On the Besov-Hankel spaces*

By Jorge J. BETANCOR and Lourdes RODRÍGUEZ-MESA

(Received Oct. 15, 1996)

1. Introduction and preliminaries.

Consider the Hankel transformation h_{μ} defined for suitable functions ϕ by

$$h_{\mu}(\phi)(x) = \int_{0}^{\infty} y^{2\mu+1}(xy)^{-\mu} J_{\mu}(xy)\phi(y) dy, \quad x \in (0,\infty),$$

where J_{μ} represents the Bessel function of the first kind and order μ . Here and in the sequel μ is a real number greater than -1/2. The convolution for the transformation h_{μ} is defined through

$$(\phi \# \psi)(x) = \int_0^\infty (\tau_x \phi)(y) \psi(y) \, d\gamma(y), \quad x \in (0, \infty),$$

where the Hankel translation operator $\tau_x, x \in (0, \infty)$, is given by

$$(\tau_x \phi)(y) = \int_0^\infty D(x, y, z) \phi(z) \, d\gamma(z), \quad x, y \in (0, \infty),$$

being $d\gamma(x) = (x^{2\mu+1}/2^{\mu}\Gamma(\mu+1)) dx$ and

$$D(x,y,z) = \frac{2^{3\mu-1}\Gamma(\mu+1)^2}{\Gamma(\mu+1/2)\sqrt{\pi}}(xyz)^{-2\mu}A(x,y,z)^{2\mu-1}, \quad x,y,z \in (0,\infty).$$

Here A(x, y, z) is the area of a triangle with sides x, y, z when such a triangle exists and A(x, y, z) = 0 otherwise.

In earlier papers ([6] and [9]) the #-convolution have been investigated on the spaces L^p_μ defined for $1 \le p < \infty$ to consist of those complex-valued functions ϕ , measurable on $(0,\infty)$ and such that $\|\phi\|_{p,\mu} < \infty$, where

$$\|\phi\|_{p,\mu} = \left\{ \int_0^\infty |\phi(x)|^p x^{2\mu+1} dx \right\}^{1/p}.$$

By L^{∞} we denote as usual the space of essentially bounded measurable functions on $(0,\infty)$ and $\| \|_{\infty}$ represents the usual norm in L^{∞} . The space of compactly supported continuous functions on $(0,\infty)$ is denoted by C_0 .

Let $T \in (0, \infty)$. We define the Bochner-Riesz mean $\sigma_T^{\beta}(\phi)$ of a measurable function ϕ on $(0, \infty)$ by

A.M.S. Subject Classification: 46F12.

Key words and phrases: Hankel transform, LP-spaces, Bochner-Riesz means.

^{*}Partially supported by Consejería de Educación, Gobierno Autónomo de Canarias, Proyecto 967/15-9-95 and by DGICYT Grant PB 94-0591 (Spain).

$$\sigma_T^{\beta}(\phi)(x) = \int_0^T y^{2\mu+1}(xy)^{-\mu} J_{\mu}(xy) \left(1 - \left(\frac{y}{T}\right)^2\right)^{\beta} h_{\mu}(\phi)(y) \, dy, \quad x \in (0, \infty).$$

According to (33) $\oint 8.5$ [3] we can see ([1]) that when $1 \le p \le 2$ and $\beta > \mu + 1/2$

$$\sigma_T^{\beta}(\phi) = \phi_{T,\beta} \# \phi, \quad \phi \in L^p_u,$$

where $\phi_{T,\beta}(x)=2^{\beta}\Gamma(\beta+1)T^{2(\mu+1)}(Tx)^{-\mu-\beta-1}J_{\mu+\beta+1}(Tx), T, \ x\in(0,\infty).$ Moreover by virtue of Theorem 2.b [9] since $\phi_{T,\beta}\in L^1_{\mu}$ when $\beta>\mu+1/2$

$$\|\phi_{T,\beta} \# \phi\|_{p,\mu} \le C \|\phi\|_{p,\mu}, \quad \phi \in L^p_{\mu}, \quad 1 \le p \le \infty$$

for certain C > 0.

That suggests to define the operator σ_T^{β} on L_u^p by

$$\sigma_T^{\beta}(\phi) = \phi_{T,\beta} \# \phi,$$

when $1 \le p \le \infty$ and $\beta > \mu + 1/2$.

Also we consider the partial Hankel integral $s_T(\phi)$ of a measurable function ϕ on $(0,\infty)$ by

$$s_T(\phi)(x) = \int_0^T y^{2\mu+1}(xy)^{-\mu} J_{\mu}(xy) h_{\mu}(\phi)(y) dy, \quad x \in (0,\infty).$$

In [1] we establish that

$$s_T(\phi) = \varphi_T \# \phi, \quad \phi \in L^p_\mu,$$

when $1 \le p \le 2$ and $\mu > -1/2$, where $\varphi_T(x) = T^{2(\mu+1)}(Tx)^{-\mu-1}J_{\mu+1}(Tx)$, $T, x \in (0, \infty)$.

Moreover, according to Theorem 3 [7] and $\oint 5.1$ (8) [13] (see also [14]) we can write for every $\phi \in C_0$,

$$s_{T}(\phi)(x) = \int_{0}^{\infty} \phi(z)x^{-\mu}z^{\mu+1} \int_{0}^{T} J_{\mu}(zy)J_{\mu}(xy)y \,dy \,dz$$

$$= T\left(x^{-\mu}J_{\mu}(Tx)\int_{0}^{\infty} \frac{z^{\mu+2}}{z^{2}-x^{2}} J_{\mu+1}(Tz)\phi(z) \,dz$$

$$-x^{-\mu+1}J_{\mu+1}(Tx)\int_{0}^{\infty} \frac{z^{\mu+1}}{z^{2}-x^{2}} J_{\mu}(Tz)\phi(z) \,dz\right)$$

$$= T(x^{-\mu}J_{\mu}(Tx)H_{-}[z^{\mu+1}J_{\mu+1}(Tz)\phi(z)](x)$$

$$-x^{-\mu}J_{\mu+1}(Tx)H_{+}[z^{\mu+1}J_{\mu}(Tz)\phi(z)](x)), \quad x \in (0,\infty),$$
(1)

where H_{-} and H_{+} represent the well-known odd and even Hilbert transforms.

By taking into account the behaviour of the Hilbert transforms on weighted L^p -spaces ([8]) it is easy to see that the last term in (1) defines a bounded linear operator from L^p_{μ} into itself when $4(\mu+1)/(2\mu+3) . Also, the boundedness of the operator <math>s_T$ (Corollary 1, [10]) allows to conclude that the equality in (1) holds for every $\phi \in L^p_{\mu}$, $4(\mu+1)/(2\mu+3) .$

In the sequel we define the operator s_T on L^p_μ by the last term in (1) when $4(\mu+1)/(2\mu+3) . In [2] it was proved that <math>s_T(\phi)(x) \to \phi(x)$, as $T \to \infty$, almost everywhere $x \in (0,\infty)$, provided that $4(\mu+1)/(2\mu+3) . Also it is not hard to prove that <math>s_T(\phi) \to \phi$, as $T \to \infty$, in L^p_μ (see the proof of Theorem 2.2) when $4(\mu+1)/(2\mu+3) .$

We introduce new function spaces that we call Besov-Hankel spaces as follows.

Let $\alpha > 0$ and $1 \le p, r < \infty$. We say that a measurable function ϕ on $(0, \infty)$ is in $BH_{\alpha,\mu}^{p,r}$ if $\phi \in L_{\mu}^{p}$ and

$$\int_0^\infty \left(\frac{w_{h,p}(\phi)(t)}{t^\alpha}\right)^r \frac{dt}{t} < \infty,$$

where $w_{h,p}(\phi)(t) = \|\tau_t \phi - \phi\|_{p,\mu}, t \in (0,\infty).$

In this paper, inspired in the one due to D. V. Giang and F. Móricz [4], we obtain characterizations of the Besov-Hankel spaces involving the Bochner-Riesz means (Theorem 2.1) and the partial Hankel integrals (Theorem 2.2).

Throughout this paper C will always denote a suitable positive constant that it is not necessarily the same in each occurrence. Also we represent by p' the conjugate of p (that is, p' = p/(p-1), when $1 and <math>p' = \infty$, when p = 1).

2. Characterizations of Besov-Hankel spaces.

We now obtain characterizations of the Besov-Hankel spaces through the Bochner-Riesz means σ_T^{β} and the partial Hankel integrals s_T . Previously we need establish some results.

LEMMA 2.1. Let $\beta > \mu + 1/2$ and $1 \le p < \infty$. Then for every $\phi \in L^p_\mu$

$$\phi(x) \ln 2 = \int_0^\infty [\sigma_{2T}^\beta(\phi)(x) - \sigma_T^\beta(\phi)(x)] \frac{dT}{T}, \quad a.e. \ x \in (0, \infty).$$

PROOF. Let $\phi \in L^p_u$. For every T > 0 we can write

$$\sigma_{2T}^{\beta}(\phi)(x) - \sigma_{T}^{\beta}(\phi)(x) = \int_{T}^{2T} \frac{d}{dt} \, \sigma_{t}^{\beta}(\phi)(x) \, dt, \quad a.e. \ x \in (0, \infty).$$
 (2)

Note that according to Theorem 2.b [9] $(d/dt)\sigma_t^{\beta}(\phi) \in L_{\mu}^p$, for every $t \in (0, \infty)$.

By virtue of Corollary 2 [11] $\sigma_T^{\beta}(\phi)(x) \to \phi(x)$, as $T \to \infty$, almost everywhere $x \in (0,\infty)$. Moreover $\sigma_T^{\beta}(\phi)(x) \to 0$, as $T \to 0^+$, uniformly in $x \in (0,\infty)$. Indeed, according to Theorem 2.b [9] we can write

$$|\sigma_T^{\beta}(\phi)(x)| \leq \|\phi_{T,\beta}\|_{p',\mu} \|\phi\|_{p,\mu} = CT^{2(\mu+1)/p} \|\phi\|_{p,\mu}, \quad T, x \in (0,\infty).$$

Hence $\sigma_T^{\beta}(\phi)(x) \to 0$, as $T \to 0^+$, uniformly in $x \in (0, \infty)$.

By integrating both of the sides in (2) one obtains

$$\int_0^\infty [\sigma_{2T}^\beta(\phi)(x) - \sigma_T^\beta(\phi)(x)] \frac{dT}{T} = \int_0^\infty \frac{d}{dt} \, \sigma_t^\beta(\phi)(x) \int_{t/2}^t \frac{dT}{T} \, dt = (\ln 2)\phi(x), \quad a.e. \ x \in (0, \infty).$$

LEMMA 2.2. Let $\alpha, \beta \in \mathbb{R}, -1/2 < \mu < \beta - \alpha - 1/2$ and $1 \le p < \infty$. Let ϕ be a locally integrable function on $(0, \infty)$. Then

$$\left\{ \int_0^\infty \left| t^{\alpha + \mu - \beta + 1/2} \int_{1/t}^\infty z^{\mu - \beta - 1/2} \phi(z) \, dz \right|^p \frac{dt}{t} \right\}^{1/p} \le C \left\{ \int_0^\infty |t^{-\alpha} \phi(t)|^p \, \frac{dt}{t} \right\}^{1/p}. \tag{3}$$

PROOF. It is easy to see that

$$G(t) = t^{\alpha+\mu-\beta+1/2} \int_{1/t}^{\infty} z^{\mu-\beta-1/2} \phi(z) dz = t^{\alpha} \int_{1}^{\infty} z^{\mu-\beta-1/2} \phi\left(\frac{z}{t}\right) dz, \quad t \in (0, \infty).$$

Let 1 . Hence by using Fubini Theorem and Hölder inequality, we obtain

$$\int_{0}^{\infty} |G(t)|^{p} \frac{dt}{t} \leq \int_{0}^{\infty} |G(t)|^{p-1} \int_{1}^{\infty} t^{\alpha-1} z^{\mu-\beta-1/2} \left| \phi\left(\frac{z}{t}\right) \right| dz dt
= \int_{1}^{\infty} \int_{0}^{\infty} |G(t)|^{p-1} t^{\alpha-1} z^{\mu-\beta-1/2} \left| \phi\left(\frac{z}{t}\right) \right| dt dz
\leq \int_{1}^{\infty} z^{\mu-\beta-1/2} \left\{ \int_{0}^{\infty} |G(t)|^{(p-1)p'} \frac{dt}{t} \right\}^{1/p'} \left\{ \int_{0}^{\infty} \left| t^{\alpha} \phi\left(\frac{z}{t}\right) \right|^{p} \frac{dt}{t} \right\}^{1/p} dz.$$

A straightforward manipulation leads to

$$\left\{ \int_{0}^{\infty} |G(t)|^{p} \frac{dt}{t} \right\}^{1/p} \leq \int_{1}^{\infty} z^{\mu-\beta-1/2+\alpha} dz \left\{ \int_{0}^{\infty} |t^{-\alpha}\phi(t)|^{p} \frac{dt}{t} \right\}^{1/p}$$

$$\leq C \left\{ \int_{0}^{\infty} |t^{-\alpha}\phi(t)|^{p} \frac{dt}{t} \right\}^{1/p}.$$

If p = 1 (3) follows immediately from Fubini Theorem.

In the following we characterize the Besov-Hankel space through the Bochner-Riesz mean σ_T^{β} .

THEOREM 2.1. Let $\alpha > 0, -1/2 < \mu < \beta - \alpha - 1/2, 1 \le p, r < \infty$ and $\phi \in L^p_\mu$. The following three properties are equivalent.

(i) $\phi \in BH_{\alpha,\mu}^{p,r}$.

(ii)
$$T^{\alpha} \| \sigma_T^{\beta}(\phi) - \phi \|_{p,\mu} \in L^r \left((0 \infty), \frac{dT}{T} \right).$$

(iii)
$$T^{\alpha} \| \sigma_{2T}^{\beta}(\phi) - \sigma_{T}^{\beta}(\phi) \|_{p,\mu} \in L^{r} \left((0 \infty), \frac{dT}{T} \right).$$

PROOF. (i) \Rightarrow (ii). Let $\phi \in BH_{\alpha,\mu}^{p,r}$. By using the generalized Minkowski inequality and by taking into account well-known boundedness properties of the Bessel function we obtain

$$\|\sigma_{T}^{\beta}(\phi) - \phi\|_{p,\mu} \le \int_{0}^{1/T} |\phi_{T,\beta}(z)| w_{h,p}(\phi)(z) d\gamma(z) + \int_{1/T}^{\infty} |\phi_{T,\beta}(z)| w_{h,p}(\phi)(z) d\gamma(z)$$

$$\leq C \left(T^{2\mu+2} \int_{0}^{1/T} w_{h,p}(\phi)(z) z^{2\mu+1} dz + T^{\mu-\beta+1/2} \int_{1/T}^{\infty} z^{\mu-\beta-1/2} w_{h,p}(\phi)(z) dz \right)$$

$$\leq C \left(T \int_{0}^{1/T} w_{h,p}(\phi)(z) dz + T^{\mu-\beta+1/2} \int_{1/T}^{\infty} z^{\mu-\beta-1/2} w_{h,p}(\phi)(z) dz \right), \quad T \in (0,\infty).$$

According to Lemma 6 [4] and Lemma 2.2 it follows

$$\begin{split} \left\{ \int_{0}^{\infty} [T^{\alpha} \| \sigma_{T}^{\beta}(\phi) - \phi \|_{p,\mu}]^{r} \frac{dT}{T} \right\}^{1/r} &\leq C \left(\left\{ \int_{0}^{\infty} \left[T^{\alpha+1} \int_{0}^{1/T} w_{h,p}(\phi)(z) \, dz \right]^{r} \frac{dT}{T} \right\}^{1/r} \right. \\ &+ \left\{ \int_{0}^{\infty} \left[T^{\alpha+\mu-\beta+1/2} \int_{1/T}^{\infty} z^{\mu-\beta-1/2} w_{h,p}(\phi)(z) \, dz \right]^{r} \frac{dT}{T} \right\}^{1/r} \right) \\ &\leq C \left\{ \int_{0}^{\infty} \left(\frac{w_{h,p}(\phi)(z)}{z^{\alpha}} \right)^{r} \frac{dz}{z} \right\}^{1/r} < \infty. \end{split}$$

Thus (ii) is established.

 $(ii) \Rightarrow (iii)$ It is clear.

 $(iii) \Rightarrow (i)$ We define the operator Δ as follows

$$\Delta(\phi, x, t) = (\tau_t \phi)(x) - \phi(x), \quad x, t \in (0, \infty).$$

Since τ_t is a bounded operator in L^p_μ for every $t \in (0, \infty)$ ([12], p. 16), $\tau_t \phi \in L^p_\mu$, $t \in (0, \infty)$, and according to Lemma 2.1 we can write

$$\Delta(\phi, x, t) \ln 2 = \int_0^\infty [(\phi_{2T, \beta} - \phi_{T, \beta}) \# (\tau_t \phi - \phi)](x) \frac{dT}{T}, \quad x, t \in (0, \infty).$$
 (4)

Moreover if $\psi \in L^1_\mu$ and $\varphi \in L^p_\mu$ then

$$\tau_t(\psi \# \varphi) = \psi \# (\tau_t \varphi) = (\tau_t \psi) \# \varphi, \quad t \in (0, \infty).$$
 (5)

To see (5) it is sufficient to note that each of the terms define bounded bilinear operators from L^p_{μ} into itself (Theorem 2.b [9] and p. 16 [12]) and that (5) holds when ψ and φ belong to C_0 .

Hence from (4) and (5) we deduce

$$\Delta(\phi, x, t) \ln 2 = \int_0^\infty \Delta(\sigma_{2T}^{\beta}(\phi) - \sigma_T^{\beta}(\phi), x, t) \frac{dT}{T}, \quad x, t \in (0, \infty).$$
 (6)

Since τ_t is a contractive operator on L^p_{μ} , for every $t \in (0, \infty)$, we can write

$$\|\Delta(\sigma_{2T}^{\beta}(\phi) - \sigma_{T}^{\beta}(\phi), \cdot, t)\|_{p,\mu} \le 2\|\sigma_{2T}^{\beta}(\phi) - \sigma_{T}^{\beta}(\phi)\|_{p,\mu}, \quad t, T \in (0, \infty).$$
 (7)

Also,

$$\|\Delta(\sigma_{2T}^{\beta}(\phi) - \sigma_{T}^{\beta}(\phi), \cdot, t)\|_{p,\mu} \le CtT \|\sigma_{2T}^{\beta}(\phi) - \sigma_{T}^{\beta}(\phi)\|_{p,\mu}, \quad t, T \in (0, \infty).$$
 (8)

Indeed, since C_0 is a dense subset of L^p_μ , there exists a sequence $(\phi_n)_{n=1}^\infty$ contained in C_0 such that $\phi_n \to \phi$, as $n \to \infty$, in L^p_μ .

Hence, according to Theorem 2.b [9], $\phi_{T,\beta} \# \phi_n \to \phi_{T,\beta} \# \phi$, as $n \to \infty$, in L^p_μ , for each $T \in (0,\infty)$. Then $\tau_t(\phi_{T,\beta} \# \phi_n) \to \tau_t(\phi_{T,\beta} \# \phi)$, as $n \to \infty$, in L^p_μ , for every $t, T \in (0,\infty)$.

As in Corollary 2.2 [5] we choose a smooth function ξ on $(0, \infty)$ such that $\xi(y) = 1$, for every $y \in (0, 1]$ and $\xi(y) = 0$ for every $y \ge 2$. Denote by $g = h_{\mu}(\xi)$ and $g_{\varepsilon}(y) = \varepsilon^{2\mu+2}g(\varepsilon y)$, $\varepsilon, y \in (0, \infty)$. We have

$$\begin{split} \| \varDelta(\sigma_{2T}^{\beta}(\phi) - \sigma_{T}^{\beta}(\phi), \cdot, t) \|_{p,\mu} &= \lim_{n \to \infty} \ \| \varDelta(\sigma_{2T}^{\beta}(\phi_{n}) - \sigma_{T}^{\beta}(\phi_{n}), \cdot, t) \|_{p,\mu} \\ &= \lim_{n \to \infty} \ \| g_{2T} \# \varDelta(\sigma_{2T}^{\beta}(\phi_{n}) - \sigma_{T}^{\beta}(\phi_{n}), \cdot, t) \|_{p,\mu} \\ &= \lim_{n \to \infty} \ \| (\tau_{t} g_{2T} - g_{2T}) \# (\phi_{2T,\beta} \# \phi_{n} - \phi_{T,\beta} \# \phi_{n}) \|_{p,\mu} \\ &\leq C \| \tau_{t} g_{2T} - g_{2T} \|_{1,\mu} \| \sigma_{2T}^{\beta}(\phi) - \sigma_{T}^{\beta}(\phi) \|_{p,\mu}, \quad t, T \in (0, \infty). \end{split}$$

Thus (8) is established.

By combining (6), (7) and (8), according to generalized Minkowski inequality, we conclude that

$$w_{h,p}(\phi)(t) \leq C \left\{ \int_0^{1/t} t \|\sigma_{2T}^{\beta}(\phi) - \sigma_T^{\beta}(\phi)\|_{p,\mu} dT + \int_{1/t}^{\infty} \|\sigma_{2T}^{\beta}(\phi) - \sigma_T^{\beta}(\phi)\|_{p,\mu} \frac{dT}{T} \right\}, \quad t \in (0,\infty).$$

From Lemma 4 [4] it deduces

$$\left\{ \int_0^\infty \left(\frac{w_{h,p}(\phi)}{t^\alpha} \right)^r \frac{dt}{t} \right\}^{1/r} \le C \left\{ \int_0^\infty (T^\alpha ||\sigma_{2T}^\beta(\phi) - \sigma_T^\beta(\phi)||_{p,\mu})^r \frac{dT}{T} \right\}^{1/r},$$

and (i) is proved.

Next, Besov-Hankel spaces are characterized through the partial Hankel integral s_T .

THEOREM 2.2. Let $\alpha > 0$, $\mu > -1/2$, $4(\mu + 1)/(2\mu + 3) , <math>1 \le r < \infty$ and $\phi \in L^p_\mu$. Then the following three statements are equivalent.

(i) $\phi \in BH_{\alpha,\mu}^{p,r}$.

(ii)
$$T^{\alpha} \|s_T(\phi) - \phi\|_{p,\mu} \in L^r\left((0,\infty), \frac{dT}{T}\right).$$

(iii)
$$T^{\alpha} \| s_{2T}(\phi) - s_T(\phi) \|_{p,\mu} \in L^r\left((0,\infty), \frac{dT}{T}\right).$$

PROOF. Let $\beta > \mu + \alpha + 1/2$.

(i) \Rightarrow (ii). Let $T \in (0, \infty)$. Assume that $\psi \in C_0$. Then by Theorem 2.d [9] we can write

$$h_{\mu}(\sigma_T^{\beta}(\psi)) = h_{\mu}(\phi_{T,\beta})h_{\mu}(\psi).$$

Hence according to (33) $\oint 8.5$ [3] it follows that $s_T(\sigma_T^{\beta}(\psi)) = \sigma_T^{\beta}(\psi)$.

Moreover both of the members of the last equality define bounded linear operators from L^p_u into itself. Since C_0 is a dense subset of L^p_u we conclude that

$$s_T(\sigma_T^{\beta}(\phi)) = \sigma_T^{\beta}(\phi). \tag{9}$$

By taking into account again that $\{s_T\}_{T>0}$ is a uniformly bounded family of operators from L^p_μ into itself (Corollary 1, [10]) and by (9) one has

$$||s_T(\phi) - \phi||_{p,\mu} \le ||s_T(\sigma_T^{\beta}(\phi) - \phi)||_{p,\mu} + ||\sigma_T^{\beta}(\phi) - \phi||_{p,\mu} \le C||\sigma_T^{\beta}(\phi) - \phi||_{p,\mu}$$

Hence (ii) can be deduced now from Theorem 2.1.

- $(ii) \Rightarrow (iii)$. It is clear.
- $(iii) \Rightarrow (i)$. Firstly we prove that

$$\frac{2\beta}{T^{2\beta}} \int_0^T (T^2 - t^2)^{\beta - 1} t s_t(\phi)(x) \, dt = \sigma_T^{\beta}(\phi)(x), \quad T \in (0, \infty) \text{ and } a.e. \ x \in (0, \infty). \tag{10}$$

If $\psi \in C_0$ Fubini Theorem leads to

$$\begin{split} &\frac{2\beta}{T^{2\beta}} \int_0^T (T^2 - t^2)^{\beta - 1} t s_t(\psi)(x) \, dt \\ &= \frac{2\beta}{T^{2\beta}} \int_0^T (T^2 - t^2)^{\beta - 1} t \int_0^t y^{2\mu + 1} (xy)^{-\mu} J_{\mu}(xy) h_{\mu}(\psi)(y) \, dy \, dt \\ &= \frac{2\beta}{T^{2\beta}} \int_0^T y^{2\mu + 1} (xy)^{-\mu} J_{\mu}(xy) h_{\mu}(\psi)(y) \int_y^T (T^2 - t^2)^{\beta - 1} t \, dt \, dy \\ &= \int_0^T y^{2\mu + 1} (xy)^{-\mu} J_{\mu}(xy) \left(1 - \left(\frac{y}{T}\right)^2\right)^{\beta} h_{\mu}(\psi)(y) \, dy = \sigma_T^{\beta}(\psi)(x), \quad T, x \in (0, \infty). \end{split}$$

Moreover the left hand side of (10) defines a bounded operator from L^p_{μ} into itself. Indeed, from generalized Minkowski inequality we deduce

$$\left\| \frac{2\beta}{T^{2\beta}} \int_0^T (T^2 - t^2)^{\beta - 1} t s_t(\phi)(x) dt \right\|_{p,\mu} \le \frac{2\beta}{T^{2\beta}} \int_0^T (T^2 - t^2)^{\beta - 1} t \left\| s_t(\phi) \right\|_{p,\mu} dt \le C \|\phi\|_{p,\mu}.$$

Hence, since C_0 is a dense subset of L^p_{μ} , (10) holds.

According to again generalized Minkowski inequality, from (10) and Lemma 5 [4] it infers

$$\left\{ \int_{0}^{\infty} \left[T^{\alpha} \| \sigma_{2T}^{\beta}(\phi) - \sigma_{T}^{\beta}(\phi) \|_{p,\mu} \right]^{r} \frac{dT}{T} \right\}^{1/r} \\
\leq 2\beta \left\{ \int_{0}^{\infty} \left[T^{\alpha-2\beta} \int_{0}^{T} (T^{2} - t^{2})^{\beta-1} t \| s_{2t}(\phi) - s_{t}(\phi) \|_{p,\mu} dt \right]^{r} \frac{dT}{T} \right\}^{1/r} \\
\leq 2\beta \left\{ \int_{0}^{\infty} \left[T^{\alpha-1} \int_{0}^{T} \| s_{2t}(\phi) - s_{t}(\phi) \|_{p,\mu} dt \right]^{r} \frac{dT}{T} \right\}^{1/r} \\
\leq C \left\{ \int_{0}^{\infty} \left[T^{\alpha} \| s_{2T}(\phi) - s_{T}(\phi) \|_{p,\mu} \right]^{r} \frac{dT}{T} \right\}^{1/r}.$$

By invoking now Theorem 2.1 the proof is finished.

References

- [1] J. J. Betancor and L. Rodríguez-Mesa, Lipschitz-Hankel spaces and partial Hankel integrals, to appear in Integral Transforms and Special Functions.
- [2] L. Colzani, A. Crespi, G. Travaglini and M. Vignati, Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in euclidean and noneuclidean spaces, Trans. Amer. Math. Soc., 338 (1) (1993), 43-55.
- [3] A. Erdelyi, Tables of integral transforms, II, McGraw-Hill, New York, 1953.
- [4] D. V. Giang and F. Móricz, A new characterization of Besov spaces on the real line, J. Math. Anal. Appl., 189 (1995), 533-551.
- [5] J. Gosselin and K. Stempak, A weak-type estimate for Fourier-Bessel multipliers, Proc. Amer. Math. Soc., 106 (3) (1989), 655-662.
- [6] D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc., 116 (1965), 330-375.
- [7] C. S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA, 40 (1954), 996-999.
- [8] P. Heywood and P. G. Rooney, On the inversion of the even and odd Hilbert transforms, Proc. Roy. Soc. Edinburgh, 109A (1988), 201-211.
- [9] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math., 8 (1960/61), 307-336.
- [10] Y. Kanjin, Convergence and divergence almost everywhere of spherical means for radial functions, Proc. Amer. Math. Soc., 103(4) (1988), 1063-1069.
- [11] K. Stempak, The Littlewood-Paley theory for the Fourier-Bessel transform, University of Wroclaw, Preprint n° 45, 1985.
- [12] K. Stempak, La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C.R. Acad. Sc. Paris, 303 (serie I, n° 1) (1986), 15-19.
- [13] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge,
- [14] G. M. Wing, On the L^p theory of Hankel transforms, Pacific J. Math., 1 (1951), 313-319.

Jorge J. BETANCOR and Lourdes RODRÍGUEZ-MESA

Departamento de Análisis Matemático. Universidad de La Laguna 38271 - La Laguna. Tenerife Islas Canarias. España. E-mail: jbetanco@ull.es