of N. Therefore, there exist integers c_j $(1 \leq j \leq q)$ such that $v_{j-1} + c_jv_j + v_{j+1} = 0$, if q > 0. When q = 0, U_p is non-singular.

PROPOSITION 10. When q > 0, there exists a resolution $\varpi : \tilde{U}_p \to U_p$ such that each irreducible component C_j of the exceptional set $\varpi^{-1}(p) = \sum_{j=1}^{q} C_j$ is a non-singular rational curve, that $C_j^2 = c_j$ for $1 \le j \le q$, that C_j and C_{j+1} intersect at a point for $0 \le j \le q$ and that $C_j \cap C_k = \emptyset$, if j < k - 1, where C_0 and C_{q+1} are the proper transformation of $U_p \cap v^{-1}(E_k)$ and $U_p \cap v^{-1}(E_l)$, respectively. Moreover, $(v \circ \varpi)^* E_k = \sum_{j=0}^{q} \langle v_j, (1,0) \rangle C_j$.

PROOF. Let $\Sigma = \{\{0\}, \mathbb{R}_{\geq 0}v_i, \mathbb{R}_{\geq 0}v_j + \mathbb{R}_{\geq 0}v_{j+1} \mid 0 \leq i \leq q+1, 0 \leq j \leq q\}$, let $W_1 = T_N \operatorname{emb}(\Sigma)$ and let $\varpi' : W_1 \to T_N \operatorname{emb}(\{ \text{faces of } \mathbb{R}_{\geq 0}^2 \})$ be the holomorphic map induced by the subdivision Σ of $\{ \text{faces of } \mathbb{R}_{\geq 0}^2 \}$. Then W_1 is non-singular. Let $C'_j = \overline{orb}(\mathbb{R}_{\geq 0}v_j)$ for $0 \leq j \leq q+1$. Then C'_j are non-singular rational curves with $(C'_j)^2 = c_j$ for $1 \leq j \leq q$, $(\varpi')^{-1}(i(p)) = \sum_{j=1}^q C'_j$ and C'_j intersect C'_{j+1} at a point for $0 \leq j \leq q$. Let f_0 and f_1 be the holomorphic functions on $W_0 := T_{\mathbb{Z}^2} \operatorname{emb}(\{ \text{faces of } \mathbb{R}_{\geq 0}^2 \}) \simeq \mathbb{C}^2$ and W_1 , respectively, corresponding to $(1,0) \in N^* \cap (\mathbb{R}_{\geq 0}^2)^*$. Then $[f_0] = \overline{orb}(\mathbb{R}_{\geq 0}^{-1}(1,0))$ and $[f_1] = \sum_{j=0}^q \langle v_j, (1,0) \rangle C'_j$.

Let $C_p = \sum_{j=1}^{q} \langle v_j, (1,0) \rangle C_j$ and let $d_{kl} = \langle v_1, (1,0) \rangle / \langle v_0, (1,0) \rangle$. Then $C_0 \cdot C_p = |\tau_k| d_{kl}$, because $v_0 = (|\tau_k|, 0)$. Let

$$\tilde{W} = \left(W \Big\backslash \bigcup_{0 \le k < l \le t} v^{-1}(E_k \cap E_l) \right) \cup \bigcup_{0 \le k < l \le t} \left(\bigcup_{p \in v^{-1}(E_k \cap E_l)} \tilde{U}_p \right),$$

where $\tilde{U}_p = U_p$ if U_p is non-singular and let $\psi : \tilde{W} \to W$ be the natural projection. Then $\lambda \circ \psi : \tilde{W} \to X$ is a resolution of X.

PROPOSITION 11. For each $k \ge s + 1$ and for each irreducible component \tilde{E}_k of the proper transformation of E_k under the map $v \circ \psi$,

$$ilde{E}_k^2 = |F_k| \left(rac{E_k^2}{\left| au_k
ight|^2} - \sum_{k
eq l, \ E_k \ \cap \ E_l
eq arnothing} rac{d_{kl}}{|F_{kl}|}
ight)$$

and

$$g(\tilde{E}_k) = 1 - \frac{|F_k|}{|\tau_k|} + \frac{|F_k|}{2} \sum_{k \neq l, E_k \cap E_l \neq \emptyset} \left(\frac{1}{|\tau_k|} - \frac{1}{|F_{kl}|} \right).$$

PROOF. First, we note that the degree of the covering $\tilde{E}_k \to E_k$ is equal to $|F_k|/|\tau_k|$, because $F_k = \{g \in F \mid g\tilde{E}_k = \tilde{E}_k\}$ and $\langle \tau_k \rangle = \{g \in F \mid gx = x \text{ for all } x \in \tilde{E}_k\}$. Let U_k be a small neighborhood of E_k . Then there exists a holomorphic function f on U_k such that the zero divisor [f] of f is $E_k + E'$, that $E' \cap E_l = \emptyset$ for $l \neq k$ and that E'intersects E_k transversally at $-E_k^2$ points, because E_k is a non-singular rational curve and $E_k^2 < 0$. Let \tilde{U}_k be the connected component of $(v \circ \psi)^{-1}(U_k)$ containing \tilde{E}_k . Then

$$[(v \circ \psi)_{|\tilde{U}_k}^* f] = |\tau_k|\tilde{E}_k + \tilde{E}' + \sum_{E_k \cap E_l \neq \emptyset} \sum_{p \in v_{|\psi(\tilde{U}_k)}^{-1}(E_k \cap E_l)} C_p$$

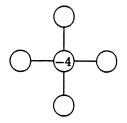
and $\tilde{E}' = (v \circ \psi)_{|\tilde{U}_k}^{-1}(E')$ intersects \tilde{E}_k transversally at $-E_k^2 |F_k|/|\tau_k|$ points. Note that $v_{|\psi(\tilde{U}_k)}^{-1}(E_k \cap E_l)$ consists of $|F_k|/|F_{kl}|$ points. The first equality follows from these facts. On the other hand, by Riemann-Hurwitz formula, we have

$$2g(\tilde{E}_k) - 2 = -2\frac{|F_k|}{|\tau_k|} + \sum_{E_k \cap E_l \neq \emptyset} \frac{|F_k|}{|F_{kl}|} \left(\frac{|F_{kl}|}{|\tau_k|} - 1\right).$$

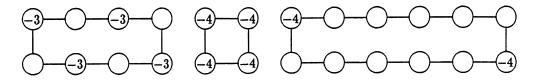
This implies the second equality.

We can obtain the weighted dual graph of the exceptional set of the resolution $\lambda \circ \psi$: $\tilde{W} \to X$, by Propositions 8, 10 and 11.

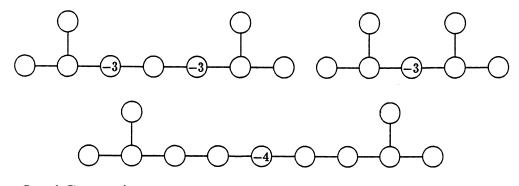
EXAMPLE 6. Let $D = B_{\pi}$ in Example 2 in Section 1. If $H = \{id\}, \langle \sigma_1 \sigma_2 \rangle$ or $\langle \sigma_1 \sigma_2, \sigma_2 \sigma_3 \rangle$, then X is a simple elliptic singularity of multiplicity 4, 2 or 1. If $H = \langle \sigma_1 \sigma_2 \sigma_3 \rangle$, then X is a log-canonical singularity with a resolution the dual graph of whose exceptional set is the following:



EXAMPLE 7. Let n = 2 and let $D = 2D_1 + 2D_2 + 2D_3 + 2D_4$, where D_1 , D_2 , D_3 and D_4 are the divisors on $Y = \{(z_1, z_2) \in \mathbb{C}^2 | |z_1|, |z_2| < 1\}$ defined by $z_1 = 0$, $z_1 + z_2^2 = 0$, $z_2 = 0$ and $z_2 + z_1^2 = 0$, respectively. If $H = \{0\}$, $\langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \rangle$ or $\langle \sigma_1 \sigma_2 \rangle$, then X is a cusp singularity with a resolution the dual graph of whose exceptional set is the following:



If $H = \langle \sigma_1 \sigma_2 \sigma_3 \rangle$, $\langle \sigma_1 \sigma_2 \sigma_3, \sigma_2 \sigma_3 \sigma_4 \rangle$ or $\langle \sigma_1 \sigma_2 \sigma_3, \sigma_1 \sigma_2 \sigma_4 \rangle$, then X is a log-canonical singularity with a resolution the dual graph of whose exceptional set is the following:



4. Quasi-Gorensteiness.

Let Y be an open neighborhood of 0 in \mathbb{C}^n , let D be a divisor on Y and let $\mu: \tilde{Y} \to Y$ be the Abel covering constructed as in Section 2. Since \tilde{Y} is the analytic subset in $\mathbb{C}^s \times Y$ defined by $w_1^{r_1} - f_1 = \cdots = w_s^{r_s} - f_s = 0$,

$$\phi = \frac{\mu^*(dz_1 \wedge dz_2 \wedge \cdots \wedge dz_n)}{w_1^{r_1-1}w_2^{r_2-1}\cdots w_s^{r_s-1}}$$

is a nowhere vanishing holomorphic *n*-form on $\tilde{Y}_0 = \mu^{-1}(Y_0)$ and $\sigma_j^* \phi = \exp(2\pi\sqrt{-1}/r_j)\phi$, where (z_1, z_2, \ldots, z_n) is a local coordinate system of Y and $Y_0 = Y \setminus \operatorname{Sing}(D_{red})$. Let $\lambda : \tilde{W} \to \tilde{Y}_0$ be a universal covering and let $\chi : \operatorname{Gal}(\tilde{W}/Y_0) \to C^{\times}$ be the composite of the quotient map $\operatorname{Gal}(\tilde{W}/Y_0) \to \operatorname{Gal}(\tilde{Y}_0/Y_0)$ and the homomorphism $\operatorname{Gal}(\tilde{Y}_0/Y_0) \to C^{\times}$ sending σ_j to $\exp(2\pi\sqrt{-1}/r_j)$. Then $g^*(\lambda^*\phi) = \chi(g)(\lambda^*\phi)$ for $g \in \operatorname{Gal}(\tilde{W}/Y_0)$. On the other hand, for any Galois covering $\pi : X \to Y$ with $B_{\pi} = D$, there exists a subgroup H of $\operatorname{Gal}(\tilde{W}/Y_0)$ with $\pi^{-1}(Y_0) \simeq \tilde{W}/H$, by Theorem 6. Then we have:

PROPOSITION 12. X is a quasi-Gorenstein singularity, if and only if $H \subset \ker(\chi)$.

References

- [1] A. Dimca, On analytic abelian coverings, Math. Ann., 279 (1988), 501-515
- [2] S. Roan, Branched covering spaces, Chinese J. Math., 7 (1979), 177-206
- [3] M. Tomari and K. Watanabe, On L²-plurigenera of not log-canonical Gorenstein isolated singularities, Proceedings of the Amer. Math. Soc., Vol. 109, No. 4 (1990), 931–935
- [4] K. Watanabe, On plurigenera of normal isolated singularities I, Math. Ann., 250 (1980), 65-94

Hiroyasu Tsuchihashi

Faculty of Liberal Arts Tohoku Gakuin University Sendai 981-31, Japan