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Introduction.

Let $(M, g)$ be a complete Riemannian manifold, and let $B$ be a closed 2-form on
M. $B$ may be regarded as a magnetic field on $M$ . Let $\Omega$ : $TMarrow TM$ be a skewsym-
metric matrix defined by $g_{p}(u, \Omega(v))=B_{p}(u, v)(u, v\in T_{p}M,p\in M)$ . In [8], the New-
tonian equation of a charged particle moving on $M$ has been defined by

$\frac{D}{dt}\dot{c}=\Omega(\dot{c})$ , (1)

where $\dot{c}$ is the velocity vector field of the curve $c$ and $D/dt$ stands for the covariant
derivative along $c$ . The magnetic flow $\varphi_{t}$ : $TMarrow TM$ associated with $B$ is deflned by

$\varphi_{t}(v)=\dot{c}_{v}(t)$ ,

where $c_{v}$ is a solution curve of the equation (1) with $\dot{c}_{v}(0)=v\in TM$ .
By using a geodesic flow, E. Hopf proved that the total curvature of a compact sur-

face without conjugate points is nonpositive, and vanishes if and only if the surface is flat in
[5]. L. W. Green extended the result of E. Hopf for a compact $n$-dimensional manifold
in [3]. Recently, F. Guimaraes ([4]) and N. Innami ([6]) have treated the noncompact case.

The non-existence of a pair of conjugate points along geodesics is equivalent to the
non-existence of singular values of the exponential map. If there exists a magnetic field,
then this equivalence no longer holds. From this fact, we find two concepts of non-
conjugation for the magnetic flow, which are called Jacobi field non-conjugation and
exponential map non-conjugation.

We call a magnetic field uniform if $\nabla B\equiv 0$ , where $\nabla$ is the Levi-Civita connection of
$M$ . In this paper, for each concept of non-conjugation, we will generalize E. Hopf’s
theorem with the help of the magnetic flow associated with a uniform magnetic field.
In Section 3, the generalization for Jacobi field non-conjugation is treated. In Section
4, the following result will be proved as the generalization for exponential map non-
conjugation.

THEOREM 1. Let $(M, g)$ be a compact orientable surface with a uniform magnetic field
$B=bvo1_{M}(b\in R)$ where $vo1_{M}$ is a canonical volume form of $M$, and let $\chi(M)$ denoted the
Euler characteristic of M. Let $\exp^{\pm\Omega}$ : $TMarrow M$ be the exponential maps associated
with B. Suppose that there exist no singular values of $\exp^{\pm\Omega}$ . Then,

$- \frac{b^{2}}{2\pi}vol(M)\geq\chi(M)$ ,

and the equality holds if and only if the curvature of $M$ is constant-b2.
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See Section 4 for the definitions of $\exp^{\pm\Omega}$ . This implies that if $\chi(M)\geq 0$ and $b\neq 0$ ,
then there exists a singular value of $\exp^{\pm\Omega}$ . The proof of Theorem 1 is carried out
under more general situation, so to say, the case of a K\"ahler manifold with a K\"ahler

magnetic field. In Section 5, the relation between Jacobi field non-conjugation and
exponential map non-conjugation is discussed for two dimensional case.

1. Preliminaries.

Throughout this paper, we will assume $\nabla B\equiv 0$ , or equivalently $\nabla\Omega\equiv 0$ . We shall
review some basic materials. See [2] for details.

DEFINITION 1.1. Let $c_{v}$ be a solution curve of the equation (1) with $\dot{c}_{v}(0)=v\in TM$ .
Then, a vector field $J$ along $c_{v}$ is called a Jacobi field under $B$ if it satisfies the Jacobi
equation under $B$ along $c_{v}$

$\frac{D^{2}}{dt^{2}}J+R(\dot{c}_{v}, J)\dot{c}_{v}-\Omega(\frac{D}{d}J)=0$ , (2)

where the curvature tensor $R$ is defined by $R(X, Y)Z=\nabla_{Y}\nabla_{X}Z-\nabla_{X}\nabla_{Y}Z+\nabla_{[X,Y]}Z$ for
arbitrary vector fields $X,$ $Y,$ $Z$ .

Let $\pi:TMarrow M$ be the canonical projection. Let $v_{1}=v/r$ where $r=\sqrt{g(v,v)}$, and
let us choose $v_{2},$

$\ldots,$
$v_{n}\in T_{\pi(v)}M$ so that $\{v_{1}, v_{2}\ldots, v_{n}\}$ is an orthonormal basis in

$T_{\pi(v)}M$ . A vector field $V_{i}(i=1, \ldots, n)$ along $c_{v}$ is defined by a solution of the equation

$\frac{D}{dt}V_{i}-\Omega(V_{i})=0$ , $V_{i}(0)=v_{i}$ .

It is obvious that $V_{1},$
$\ldots$ , $V_{n}$ are orthonormal vector fields along $c_{v}$ . In particular,

$V_{1}=\dot{c}_{v}/r$ . If $J$ is expressed by $J= \sum_{i=1}^{n}f_{i}V_{i}$ where each $f_{i}$ is a smooth function along
$c_{v}$ , then the equation (2) is rewritten by the equation of the components $f=(f_{1}, \ldots,f_{n})$

$\ddot{f}+\Omega_{\dot{c}_{v}}\dot{f}+R_{c_{v}}f=0$ , (3)

where $\Omega_{\dot{c}_{v}}$ and $R_{\dot{c}_{v}}$ denote the matrixes $(g(V_{i}, \Omega(V_{j})))$ and $(g(V_{i}, R(\dot{c}_{v}, V_{j})\dot{c}_{v}))$ respec-
tively.

DEFINITION 1.2. Let $v\in TM\backslash (O)$ . A linear endomorphism $\tilde{R}_{v}$ of $T_{\pi(v)}M$ is defined
by

$\tilde{R}_{v}(w)=R(v, w)v+\frac{1}{g(v,v)}g(\Omega(v), w)\Omega(v)$ ,

where $w\in T_{\pi(v)}M$ .
Let $pr_{v}$ be the projection map onto the normal subspace of $v$ in $T_{\pi(v)}M$ , and let us set

$\Omega_{v,\perp}=pr_{v}\Omega pr_{v}$ and $\tilde{R}_{v,\perp}=pr_{v}\tilde{R}_{v}pr_{v}$ . The equation (2) is split into the equations of the
tangential and normal components of $c_{v}$ by

$\dot{f}_{1}=\frac{1}{r}g(\Omega(\dot{c}_{v}), J)+\frac{C}{r}$ , (4)

$\ddot{f}_{\perp}+\Omega_{\dot{c}_{v},\perp}\dot{f}_{\perp}+\tilde{R}_{\dot{c}_{v},\perp}f_{\perp}+\frac{C}{r^{2}}\Omega(\dot{c}_{v})=0$ , (5)
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where $f_{\perp}=(f_{2}, \ldots,f_{n})$ and $C\equiv g((D/dt)J,\dot{c}_{v})$ . For the case where $(M, g)$ is an orient-
able surface with a uniform magnetic field $B=bvo1_{M}(b\in R)$ , let us set $V_{2}=\Omega(V_{1})/b$ .
Then, the equation (3) becomes

$\ddot{f}+(\begin{array}{ll}0 -bb 0\end{array})\dot{f}+(\begin{array}{ll}0 00 r^{2}R(c_{v})\end{array})f=0$ ,

where $R(c_{v})$ stands for the curvature at $c_{v}$ . The equations (4) and (5) are

$\{$

$\dot{f}_{1}=bf_{2}+\frac{C}{r}$ ,

$\ddot{f}_{2}+\{r^{2}R(c_{v})+b^{2}\}f_{2}+\frac{C}{r}b=0$ .
(6)

DEFINITION 1.3. Let $p=c_{v}(\alpha)$ and $q=c_{v}(\beta)$ be two points on $c_{v}$ with $\alpha\neq\beta$ . $p$ and
$q$ are conjugate under $B$ along $c_{v}$ if there exists a nonzero Jacobi field under $B$ along $c_{v}$

which vanishes for $t=\alpha$ and $t=\beta$ .

Next, we shall recall a connection map $K:T(TM)arrow TM$ . Given a vector
$\xi\in T_{v}(TM)$ , let $Z_{\xi}$ : $(-\epsilon, \epsilon)arrow TM$ be a smooth curve with the initial condition
$\xi$ . Then, we define $K(\xi)=(D/dt)Z_{\xi}|_{t=0}\in T_{\pi(v)}M$ where $D/dt$ stands for the covariant
derivative along $\sigma_{\xi}=\pi(Z_{\xi})$ . $d\pi(\xi)$ is $(d/dt)\sigma_{\xi}|_{t=0}$ from the definition of $d\pi$ : $T(M)arrow$

$TM$ . It is obvious that $d\pi(\xi)$ and $K(\xi)$ depend only on $\xi$ . The kemels of $d\pi$ and $K$ are
called the vertical and horizontal subspaces of $T_{v}(TM)$ respectively, and the intersection
of the vertical and horizontal subspaces is the zero vector. Since $\dim T_{v}(TM)=2n$ ,
$T_{v}(TM)$ is a direct sum of the horizontal and vertical subspaces. Therefore, we may
consider $T_{v}(TM)$ as $T_{\pi(v)}M\oplus T_{\pi(v)}M$ by the correspondence

$T_{v}(TM)\ni\xirightarrow(d\pi(\xi), K(\xi))\in T_{\pi(v)}M\oplus T_{\pi(v)}M$ .

Given $\xi,$ $\eta\in T_{v}(TM)$ , we define the metric $\tilde{g}$ on $TM$ by

$\tilde{g}_{v}(\xi, \eta)=g_{\pi(v)}(d\pi(\xi),d\pi(\eta))+g_{\pi(v)}(K(\xi), K(\eta))$ .

In order to prove that $\varphi_{t}$ preserves the measure determined by $\tilde{g}$ , we shall compute the
divergence of the generating vector field of $\varphi_{t}$

$\xi_{v}=\frac{d}{dt}\varphi_{t}(v)|_{t=0}$ .

Let $(\pi^{-1}(U);x_{1}, \ldots, x_{n}, v_{1}, \ldots, v_{n})$ be a canonical coordinate system on $TM$ , where
$(U;x_{1}, \ldots, x_{n})$ is a coodinate system on $M$ and $v_{i}=dx_{i}(v)$ for $v\in\pi^{-1}(U)$ . Using this
coordinate system, we have

$\xi_{i}(v)=dx_{i}(\xi_{v})=v_{i}$ , $\xi_{n+i}(v)=dv_{i}(\xi_{v})=-\sum_{j,k=1}^{n}\Gamma_{jk}^{i}v_{j}v_{k}+\sum_{j=1}^{n}\Omega_{j}^{i}v_{j}$ ,

where $\Gamma_{jk}^{i}$ are the Christoffel symbols associated with $g$ and $\Omega_{j}^{i}=dx_{i}(\Omega(\partial/\partial x_{j}))$ . From
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this, we get

$div(\xi)(v)=\sum_{i=}^{n}(\frac{\partial\xi_{i}}{\partial x_{i}}(v)+\xi_{i}(v)\sum_{\alpha,\beta=1}^{2n}\frac{1}{2}\tilde{g}^{\alpha\beta}\frac{\partial\tilde{g}_{\alpha\beta}}{\partial x_{i}})$

$+ \sum_{i=1}^{n}(\frac{\partial\xi_{n+i}}{\partial v_{i}}(v)+\xi_{n+i}(v)\sum_{\alpha,\beta=1}^{2n}\frac{1}{2}\tilde{g}^{\alpha\beta}\frac{\partial\tilde{g}_{\alpha\beta}}{\partial v_{i}})$

$=2 \sum_{i,j=1}^{n}v_{i}\Gamma_{ij}^{j}-2\sum_{i,k=1}^{n}\Gamma_{ik}^{i}v_{k}+\sum_{i=1}^{n}\Omega_{i}^{i}=\sum_{i=1}^{n}\Omega_{i}^{i}$ ,

where $(\tilde{g}^{\alpha\beta})=(\tilde{g}_{\alpha\beta})^{-1}$ In the above computation, we have used the identities in [7]

$\sum_{\alpha,\beta=1}^{2n}\tilde{g}^{\alpha\beta}\frac{\partial_{\tilde{9}\alpha\beta}}{\partial x_{i}}=4\sum_{j=1}^{n}\Gamma_{ij}^{j}$ , $\sum_{\alpha,\beta=1}^{2n}\tilde{g}^{\alpha\beta}\frac{\partial\tilde{g}_{\alpha\beta}}{\partial v_{i}}=0$ .

If $B= \sum_{i<j}b_{ij}dx_{i}\wedge dx_{j}$ in $U$ , then we have $\Omega_{j}^{i}=\sum_{k=1}^{n}g^{ik}b_{kj}$ where $(g^{ij})=(g_{ij})^{-1}$ Be-
cause of $b_{ij}=-b_{ji}$ for all $1\leq i,j\leq n$ , we find

$\sum_{i=1}^{n}\Omega_{i}^{i}=\sum_{i,k=1}^{n}g^{ik}b_{ki}=-\sum_{i,k=1}^{n}g^{ki}b_{ik}=-\sum_{k=1}^{n}\Omega_{k}^{k}$ .

Therefore, $div(\xi)$ vanishes on $TM$ . This means that $\varphi_{t}$ is a measure preserving trans-
formation. Since $\varphi_{t}$ leaves the tangent sphere bundle $S_{r}M=\{v\in TM;g(v, v)=r^{2}\}$ in-
variant for all $t\in R$ , we restrict $\varphi_{t}$ to $S_{1}M$ . Let $N$ denote the unit normal vector field
of $S_{1}M$ in $TM$ with $d\pi(N_{v})=0$ and $K(N_{v})=v(v\in S_{1}M)$ . By the definition of the
divergence, we derive the identity

$div(\xi|S_{1}M)=div(\xi)-\tilde{g}(\tilde{\nabla}_{N}(\xi|S_{1}M), N)=div(\xi)+\tilde{g}(\xi|S_{1}M,\tilde{\nabla}_{N}N)$ ,

where V is the Levi-Civita connection associated with $\tilde{g}$ . For each $v\in S_{1}M$ , let us set
a curve $\sigma_{v}(s)=(x_{1}(\pi(v)), \ldots, x_{n}(\pi(v)), (s+1)v_{1}, \ldots, (s+1)v_{n})\subset T_{\pi(v)}M$ . By the direct
computation, we find

$\frac{\overline{D}}{\ }\dot{\sigma}_{v}(0)=\sum_{i,j=1}^{n}v_{i}v_{j}\tilde{\nabla}_{\partial/\partial v_{i}}\frac{\partial}{\partial v_{j}}=\tilde{\nabla}_{N_{v}}N_{v}-N_{v}$ ,

where $\tilde{D}/ds$ stands for the covariant derivative along $\sigma_{v}$ . Since $\sigma_{v}$ is a geodesic in $TM$,
we have $\tilde{\nabla}_{N_{v}}N_{v}=N_{v}$ for all $v\in S_{1}M$ . Because of $\tilde{g}(\xi|S_{1}M, N)=0$ , it follows that
$div(\xi|S_{1}M)=0$ on $S_{1}M$ . Therefore, we conclude that $\varphi_{t}|S_{1}M$ preserves the measure
determined by $\tilde{g}|S_{1}M$ .

2. Matrix differential equations.

We shall study the real $m\cross m$ matrix differential equation on $R$

$\ddot{X}(t)+P\dot{X}(t)+Q(t)X(t)=0$ , (7)

where $P$ is a constant skewsymmetric matrix and $Q(t)$ is a smooth symmetric matrix
on $R$ .
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Let $X_{v}(t)$ be a solution of the equation (7) with $X_{v}(v)=0$ and $\dot{X}_{v}(v)=I_{m}$ for all
$v\in R$ . We shall assume that $\det X_{v}(t)\neq 0$ for all $t\neq v$ . Substituting $Y(t)=e^{(t/2)P}X(t)$

into the equation (7), we obtain equation

$\ddot{Y}(t)+e^{(t/2)P}(Q(t)+\frac{1}{4}P^{\uparrow}P)e^{-(t/2)P}Y(t)=0$ , (8)

where the dagger denotes the transpose operation. We should note that
$e^{(t/2)P}(Q(t)+P^{\uparrow}P/4)e^{-(t/2)P}$ is a symmetric matrix. It is obvious that $Y_{v}(t)=$

$e^{(t/2)P}X_{v}(t)e^{-(v/2)P}$ is a solution of the equation (8) with $Y_{v}(v)=0$ and $\dot{Y}_{v}(v)=I_{m}$ .
From the above assumption, it is obvious that $\det Y_{v}(t)\neq 0$ for all $t\neq v$ . Therefore, we
may apply a useful method of L. W. Green [3] to the equation (8). For all $\tau\neq v$ ,
let $Y_{v}(t;\tau)$ denote a unique solution of the equation (8) with $Y_{v}(v;\tau)=I_{m}$ and
$Y_{v}(\tau;\tau)=0$ . We find that $Y_{v}(t;\infty)=\lim_{\tauarrow\infty}Y_{v}(t;\tau)$ exists and that $\det Y_{v}(t;\infty)\neq 0$

for all $t\in R$ .
Let us set $U_{v}(t)=\dot{Y}_{v}(t;\infty)Y_{v}(t;\infty)^{-1}$ Then, $U_{v}(t)$ is a symmetric solution of the

Riccati equation

$\dot{U}_{v}(t)+U_{v}^{2}(t)+e^{(t/2)P}(Q(t)+\frac{1}{4}P^{\dagger}P)e^{-(t/2)P}=0$ .

Moreover, the construction of $U_{v}(t)$ is independent of $v$ . Indeed, because of $Y_{v}(t;\tau)$

$=Y_{\overline{v}}(t;\tau)Y_{\overline{v}}(v;\tau)^{-1}$ for all $\overline{v}\neq v$ by the uniqueness of $Y_{v}(t;\tau)$ , we have

$Y_{v}(t;\infty)=Y_{\overline{v}}(t;\infty)Y_{\overline{v}}(v;\infty)^{-1}$

Therefore, $U_{v}(t)=U_{\overline{v}}(t)$ . Let us express this by $U(t)$ .

3. Jacobi field non-conjugation.

In this section, we shall assume that there exists no pair of conjugate points under $B$

along an arbitrary solution curve of the equation (1) whose velocity is 1, what is called,
Jacobi field non-conjugation.

From the equation (3), the real $n\cross n$ matrix differential equation along $c_{v}$ is derived
by

$\ddot{X}+\Omega_{\dot{c}_{v}}\dot{X}+R_{c_{v}}X=0$ . (9)

Note that $\Omega_{\dot{c}_{v}}\equiv\Omega_{v}$ on $c_{v}$ because of $\nabla\Omega\equiv 0$ . Indeed, since $\Omega$ is skewsymmetric, we
have

$\frac{d}{dt}g(V_{i},\Omega(V_{j}))=g(\Omega(V_{i}), \Omega(V_{j}))+g(\nabla_{i}, \Omega^{2}(V_{j}))=0$ .

Let $X_{v,v}(t)$ be a solution of the equation (9) with $X_{v,v}(v)=0$ and $\dot{X}_{v,v}(v)=I_{n}$ for all
$v\in R$ . The above assumption implies that $\det X_{v,v}(t)\neq 0$ for all $t\neq v$ and $v\in S_{1}M$ .
Thus, the results in Section 2 hold for the equation (9) along $c_{v}$ for all $v\in S_{1}M$ . Let
$U_{v}(t)$ be the matrix along $c_{v}$ which corresponds to $U(t)$ in Section 2.

DEFINITION 3.1. For each $v\in S_{1}M$ , a linear endomorphism $\hat{K}_{v}$ of $T_{\pi(v)}M$ is defined
by

$\hat{K}_{v}(w)=R(v, w)v+\frac{1}{4}\Omega^{\uparrow}\Omega(w)$ ,

where $w\in T_{\pi(v)}M$ .
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The equations that $U_{v}(t)$ should satisfy are
$\dot{U}_{v}(t)+U_{v}^{2}(t)+e^{(t/2)\Omega_{v}}\hat{K}_{\varphi_{t}(v)}e^{-(t/2)\Omega v}=0$ , $U_{v}(t)^{\uparrow}=U_{v}(t)$ . (10)

LEMMA 3.2. We have the identity

$U_{\varphi_{s}(v)}(t)=e^{-(s/2)\Omega_{v}}U_{v}(s+t)e^{(s/2)\Omega_{v}}$

for all $s,$ $t\in R$ and $v\in S_{1}M$ .

PROOF. For all $v\in S_{1}M$ , let $Y_{v,v}(t)$ and $Y_{v,v}(t;\tau)$ denote the matrixes along $c_{v}$ which
correspond to $Y_{v}(t)$ and $Y_{v}(t;\tau)$ in Section 2 respectively. Because of $\Omega_{\varphi_{s}(v)}=\Omega_{v}$ and
$R_{\dot{c}_{\varphi_{S}}(v)}(t)=R_{\dot{c}_{v}}(t+s)$ for all $s\in R$ , we have $X_{\varphi_{s}(v),v}(t)=X_{v,s+\mathcal{V}}(t+s)$ . For this reason,
we find the identities

$Y_{\varphi_{s}(v),v}(t)=e^{-(s/2)\Omega_{v}}Y_{v,s+v}(t+s)e^{(s/2)\Omega_{v}}$ ,

$Y_{\varphi_{s}(v),v}(t;\tau)=e^{-(s/2)\Omega_{v}}Y_{v,s+v}(t+s;s+\tau)e^{(s/2)\Omega_{v}}$ .

Therefore, we obtain

$Y_{\varphi_{s}(v),v}(t;\infty)=e^{-(s/2)\Omega_{v}}Y_{v,s+v}(t+s;\infty)e^{(s/2)\Omega_{v}}$ ,

which completes the proof. $\square$

Let tr denote the $trace$ . Let us set $F(v)=trU_{v}(0)$ . Since tr $U_{v}(0)$ is independent of
the choice of orthonormal vector fields in $T_{\pi(v)}M,$ $F(v)$ is a well defined function on
$S_{1}M$ . By the same reason, both $G(v)=trU_{v}(0)$ and $H(v)=trU_{v}^{2}(0)$ are well defined
on $S_{1}M$ . By Lemma 3.2, we find

$F(\varphi_{t}(v))=trU_{\varphi_{t}(v)}(0)=trU_{v}(t)$ ,

$G(\varphi_{t}(v))=tr\dot{U}_{\varphi_{t}(v)}(0)=tr\dot{U}_{v}(t)=\dot{F}(\varphi_{t}(v))$

along $c_{v}(v\in S_{1}M)$ . From the equation (10), the functions $F(\varphi_{t}(v))$ and $H(\varphi_{t}(v))$ satisfy
the equation

$\dot{F}(\varphi_{t}(v))+H(\varphi_{t}(v))+tr\hat{K}_{\varphi_{t}(v)}=0$ .

Integrating the both sides with respect to $t$, we have

$F( \varphi_{1}(v))-F(v)+\int_{0}^{1}H(\varphi_{s}(v))\ + \int_{0}^{1}$ tr $\hat{K}_{\varphi_{s}(v)}ds=0$ .

Let $dV_{S_{1}M}$ be the volume element on $S_{1}M$ determined by $\tilde{g}|S_{1}M$ . Then, $dV_{S_{1}M}=$

$d\omega dV_{M}$ where dru is the measure on the unit $(n-1)$ -sphere $S^{n-1}$ and $dV_{M}$ is the volume
element on $M$ . Since $M$ is compact, $F(v),$ $H(v)$ , and $tr\hat{K}_{v}$ are integrable on $S_{1}M$ .
Integrate the both sides with respect to $dV_{S_{1}M}$ over all of $S_{1}M$ , and use the fact that
$dV_{S_{1}M}$ is invariant with respect to the magnetic flow $\varphi_{t}:S_{1}Marrow S_{1}M$ . Then, we get

$0= \int_{S_{1}M}\int_{0}^{1}H(\varphi_{t}(v))\ dV_{S_{1}M}+ \int_{S_{1}M}\int_{0}^{1}$ tr $\hat{K}_{\varphi_{t}(v)}\ dV_{S_{1}M}$

$= \int_{S_{1}M}H(v)dV_{S_{1}M}+\int_{S_{1}M}$ tr $\hat{K}_{v}dV_{S_{1}M}$ .
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Since tr $\Omega^{\uparrow}\Omega$ is constant on $M$ , we may compute the last integral as follows:

$\int_{S_{1}M}$ tr $\hat{K}_{v}dV_{S_{1}M}=\int_{S_{1}M}Ric(v, v)dV_{S_{1}M}+\frac{1}{4}\int_{S_{1}M}$ tr $\Omega^{\uparrow}\Omega dV_{S_{1}M}$

$= \frac{\omega_{n-1}}{n}\int_{M}S(p)d\nabla_{M}+\frac{\omega_{n-1}}{4}vol(M)$ tr $\Omega\dagger\Omega$ ,

where $S(p)$ stands for the scalar curvature at $p\in M$ and $vol(M)$ is the volume of
$M$ . Since $H(v)=trU_{v}^{2}(0)$ is non-negative on $S_{1}M$ , we have

$\frac{1}{vol(M)}\int_{M}S(p)dV_{m}+\frac{n}{4}$ tr $\Omega^{\uparrow}\Omega=-\frac{n}{vol(S_{1}M)}\int_{S_{1}M}H(v)dV_{S_{1}M}\leq 0$ ,

where $vol(S_{1}M)$ is the volume of $S_{1}M$ . The equality holds if and only if $H(v)=0$ for
all $v\in S_{1}M$ , that is to say, $U_{v}(0)=0$ for all $v\in S_{1}M$ . By Lemma 3.2, we find that
$U_{v}(t)\equiv 0alongc_{v}foral1v\in S_{1}M$ . $Thismeansthat\hat{K}_{v}=0foral1v\in S_{1}M$ . It follows
that

$g(R(v, w)v,$ $w)= \frac{1}{4}g(\Omega(w), \Omega(w))$

for all $w\in T_{\pi(v)}M$ and $v\in S_{1}M$ . Since $g(\Omega(v), \Omega(v))=-4g(R(v, v)v,$ $v)=0$ for all
$v\in S_{1}M$ , we find $\Omega\equiv 0$ on $TM$ . Moreover, we get $R\equiv 0$ on $M$ . Therefore, the fol-
lowing result has been proved.

THEOREM 3.3. Let $(M, g)$ be a compact Riemannian manifold with a uniform mag-
netic field B. Suppose that there exists no pair of conjugate points under $B$ along an
arbitrary solution curve of the equation (1) whose velocity is 1. Then,

$\frac{1}{vol(M)}\int_{M}S(p)dV_{M}\leq-\frac{n}{4}$ tr $\Omega^{\uparrow}\Omega$ ,

and the equality holds if and only $\iota\beta(M, g)$ is flat and $B\equiv 0$ on $M$ .

For the case where $(M, g)$ is a compact orientable surface with a uniform magnetic
field $B=bvo1_{M}(b\in R)$ , the above inequality becomes

$\frac{1}{vol(M)}\int_{M}R(p)dV_{M}\leq-\frac{1}{2}b^{2}$ ,

and the equality holds if and only if $(M, g)$ is flat and $b=0$ . Theorem 3.3 contains
Hopf’s result in the special case where $b=0$ . However, we would like to look for a
geometric inequality which is sharp in the case of $b\neq 0$ . In the next section, we will
derive such a geometric inequality from exponential map non-conjugation.

4. Exponential map non-conjugation.

In this section, we will introduce the exponential maps associated with $B$ and find
the other geometric inequality by assuming that there exist no singular values of the
exponential maps associated with $B$, what is called, exponential map non-conjugation.
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DEFINITION 4.1. Let $w\in TM$ . Then, the exponential maps $\exp^{\pm\Omega}$ : $TMarrow M$

associated with $B$ are respectively defined as

$\exp^{\Omega}(w)=c_{v(w)}(\sqrt{g(w,w)})$ ,

$\exp^{-\Omega}(w)=c_{v(w)(-\sqrt{g(w,w)})}$

where $v(w)=w/\sqrt{g(w,w)}\in S_{1}M$ .

We investigate the geometrical meaning of exponential map non-conjugation. We
shall look at the real $(n-1)\cross(n-1)$ matrix differential equation along $c_{v}$

:il $+\Omega_{\dot{c}_{v},\perp}\dot{\ovalbox{\tt\small REJECT}}+\tilde{R}_{\dot{c}_{v},\perp}X=0$ . (11)

This is the equation of the normal components of a Jacobi field under $B$ along $c_{v}$ with
$g((D/dt)J,\dot{c}_{v})\equiv 0$ . Note that $\Omega_{c_{v},\perp}\equiv\Omega_{v,\perp}$ on $c_{v}$ and that $\tilde{R}_{\dot{c}_{v},\perp}$ is symmetric on $c_{v}$ .
Let $X_{v,v}(t)$ be a solution of the equation (11) with $X_{v,v}(v)=0$ and $\dot{\ovalbox{\tt\small REJECT}}_{v,v}(v)=I_{n-1}$ .

LEMMA 4.2. Let $d_{w}\exp^{\pm\Omega}$ denote the differentials of $\exp^{\pm\Omega}$ at $w\in TM$ respec-
tively. Then,

1. $\det(d_{w}\exp^{\Omega})=g(w, w)^{-(n-1)/2}\det X_{v(w),0}(\sqrt{g(w,w)})$ ,
2. $\det(d_{w}\exp^{-\Omega})=-g(w, w)^{-(n-1)/2}\det\chi_{v(w),0}(-\sqrt{g(w,w)})$ .

PROOF. Let $V_{1},$
$\ldots$ , $V_{n}$ be orthonormal vector fields along $c_{v(w)}$ defined in Section

1. Note that $(v(w), \ldots, v_{n})$ is an orthonormal basis in $T_{\pi(w)}M$ . First,

$d_{w} \exp^{\Omega}(v(w))=\frac{d}{\ } \exp^{\Omega}(w+sv(w))|_{s=0}$

$= \frac{d}{\ }c_{v(w)}(\sqrt{g(w,w)}+s)|_{s=0}$

$=\dot{c}_{v(w)(\sqrt{g(w,w)})}$ .

Next, let us set $v_{i}(w;\theta)=v(w)\cos\theta+v_{i}\sin\theta\in S_{1}M(i=2, \ldots , n)$ . Then,

$d_{w} \exp^{\Omega}(v_{i})=\frac{1}{\sqrt{g(w,w)}}\frac{d}{d\theta}\exp^{\Omega}(\sqrt{g(ww)}v_{i}(w_{\backslash }\theta))|_{\theta=0}$

$= \frac{1}{\sqrt{g(w,w)}}\frac{d}{d\theta}c_{v_{i}(w;\theta)(\sqrt{g(w,w)})1_{\theta=0}}$

$= \frac{1}{\sqrt{g(w,w)}}J_{i}(\sqrt{g(w,w)})$ ,

where $J_{i}=(d/d\theta)c_{v_{i}(w;\theta)}|_{\theta=0}$ is a Jacobi field under $B$ along $c_{v(w)}$ with $J_{i}(0)=0$ and
$(D/dt)J_{i}(0)=v_{i}$ . Note that $g((D/dt)J_{i},\dot{c}_{v(w)})\equiv g(v_{i}, v(w))=0$ . If $J_{i}= \sum_{j=1}^{n}f_{ij}V_{j}$ ,
then $f_{i,\perp}=(f_{i,2}, \ldots,f_{i,n})$ is a solution of the equation (5) with $f_{\perp}(0)=0$ and
$f_{i,\perp}(0)=e_{i-1}$ where $(e_{1}, \ldots, e_{n-1})$ is a canonical orthonormal basis in $R^{n-1}$ . Therefore,
$f_{i,\perp}=\ovalbox{\tt\small REJECT}_{v(w),0}e_{i-1}$ . This implies the first identity. In the same way, the second identity is
shown. $\square$

By Lemma 4.2 we see that exponential map non-conjugation is equivalent to the
condition that $\det\ovalbox{\tt\small REJECT}_{v,0}(t)\neq 0$ for all $t\neq 0$ and $v\in S_{1}M$, namely, that for all $v\in S_{1}M$, the
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normal components of a nonzero Jacobi field $J$ under $B$ along $c_{v}$ with $g((D/dt)J,\dot{c}_{v})=0$

vanishes in at most one point.
Since $\Omega_{v,\perp}=\Omega_{\varphi_{v}(v),\perp}$ and $\tilde{R}_{\dot{c}_{v},\perp}(t)=\tilde{R}_{\dot{c}_{\varphi_{\mathcal{V}}(v),\perp}}(t-v)$ for all $v\in R$ , we have $\ovalbox{\tt\small REJECT}_{v,v}(t)$

$=X_{\varphi_{v}(v),0}(t-v)$ for all $v\in R$ . After all, exponential map non-conjugation implies that
$\det X_{v,v}(t)\neq 0$ for all $t\neq v$ and $v\in S_{1}M$ . Therefore, we may apply the results in Section
2 to the equation (11) along $c_{v}$ for all $v\in S_{1}M$ . Let $\%_{v}(t)$ denote the matrix along $c_{v}$

which corresponds to $U(t)$ in Section 2.

DEFINITION 4.3. For each $v\in S_{1}M$ , a linear endomorphism $\tilde{K}_{v}$ of $T_{\pi(v)}M$ is defined
by

$\tilde{K}_{v}(w)=R(v, w)v+\frac{1}{4}\Omega\dagger\Omega(w)+\frac{3}{4}g(\Omega(v), w)\Omega(v)$ ,

where $w\in T_{\pi(v)}M$ .
For all $v\in S_{1}M$ and $w\in T_{\pi(v)}M$, we have

$\tilde{R}_{v,\perp}(w)+\frac{1}{4}\Omega_{v,\perp}^{\uparrow}\Omega_{v,\perp}(w)=\tilde{K}_{v,\perp}(w)$ ,

where $\tilde{K}_{v,\perp}=pr_{v}\tilde{K}_{v}pr_{v}$ . See [2] for details. Therefore, the equations which $\%_{v}(t)$

should satisfy are

$\%_{v}(t)+\%_{v}^{2}(t)+e^{(t/2)\Omega_{v,\perp}}\tilde{K}_{\varphi_{t}(v),\perp}e^{-(t/2)\Omega_{v,\perp}}=0$ , $\%_{v}(t)^{\uparrow}=\%_{v}(t)$ . (12)

In the same way as the proof of Lemma 3.2, we have

$\%_{\varphi_{t}(v)(s)=e^{-(t/2)\Omega_{v,\perp}}\%_{v}(s+t)e^{(t/2)\Omega_{v,\perp}}}$

for all $s,$
$t\in R$ and $v\in S_{1}M$ .

By taking the trace, we have functions $\mathscr{F}(v)=tr\%_{v}(0),$ $\mathscr{G}(v)=tr\%_{v}(0)$ and
$\ovalbox{\tt\small REJECT}(v)=tr\%_{v}^{2}(0)$ on $S_{1}M$ . From the equation (12), the functions $\mathscr{F}(\varphi_{t}(v))$ and $\ovalbox{\tt\small REJECT}(\varphi_{t}(v))$

satisfy the equation
$\dot{\mathscr{F}}(\varphi_{t}(v))+\ovalbox{\tt\small REJECT}(\varphi_{t}(v))+tr\tilde{K}_{\varphi_{t}(v),\perp}=0$ ,

where we have used the identity $\mathscr{G}(\varphi_{t}(v))=\dot{\mathscr{F}}(\varphi_{t}(v))$ . By the same argument as that in
Section 3, we have

$\int_{S_{1}M}$ tr $\tilde{K}_{v,\perp}dV_{S_{1}M}=-\int_{S_{1}M}\ovalbox{\tt\small REJECT}(v)dV_{S_{1}M}\leq 0$ .

NOW, let us add the assumption that $n=2m$ and all eigenvalues of $\Omega^{\dagger}\Omega$ are $b^{2}(b\in R)$ in
order to compute the lefthand side of the above identity. Such an example is a K\"ahler

manifold with a K\"ahler magnetic field. See [1] for a K\"ahler manifold with a K\"ahler

magnetic field. In particular, note that if $n=2$ , this assumption is always satisfied.
Then, because of $tr(\Omega^{\uparrow}\Omega)_{v,\perp}=(2m-1)b^{2}$ for all $v\in S_{1}M$, we find

$\int_{S_{1}M}$ tr $\tilde{K}_{v,\perp}dV_{S_{1}M}=\int_{S_{1}M}Ric(v, v)dV_{S_{1}M}+\frac{1}{4}\int_{S_{1}M}tr(\Omega^{\uparrow}\Omega)_{v,\perp}dV_{S_{1}M}$

$+ \frac{3}{4}\int_{S_{1}M}g(\Omega(v), \Omega(v))dV_{S_{1}M}$
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$= \frac{\omega_{2m-l}}{2m}\int_{M}S(p)dV_{M}+\frac{(2m-1)b^{2}}{4}\omega_{2m-1}vol(M)$

$+ \frac{3b^{2}}{4}\omega_{2m-1}vol(M)$

$= \frac{\omega_{2m-1}}{2m}\int_{M}S(p)dV_{M}+\frac{(m+1)b^{2}}{2}\omega_{2m-1}vol(M)$ .

For this reason, we derive

$\frac{1}{vol(M)}\int_{M}S(p)d\nabla_{M}+m(m+1)b^{2}=-\frac{2m}{vol(S_{1}M)}\int_{S_{1}M}\ovalbox{\tt\small REJECT}(v)dV_{S_{1}M}\leq 0$ .

The equality holds if and only if $\ovalbox{\tt\small REJECT}(v)=0$ for all $v\in S_{1}M$ , that is to say, $\%_{v}(t)\equiv 0$

$alongc_{v}fora11v\in S_{1}M$ . $Thismeansthat\tilde{K}_{v,\perp}=0foral1v\in S_{1}M$ . It follows that

$g(R(v, pr_{v}(w))v,$ $pr_{v}(w))=-\frac{1}{4}g(\Omega(pr_{v}(w)), \Omega(pr_{v}(w)))-\frac{3}{4}g(\Omega(v),pr_{v}(w))^{2}$

$=- \frac{b^{2}}{4}g(pr_{v}(w), pr_{v}(w))-\frac{3}{4}g(\Omega(v),pr_{v}(w))^{2}$

for all $w\in T_{\pi(v)}M$ and $v\in S_{1}M$ . Therefore, the following results are obtained.

THEOREM 4.4. Let $(M, g)$ be an even dimensional compact Riemannian manifold with
a umform magnetic field B. Suppose that all eigenvalues of $\Omega^{\uparrow}\Omega$ are $b^{2}(b\in R)$ and that
there exist no singular values of $\exp^{\pm\Omega}$ . Then,

$\frac{1}{vol(M)}\int_{M}S(p)dV_{M}\leq-\frac{n(n+2)}{4}b^{2}$ ,

and the equality holds $\iota\beta$ and only $\iota\beta\tilde{K}_{v,\perp}=0$ for all $v\in S_{1}M$ .

COROLLARY 4.5. Let $(M, g)$ be a compact Kahler mamfold with a Kahler magnetic
field $B=bB_{M}(b\in R)$ where $B_{M}$ denotes the Kahler form. Suppose that there exist no
singular values of $\exp^{\pm\Omega}$ . Then,

$\frac{1}{vol(M)}\int_{M}S(p)dV_{M}\leq-\frac{n(n+2)}{4}b^{2}$ ,

and the equality holds if and only if $(M, g)$ is a compact Kahler manifold of constant
holomorphic sectional curvature $-b^{2}$ .

For the case where $(M, g)$ is a compact orientable surface with a uniform magnetic
field $bvo1_{M}(b\in R)$ , the above inequality becomes

$\frac{1}{vol(M)}\int_{M}R(p)d\nabla_{M}\leq-b^{2}$ ,

and the equality holds if and only if the curvature of $M$ is constant $-b^{2}$ . Thanks to
Gauss-Bonnet formula, this is expressed as

$- \frac{b^{2}}{2\pi}vol(M)\geq\chi(M)$ ,
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where $\chi(M)$ denotes the Euler characteristic of $M$ . Therefore, the proof of Theorem 1 is
completed.

REMARK. In this paper, we have assumed that $M$ is compact so that functions on
$S_{1}M$ are integrable. We expect that the noncompact case is treated. Refer to [4], [6].

5. Relation between two non-conjugation.

By comparing Theorem 3.3 with Theorem 4.4, we may conjecture that exponential
map non-conjugation is stronger than Jacobi field non-conjugation. For the case where
$(M, g)$ is a compact orientable surface with a uniform magnetic field $B=bvo1_{M}(b\in R)$ ,
we will show that this conjecture is true.

Let $v\in S_{1}M$ . Let $(\alpha_{v}(t),\beta_{v}(t))$ be a solution of the equation (6) along $c_{v}$ with
$(\alpha_{v}(0),\beta_{v}(0))=(0,0)$ and $(\dot{\alpha}_{v}(0),\dot{\beta}_{v}(0))=(1,0)$ . Then,

$\{$

$\dot{\alpha}_{v}=b\beta_{v}+1$ ,

$\ddot{\beta}_{v}+\{R(c_{v})+b^{2}\}\beta_{v}+b=0$ .

Let $(\gamma_{v}(t),\delta_{v}(t))$ be a solution of the equation (6) along $c_{v}$ with $(\gamma_{v}(0),\delta_{v}(0))=(0,0)$ and
$(\dot{\gamma}_{v}(0),\delta_{v}(0))=(0,1)$ . Then,

$\{$

$\dot{\gamma}_{v}=\ell\theta_{v}$ ,

$\ddot{\delta}_{v}+\{R(c_{v})+b^{2}\}\delta_{v}=0$ .

Note that $X_{v,0}(t)=\delta_{v}(t)$ and

$X_{v,0}(t)=(\begin{array}{ll}\alpha_{v}(t) \gamma_{v}(t)\beta_{v}(t) \delta_{v}(t)\end{array})$ .

Let $b>0$ for the sake of simplicity.

LEMMA 5.1. Suppose that $\delta_{v}(t)\neq 0$ for all $t\neq 0$ . Then, $\gamma_{v}(t)>0$ for all $t\neq 0$ .

LEMMA 5.2. Suppose that $\delta_{v}(t)\neq 0$ for all $t\neq 0$ . Then, $\beta_{v}/\delta_{v}$ is a monotone
decreasing function of $C^{1}$ -class on $c_{v}$ .

PROOF. Since

$\lim_{tarrow 0}\frac{\beta_{v}}{\delta_{v}}(t)=\frac{\dot{\beta}_{v}}{\dot{\delta}_{v}}(0)=0$ ,

$\beta_{v}/\delta_{v}iswelldefinedandcontinuousatt=0$ . $Ift\neq 0,$ $wehave$

$\frac{d}{dt}\frac{\beta_{v}}{\delta_{v}}=\frac{\dot{\beta}_{v}\delta_{v}-\beta_{v}\dot{\delta}_{v}}{\delta_{v}^{2}}$ .

Since

$\frac{d}{dt}(\dot{\beta}_{v}\delta_{v}-\beta_{v}\dot{\delta}_{v})=\ddot{\beta}_{v}\delta_{v}-\beta_{v}\ddot{\delta}_{v}=-b?_{v}=-\dot{\gamma}_{v}$ ,
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we find
$\frac{d}{dt}\frac{\beta_{v}}{\delta_{v}}=-\frac{\gamma_{v}}{\delta_{v}^{2}}<0$

$forallt\neq 0$ . Moreover, we obtain

$\lim_{tarrow 0}\frac{d}{dt}\frac{\beta_{v}}{\delta_{v}}(t)=-\lim_{tarrow 0}\frac{\gamma_{v}}{\delta_{v}^{2}}(t)=-\frac{b)_{v}}{2(\ddot{\delta}_{v}\delta_{v}+\dot{\delta}_{v}^{2})}(0)=-\frac{b}{2}<0$ .

Therefore, $(d/dt)(\beta_{v}/\delta_{v})$ is well defined and continuous at $t=0$ . $\square$

LEMMA 5.3. Suppose that $\delta_{v}(t)\neq 0$ for all $t\neq 0$ . Then,
1. $l\beta t>0$ ,

$\alpha_{v}(t)>\frac{\beta_{v}}{\delta_{v}}(t)\gamma_{v}(t)+t$ ,

2. $\iota\beta t<0$ ,

$\alpha_{v}(t)<\frac{\beta_{v}}{\delta}(t)\gamma_{v}(t)+t$ .

PROOF. Let $0<s<t$ . By Lemma5.2, we have

$\frac{\beta_{v}}{\delta_{v}}(s)>\frac{\beta_{v}}{\delta_{v}}(t)$ .

Because of $\delta_{v}(s)>0$ , we find

$\beta_{v}(s)>\frac{\beta_{v}}{\delta_{v}}(t)\delta_{v}(s)$ .

Integrating the both sides with respect to $s$ , we obtain

$\alpha_{v}(t)=b\int_{0}^{t}\beta_{v}$ (s)&+t $> \frac{\beta_{v}}{\delta_{v}}(t)b\int_{0}^{t}\delta_{v}$ (s)&+t $= \frac{\beta_{v}}{\delta_{v}}(t)\gamma_{v}(t)+t$ ,

which implies the first inequality. The second inequality is proved in the same way. $\square$

COROLLARY 5.4. Suppose that $\delta_{v}(t)\neq 0$ for all $t\neq 0$ . Then,

$(\alpha_{v}\delta_{v}-\beta_{v}\gamma_{v})(t)>t\delta_{v}(t)>0$

for all $t\neq 0$ .

Let us note that Lemma 5.3 and Corollary 5.4 are satisfied for $b<0$ . Because of
$X_{v,v}(t)=X_{\varphi_{v}(v),0}(t-v)$ and $\delta_{v,v}(t)=\delta_{\varphi_{v}(v),0}(t-v)$ for all $v\in R$ . Corollary 5.4 implies
that if $\delta_{v,v}(t)\neq 0$ for all $t\neq v$, then

$\det X_{v,v}(t)>(t-v)\delta_{v,v}(t)>0$

for all $t\neq v$ . Therefore, we obtain the following result.

THEOREM 5.5. Let $(M, g)$ be a compact orientable surface with a umform magnetic

field $B=bvo1_{M}(b\in R)$ . If there exist no singular values of $\exp^{\pm\Omega}$ , then there exists no
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pair of conjugate points under $B$ along an arbitrary solution curve of the equation (1) whose
velocity is 1.

COROLLARY 5.6. Let $(M, g)$ be a compact orientable surface with a uniform magnetic

field $B=bvo1_{M}(b\in R)$ , and let $\kappa_{\max}(M)$ denote the maximum of curvature of M. If
$\kappa_{\max}(M)+b^{2}\leq 0$ , then there exists no pair of conjugate points under $B$ along an arbitrary
solution curve of the equation (1) whose velocity is 1.
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