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The dimensions of self-similar sets
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1. Introduction.

Let ¢, be similar contraction mappings in R? with ratios ¢;, 1 <i<n. Hu [5]
proved that there exists unique compact set F = R? such that

F= U 4(F). (1)

Further dimyg F = dimg F = dimp F = s and F is an s-set where s is such that

S =1, @
i=1

if ¢;’s satisfy the open set condition, i.e. there is a bounded nonempty open set O such
that

Ql $,(0) = O (3)

with the left hand is disjoint union. Recently Sc [10] proved that F is an s-set here
S°y ¢ =1if and only if ¢,’s satisfy the open condition.
Now for & > 0 write

.Q(S) = {0‘ € S*|ca < eand Co|(|a|-1) > 8},

where S* = 2 {1,2,...,n} and ¢, = co1)Cop) * Coqry for o= (0(1),0(2),...,0(k)) €
S*. And for g € S*, |g| denotes the length of ¢ and gk = (a(1),...,a(k)) for k < |a]|.
Let A = RY be a bounded open set with 4 > F. It is easy to see that coe < ¢, < ¢ for
any o € Q(¢) where ¢p = minj<;<,c;. We introduce nonnegative real numbers a(A4)
and f,(4) as follows

e=ma(U, o0 %(4))

aO(A) = Sup °‘|_1iﬂs-»0 1— =0 2, (4)
Zae[)(a) C;( Y
e ma (U ye e 9o(4)
= oefe) T'o
Bo(A4) = supq B|lim,._o ( s(1-B) ) =X 7, (5)
oeQ(e) Co

where ¢, = @y1) 0 $y2) 0+ 0 by for o = (0(1),0(2),...,0(k)) € S* and my(B) is the
Lebesgue measure of B < R“.
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In this paper we prove
(i) ao(4) and fy(A) are independent of the choice of 4 and ag(A) = By(4). We
denote the common value by o.
(ii) dimHF = dimBF = dimpF = 0pS.
(For self-similar set F' Fa[4] has proved that its Hausdorff dimension, Box dimension and

Packing dimension are equal)
8_dmd (Uae!)(e) ¢U(A))

Zae!)(s) C;(l_%)
8“’md(U,,eg(e) ¢a(A))

s(1—a)

Zae{)(e) Co
(v) We generalize this dimension results into the cases of MW-construction (Ma &

Wi [9]) and recurrent sets (De [2], Be [1] and Wen [11]).

< 00.

(ili) H#(F) < oo iff lim,_,

(iv) If #%(F) > 0 then lim, > 0.

2. Dimensions of self-similar set.
It is easy to get the following

ProposITION 2.1.

s_dmd(Uaeg(e) ¢0(A)) —0
Zaeﬂ(e) C;(l-—a) f
ems (Uyea 9:4)) 0}

1—
Zae Q(e) c,f-( &

ap(A4) = inf{ozlirr_le_ﬂo

Bo(4) = inf{ﬂlﬁ_n—lwo

PROPOSITION 2.2. 0<ap(4) <1;0<6y(4) <1.

Proor. Note that } ;.o c; =1. Taking « = 0 then

a_dmd(Uae.Q(e) ¢,,(A))
Zae[l(e) Cs
for some positive constant ¢. Thus ay(4) = 0. On the other hand, taking « =1, we

e_dmd (Uaeﬂ(e) ¢U(A))
Card Q(e)
0 < By(A4) <1 can be proved by the same method. QED

.l_l.m.e—v()

=u_meqoe-dmd( U ¢,,<A))2c

oe(e)

< ¢ for some constant ¢c. Thus ap(4) < 1.

have lim,_,,

THEOREM 2.3.
(i) «o(A4) and By(A) are independent of the choice of A and ay(A) = By(A), denoting
the common value by y;
(i) dimyg F = dimg F = dimp F = ays;

e (U e #o(4))
Zaeﬂ(e) C;(l_%)

(i) HA#*°(F) < oo iff lim, < o0;
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Eﬁdmd(Uaeg(s) ¢0(A)) 50

Zaeﬂ(e) c;(l—ao)
PrROOF. (i) For Bc R? and & > 0 let

(iv) If #%°(F) > 0 then lim,_,,

B® = {x € R? : there exists y € B such that p(x,y) < €}

where p(x,y) is the Euclidean distance between x and y. Since A4 is a bounded open set
containing set F, there are positive numbers d; and J, such that F < 4 = F% which
means ao(F%) < ag(4) < ap(F%) and By(F%) < By(A4) < Bo(F%). Thus it suffices to
prove oo(F%) and B,(F%) are independent of the choice of positive number ¢ and
ao(F?) = B,(F?®), which follows from the proof of (ii).

(i) Fixing x € F and denoting the diameter of 4 by |4| we choose subfamily Q*(¢)
from Q(e) such that

(1) for any different g, 7 € Q*(¢), p(4,(x), d,(x)) > 4|A|¢;

(2) if o e 2(e)\R27(e) there exists 7 € 2*(¢) such that p(¢,(x), ¢,.(x)) < 4|4|e.

Let J(¢) = Card Q2*(¢). Thus

U Bg,(x),514le)> | B(4,(x),14le) > U ¢,(4)

gef*(e) geQ(e) gef2(e)

where B(x,r) denotes a ball in R? with center at x and radius . Thus

J(e)maB(¢,(x), 5| 4]e) = mq LQ)() $o(4)-

Therefore for any nonnegative real number o

cl4]~%e~mg (U 0 +(4))
Eue[)(e) C;(l—a)

where ¢ is a positive constant. First we prove dimgy F > ag(A4)s. It is clear when
ao(4) =0. Suppose ay(A4) >0 and take 0 < « < ag(4). Thus by the definition of
ap(A4) and (6) we can take ¢ > 0 such that

J(e1)e® > 2c57. (7)

J(e)e™ >

: (6)

Considering any finite open coe; |4 |-covering {¥;} of F, we have
(a) if there exists some V; such that | V;| > (coe;)?| 4| then

STV 2 (coer) ™| 4| (8)

1

(b) otherwise for each o € Q*(¢1) let ¥, = {V;: ViNB(¢,(x),e1|A4|) # &}. Then
¥s is a covering of ¢,(F) and for any different g, 7€ Q%(¢1), ¥oN¥; = . Take
A1 € Q%(g;) such that

Z |Vi]™ = mingco+(e) Z [Vi|®.

Vie¥s Vie¥%
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Therefore
DSViE 2 I(er) > I Vil™ 2255 > | Vi*
i Vie¥s, Vie ¥y
=2(cxco e )™ Z 65 Vil
Vie¥s
22 Y gn' vl )
Vie¥s,
by (7).

Since 77, is a covering of ¢, (F), ¢,{11ﬁ, = {¢;ll(V,-) : Vie ¥} is a finite open
coe1|A|-covering of F. As above we have

(a’) if there exists ¢;11(V,-) € ¢,1‘11"V,11 such that |¢;11(V,-)| > (coe1)*|A| then (8) holds
by (9);

(b') otherwise denote ¢;11"V,11 by {U;}. Repeating the above step for the covering
{Ui} of F and noticing that Card{V;} is finite, thus (8) holds after finite steps.
Consequently dimy F > as which means dimg F > op(A)s.

Now taking §; > 0 we prove that dimy F < dimy F < ag(F%)s. Letting a > ag(F%)
there exists sequence ¢, \, 0 such that

gn_dmd(Uo'eQ(e,, ( 1))
Zae!)(e,,) CS(I_a)

Thus

e;dmd< U ¢0<F"‘>> < ¥ @ < (com) ™,
ge2(en)

Q( o€ 2(en)

(coen) ™ > c({md( U ¢0(F‘5’)> > cfmg(F o),

oe(e,)

Con01 \ ~d
. log(ma(Fo)cd)

- log(coen)
i B o)
d — sa < hmn——>0 log(co8n) < hmg—>0 W—

which implies dimg F < sa by the Proposition 3.2 of Fa [3]. Therefore dimgzF <
sog (Fo).

Repeating the above procedure of proof with f,(A4) instead of op(A4) we can attain
dimg F > By(A)s and dimy F < dimp F < B,(F®)s for any given &; > 0. As a result,
we get dimy F = dimp F = dimp F = 0g(F%)s = B,(F%)s for any given &, > 0 which
indicates ag(F%) and By(F®) are independent of the choice of d; > 0 and ay(F%) =
Bo(F%). Furthermore ay(A4) = By(A4) and they are independent of the choice of open set

A by (i).
y (1 8_dmd(UaeQ(e ¢0(A)) §
o0

2222e—0 s(1—ag)

(iii) Now we prove #**(F) < oo iff lim
Za’e!)(s) Co
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e ma(U, eae #o4))

Zae!)(e) C;(l_%) k
that (7) holds with «y instead of a. For any k € NV and for any finite open (coe;)"|A4|-

covering {V;} of F, repeating k — 1 time steps of proof of the above we can get
ZlVilaossz—l lejlags,
i J

where {U;} is a finite open coe; | A|-covering of F. According to the same method of (ii)
after finite steps, saying / steps, we get

SOIUI > 2 (com) | 4],
J

Suppose that lim, =oco. Then we can take & > 0 such

Z l V}'aos > 21+k——1(C081)2a0sIA,u0s’
J

which means #*°(F) = oo if letting k tends to oo.
Suppose #**(F) = oo. Thus for any M > 0 there exists g such that for any &-
covering {V;} of F

Vil > M.
i
On the other hand, for any & > 0
J(e)(ed1)? < const.mg| |J ¢,(4) ],
gef2(e)
since | J, ey B(#s(x),c0831) = (U, cqq $5(4) Where d; is such that F% = 4. Thus
8—dmd(Uo'eQ(E) ¢0(A))

1—
Zae!)(e) C;( )

J(e)e™® < const.

Now taking & such that 10e|4| < & and considering the covering {B(¢,(x),5|A4]¢),
o € 2*(e)} of F which is an g-covering of F we have

D (10]4]e)** = const. J ()e** > M.
aeR*(¢)

Therefore
&4 (U e #2(4))
s(1—
Zae.ﬂ(e) cf’( “
for £ < (10]4]) ~'& which indicates

e mg(U, cop 9o(4))

212 e—0 — = 00.
’ Zaeﬂ(a) C;(l )

> const. M,
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e 9my (Udeg(g) ¢a(A))

s(1~ap)

Zae Q(e) Co

(iv) Suppose lim,_,, = 0. Then for any A > 0 there exist

sequence &, \, 0 such that

&y dmd( U ¢a(A)) <h > U7 < hey™ie, .
)

o€ oe(en)

We consider the covering {B(¢4,(x), 5¢x|4]|),0 € 2*(e,)} of F. Since

U B@,(x),coe0) = U ¢,(4)

geR*(en) ge8(en)

where d; is such that F% < A, then

J(sn)md(B(¢a(x),C03n51))Smd( U ¢a(A)), (10)

J(en) < const. e, dmd( U ¢,,(A)> < const. kg, *°.
gef(en)

Therefore we have
> IB(8,(x), 5enl A])| = J () (10] A &) < const. h,
g€ (&)
which indicates #*°(F)=0. As a result, we get that #*°(F)>0 implies

s (Unears #:(4) >0, QED

lim,_,

ﬁ'dmd(Uaen(e) ¢a(A))

s(1—ap)
Zae Q(e) Co

CorOLLARY 2.4. If ¢,’s satisfy the open set condition then dimpy F =dimpF =
dimpF = S.

ConjecTure:  If lim,_,, > 0 then #*°(F) > 0.

Proor. Let bounded nonempty open set O make ¢;’s satisfy the open set con-
dition. Taking 4 = O! thus

~ma(Upea 9a(0Y) & ma(Uyean 4-0)
Card 2(z) = Card 2(s)

which means op = 1. Therefore dimyg F = dimg F = dimp F = s by Theorem 2.3. QED

> const. > 0,

const. >

REMARK 2.5. If the above Conjecture holds then it is easy to get

ema (U e 9(4))

Eae Q(e) C;( -0

(a) Fis an ogps-set iff 0 < lim,_, < 003
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g_dmd(UaeQ(e) ¢0(A)) .
Card Q(¢) >

(b) ¢,’s satisfy the open set condition iff lim,

8~dmd(Uaeg(5) ¢a(A)) —0

(C) H (F) =0 iff 11_1'1’1_6_,0 Card.Q(a)

3. Generalization to MW-construction and generalized recurrent set.

Let A = (a;),x, be an irreducible 0-1 matrix. {¢; : a; = 1} is a family of similar
maps in RY with the ratio c; for ¢;. Let s be such that the spectral radius of (ajc}),xn
is 1 where we take a;c; = 0 when a; =0. Write

[e 0]
Q4= {ae ];[{1,2,...,n} c0 = (0(1),0(2),...), 850),00+1) = l,leN},

Q0 .
.Q; = {O’E U{1,2,...,n}’ 10 = (0’(1),...,O'(k)),aa(l),a(H_l) =1,1<I<k- 1}.
i=2

There exist unique compact sets Fj,F,,...,F, which sometimes is called MW-
construction such that

FF= U ¢;(F), 1<i<n (11)

{j:a,—,-:l}

It is well-known that when {¢; : a; = 1} satisfy the open condition, i.. there are
nonempty bounded open sets Oj, O, ..., O, such that

0i = U ¢ij(0j)7 1<i<n,
{j:ay=1}

with the right hand being disjoint union, we have
dimyg F; =dimg F; =dimp F; =5, 1<i<n,

and F; are all s-set.
Furthermore in Li [6] we prove that

PROPOSITION 3.1. {@; : a; = 1} satisfies the open set condition iff F; is an s-set for
some 1 < i < n where s is given above.

Now for 1 <i<nlet

e—dmd(UaeQ,-(s) ¢0(A‘7(|UD))
s(1—-
Zae!),-(e) CU( g

— G‘dmd(Uaeg,.(s) ¢,,(Aa(|a|)))
B; = supg f:lim, e = o
Zaeﬂi(e) Co

where A4; o F; are bounded open sets; |o| denotes the length of o; Qi(e) =

{oeQ}:0(1) =ic; <eand ¢o|(jo1-1) > &5 Co = Co(1),0(2)Co(2),0(3) " Collol-1)a(lol)i  $o =
Po(1),0(2) © Po2),0(3) © "+ © Po(lo|-1)(ol)- WTItE Co = MiNg,= Cy.

= 00 (12)

o = supg a:lim,
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In usual, we always take some bounded open set 4 with 4 o Ui F; instead of A4;’s in
(12).

Similarly it is easy to get

ProposITION 3.2. (1) O0<o<B;<1for1<i<m

(2) When {¢; : a; = 1} satisfies the open set condition, we have «; = B; =1 for all
l<i<n.

Similar to Theorem 2.3 we have
TueoreM 3.3. () All a; and B, are equal, denoting by oy the common value. And

dimg F; = dimg F; = dimp F; = ops for 1 <i <n.
S"dmd(Uaeg,.(s) ¢a(Aa<|a1)))

ZO’EQ,‘(E) C;(l )

for some 1<i<n And if H*(F;)>0 for some 1<i<n then
g—dmd(UaeQi(e) ¢U(A°'(|U|)))

Zae[),-(s) c;(l )

Proor. (I) Without loss of generality we suppose that a; =minj<;<n,
B =mini <;<nfi, By =maxi<i<nfi.

(II) #*5(F;) < oo for some 1 <i<n iff lim, < oo

>0 foralll <i<n.

lim e—0

Fix some j, 1 <j <n. First step we prove dimy F; > ays. Taking x; e F; and
writing = max;|F;|. We choose the subfamily Q] (¢) from £;(¢) such that
(1) foranyo,7eQ(e)and o #1
p(¢a(xa(|a|)),¢r(xt(|t|))) > 458;
(2) if o € 2;(e)\2] (¢) there exists T € 2/ (&) such that

P(95(Xa(|a1))s B (Xe(j2)))) < 406
Let Ji(¢) = Card Q] (¢). Thus
U B(¢a(xo'(|a|))’ 558) > U B(¢a'(xa'(|a'|))’58)

ge; (¢) aef(e)

> U ¢.(doo))-

oefi(e)
Therefore we have

Ji(e)myB(@y(Xs(|0))), S0€) = md( U() ¢,,(Aa(|a|))>,

e~ma( U, eq,0) #o(4o(ion)
Ji(e)e™ > ( 20 s(j_a)a i ) Z ¢1=% 1674 const. £™.
Zaeﬂ,-(e) Co oeQi(e)

Now let (mjy,...,m,) be the strictly positive right eigenvector responding to the

eigenvalue 1. Then
my m
(ijaij)nxn( ) = ( )
My, my,
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Therefore
[mm m,:’ Z o < [max m,:'
. <
max m; wSate min m;
In addition
1< (ec;H)* < ep™.

Therefore

-d
€ md(UaeQ.-(e) ¢°(A"(""))) 6% const (13)
" )
Zaeﬂi(e) C;( K

If ¢y =0, it is trival. We assume «; > 0 and take 0 < a < ;. Thus we have

J,'(S)Sas =

lim J;(¢)e* = 0,
e—0

by (13) for 1 <i <n. Take & > 0 such that Ji(e1)ef*c§’ = 2 forall 1 <i<n. Consider-
ing the arbitrary finite open coe1d-covering {V;} of Fj, thus
(a) if there exists some V; with | V;| > (coe;)?6 then

D Vil = (o) 0% (14)

(b) otherwise we have
YoIViE = Y e Vil
i i
For each geQ/(e1), let ¥; = {Vi: ViNB(#s(Xs(0))),€10) # &}. Thus ¥; is a
covering of ¢,(Fy()) and for any o, 7 € 2/(e1), 0 # 1,
YNY, = .
Take 4 € .Q; (&1) such that

Vi|* = mi vi|®.
> IVil== min 3 Vi

Vievs, Vie¥s

Therefore

DViEzI@) Yo Vil =T Y ler Vi
i

Vie ¥y Vie¥y
22 D | Vil® = 2ence e )Y Y 165 Vil
Vie?, Vie?s,
-1
22 3 4w (15)
Vie ¥y,

Since ¥, is a covering of ¢; (Fj, (), ¢;11"V,11 is a finite open coe19-covering of Fj (14, ).
Denoting ¢;ll“/f,;l by {u;} as above we have
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(a’) if there exists u; € ¢;11"V,11 such that |u;| > (c081)25 then (14) holds by (15).

(b’) otherwise repeating the above step and considering Card{V;} finite, thus (14)
holds after finite steps. Therefore

dimpy F; > as
for any 0 < a« < a; which means
dimy F; > ays.

Similar to the proof of Theorem 2.3 we also get s < dimg F; < dimp F; < oys and
pis < dimy F; < dimp F; < fis and dimp F; = B,s. Thus we complete the proof. In
addition it is easy to find that all «;’s and f,’s are equal and independent of the choice
of A;’s.

(IT) Finally using the same method as those in proof of Theorem 2.3 (III) and (IV)
we can complete the proof of (II). QED

COROLLARY 3.4. When {¢;: a; = 1} satisfies the open set condition, we have for
every 0 <i<n

dlmHF, = dlmBE = dlmpF, = S.

CONJECTURE: if

ﬁ‘dmd(Uaeg,.(g) ¢.,(Aa(|a|>))
s(1—a) >0
Eae!)i(s) Co

for some 1 <i < n, then #*(F;) >0 forall 1 <i<n.

lim,

REMARK 3.5. (1) Since the recurrent set (Dekking [2]) and the generalized recurrent
set (Li [8]) are all the special cases of MW-construction (Bedford [1] & Li [7]) the Theo-
rem 3.3 also works there. Thus our Theomem 3.3 actually improves the main results of
[11] [12] which discussed the lower bound of Hausdorff dimension of recurrent sets and
self-similar sets.

(2) If the above conjecture is ture, it 1s easy to get

(a) F;is an as-set for some 1 <i < niff

g_dmd (Ua‘e.Q,—(s) ¢U(A‘7(1'7|)))
Zae!),-(s) cg'(l—“)

0<li—me—>0 <

for some 1 <i<n.
(b) F’s satisfy the open set condition iff

8"’md(Uaeg,(e) ¢a(Aa(|a|))) o
Card ;(¢)

lim, ,,

forsome 1 <i < n.
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