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On the Besov-Hankel spaces*
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1. Introduction and preliminaries.

Consider the Hankel transformation 4, defined for suitable functions ¢ by

h(#)(x) = j: ¥ (xy) ()8 () dy, x € (0,00),

where J, represents the Bessel function of the first kind and order u. Here and in the
sequel u is a real number greater than —1/2. The convolution for the transformation 4,
is defined through

B#)(x) = jj (HOW) dr), xe(0,00),

where the Hankel translation operator 7, x € (0,00), is given by

(th)() = j:o D(x,3,2)8(z)dn(z), %y € (0,00),
being dy(x) = (x*#*1/2#(u + 1)) dx and

2% (u+1)°
Tu+1/2)y/a
Here A(x,y,z) is the area of a triangle with sides x,y,z when such a triangle exists
and A(x,y,z) = 0 otherwise.
In earlier papers ([6] and [9]) the # -convolution have been investigated on the spaces
L} defined for 1 < p < oo to consist of those complex-valued functions ¢, measurable on
(0,00) and such that ||¢||, , < co, where

D(x,y,z) = (xyz) *A(x,y,2)*7, x5,z € (0,00).

1/p

6= { | 160017 5 i}

By L we denote as usual the space of essentially bounded measurable functions on
(0,0) and || ||, represents the usual norm in L*. The space of compactly supported
continuous functions on (0, c0) is denoted by C.

Let T € (0,00). We define the Bochner-Riesz mean ag(qﬁ) of a measurable function
¢ on (0,00) by
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T 2 B
AOE = | #1050 (1- (2) ) OB, xe0.0)
According to (33) § 8.5 [3] we can see ([1]) that when ] <p <2and > pu+1/2

ol ($) = prs#d, delb,

where @7 5(x) = 28I(B + 1) T2+ (Tx) #7151 (Tx), T, x € (0,00).
Moreover by virtue of Theorem 2.b [9] since @74 € L}; when > u+1/2

Iz #llpp < Clidlp,y ¢€ly, 1<p<c

for certain C > 0.
That suggests to define the operator ag on LI by

when 1 <p<ooand f>pu+1/2.
Also we consider the partial Hankel integral s7(¢) of a measurable function ¢ on
(0,0) by
d 1
sr@0) = | 56 L) b, xe 0,50).
In [1] we establish that
ST(¢) = ¢T#¢7 ¢ELﬁa

when 1 <p <2 and u > —1/2, where p7(x) = T2W+)(Tx) #1141 (Tx), T, x € (0,00).
Moreover, according to Theorem 3 [7] and §5.1 (8) [13] (see also [14]) we can write
for every ¢ € Cy,

0

T
WWM=J¢@YW“L%WMWW@ﬁ

0

© Z”+2
= T(x_”Jﬂ(TX) JO mJﬂ+1(TZ)¢(Z)dZ

—u+l © gt
— X J,H_](TX) 0 ;_—sz#(TZ)¢(Z)dZ

= T M Iu(Tx) H- [ 11 (T2)$(2)) (x)
= x M (TX) Ho 2 1 (T2)(2)] (), x € (0, 0), (1)

where H_ and H, represent the well-known odd and even Hilbert transforms.

By taking into account the behaviour of the Hilbert transforms on weighted L?-
spaces ([8]) it is easy to see that the last term in (1) defines a bounded linear operator from
L’ into itself when 4(u+1)/(2u+3) <p <4(u+1)/(2u+1). Also, the boundedness
of the operator s (Corollary 1, [10]) allows to conclude that the equality in (1) holds for
every pe Lf, 4(u+1)/(2u+3) <p<2.
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In the sequel we define the operator sy on Lf by the last term in (1) when
4(u+1)/2u+3)<p<4(u+1)/2u+1). In [2] it was proved that sp(é)(x) — ¢(x),
as T — oo, almost everywhere xe€ (0,00), provided that 4(u+1)/Q2u+3)<p<
4(u+1)/(2u+1). Also it is not hard to prove that s7(¢) — ¢, as T — oo, in L (see
the proof of Theorem 2.2) when 4(u+1)/(2u+3) <p <4(u+1)/2u+1).

We introduce new function spaces that we call Besov-Hankel spaces as follows.

Let « >0 and 1 <p,r <oo. We say that a measurable function ¢ on (0,0) is in

BHJ if ¢ € Lf and
© r
[ (matroyer .,
0 1 t

where Wiy (8)(1) = |26 — Bl € (0,00).

In this paper, inspired in the one due to D. V. Giang and F. Mdricz [4], we ob-
tain characterizations of the Besov-Hankel spaces involving the Bochner-Riesz means
(Theorem 2.1) and the partial Hankel integrals (Theorem 2.2).

Throughout this paper C will always denote a suitable positive constant that it is not
necessarily the same in each occurrence. Also we represent by p’ the conjugate of p
(that is, p' =p/(p — 1), when 1 < p < 00 and p’ = co, when p = 1).

2. Characterizations of Besov-Hankel spaces.

We now obtain characterizations of the Besov-Hankel spaces through the Bochner-
Riesz means aﬁ and the partial Hankel integrals s7. Previously we need establish some
results.

LEMMA 2.1. Let f>pu+1/2and 1 <p < . Then for every ¢ € L
® d
#)n2 = [ D) - AGWI T, aexe 0,0)

ProoF. Let ¢ e Lf. For every T > 0 we can write

2T
d
D) - O = [ GADD L, ae.xe ) @)
Note that according to Theorem 2.b [9] (d/dt)a? (9) e LY, for every t € (0,00).
By virtue of Corollary 2 [11] ag(¢)(x) — ¢(x), as T — oo, almost everywhere x €
(0,00). Moreover ag(¢)(x) — 0, as T — 0%, uniformly in x € (0,00). Indeed, accord-
ing to Theorem 2.b [9] we can write

1672(8) ()| < llérplly 18llp, = CT?+V2)g]l, ., T,x € (0,00).

Hence a£(¢)(x) — 0, as T — 07, uniformly in x € (0, o0).
By integrating both of the sides in (2) one obtains

® daT *® d b dT
J, @) ko1 = | GAO@ | Fod= 260, aexe @)
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Lemma 2.2. Let a,feR,—-1/2<pu<f—a—1/2 and 1 <p< . Let ¢ be a
locally integrable function on (0,00). Then

i)

ProoOF. It is easy to see that

toc+,u—ﬂ+l/2 Jw Zﬂ—ﬁ—l/2¢(z) dz
1/t

IIPARL o 1/p
?} sof[ irors). o

o0

G([) = ta+ll—ﬂ+1/2 J Z#_ﬂ—1/2¢(z) dZ — t“ J Zﬂ_ﬂ*1/2¢ (_j_) dZ, te (0, w)

1/t 1

Let 1 < p < 0. Hence by using Fubini Theorem and Hélder inequality, we obtain

0
0
< ([ e 4

« V4
()
A straightforward manipulation leads to

o 1/p R ) 1/p
{j |G(z>|ﬂﬂ} < | zﬂ*ﬂ*/““dz{j :r%(r)l"f’f}
0 t 1 0 t

< C{J:O 12 (1) |7 ?}l/p.

J |G(t)|”TSJ lG(t)|p_IJ (1 F-12 dz dt
1

0 0

e} e )
:J J |G(2)|P~! 2~ gt B1/2 dtdz
0

1

p 1/p
%} dz.

If p =1 (3) follows immediately from Fubini Theorem. |
In the following we characterize the Besov-Hankel space through the Bochner-Riesz
B
mean o7.

THEOREM 2.1. Let 0> 0,-1/2<pu<f—-a—-1/2,1<p,r<oc and peLf. The
following three properties are equivalent.

(i) ¢eBHEy.

. ar

i) T1080) = dlp e (000, 5F):

dT
i) 7o) - o)l (001, 5F).
PrOOF. (i) = (i1). Let ¢ € BHJy. By using the generalized Minkowski inequality

and by taking into account well-known boundedness properties of the Bessel function we
obtain

[EACEI N

T
< j (b7:5(2) | Who (8)(2) d(z) + j 167:5(2) | whp (8)(2) d(2)
0 T
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o0

T
< C(Tz”+2 Jo whp(9)(2)22#H dz + TH P12 J 2412y, ,(8)(2) dz)

1/T
1T o0

< C(T J whp(4)(2) dz + THF+/2 J P12y, (8)(2) dz), T € (0,0).
0 1/T

According to Lemma 6 [4] and Lemma 2.2 it follows

{J:o (T*llo7(4) - ¢||,,,,J’d7T}l/rs C({J , [T”’ J;/T who($)(2) dZ] 7 }1/,

0

e { [T [© o g0 )

ol (4]

Thus (ii) is established.
(i) = (iii) It is clear.
(iii) = (i) We define the operator 4 as follows

A(¢’ X, t) = (Tl¢)(x) - ¢(x)7 x,te (0’ OO)

Since 7, is a bounded operator in Lf for every re(0,00) ([12], p. 16), ©.¢ € L£,
t € (0,00), and according to Lemma 2.1 we can write

465,002 = [ by~ b h- DT, x1cO2) @

Moreover if y € L, and ¢ € L% then

(Y #9) =Y #(1p) = (th) #9, te(0,00). (5)

To see (5) it is sufficient to note that each of the terms define bounded bilinear
operators from L into itself (Theorem 2.b [9] and p. 16 [12]) and that (5) holds when

and ¢ belong to Cp.
Hence from (4) and (5) we deduce

® ar
46, 50m2= | ael@) - D x0T xre©0) (6)
Since 7, is a contractive operator on L, for every ¢ e (0,00), we can write

14(a5(8) — 4(8), -, DI, x < 21557 (#) — o5 (D, 0 & T €(0,00). (7)
Also,
4(c57(8) — a5(8),, D, < CIT ||o57(8) — 5D, T € (0,00). 8)

Indeed, since Cy is a dense subset of L%, there exists a sequence (4,),2, contained in
Co such that ¢, — ¢, as n — oo, in LE.
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Hence, according to Theorem 2.b [9], ¢rz#¢, — ¢rz#¢, as n — oo, in Lf, for each
T €(0,0). Then t,(¢rp#¢,) — t:(drp#¢), as n — oo, in LE, for every ¢, T € (0, ).
As in Corollary 2.2 [S] we choose a smooth function £ on (0, c0) such that &(y) = 1,
for every y e (0,1] and &(y) =0 for every y >2. Denote by g = h,(¢) and g.(y) =
e%#+2g(ey), &,y € (0,00). We have
14(057(6) = o7(8), -, D), = lim 11 4(h7(8,) = o7Bn), - D)l
= lim |\gar # 4(037(8s) — 07(¢), - Dl
= nl}{g |(tegar — g21) # (Por g # 60 — P, # 8u)ll 0
< Clltgar — g27ll1, 1957(8) = 97 B)lpo 1T € (0, 0).

Thus (8) is established.
By combining (6), (7) and (8), according to generalized Minkowski inequality, we

conclude that

1/t e} dT
1o 8)0) < c{ J, et o)~ ch@ar + [ 1t - a£<¢)||,,,,,7}, (e 0,00).

From Lemma 4 [4] it deduces
o r 1/r 0 1/r
whp(4)\ dt . I rdT
{7 (222" < of [ 1ty - A0 T}
and (i) is proved. |
Next, Besov-Hankel spaces are characterized through the partial Hankel integral s7.

THEOREM 2.2. Let a>0, u>—1/2, 4(u+1)/2u+3)<p<4u+1)/2u+1),
1 <r<ooand geLll. Then the following three statements are equivalent.
(i) ¢eBHE.

i) Tlsr(®) — flpe (0,00, ).

i) Tolsar(@) = 5@l 17 0,00 )

PrOOF. Let f>u+a+1/2.
(i) = (i)). Let T € (0,00). Assume that Y € Cyp. Then by Theorem 2.d [9] we can

write
hu(G5(0)) = hu(brp)hu(W).

Hence according to (33) $8.5 [3] it follows that sT(ag(w)) = a,@(w).
Moreover both of the members of the last equality define bounded linear operators
from Lg into itself. Since C; is a dense subset of L{j we conclude that

sT(a5(9)) = o (4). 9)
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By taking into account again that {sr};., is a uniformly bounded family of oper-
ators from L£ into itself (Corollary 1, [10]) and by (9) one has

Is7(8) = 8l < lsT(05(@) — D)ll, . + llo5(8) — 8ll,., < Cllos(8) — 4l .-

Hence (ii) can be deduced now from Theorem 2.1.
(il) = (iii). It is clear.
(iii) = (i). Firstly we prove that

28 (T 2 2\p-1 _ B
J(T 21 15,()(x) dt = P (#)(x), Te(0,0)and ae. xe(0,00).  (10)

T% |,
If Y € Cy Fubini Theorem leads to

T
-]%% JO (T? = &) is, () (x) dt

T t
-7 L (17 - 2Py L Y4 (x9) AT 5y () ) dy

T T
=7 |, 70 ) [ (0= 2P vy

- JOT Y (xp) 4T (xy) (1 - (—;—,)Z)ﬂhﬂ(l//)(y) dy = o ()(x), T,xe(0,).

Moreover the left hand side of (10) defines a bounded operator from L/ into it-
self. Indeed, from generalized Minkowski inequality we deduce
Hence, since Cp is a dense subset of L, (10) holds.

= T(T2 = 2t |Is( @)l dt < Clgll
T2 0 t putt = P
According to again generalized Minkowski inequality, from (10) and Lemma 5 [4] it
infers

2p JT (T? = ) s (d)(x) at|| <

S <
T2 Jo pu

{ J:[Tauaﬁrw) ~ (Dl d?T}/

< 2.3“:0 [T“—zﬂ JOT(T2 — 2y ||s2(8) - oW dt] rdTT}l/r
ﬂ{ : [TH JoT ls21(9) = 5(@)lp dtJ rd?T}l/r

<2
<C

{

By invoking now Theorem 2.1 the proof is finished. |

o ,dT 1/r
L [T*|ls27(8) = sT(B)],,] 7} :
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