The dimensions of self-similar sets

By Wenxia Li and Dongmei Xiao

(Received Oct. 14, 1996)

1. Introduction.

Let ϕ_i be similar contraction mappings in \mathbb{R}^d with ratios c_i , $1 \le i \le n$. Hu [5] proved that there exists unique compact set $F \subset \mathbb{R}^d$ such that

$$F = \bigcup_{i=1}^{n} \phi_i(F). \tag{1}$$

Further $\dim_H F = \dim_B F = \dim_P F = s$ and F is an s-set where s is such that

$$\sum_{i=1}^{n} c_i^s = 1, (2)$$

if ϕ_i 's satisfy the open set condition, i.e. there is a bounded nonempty open set O such that

$$\bigcup_{i=1}^{n} \phi_i(O) \subset O \tag{3}$$

with the left hand is disjoint union. Recently Sc [10] proved that F is an s-set here $\sum_{i=1}^{n} c_i^s = 1$ if and only if ϕ_i 's satisfy the open condition.

Now for $\varepsilon > 0$ write

$$\Omega(\varepsilon) = \{ \sigma \in S^* | c_{\sigma} \le \varepsilon \text{ and } c_{\sigma|(|\sigma|-1)} > \varepsilon \},$$

where $S^* = \bigcup_{i=1}^{\infty} \{1, 2, \dots, n\}^i$ and $c_{\sigma} = c_{\sigma(1)} c_{\sigma(2)} \cdots c_{\sigma(k)}$ for $\sigma = (\sigma(1), \sigma(2), \dots, \sigma(k)) \in S^*$. And for $\sigma \in S^*$, $|\sigma|$ denotes the length of σ and $\sigma|k = (\sigma(1), \dots, \sigma(k))$ for $k \leq |\sigma|$. Let $A \subset \mathbf{R}^d$ be a bounded open set with $A \supset F$. It is easy to see that $c_0 \varepsilon < c_{\sigma} \leq \varepsilon$ for any $\sigma \in \Omega(\varepsilon)$ where $c_0 = \min_{1 \leq i \leq n} c_i$. We introduce nonnegative real numbers $\alpha_0(A)$ and $\beta_0(A)$ as follows

$$\alpha_0(A) = \sup \left\{ \alpha | \underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathbf{m}_{\mathbf{d}} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\alpha)}} = \infty \right\}, \tag{4}$$

$$\beta_0(A) = \sup \left\{ \beta | \overline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} m_d \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\beta)}} = \infty \right\}, \tag{5}$$

where $\phi_{\sigma} = \phi_{\sigma(1)} \circ \phi_{\sigma(2)} \circ \cdots \circ \phi_{\sigma(k)}$ for $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(k)) \in S^*$ and $m_d(B)$ is the Lebesgue measure of $B \subset \mathbb{R}^d$.

Partially supported by a grant from the National Science Foundation of China. The authors' permanent address is: Dept. of Math., Central China Normal University, Wuhan 430079, P.R.China. AMS Subject Classifications: 28A80

In this paper we prove

- (i) $\alpha_0(A)$ and $\beta_0(A)$ are independent of the choice of A and $\alpha_0(A) = \beta_0(A)$. denote the common value by α_0 .
 - (ii) $\dim_H F = \dim_B F = \dim_P F = \alpha_0 s$.

(For self-similar set F Fa[4] has proved that its Hausdorff dimension, Box dimension and Packing dimension are equal)

(iii)
$$\mathscr{H}^{\alpha_0 s}(F) < \infty \text{ iff } \underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}} < \infty.$$

(iv) If $\mathscr{H}^{\alpha_0 s}(F) > 0$ then $\underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}} > 0.$

(iv) If
$$\mathscr{H}^{\alpha_0 s}(F) > 0$$
 then $\varliminf_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}} > 0$.

(v) We generalize this dimension results into the cases of MW-construction (Ma & Wi [9]) and recurrent sets (De [2], Be [1] and Wen [11]).

2. Dimensions of self-similar set.

It is easy to get the following

Proposition 2.1.

$$\begin{split} \alpha_0(A) &= \inf \left\{ \alpha | \underline{\lim}_{\varepsilon \to 0} \, \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \, \phi_\sigma(A) \Big)}{\sum_{\sigma \in \Omega(\varepsilon)} \, c_\sigma^{s(1-\alpha)}} = 0 \right\}, \\ \beta_0(A) &= \inf \left\{ \beta | \overline{\lim}_{\varepsilon \to 0} \, \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \, \phi_\sigma(A) \Big)}{\sum_{\sigma \in \Omega(\varepsilon)} \, c_\sigma^{s(1-\beta)}} = 0 \right\}. \end{split}$$

Proposition 2.2. $0 \le \alpha_0(A) \le 1$; $0 \le \beta_0(A) \le 1$.

PROOF. Note that $\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s} = 1$. Taking $\alpha = 0$ then

$$\underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m}_{\mathrm{d}} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s}} = \underline{\lim}_{\varepsilon \to 0} \varepsilon^{-d} \mathrm{m}_{\mathrm{d}} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right) \ge c$$

for some positive constant c. Thus $\alpha_0(A) \ge 0$. On the other hand, taking $\alpha = 1$, we

have $\underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m}_{\mathrm{d}} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\mathrm{Card} \Omega(\varepsilon)} \le c$ for some constant c. Thus $\alpha_0(A) \le 1$.

$$0 \le \beta_0(A) \le 1$$
 can be proved by the same method.

QED

THEOREM 2.3.

- (i) $\alpha_0(A)$ and $\beta_0(A)$ are independent of the choice of A and $\alpha_0(A) = \beta_0(A)$, denoting the common value by α_0 ;
 - (ii) $\dim_H F = \dim_B F = \dim_P F = \alpha_0$

$$\text{(iii)} \quad \mathscr{H}^{\alpha_0 s}(F) < \infty \ \ \text{iff} \ \underline{\lim}_{\varepsilon \to 0} \ \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \ \phi_\sigma(A) \Big)}{\sum_{\sigma \in \Omega(\varepsilon)} \ c_\sigma^{s(1-\alpha_0)}} < \infty;$$

$$\text{(iv)} \quad \text{If } \mathscr{H}^{\alpha_0 s}(F) > 0 \text{ then } \underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} m_d \Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_\sigma(A) \Big)}{\sum_{\sigma \in \Omega(\varepsilon)} c_\sigma^{s(1-\alpha_0)}} > 0.$$

PROOF. (i) For $B \subset \mathbb{R}^d$ and $\varepsilon > 0$ let

$$B^{\varepsilon} = \{x \in \mathbf{R}^d : \text{there exists } y \in \mathbf{B} \text{ such that } \rho(x, y) < \varepsilon\}$$

where $\rho(x,y)$ is the Euclidean distance between x and y. Since A is a bounded open set containing set F, there are positive numbers δ_1 and δ_2 such that $F^{\delta_1} \subset A \subset F^{\delta_2}$ which means $\alpha_0(F^{\delta_1}) \leq \alpha_0(A) \leq \alpha_0(F^{\delta_2})$ and $\beta_0(F^{\delta_1}) \leq \beta_0(A) \leq \beta_0(F^{\delta_2})$. Thus it suffices to prove $\alpha_0(F^{\delta})$ and $\beta_0(F^{\delta})$ are independent of the choice of positive number δ and $\alpha_0(F^{\delta}) = \beta_0(F^{\delta})$, which follows from the proof of (ii).

- (ii) Fixing $x \in F$ and denoting the diameter of A by |A| we choose subfamily $\Omega^*(\varepsilon)$ from $\Omega(\varepsilon)$ such that
 - (1) for any different σ , $\tau \in \Omega^*(\varepsilon)$, $\rho(\phi_{\sigma}(x), \phi_{\tau}(x)) > 4|A|\varepsilon$;
 - (2) if $\sigma \in \Omega(\varepsilon) \setminus \Omega^*(\varepsilon)$ there exists $\tau \in \Omega^*(\varepsilon)$ such that $\rho(\phi_{\sigma}(x), \phi_{\tau}(x)) \le 4|A|\varepsilon$. Let $J(\varepsilon) = \operatorname{Card} \Omega^*(\varepsilon)$. Thus

$$\bigcup_{\sigma \in \Omega^*(\varepsilon)} B(\phi_{\sigma}(x), 5|A|\varepsilon) \supset \bigcup_{\sigma \in \Omega(\varepsilon)} B(\phi_{\sigma}(x), |A|\varepsilon) \supset \bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A)$$

where B(x,r) denotes a ball in \mathbb{R}^d with center at x and radius r. Thus

$$J(\varepsilon) \mathrm{m_d} B(\phi_{\sigma}(x), 5|A|\varepsilon) \geq \mathrm{m_d} \bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A).$$

Therefore for any nonnegative real number α

$$J(\varepsilon)\varepsilon^{\alpha s} \ge \frac{c|A|^{-d}\varepsilon^{-d}\mathrm{m_d}\left(\bigcup_{\sigma\in\Omega(\varepsilon)}\phi_{\sigma}(A)\right)}{\sum_{\sigma\in\Omega(\varepsilon)}c_{\sigma}^{s(1-\alpha)}},\tag{6}$$

where c is a positive constant. First we prove $\dim_H F \ge \alpha_0(A)s$. It is clear when $\alpha_0(A) = 0$. Suppose $\alpha_0(A) > 0$ and take $0 < \alpha < \alpha_0(A)$. Thus by the definition of $\alpha_0(A)$ and (6) we can take $\varepsilon_1 > 0$ such that

$$J(\varepsilon_1)\varepsilon_1^{\alpha s} \ge 2c_0^{-\alpha s}. (7)$$

Considering any finite open $c_0\varepsilon_1|A|$ -covering $\{V_i\}$ of F, we have

(a) if there exists some V_i such that $|V_i| \ge (c_0 \varepsilon_1)^2 |A|$ then

$$\sum_{i} |V_{i}|^{\alpha s} \ge (c_{0}\varepsilon_{1})^{2\alpha s} |A|^{\alpha s}; \tag{8}$$

(b) otherwise for each $\sigma \in \Omega^*(\varepsilon_1)$ let $\mathscr{V}_{\sigma} = \{V_i : V_i \cap B(\phi_{\sigma}(x), \varepsilon_1 | A|) \neq \emptyset\}$. Then \mathscr{V}_{σ} is a covering of $\phi_{\sigma}(F)$ and for any different σ , $\tau \in \Omega^*(\varepsilon_1)$, $\mathscr{V}_{\sigma} \cap \mathscr{V}_{\tau} = \emptyset$. Take $\lambda_1 \in \Omega^*(\varepsilon_1)$ such that

$$\sum_{V_i \in \mathscr{V}_{\lambda_1}} |V_i|^{\alpha s} = \min_{\sigma \in \Omega^*(\varepsilon_1)} \sum_{V_i \in \mathscr{V}_{\sigma}} |V_i|^{\alpha s}.$$

Therefore

$$\sum_{i} |\dot{V}_{i}|^{\alpha s} \geq J(\varepsilon_{1}) \sum_{V_{i} \in \mathscr{V}_{\lambda_{1}}} |V_{i}|^{\alpha s} \geq 2c_{0}^{-\alpha s} \varepsilon_{1}^{-\alpha s} \sum_{V_{i} \in \mathscr{V}_{\lambda_{1}}} |V_{i}|^{\alpha s}$$

$$= 2(c_{\lambda_{1}} c_{0}^{-1} \varepsilon_{1}^{-1})^{\alpha s} \sum_{V_{i} \in \mathscr{V}_{\lambda_{1}}} |\phi_{\lambda_{1}}^{-1} V_{i}|^{\alpha s}$$

$$\geq 2 \sum_{V_{i} \in \mathscr{V}_{\lambda_{1}}} |\phi_{\lambda_{1}}^{-1} V_{i}|^{\alpha s} \tag{9}$$

by (7).

Since \mathscr{V}_{λ_1} is a covering of $\phi_{\lambda_1}(F)$, $\phi_{\lambda_1}^{-1}\mathscr{V}_{\lambda_1} = \{\phi_{\lambda_1}^{-1}(V_i) : V_i \in \mathscr{V}_{\lambda_1}\}$ is a finite open $c_0\varepsilon_1|A|$ -covering of F. As above we have

- (a') if there exists $\phi_{\lambda_1}^{-1}(V_i) \in \phi_{\lambda_1}^{-1} \mathscr{V}_{\lambda_1}$ such that $|\phi_{\lambda_1}^{-1}(V_i)| \ge (c_0 \varepsilon_1)^2 |A|$ then (8) holds by (9);
- (b') otherwise denote $\phi_{\lambda_1}^{-1} \mathscr{V}_{\lambda_1}$ by $\{U_i\}$. Repeating the above step for the covering $\{U_i\}$ of F and noticing that $\operatorname{Card}\{V_i\}$ is finite, thus (8) holds after finite steps. Consequently $\dim_H F \geq \alpha_S$ which means $\dim_H F \geq \alpha_0(A)s$.

Now taking $\delta_1 > 0$ we prove that $\dim_H F \leq \underline{\dim}_B F \leq \alpha_0(F^{\delta_1})s$. Letting $\alpha > \alpha_0(F^{\delta_1})$ there exists sequence $\varepsilon_n \searrow 0$ such that

$$\frac{\varepsilon_n^{-d} \mathrm{m_d} \left(\bigcup_{\sigma \in \Omega(\varepsilon_n)} \phi_{\sigma}(F^{\delta_1}) \right)}{\sum_{\sigma \in \Omega(\varepsilon_n)} c_{\sigma}^{s(1-\alpha)}} \leq 1.$$

Thus

$$\begin{split} \varepsilon_n^{-d} \mathbf{m}_{\mathrm{d}} \left(\bigcup_{\sigma \in \Omega(\varepsilon_n)} \phi_{\sigma}(F^{\delta_1}) \right) &\leq \sum_{\sigma \in \Omega(\varepsilon_n)} c_{\sigma}^{s(1-\alpha)} \leq (c_0 \varepsilon_n)^{-s\alpha}, \\ \left(c_0 \varepsilon_n \right)^{d-s\alpha} &\geq c_0^d \mathbf{m}_{\mathrm{d}} \left(\bigcup_{\sigma \in \Omega(\varepsilon_n)} \phi_{\sigma}(F^{\delta_1}) \right) \geq c_0^d \mathbf{m}_{\mathrm{d}}(F^{c_0 \varepsilon_n \delta_1}), \\ d - s\alpha &\leq \frac{\log(\mathbf{m}_{\mathrm{d}}(F^{c_0 \varepsilon_n \delta_1}) c_0^d)}{\log(c_0 \varepsilon_n)}, \\ d - s\alpha &\leq \overline{\lim}_{n \to 0} \frac{\log[c_0^d \mathbf{m}_{\mathrm{d}}(F^{c_0 \varepsilon_n \delta_1})]}{\log(c_0 \varepsilon_n)} \leq \overline{\lim}_{\varepsilon \to 0} \frac{\log[\mathbf{m}_{\mathrm{d}}(F^{c_0 \varepsilon \delta_1})]}{\log(c_0 \varepsilon \delta_1)}, \end{split}$$

which implies $\underline{\dim}_B F \leq s\alpha$ by the Proposition 3.2 of Fa [3]. Therefore $\underline{\dim}_B F \leq s\alpha_0(F^{\delta_1})$.

Repeating the above procedure of proof with $\beta_0(A)$ instead of $\alpha_0(A)$ we can attain $\dim_H F \geq \beta_0(A)s$ and $\dim_H F \leq \overline{\dim}_B F \leq \beta_0(F^{\delta_1})s$ for any given $\delta_1 > 0$. As a result, we get $\dim_H F = \dim_P F = \dim_B F = \alpha_0(F^{\delta_1})s = \beta_0(F^{\delta_1})s$ for any given $\delta_1 > 0$ which indicates $\alpha_0(F^{\delta_1})$ and $\beta_0(F^{\delta_1})$ are independent of the choice of $\delta_1 > 0$ and $\alpha_0(F^{\delta_1}) = \beta_0(F^{\delta_1})$. Furthermore $\alpha_0(A) = \beta_0(A)$ and they are independent of the choice of open set A by (i).

(iii) Now we prove
$$\mathscr{H}^{\alpha_0 s}(F) < \infty \text{ iff } \underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}} < \infty.$$

Suppose that $\underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_\sigma(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_\sigma^{s(1-\alpha_0)}} = \infty$. Then we can take $\varepsilon_1 > 0$ such that (7) holds with α_0 instead of α . For any $k \in N$ and for any finite open $(c_0 \varepsilon_1)^k |A|$ -

that (7) holds with α_0 instead of α . For any $k \in \mathbb{N}$ and for any finite open $(c_0 \varepsilon_1)^k | A$ covering $\{V_i\}$ of F, repeating k-1 time steps of proof of the above we can get

$$\sum_{i} |V_{i}|^{\alpha_{0}s} \ge 2^{k-1} \sum_{j} |U_{j}|^{\alpha_{0}s},$$

where $\{U_j\}$ is a finite open $c_0\varepsilon_1|A|$ -covering of F. According to the same method of (ii) after finite steps, saying l steps, we get

$$\sum_{j} |U_{j}|^{\alpha_{0}s} \geq 2^{l} (c_{0}\varepsilon_{1})^{2\alpha_{0}s} |A|^{\alpha_{0}s},$$

$$\sum_{j} |V_{j}|^{\alpha_{0}s} \geq 2^{l+k-1} (c_{0}\varepsilon_{1})^{2\alpha_{0}s} |A|^{\alpha_{0}s},$$

which means $\mathcal{H}^{\alpha_0 s}(F) = \infty$ if letting k tends to ∞ .

Suppose $\mathscr{H}^{\alpha_0 s}(F) = \infty$. Thus for any M > 0 there exists ε_0 such that for any ε_0 -covering $\{V_i\}$ of F

$$\sum_{i} |V_i|^{\alpha_0 s} > M.$$

On the other hand, for any $\varepsilon > 0$

$$J(\varepsilon)(\varepsilon\delta_1)^d \leq \text{const.} \, \mathrm{m_d}\Biggl(\bigcup_{\sigma\in\Omega(\varepsilon)}\phi_\sigma(A)\Biggr),$$

since $\bigcup_{\sigma \in \Omega^*(\varepsilon)} B(\phi_{\sigma}(x), c_0 \varepsilon \delta_1) \subset \bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A)$ where δ_1 is such that $F^{\delta_1} \subset A$. Thus

$$J(\varepsilon)\varepsilon^{\alpha_0 s} \leq \text{const.} \frac{\varepsilon^{-d} \mathsf{m_d} \Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_\sigma(A) \Big)}{\sum_{\sigma \in \Omega(\varepsilon)} c_\sigma^{s(1-\alpha_0)}}.$$

Now taking ε such that $10\varepsilon|A| < \varepsilon_0$ and considering the covering $\{B(\phi_{\sigma}(x), 5|A|\varepsilon), \sigma \in \Omega^*(\varepsilon)\}$ of F which is an ε_0 -covering of F we have

$$\sum_{\sigma \in \Omega^*(\varepsilon)} (10|A|\varepsilon)^{\alpha_0 s} = \text{const.} J(\varepsilon) \varepsilon^{\alpha_0 s} \ge M.$$

Therefore

$$\frac{\varepsilon^{-d} \mathrm{m_d} \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}} \geq \mathrm{const.} \, M,$$

for $\varepsilon < (10|A|)^{-1}\varepsilon_0$ which indicates

$$\underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \Big)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}} = \infty.$$

(iv) Suppose $\underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \Big)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}} = 0$. Then for any h > 0 there exist sequence $\varepsilon_n \searrow 0$ such that

$$\varepsilon_n^{-d} \mathbf{m}_{\mathsf{d}} \left(\bigcup_{\sigma \in \Omega(\varepsilon_n)} \phi_{\sigma}(A) \right) < h \sum_{\sigma \in \Omega(\varepsilon_n)} c_{\sigma}^{s(1-\alpha_0)} \le h c_0^{-\alpha_0 s} \varepsilon_n^{-\alpha_0 s}.$$

We consider the covering $\{B(\phi_{\sigma}(x), 5\varepsilon_n|A|), \sigma \in \Omega^*(\varepsilon_n)\}\$ of F. Since

$$\bigcup_{\sigma\in\Omega^*(\varepsilon_n)}B(\phi_\sigma(x),c_0\varepsilon_n\delta_1)\subset\bigcup_{\sigma\in\Omega(\varepsilon_n)}\phi_\sigma(A)$$

where δ_1 is such that $F^{\delta_1} \subset A$, then

$$J(\varepsilon_{n}) \mathrm{m}_{\mathrm{d}}(B(\phi_{\sigma}(x), c_{0}\varepsilon_{n}\delta_{1})) \leq \mathrm{m}_{\mathrm{d}}\left(\bigcup_{\sigma \in \Omega(\varepsilon_{n})} \phi_{\sigma}(A)\right), \tag{10}$$

$$J(\varepsilon_{n}) \leq \mathrm{const.} \, \varepsilon_{n}^{-d} \mathrm{m}_{\mathrm{d}}\left(\bigcup_{\sigma \in \Omega(\varepsilon_{n})} \phi_{\sigma}(A)\right) \leq \mathrm{const.} \, h\varepsilon_{n}^{-\alpha_{0}s}.$$

Therefore we have

$$\sum_{\sigma \in \Omega^{\star}(\varepsilon_n)} |B(\phi_{\sigma}(x), 5\varepsilon_n|A|)|^{\alpha_0 s} = J(\varepsilon_n) (10|A|\varepsilon_n)^{\alpha_0 s} \leq \text{const. } h,$$

 $\begin{array}{llll} \text{which} & \operatorname{indicates} & \mathscr{H}^{\alpha_0 s}(F) = 0. & \text{As} & \text{a result, we get that} & \mathscr{H}^{\alpha_0 s}(F) > 0 & \text{implies} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

$$\text{Conjecture:} \quad \text{If $\varliminf_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_\sigma(A) \Big)}{\sum_{\sigma \in \Omega(\varepsilon)} c_\sigma^{s(1-\alpha_0)}} > 0 \text{ then } \mathscr{H}^{\alpha_0 s}(F) > 0.$$

COROLLARY 2.4. If ϕ_i 's satisfy the open set condition then $\dim_H F = \dim_B F = \dim_P F = s$.

PROOF. Let bounded nonempty open set O make ϕ_i 's satisfy the open set condition. Taking $A = O^1$ thus

$$\mathrm{const.} \geq \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \varOmega(\varepsilon)} \phi_\sigma(O^1) \Big)}{\mathrm{Card} \, \varOmega(\varepsilon)} \geq \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \varOmega(\varepsilon)} \phi_\sigma(\overline{O}) \Big)}{\mathrm{Card} \, \varOmega(\varepsilon)} \geq \mathrm{const.} > 0,$$

which means $\alpha_0 = 1$. Therefore $\dim_H F = \dim_P F = s$ by Theorem 2.3. QED

REMARK 2.5. If the above Conjecture holds then it is easy to get

(a)
$$F$$
 is an $\alpha_0 s$ -set iff $0 < \underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} m_d \left(\bigcup_{\sigma \in \Omega(\varepsilon)} \phi_{\sigma}(A) \right)}{\sum_{\sigma \in \Omega(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}} < \infty;$

$$\begin{array}{ll} \text{(b)} & \phi_i\text{'s satisfy the open set condition iff } \varliminf_{\varepsilon \to 0} \frac{\varepsilon^{-d}\mathrm{m_d}\Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \ \phi_\sigma(A)\Big)}{\mathrm{Card} \ \Omega(\varepsilon)} > 0; \\ \\ \text{(c)} & \mathscr{H}^s(F) = 0 \text{ iff } \varliminf_{\varepsilon \to 0} \frac{\varepsilon^{-d}\mathrm{m_d}\Big(\bigcup_{\sigma \in \Omega(\varepsilon)} \ \phi_\sigma(A)\Big)}{\mathrm{Card} \ \Omega(\varepsilon)} = 0. \end{array}$$

$$\text{(c)}\quad \mathscr{H}^s(F)=0 \text{ iff } \varliminf_{\varepsilon\to 0} \frac{\varepsilon^{-d}\mathrm{m_d}\Big(\bigcup_{\sigma\in\Omega(\varepsilon)}\phi_\sigma(A)\Big)}{\mathrm{Card}\,\Omega(\varepsilon)}=0.$$

Generalization to MW-construction and generalized recurrent set.

Let $A = (a_{ij})_{n \times n}$ be an irreducible 0-1 matrix. $\{\phi_{ij} : a_{ij} = 1\}$ is a family of similar maps in \mathbb{R}^d with the ratio c_{ij} for ϕ_{ij} . Let s be such that the spectral radius of $(a_{ij}c_{ij}^s)_{n \times n}$ is 1 where we take $a_{ij}c_{ii}^s = 0$ when $a_{ij} = 0$. Write

$$\Omega_A = \left\{ \sigma \in \prod_{1}^{\infty} \{1, 2, \dots, n\} : \sigma = (\sigma(1), \sigma(2), \dots), a_{\sigma(l), \sigma(l+1)} = 1, l \in \mathbb{N} \right\},
\Omega_A^* = \left\{ \sigma \in \bigcup_{i=2}^{\infty} \{1, 2, \dots, n\}^i : \sigma = (\sigma(1), \dots, \sigma(k)), a_{\sigma(l), \sigma(l+1)} = 1, 1 \le l \le k-1 \right\}.$$

There exist unique compact sets F_1, F_2, \ldots, F_n which sometimes is called MWconstruction such that

$$F_{i} = \bigcup_{\{j: a_{ij} = 1\}} \phi_{ij}(F_{j}), \quad 1 \le i \le n.$$
 (11)

It is well-known that when $\{\phi_{ij}:a_{ij}=1\}$ satisfy the open condition, i.e. there are nonempty bounded open sets O_1, O_2, \ldots, O_n such that

$$O_i \supset \bigcup_{\{j: a_{ij}=1\}} \phi_{ij}(O_j), \quad 1 \leq i \leq n,$$

with the right hand being disjoint union, we have

$$\dim_H F_i = \dim_B F_i = \dim_P F_i = s, \quad 1 \le i \le n,$$

and F_i are all s-set.

Furthermore in Li [6] we prove that

Proposition 3.1. $\{\phi_{ij}: a_{ij}=1\}$ satisfies the open set condition iff F_i is an s-set for some $1 \le i \le n$ where s is given above.

Now for $1 \le i \le n$ let

$$\alpha_{i} = \sup \left\{ \alpha : \underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} m_{d} \left(\bigcup_{\sigma \in \Omega_{i}(\varepsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}) \right)}{\sum_{\sigma \in \Omega_{i}(\varepsilon)} c_{\sigma}^{s(1-\alpha)}} = \infty \right\}$$

$$\beta_{i} = \sup \left\{ \beta : \overline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} m_{d} \left(\bigcup_{\sigma \in \Omega_{i}(\varepsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}) \right)}{\sum_{\sigma \in \Omega_{i}(\varepsilon)} c_{\sigma}^{s(1-\beta)}} = \infty \right\}$$

$$(12)$$

where $A_i \supset F_i$ are bounded open sets; $|\sigma|$ denotes the length of σ ; $\Omega_i(\varepsilon) =$ $\{\sigma \in \Omega_A^*: \sigma(1) = i, c_\sigma \leq \varepsilon \text{ and } c_{\sigma|(|\sigma|-1)} > \varepsilon\}; \quad c_\sigma = c_{\sigma(1),\sigma(2)}c_{\sigma(2),\sigma(3)} \cdots c_{\sigma(|\sigma|-1),\sigma(|\sigma|)}; \quad \phi_\sigma = c_{\sigma(1),\sigma(2)}c_{\sigma(2),\sigma(3)} \cdots c_{\sigma(|\sigma|-1),\sigma(|\sigma|-1)}; \quad \phi_\sigma = c_{\sigma(1),\sigma(2)}c_{\sigma(2),\sigma(2)} \cdots c_$ $\phi_{\sigma(1),\sigma(2)} \circ \phi_{\sigma(2),\sigma(3)} \circ \cdots \circ \phi_{\sigma(|\sigma|-1),\sigma(|\sigma|)}. \quad \text{Write } c_0 = \min_{a_{ij}=1} c_{ij}.$

In usual, we always take some bounded open set A with $A\supset \bigcup_i F_i$ instead of A_i 's in (12).

Similarly it is easy to get

Proposition 3.2. (1) $0 \le \alpha_i \le \beta_i \le 1$ for $1 \le i \le n$;

(2) When $\{\phi_{ij}: a_{ij}=1\}$ satisfies the open set condition, we have $\alpha_i=\beta_i=1$ for all $1 \leq i \leq n$.

Similar to Theorem 2.3 we have

THEOREM 3.3. (I) All α_i and β_i are equal, denoting by α_0 the common value. And

$$(\text{II}) \quad \mathscr{H}^{\alpha_0 s}(F_i) < \infty \ \ \textit{for some} \ \ 1 \leq i \leq n \ \ \textit{iff} \ \ \underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \left(\bigcup_{\sigma \in \Omega_i(\varepsilon)} \phi_\sigma(A_{\sigma(|\sigma|)}) \right)}{\sum_{\sigma \in \Omega_i(\varepsilon)} c_\sigma^{s(1-\alpha_0)}} < \infty$$

 $(II) \quad \mathscr{H}^{\alpha_0 s}(F_i) < \infty \text{ for some } 1 \leq i \leq n.$ $for \quad some \quad 1 < i < n. \quad And \quad if \quad \mathscr{H}^{\alpha_0 s}(F_i) > 0 \quad for \quad some \quad 1 \leq i \leq n \text{ then}$ $\underbrace{\lim_{\varepsilon \to 0} \frac{\varepsilon^{-d} m_d \left(\bigcup_{\sigma \in \Omega_i(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)} \right)}{\sum_{\sigma \in \Omega_i(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}}} < \infty$ $\underbrace{\lim_{\varepsilon \to 0} \frac{\varepsilon^{-d} m_d \left(\bigcup_{\sigma \in \Omega_i(\varepsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}) \right)}{\sum_{\sigma \in \Omega_i(\varepsilon)} c_{\sigma}^{s(1-\alpha_0)}}} > 0 \text{ for all } 1 \leq i \leq n.$

PROOF. (I) Without loss of generality we suppose that $\alpha_1 = \min_{1 \le i \le n} \alpha_i$, $\beta_1 = \min_{1 \le i \le n} \beta_i, \, \beta_n = \max_{1 \le i \le n} \beta_i.$

Fix some $j, 1 \le j \le n$. First step we prove $\dim_H F_j \ge \alpha_1 s$. Taking $x_i \in F_i$ and writing $\delta = \max_i |F_i|$. We choose the subfamily $\Omega_i^*(\varepsilon)$ from $\Omega_i(\varepsilon)$ such that

(1) for any σ , $\tau \in \Omega_i^*(\varepsilon)$ and $\sigma \neq \tau$

$$\rho(\phi_{\sigma}(x_{\sigma(|\sigma|)}), \phi_{\tau}(x_{\tau(|\tau|)})) > 4\delta\varepsilon;$$

(2) if $\sigma \in \Omega_i(\varepsilon) \setminus \Omega_i^*(\varepsilon)$ there exists $\tau \in \Omega_i^*(\varepsilon)$ such that

$$\rho(\phi_{\sigma}(x_{\sigma(|\sigma|)}),\phi_{\tau}(x_{\tau(|\tau|)})) \leq 4\delta\varepsilon.$$

Let $J_i(\varepsilon) = \operatorname{Card} \Omega_i^*(\varepsilon)$. Thus

$$\bigcup_{\sigma \in \Omega_i^*(\varepsilon)} B(\phi_{\sigma}(x_{\sigma(|\sigma|)}), 5\delta\varepsilon) \supset \bigcup_{\sigma \in \Omega_i(\varepsilon)} B(\phi_{\sigma}(x_{\sigma(|\sigma|)}), \delta\varepsilon)$$

$$\supset \bigcup_{\sigma \in \Omega_i(\varepsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}).$$

Therefore we have

$$J_i(\varepsilon) \mathrm{m_d} B(\phi_{\sigma}(x_{\sigma(|\sigma|)}), 5\delta \varepsilon) \geq \mathrm{m_d} \left(\bigcup_{\sigma \in \Omega_i(\varepsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}) \right),$$

$$J_i(\varepsilon)\varepsilon^{\alpha s} \geq \frac{\varepsilon^{-d}\mathrm{m_d}\Big(\bigcup_{\sigma\in\Omega_i(\varepsilon)}\phi_\sigma(A_{\sigma(|\sigma|)})\Big)}{\sum_{\sigma\in\Omega_i(\varepsilon)}c_\sigma^{s(1-\alpha)}}\left(\sum_{\sigma\in\Omega_i(\varepsilon)}c_\sigma^{s(1-\alpha)}\right)\delta^{-d}\operatorname{const.}\varepsilon^{\alpha s}.$$

Now let (m_1, \ldots, m_n) be the strictly positive right eigenvector responding to the eigenvalue 1. Then

$$(c_{ij}^s a_{ij})_{n \times n} \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix} = \begin{pmatrix} m_1 \\ \vdots \\ m_n \end{pmatrix}.$$

Therefore

$$\left[\frac{\min m_i}{\max m_i}\right]^2 \leq \sum_{\sigma \in \Omega_i(\varepsilon)} c_{\sigma}^s \leq \left[\frac{\max m_i}{\min m_i}\right]^2.$$

In addition

$$1 \le (\varepsilon c_{\sigma}^{-1})^{\alpha s} \le c_0^{-\alpha s}.$$

Therefore

$$J_{i}(\varepsilon)\varepsilon^{\alpha s} \geq \frac{\varepsilon^{-d} \mathbf{m}_{d} \left(\bigcup_{\sigma \in \Omega_{i}(\varepsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}) \right)}{\sum_{\sigma \in \Omega_{i}(\varepsilon)} c_{\sigma}^{s(1-\alpha)}} \delta^{-d} \text{ const.}$$
 (13)

If $\alpha_1 = 0$, it is trival. We assume $\alpha_1 > 0$ and take $0 < \alpha < \alpha_1$. Thus we have

$$\underline{\lim}_{\varepsilon\to 0} J_i(\varepsilon)\varepsilon^{\alpha s} = \infty,$$

by (13) for $1 \le i \le n$. Take $\varepsilon_1 > 0$ such that $J_i(\varepsilon_1)\varepsilon_1^{\alpha s}c_0^{\alpha s} \ge 2$ for all $1 \le i \le n$. Considering the arbitrary finite open $c_0\varepsilon_1\delta$ -covering $\{V_i\}$ of F_j , thus

(a) if there exists some V_i with $|V_i| \ge (c_0 \varepsilon_1)^2 \delta$ then

$$\sum_{i} |V_{i}|^{\alpha s} \ge (c_{0}\varepsilon_{1})^{2\alpha s} \delta^{\alpha s}; \tag{14}$$

(b) otherwise we have

$$\sum_{i} |V_{i}|^{\alpha s} = \varepsilon_{1}^{\alpha s} \sum_{i} |\varepsilon_{1}^{-1} V_{i}|^{\alpha s}.$$

For each $\sigma \in \Omega_j^*(\varepsilon_1)$, let $\mathscr{V}_{\sigma} = \{V_i : V_i \cap B(\phi_{\sigma}(x_{\sigma(|\sigma|)}), \varepsilon_1 \delta) \neq \varnothing\}$. Thus \mathscr{V}_{σ} is a covering of $\phi_{\sigma}(F_{\sigma(|\sigma|)})$ and for any σ , $\tau \in \Omega_j^*(\varepsilon_1)$, $\sigma \neq \tau$,

$$\mathscr{V}_{\sigma} \cap \mathscr{V}_{\tau} = \varnothing.$$

Take $\lambda_1 \in \Omega_i^*(\varepsilon_1)$ such that

$$\sum_{V_i \in \mathscr{V}_{\lambda_1}} |V_i|^{\alpha s} = \min_{\sigma \in \Omega_j^*(e_1)} \sum_{V_i \in \mathscr{V}_{\sigma}} |V_i|^{\alpha s}.$$

Therefore

$$\sum_{i} |V_{i}|^{\alpha s} \geq J(\varepsilon_{1}) \sum_{V_{i} \in \mathscr{V}_{\lambda_{1}}} |V_{i}|^{\alpha s} \geq J(\varepsilon_{1}) \varepsilon_{1}^{\alpha s} \sum_{V_{i} \in \mathscr{V}_{\lambda_{1}}} |\varepsilon_{1}^{-1} V_{i}|^{\alpha s}
\geq 2c_{0}^{-\alpha s} \sum_{V_{i} \in \mathscr{V}_{\lambda_{1}}} |\varepsilon_{1}^{-1} V_{i}|^{\alpha s} = 2(c_{\lambda_{1}} c_{0}^{-1} \varepsilon_{1}^{-1})^{\alpha s} \sum_{V_{i} \in \mathscr{V}_{\lambda_{1}}} |\phi_{\lambda_{1}}^{-1} V_{i}|^{\alpha s}
\geq 2 \sum_{V_{i} \in \mathscr{V}_{\lambda_{1}}} |\phi_{\lambda_{1}}^{-1} V_{i}|^{\alpha s}.$$
(15)

Since \mathscr{V}_{λ_1} is a covering of $\phi_{\lambda_1}(F_{\lambda_1(|\lambda_1|)})$, $\phi_{\lambda_1}^{-1}\mathscr{V}_{\lambda_1}$ is a finite open $c_0\varepsilon_1\delta$ -covering of $F_{\lambda_1(|\lambda_1|)}$. Denoting $\phi_{\lambda_1}^{-1}\mathscr{V}_{\lambda_1}$ by $\{u_i\}$ as above we have

- (a') if there exists $u_i \in \phi_{\lambda_1}^{-1} \mathscr{V}_{\lambda_1}$ such that $|u_i| \geq (c_0 \varepsilon_1)^2 \delta$ then (14) holds by (15).
- (b') otherwise repeating the above step and considering $Card\{V_i\}$ finite, thus (14) holds after finite steps. Therefore

$$\dim_H F_i \geq \alpha s$$

for any $0 < \alpha < \alpha_1$ which means

$$\dim_H F_i \geq \alpha_1 s$$
.

Similar to the proof of Theorem 2.3 we also get $\alpha_1 s \leq \dim_H F_j \leq \underline{\dim}_B F_j \leq \alpha_1 s$ and $\beta_1 s \leq \dim_H F_j \leq \underline{\dim}_B F_j \leq \beta_1 s$ and $\underline{\dim}_B F_j = \beta_n s$. Thus we complete the proof. In addition it is easy to find that all α_i 's and β_i 's are equal and independent of the choice of A_i 's.

(II) Finally using the same method as those in proof of Theorem 2.3 (III) and (IV) we can complete the proof of (II). QED

COROLLARY 3.4. When $\{\phi_{ij}: a_{ij}=1\}$ satisfies the open set condition, we have for every $0 \le i \le n$

$$\dim_H F_i = \dim_B F_i = \dim_P F_i = s.$$

CONJECTURE: if

$$\underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathsf{m}_{\mathsf{d}} \Big(\bigcup_{\sigma \in \Omega_i(\varepsilon)} \phi_{\sigma}(A_{\sigma(|\sigma|)}) \Big)}{\sum_{\sigma \in \Omega_i(\varepsilon)} c_{\sigma}^{s(1-\alpha)}} > 0$$

for some $1 \le i \le n$, then $\mathcal{H}^{\alpha s}(F_i) > 0$ for all $1 \le i \le n$.

REMARK 3.5. (1) Since the recurrent set (Dekking [2]) and the generalized recurrent set (Li [8]) are all the special cases of MW-construction (Bedford [1] & Li [7]) the Theorem 3.3 also works there. Thus our Theomem 3.3 actually improves the main results of [11] [12] which discussed the lower bound of Hausdorff dimension of recurrent sets and self-similar sets.

- (2) If the above conjecture is ture, it is easy to get
- (a) F_i is an αs -set for some $1 \le i \le n$ iff

$$0 < \varliminf_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \Omega_i(\varepsilon)} \, \phi_\sigma(A_{\sigma(|\sigma|)}) \Big)}{\sum_{\sigma \in \Omega_i(\varepsilon)} \, c_\sigma^{s(1-\alpha)}} < \infty$$

for some $1 \le i \le n$.

(b) F_i 's satisfy the open set condition iff

$$\underline{\lim}_{\varepsilon \to 0} \frac{\varepsilon^{-d} \mathrm{m_d} \Big(\bigcup_{\sigma \in \Omega_i(\varepsilon)} \phi_\sigma(A_{\sigma(|\sigma|)}) \Big)}{\mathrm{Card} \, \Omega_i(\varepsilon)} > 0$$

for some $1 \le i \le n$.

ACKNOWLEDGEMENT: The authors thank Prof. M. W. Hirsch for his kind help and support.

References

- [1] Bedfore, T., Dimension and dynamics of fractal recurrent set. J. London Math. Soc., 33 (1986), 89-100.
- [2] Dekking, F. M., Recurrent sets. Advances in Math., 44 (1982), 78-104.
- [3] Falconer, K., Fractal geometry Mathematical foundation and applications. Chichester: John Wiley & Sopens Ltd., 1990.
- [4] Falconer, K., Dimensions and measures of quasi self-similar sets. Proc. Amer. Math. Soc., 106 (1989), 543-554.
- [5] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
- [6] Li, W. X., Separation properties for MW-fractals. to appear in Acta Mathematica Sinica, 41 (1998).
- [7] Li, W. X., Researches on a class of partially-self-similar sets. Chinese Ann. of Math., 15A (1994), 681-688.
- [8] Li, W. X., Generalized recurrent set. Acta Math. Sinica. 39 (1996) 78-88.
- [9] Mauldin, R. D. & Williams, S. C., Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 309 (1988) 811-829.
- [10] Schief, A., Separation properties for self-similar sets. Proc. Amer. Math. Soc. 122 (1994), 111-115.
- [11] Wen, Z. Y., Wu, L. M., Zhong, H. L., A note on recurrent sets. Chin. Ann. of Math. 15B (1994), 321-326.
- [12] Wu, M., The Hausdorff dimensions of several kinds of set. Doctoral dissertation, Wuhan University. China, 1993.

Wenxia LI and Dongmei XIAO Department of Mathematics University of California Berkeley