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Introduction.

Let (M,g) be a complete Riemannian manifold, and let B be a closed 2-form on
M. B may be regarded as a magnetic field on M. Let Q: TM — TM be a skewsym-
metric matrix defined by g,(u, 2(v)) = B,(u,v) (u,ve T,M,pe M). In [8], the New-
tonian equation of a charged particle moving on M has been defined by
D
— = 0(0), (1)
where ¢ is the velocity vector field of the curve ¢ and D/dt stands for the covariant
derivative along c¢. The magnetic flow ¢,: TM — TM associated with B is defined by

0:(v) = &),

where ¢, is a solution curve of the equation (1) with ¢,(0) =ve TM.

By using a geodesic flow, E. Hopf proved that the total curvature of a compact sur-
face without conjugate points is nonpositive, and vanishes if and only if the surface is flat in
[S]. L. W. Green extended the result of E. Hopf for a compact n-dimensional manifold
in[3]. Recently, F. Guimaraes ([4]) and N. Innami ([6]) have treated the noncompact case.

The non-existence of a pair of conjugate points along geodesics is equivalent to the
non-existence of singular values of the exponential map. If there exists a magnetic field,
then this equivalence no longer holds. From this fact, we find two concepts of non-
conjugation for the magnetic flow, which are called Jacobi field non-conjugation and
exponential map non-conjugation.

We call a magnetic field uniform if VB = 0, where V is the Levi-Civita connection of
M. In this paper, for each concept of non-conjugation, we will generalize E. Hopf’s
theorem with the help of the magnetic flow associated with a uniform magnetic field.
In Section 3, the generalization for Jacobi field non-conjugation is treated. In Section
4, the following result will be proved as the generalization for exponential map non-
conjugation.

THEOREM 1. Let (M, g) be a compact orientable surface with a uniform magnetic field
B = bvoly (b € R) where voly is a canonical volume form of M, and let y(M) denoted the
Euler characteristic of M. Let expt®:TM — M be the exponential maps associated
with B. Suppose that there exist no singular values of expt®. Then,

b2
_E VOI(M) = X(M)a

and the equality holds if and only if the curvature of M is constant —b?.
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See Section 4 for the definitions of exp*#. This implies that if y(M) >0 and b # 0,
then there exists a singular value of exp*®. The proof of Theorem 1 is carried out
under more general situation, so to say, the case of a Kéhler manifold with a Kéhler
magnetic field. In Section 5, the relation between Jacobi field non-conjugation and
exponential map non-conjugation is discussed for two dimensional case.

1. Preliminaries.

Throughout this paper, we will assume VB = 0, or equivalently V2 =0. We shall
review some basic materials. See [2] for details.

DermNITION 1.1, Let ¢, be a solution curve of the equation (1) with ¢,(0) =ve TM.
Then, a vector field J along ¢, is called a Jacobi field under B if it satisfies the Jacobi
equation under B along c,

2
% J + R(éy, J)és — Q(% J) =0, (2)
where the curvature tensor R is defined by R(X, Y)Z = VyVxZ — VxVyZ + V| y)Z for
arbitrary vector fields X, Y, Z.

Let = : TM — M be the canonical projection. Let v; = v/r where r = 1/g(v,v), and
let us choose vy,...,v, € TyyyM so that {vj,vy...,v,} is an orthonormal basis in
TrwyM. A vector field V; (i =1,...,n) along c, is defined by a solution of the equation

D
It is obvious that Vi,...,V, are orthonormal vector fields along c¢,. In particular,

Vy=¢,/r. If J is expressed by J = >_" | f;V; where each f; is a smooth function along
¢y, then the equation (2) is rewritten by the equation of the components f = (fi,...,/f»)

f+Q:f+Rif=0, (3)

where ©Q: and R denote the matrixes (g(V;, 2(V;))) and (g(Vi, R(éy, Vj)éy)) respec-
tively.

DEFINITION 1.2. Let ve TM\(0). A linear endomorphism R, of Ty,)M is defined
by
N 1
R,(w) = R(v,w)v + —— g(L22(v), w)22(v),
(%) = R(o, )0 + s 9(0(0), W)0)

where w € Ty(,) M.

Let pr, be the projection map onto the normal subspace of v in T,(,) M, and let us set
Q, 1 =pr,2pr, and R, , = pr,R,pr,. The equation (2) is split into the equations of the
tangential and normal components of ¢, by

fi=1 8@, )+, @

. . c
fi1+8.1f +Rs, 1 1 + 2 Q(éy) = 0, (5)
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where f, = (f2,...,/a) and C = g((D/dt)J,¢y). For the case where (M, g) is an orient-
able surface with a uniform magnetic field B = bvoly (b € R), let us set V, = Q(V1)/b.
Then, the equation (3) becomes

(0 B\ (0 0 N,
f+(b 0)f+Q)ﬂm@Jf“’

where R(c,) stands for the curvature at ¢,. The equations (4) and (5) are

i=bh+ s,
c ©
fi+ {PR@) + 5 o+~ b=0.

DeriNiTION 1.3, Let p = ¢,(«) and g = ¢,(f) be two points on ¢, with a # . p and
q are conjugate under B along c, if there exists a nonzero Jacobi field under B along c,
which vanishes for t =« and t = §.

Next, we shall recall a connection map K:T(TM)— TM. Given a vector
EeT,(TM), let Z;:(—e,e) > TM be a smooth curve with the initial condition
. Then, we define K(¢) = (D/dt)Z¢| =0 € TryyM where D/dt stands for the covariant
derivative along o = n(Z¢). dn(&) is (d/dt)o¢|i=0 from the definition of dn : T(TM) —
TM. 1t is obvious that dz(¢) and K(&) depend only on ¢.  The kernels of dz and K are
called the vertical and horizontal subspaces of T,(TM) respectively, and the intersection
of the vertical and horizontal subspaces is the zero vector. Since dim T,(TM) = 2n,
T,(TM) is a direct sum of the horizontal and vertical subspaces. Therefore, we may
consider T,(TM) as Ty, M @ Ty,)M by the correspondence

TU(TM) 3¢« (dﬂ(f),K(é)) € Tn(v)M ® Tn(v)M-
Given &, n € T,(TM), we define the metric § on TM by

50(67”) = Gr(v) (dﬂ(f),d?‘((ﬂ)) + In(v) (K(é)’K(”))

In order to prove that ¢, preserves the measure determined by g, we shall compute the
divergence of the generating vector field of ¢,

d
& =2 0(0)lmo

Let (n~'(U);x1,...,%n,01,...,0,) be a canonical coordinate system on TM, where
(U;xi,...,xn) is a coodinate system on M and v; = dx;(v) for v e n~!(U). Using this
coordinate system, we have

&(v) = dxi(&) =vi, Eui(v) = dvi(&) =— Y Tooe+ Y vy,
jE=1 '

Jj=1

where jﬁc are the Christoffel symbols associated with g and Q]’ = dx;(22(0/0x;)). From
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this, we get
n

div(¢)(v) = 55 ) +¢i(v) Z 59 Ly 59aﬂ)

i= xl

aén—i—z ~aﬂ 69«,8
+ pa ( (U) +én+l(u) Z 2 51),-)

a,f=1
En: 2erk+§:g§=ig;ﬁ,
j=1 i=1 i=1

where (§*) = (gmﬁ)‘l. In the above computation, we have used the identities in [7]

2n od 2n oG
7o g“ﬂ —4 ~op 99ap _
S S, Seli,
a,f=1 a,f=1
If B=3, ; bjdxindx; in U, then we have .Q]’ = %1 g%by; where (g¥) = (g5)”". Be-
cause of b; = —bj; for all 1 <i,j <n, we find
n n
>oai= 3 b= b Z 2
i=1 i,k=1 i,k=1

Therefore, div(¢) vanishes on 7M. This means that ¢, is a measure preserving trans-
formation. Since ¢, leaves the tangent sphere bundle S,M = {v € TM;g(v,v) = r*} in-
variant for all 7 € R, we restrict ¢, to S1M. Let N denote the unit normal vector field
of SiM in TM with dn(N,) =0 and K(N,) =v (ve SiM). By the definition of the
divergence, we derive the identity

div(¢| Si1M) = div($) - §(Vn(E | S1M),N) = div(¢) +§(S | S1 M, VyN),

where V is the Levi-Civita connection associated with §. For each v € S| M, let us set
a curve ¢,(s) = (x1(n(v)), ..., xXa(n(v)), (s + )v1,..., (s + 1)vn) © Ty,yM. By the direct
computation, we find

D
d Z U,U,Va/av, —f == VN N Nua

where D/ds stands for the covariant derivative along ¢,. Since ¢, is a geodesic in TM,
we have VNVN,, =N, for all ve S;M. Because of §(¢|S1M,N) =0, it follows that
div(¢ | S1M) =0 on S;M. Therefore, we conclude that ¢, | S; M preserves the measure
determined by § | S| M.

2. Matrix differential equations.
We shall study the real m x m matrix differential equation on R
X (1) + PX (1) + Q(0)X (1) = 0, (7)

where P is a constant skewsymmetric matrix and Q(¢) is a smooth symmetric matrix
on R.
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Let X,(f) be a solution of the equation (7) with X,(v) =0 and X,(v) = I, for all
ve R. We shall assume that det X,(f) # 0 for all £ # v. Substituting Y(z) = /2P X()
into the equation (7), we obtain equation

Y(t) + PP (Q(1) + %PTP)e“(’/Z)P Y(t) =0, (8)

where the dagger denotes the transpose operation. We should note that
eDP(Q(f) + PIP/4)e~"/DP is a symmetric matrix. It is obvious that Y,(¢) =
e(’/Z)P X,()e=/DP is a solution of the equation (8) with Y,(v) =0 and Y,(v) =1,
From the above assumption, it is obvious that det Y,(¢) # 0 for all # # v. Therefore, we
may apply a useful method of L. W. Green [3] to the equation (8). For all 7 #v,
let Y,(t;7) denote a unique solution of the equation (8) with Y,(v;7) =1, and
Y,(r;7) =0. We find that Y,(#;00) = lim, Y,(#7) exists and that det Y,(¢;00) #0
for all 1 € R.
Let us set U,(f) = Y,(f;0)Y,(t;00)~". Then, U,(¢) is a symmetric solution of the
Riccati equation

U,(t) + U(t) + 2P (Q(t) +~ PTP)e /2P — ¢,

Moreover, the construction of U,(¢) is independent of v. Indeed, because of Y,(t;7)
= Y5(t;7) Y5(v; )" for all ¥ # v by the uniqueness of Y,(t;7), we have

Y, (t;00) = Y3(t; 00) Yy(v;00) 7"
Therefore, U,(t) = U(t). Let us express this by U(t).

3. Jacobi field non-conjugation.

In this section, we shall assume that there exists no pair of conjugate points under B
along an arbitrary solution curve of the equation (1) whose velocity is 1, what is called,
Jacobi field non-conjugation.

From the equation (3), the real n x n matrix differential equation along c, is derived
by

X+Q:X+ R, X=0. (9)
Note that Q; = Q, on ¢, because of V@2 =0. Indeed, since 2 is skewsymmetric, we
have

d

= 9V (V) = g(2(V)), (V) + 9(V;, *(V)) = 0.
Let X,,(f) be a solution of the equation (9) with X, ,(v) =0 and X'v,v(v) = I, for all
ve R. The above assumption implies that det X,,(z) #0 for all t# v and ve SIM

Thus, the results in Section 2 hold for the equation (9) along ¢, for all ve S;M. Let
U,(t) be the matrix along ¢, which corresponds to U(¢) in Section 2.

DerINITION 3.1.  For each v € S{ M, a linear endomorphism K, of TyyM is defined
by
N 1
K,(w) = R(v,w)v + ZQJ[.Q(W),

where w € T, M.



772 N. Goupa

The equations that U,(¢) should satisfy are
Uy(1) + U2(2) + /PR, (e WP =0, Uy(t)! = Uy(1). (10)
LeMMmA 3.2.  We have the identity
Up, ) (1) = e~ DBU, (s + 1)els/ D%
for all s,te R and ve S| M.

Proor. For all ve S1M, let Y, ,(¢) and Y, ,(¢;7) denote the matrixes along c, which
correspond to Y,(¢) and Y,(t;7) in Section 2 respectively. Because of Q, ) = Q, and
R, (f) = R, (t +5) for all se R, we have X, () ,(f) = Xys+v(t+5s). For this reason,
we find the identities

Yo, 0(2) = € RY, (14 5)etD%,
Yo )o(7) = e XY, (8 + 555+ 1)l
Therefore, we obtain
Y, w)(t;00) = e /DY, (8 + 5;00)el/ D%
which completes the proof. -

Let tr denote the trace. Let us set F(v) = tr U,(0). Since tr U,(0) is independent of
the choice of orthonormal vector fields in T, M, F(v) is a well defined function on
SiM. By the same reason, both G(v) = tr U,(0) and H(v) = tr U>(0) are well defined
on SiM. By Lemma 3.2, we find

F((pt(v)) =1tr Uw,(v)(o) =1tr Uv(t),
G(9,(v)) = tr Uy, )(0) = tr Up(2) = F(g,(v))

along ¢, (ve SiM). From the equation (10), the functions F(¢,(v)) and H(g,(v)) satisfy
the equation

F(p,(v)) + H(p,(v)) + tr Ky, ;) = 0.
Integrating the both sides with respect to ¢, we have

1

H(p,(v))ds + J trf(%(,,) ds = 0.
0

1

Fli0) - F@) + |

0

Let dVs p be the volume element on S;M determined by §|SiM. Then, dVsy =
dwdVy where do is the measure on the unit (n — 1)-sphere S"~! and dV), is the volume
element on M. Since M is compact, F(v), H(v), and trK, are integrable on S\ M.
Integrate the both sides with respect to dVs s over all of S{M, and use the fact that
dVs, m 1s invariant with respect to the magnetic flow ¢, : SM — S| M. Then, we get

0— LlM J; H(p,(v)) ds Vs, +J

Sy

1
J tr f(%(v) dsd Vs, Mm
M JO

:J H(U)st,M—i—J trIi'vstlM.
SIM

N
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Since tr Q7Q is constant on M, we may compute the last integral as follows:

N . 1
J trK,dVs,m = J Ric(v,v) dVs m +t7 J trQ'QdVs u
SiM SiM SiM

_ Wp—1 Wp—1

== J S(p)dVy + vol(M) tr Q1Q,
M

where S(p) stands for the scalar curvature at pe M and vol(M) is the volume of
M. Since H(v) = tr U2(0) is non-negative on S; M, we have

1

- neoto—__ "
ST JM S(p)dVm+ 2 e 2102

_— <0
4 VOl(S]M) JSIM H(U) dVSlM -

where vol(S;1 M) is the volume of S;M. The equality holds if and only if H(v) =0 for
all ve S| M, that is to say, U,(0) =0 for all ve S;M. By Lemma 3.2, we find that
U,(t) = 0 along ¢, for all ve S;M. This means that K,=0forallve S;M. It follows
that

9(R(0, )0, w) = 79(2(w), 2(w)

for all we Ty, )M and ve SiM. Since ¢(2(v),2(v)) = —4g(R(v,v)v,v) =0 for all
veSiM, we find 2 =0 on TM. Moreover, we get R=0 on M. Therefore, the fol-
lowing result has been proved.

THEOREM 3.3. Let (M,g) be a compact Riemannian manifold with a uniform mag-
netic field B. Suppose that there exists no pair of conjugate points under B along an
arbitrary solution curve of the equation (1) whose velocity is 1. Then,

1
vol(M)

J S(p)dVy < — > r QT2
. 3

and the equality holds if and only if (M ,g) is flat and B=0 on M.

For the case where (M,g) is a compact orientable surface with a uniform magnetic
field B = bvoly (b € R), the above inequality becomes

1
vol(M)

J R(p)dVy < —1b2,
M 2

and the equality holds if and only if (M,g) is flat and  =0. Theorem 3.3 contains
Hopf’s result in the special case where b = 0. However, we would like to look for a
geometric inequality which is sharp in the case of b # 0. In the next section, we will
derive such a geometric inequality from exponential map non-conjugation.

4. [Exponential map non-conjugation.

In this section, we will introduce the exponential maps associated with B and find
the other geometric inequality by assuming that there exist no singular values of the
exponential maps associated with B, what is called, exponential map non-conjugation.



774 N. Goupa

DEFINITION 4.1. Let we TM. Then, the exponential maps exp*®:TM — M
associated with B are respectively defined as

exp‘Q(W) = cu(w)( g(w, w))a
exp_g(w) = cv(w)(_ V g(W, w))
where v(w) = w/\/g(w,w) € SIM.

We investigate the geometrical meaning of exponential map non-conjugation. We
shall look at the real (n — 1) x (n — 1) matrix differential equation along c,

F+ Qe T+ R X =0. (11)

This is the equation of the normal components of a Jacobi field under B along ¢, with
g((D/dt)J,éy) =0. Note that Q; | =, on ¢, and that R; , is symmetn'c on c,.
Let %,,,(?) be a solution of the equation (11) with &, ,(v) = 0 and Z, v(v) = L—1.

LeMMA 4.2. Let d,exp*® denote the differentials of exp*? at we TM respec-
tively. Then,

1. det(dyexp?) = g(w,w)™"" 1)/zdetgé” wo(v/g(w,w)),
2. det(d, exp2) = —g(w,w)” "/ det.%" wo(—va(w,w)).

Proor. Let V1,...,V, be orthonormal vector fields along c,,) defined in Section
1. Note that (v(w),...,v,) is an orthonormal basis in T, M. First,

dexp® (o)) = % exp(w + 50()) -0

= 2 e (Valm W) +9) o
= év(w)( Vv g(W, W))

Next, let us set v;(w;0) = v(w)cos@ +v;sinf e S1M (i=2,...,n). Then,
\/_‘ d0 p V g(W* W)U,(W., 0))l0=0
\/——‘de v, Wa V g(W w )l&..
=7 Ji( V g(W, W))’
\/g(w, w)
where J; = (d/d0)c,,0)|0=0 is a Jacobi field under B along c,) with J;(0) =0 and

(D/dt)J;(0) = v;. Note that g((D/dt)J;,¢om)) = g(vi,0(w)) =0. If Ji=3", fi;V},
then f;, | = (fi2,--.,fin) is a solution of the equation (5) with f; (0)=0 and

d, exp?(v;) =

fi (0 ) = e;_; where (ey,...,e,_1) is a canonical orthonormal basis in R*~!. Therefore,
fi 1 = %yw)0€i—1. This implies the first identity. In the same way, the second identity is
shown. O

By Lemma 4.2 we see that exponential map non-conjugation is equivalent to the
condition that det %, 0(¢) # 0 for all ¢ # 0 and v € S1 M, namely, that for all v e S| M, the
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normal components of a nonzero Jacobi field J under B along ¢, with g((D/dt)J,¢,) =0
vanishes in at most one point.

Since @, 1 =2, and R (t) = Ré%(u)’l(t —v) for all ve R, we have %,,(t)
= %, (v),0(t —v) for all ve R. After all, exponential map non-conjugation implies that
det %, ,(¢) # 0 for all t # v and ve S;M. Therefore, we may apply the results in Section
2 to the equation (11) along ¢, for all ve S;M. Let %,(t) denote the matrix along c,
which corresponds to U(?) in Section 2.

DErINITION 4.3.  For each v € i M, a linear endomorphism K, of T, <)M 1is defined
by

K,(w) = R(v,w)v + ‘l—lQ‘LQ(w) + % g(Q(v), w)Q(v),

where w € T\ M.
For all v e $iM and w € T,,) M, we have

~ 1 ~
Ry (W) + 7] 1201 (W) = Ku 1 (w),

where K, = pr,K,pr,. See [2] for details. Therefore, the equations which %,(¢)
should satisfy are

Us(0) + U3 (1) + /D% Ry ) 1P =0, @, () = 2,(2). (12)
In the same way as the proof of Lemma 3.2, we have
%¢,(U) (S) — e—(t/z)gv,l%v(s + t)e(t/Z)gu,L

for all s,te R and ve S1 M.

By taking the trace, we have functions £ (v) = tr,(0), %(v) = tr%,(0) and
H#(v) = tr%(0) on S;M. From the equation (12), the functions % (¢,(v)) and #(g,(v))
satisfy the equation

F(9,(0)) + H#(9,(v)) + tr Ky 5,1 =0,

where we have used the identity 4(p,(v)) = % (¢,(v)). By the same argument as that in
Section 3, we have

J trkv’J_dVSlM:—J H(v)dVs,m < 0.

SiM SiM

Now, let us add the assumption that # = 2m and all eigenvalues of Q7Q are ? (b e R) in
order to compute the lefthand side of the above identity. Such an example is a Kéhler
manifold with a Kédhler magnetic field. See [1] for a Kdhler manifold with a Kihler
magnetic field. In particular, note that if n =2, this assumption is always satisfied.
Then, because of tr(Q'Q), | = (2m — 1)b? for all v € S| M, we find

) 1
J tr R, | dVs 1 = J Ric(v,0) dVis, 1+~ J r(@1Q), , Vs
SiM SiM 4 Js,m ’

3

] OO
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_ Wm-1 (2m — 1)b?
= o JM S(p) Vi + 27wy vol(M)
3p2
+ e Wom—1 Vol(M)
_ m1 (m+1)b?
= o JM S(p) AV + 3 Wm-1 VOI(M)‘
For this reason, we derive
I J S(p) dVar + m( +1)b2————2ﬂ—J HW)dVs 4y < 0
vol(M) J,, 2 \P 47 T min = TVOI(SIM) Jsu SiM =T
1

The equality holds if and only if s#(v) =0 for all v e S; M, that is to say, %,(z) =0
along c, for all ve S M. This means that IZ,J, 1L =0forall ve SiM. It follows that

1 3
g(R(U, prv(W))U, prv(w)) = - Zg(‘Q(prv(W)), ‘Q(prv(w))) - Zg(g(v)a pl‘v(W))z
b? 3 2
= = 9(pr,(w), pr,(w)) ~ 7 9(2(v), pr,(w))
for all we T,y M and v e S{M. Therefore, the following results are obtained.

THEOREM 4.4. Let (M, g) be an even dimensional compact Riemannian manifold with
a uniform magnetic field B. Suppose that all eigenvalues of Q'Q are b*> (b € R) and that
there exist no singular values of exp*®. Then,

S(p)dVMS— b2,

1 J n(n+2)
VOI(M) M 4
and the equality holds if and only if K, | = 0 for all ve S| M.

COROLLARY 4.5. Let (M,g) be a compact Kdihler manifold with a Kdhler magnetic

field B=bBys (b€ R) where By denotes the Kdhler form. Suppose that there exist no
singular values of expt®. Then,

1
vol(M)

n(n+2)

2
4 v,

J S(p)dVi < —
M

and the equality holds if and only if (M,g) is a compact Kdhler manifold of constant
holomorphic sectional curvature —b?.

For the case where (M, g) is a compact orientable surface with a uniform magnetic
field bvoly (b € R), the above inequality becomes

1 2
vol(M) JM Rip)dVu < =7,

and the equality holds if and only if the curvature of M is constant —b?. Thanks to
Gauss-Bonnet formula, this is expressed as

b2
=5 vol(M) = x(M),
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where y(M) denotes the Euler characteristic of M. Therefore, the proof of Theorem 1 is
completed.

REMARK. In this paper, we have assumed that M is compact so that functions on
S1M are integrable. We expect that the noncompact case is treated. Refer to [4], [6].

5. Relation between two non-conjugation.

By comparing Theorem 3.3 with Theorem 4.4, we may conjecture that exponential
map non-conjugation is stronger than Jacobi field non-conjugation. For the case where
(M,g) is a compact orientable surface with a uniform magnetic field B = bvolys (b € R),
we will show that this conjecture is true.

Let ve Si1M. Let (x,(2),5,(t)) be a solution of the equation (6) along ¢, with

(2(0), 8,(0)) = (0,0) and (&(0),4,(0)) = (1,0). Then,
&U - bﬁv + la
{ﬁu +{R(c,) + b*}p,+ b =0.

et (7,(1),00(1)) be a solution of the equation (6) along ¢, with (y,(0),6,(0)) = (0,0) and
(7,(0),0,(0)) = (0,1). Then,

Py = O,
{ 8y + {R(c,) + b*}6, = 0.
Note that %, 0(t) = J,(¢) and
o) (2
%= (0 5i0)
Let b > 0 for the sake of simplicity.
LeMMA 5.1.  Suppose that 6,(t) # 0 for all t #0. Then, y,(t) > 0 for all t # 0.

LemMA 5.2. Suppose that 6,(t) #0 for all t#0. Then, B,/d, is a monotone
decreasing function of C'-class on c,.

Proor. Since
hm B, (t) ﬁ” (0)
B,/0, is well defined and continuous at t =0. If ¢ # 0, we have

d B, _ B~ B

dt o, 52

v

Since

E(ﬂuav _ﬂvau) = ﬁvav - ﬁvav = _bav = —Vu
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we find
dB _
dt o, o? <0
for all £ # 0. Moreover, we obtain
_dp oy bo, b
Iim—=2()=-lm=2(f)=—-—5(0)=—-=<0.
0 dt 50( ) 1—0 53,( ) 2(6,0, +53)( ) 2
Therefore, (d/dt)(f,/d,) is well defined and continuous at ¢ = 0. O
LemMA 5.3. Suppose that 6,(t) # 0 for all t # 0. Then,
1. ift>0,
B,
a(1) > = ()7, (1) + 1,
2. ift<O,
B,
(t) < £ (07,00 + 1

Proor. Let 0 <s<t¢ By Lemma 5.2, we have
B, B,
50>,

Because of d,(s) > 0, we find

S|

Bu(s) > == (£)du(s)-

Integrating the both sides with respect to s, we obtain

a(t) = b J; Bo(s)ds+t> léi: ()b J; Op(s) ds + ¢ =§f(t)yv(t) + ¢,

which implies the first inequality. The second inequality is proved in the same way. []
COROLLARY 5.4. Suppose that 5,(t) # 0 for all t #0. Then,
(00s0s — By7,)(1) > 100(1) > 0
for all t # 0.

Let us note that Lemma 5.3 and Corollary 5.4 are satisfied for b < 0. Because of
Xoy(t) = Xy (v),0(t —v) and J,,(f) = Jp (s)0(t —v) for all ve R. Corollary 5.4 implies
that if J,,,(¢) # 0 for all ¢ # v, then

det X, , (1) > (t —v)dy(t) > 0
for all ¢ #v. Therefore, we obtain the following resulit.

THEOREM 5.5. Let (M,g) be a compact orientable surface with a uniform magnetic
field B=bvoly (beR). If there exist no singular values of exp*?, then there exists no
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pair of conjugate points under B along an arbitrary solution curve of the equation (1) whose
velocity is 1.

COROLLARY 5.6. Let (M,g) be a compact orientable surface with a uniform magnetic

field B=>bvoly (beR), and let kmax(M) denote the maximum of curvature of M. If
Kmax(M) + b* < 0, then there exists no pair of conjugate points under B along an arbitrary
solution curve of the equation (1) whose velocity is 1.
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