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1. Introduction

Harmonic maps between Riemannian manifolds $M$ and $N$ are critical values of an
energy functional

energy $(S:M arrow N)=\frac{1}{2}\int_{M}|dS|^{2}$ .

In the case of surfaces in $U(N)$ , with the standard (bi-invariant) metric, the energy takes
the form

(1.1) energy $(S)= \frac{1}{16\pi}\int_{R^{2}}(|S^{-1}\frac{\partial}{\partial x}S|^{2}+|S^{-1}\frac{\partial}{\partial y}S|^{2})dx\wedge dy$ .

Unitons are harmonic maps $S:S^{2}arrow U(N)$ . We write Harm $(S^{2}, U(N))$ for the space of
unitons. Some authors call them multi-unitons.

We are concemed with the based maps

$Harm_{k}^{*}(S^{2}, U(N))^{d}=^{ef}\{S\in Harm(S^{2}, U(N)) : S(\infty)=I, energy(S)=k\}$ .

In [Uhl], Uhlenbeck showed that all unitons could be constructed from simpler uni-
tons by ’adding a uniton’. This construction was investigated from different perspectives
by Wood, Valli, Guest, Ohnita and Segal. We approach the question of constructing
unitons via algebraic integration, using a twistor construction of Hitchin and Ward ([Hi],
[Wa] $)$ .

We proved in [Anl] that the based unitons, $Harm^{*}(S^{2}, U(N))$ , are isomorphic to
uniton bundles, with energy corresponding to the bundles’ second Chem class. In this
paper we apply Horrocks’ monad construction to the uniton bundles.

THEOREM A. Based, rank-N unitons of energy $k/2$ are all of the form

$S=I+a\alpha_{2}^{-1}(\alpha_{1}+x\alpha_{2}+iyI)^{-1}b$

for some choice of $N\cross k,$ $k\cross N,$ $k\cross k$ and $k\cross k$ matrices, $a,$ $b,$ $\alpha_{1},$ $\alpha_{2}$ . (Multiplication
is matrix multiplication.)
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This formula is the monad version of the ’monodromy’ interpretation (\S 2.7) of
Uhlenbeck’s extended solution (see [Uhl]). The rest of the paper paints a Geometric
Invariant Theory picture of the moduli space:

THEOREM B. 1. The space ofbased unitons $Harm_{k}^{*}(S^{2}, U(N))$ is isomorphic to the set

of 5-tuples ofmatrices

$\gamma,$ $\alpha_{1}’,\delta\in gl(k/2)$ , $\gamma$ nilpotent
(monad data)

$d\in M_{N,k/2}$ , $b’\in M_{k/2,N}$

satisfying
(nondegeneracy)

rank $(\begin{array}{l}\gamma\alpha_{l}’+zd\end{array})=rank$ ( $\gamma$ od $+z$ $b’$ ) $=k/2$ $\forall z\in C$

(monad equation) $[\alpha_{1}’,2\gamma]+b’a’=0$

$[\delta, \gamma]=0$ $a’\delta=0$

(time invariance)
[$\delta$ , Od] $=\gamma$

$\delta b’=0$

quotiented by the action of $g\in$ Gl $(k/2)$

$\gamma\mapsto g\gamma g^{-1}$ $\alpha_{1}’\vdasharrow g\alpha_{1}’g^{-1}$ $\delta->g\delta g^{-1}$

$d\mapsto a’g^{-1}$ $b’\mapsto gb’$ .

2. These data determine the uniton bundle over a hemisphere. Reality determines it
over the other hemisphere, giving monad data as in Theorem $A$ as follows:

$\alpha_{1}=(\begin{array}{ll}-\alpha_{l}^{J*} \phi_{1}\phi_{2} \alpha_{1}’\end{array})$ $\alpha_{2}=(-I -2\gamma^{*} I +2\gamma)$

(reality)

$a=$ $(ib^{\prime*} d)$ $b=(\begin{array}{l}ia^{/*}b^{/}\end{array})$

where $\phi_{1}$ and $\phi_{2}$ are functions of $\gamma,$
$d$ and $b’$ determined by the big monad equation

$[\alpha_{1}, \alpha_{2}]+ba=0$ .
3. The uniton number (see \S 5) is the smallest $n\in Z$ such that $\gamma^{n}=0,$ $i.e$. it is $1+the$

length of either polar jumping line.

One geometric consequence of this picture is

COROLLARY C. Two-unitons have normalized energy at least four. This bound is
sharp.

1.2. STRUCTURE OF THE PROOF. Except for \S 2, which lists notation and facts which
must be taken on faith from [Anl], the rest of the paper is concemed with the proofs.
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In \S 3 we show how a well-known monad representation for bundles on $P^{2}$ can be
made to apply, and how the reality and triviality properties can be interpreted, yielding a
normalized monad. The uniton bundles are a subset thereof. The proofs of Theorems
A and $B$ are logically independent from this point on and we complete the proof of
Theorem A in \S 4. The proof of Theorem $B$ naturally splits into three parts which are
also logically independent. They are the interpretation of the uniton number in \S 5; the
proof that real bundles with the other triviality properties are necessarily trivial on real
sections in \S 6; and the interpretation of time-invariance in \S 7. Corollary $C$ is a simple
consequence of the interpretation of time-invariance.

2. Prerequisites

2.1. UNITON BUNDLES. In [Anl] we identified $Harm^{*}(S^{2}, U(N))$ with a class of
bundles on $\overline{TP}^{1^{d}}=^{ef}P(\mathcal{O}\oplus \mathcal{O}(2))$ , the fibrewise compactification of the tangent bundle
$TP^{1}$ to the complex projective line.

Let $(\lambda, \eta)$ and $(\hat{\lambda}=1/\lambda,\hat{\eta}=\eta/\lambda^{2})$ be coordinates on $TP^{1}\cong \mathcal{O}_{P^{1}}(2)$ , where $\lambda$ is the
usual coordinate on $P^{1}$ and $\eta$ is the coordinate associated to $d/d\lambda$ . Meromorphic sec-
tions $(s)$ of $TP^{1}$ give all the holomorphic sections of $\overline{TP}^{1}([s, 1]$ in projective coordinates
on $\overline{TP}^{1}$ ), save one. We fix notation for the lines on $\overline{TP}^{1}$ :

$P_{\lambda_{0}}=$ {A $=\lambda_{0}$ },

$G_{0}=\{(\lambda, [0,1])\}=zero$ section of $TP^{1}$ ,
(2.2)

$G_{\infty}=\{(\lambda, [1,0])\}=infinity$ section of $\overline{TP}^{1}$ ,

$G_{\eta=s}=\{(\lambda, [s(\lambda), 1])\}$ .

If $y=(a, b, c)\in C^{3}$ , we will also write $G_{y}$ for $G_{\eta=a-2b\lambda-c\lambda^{2}}$ .
TO encode unitarity, we need the real structure

(2.3) $\sigma(\lambda, \eta)=(1/\overline{\lambda}, -\overline{\lambda}^{-2}\overline{\eta})$ ,

which acts by

$\sigma(a, b, c)=(\overline{c}, -\overline{b},\overline{a})$

on $C^{3}\cong H^{0}(P^{1}, \mathcal{O}(2))$ , the space of finite sections. We define ‘time translation’ as the
one-parameter group of transformations:

$\delta_{t}$ : $(\lambda,\eta)->(\lambda,\eta-2t\lambda)$

(2.4)
$(a, b, c)->(a, b+t, c)$ .

DEFINITION 2.5. A rank $N$, or $U(N)$ , uniton bundle, $\nu’$ , is a holomorphic rank $N$

bundle on $\overline{TP}^{1}$ which is a) trivial when restricted to the following curves in $\overline{TP}^{1}$

1. the section at infinity,
2. nonpolar fibres (i.e. $P_{\lambda},$ $\lambda\in C^{*}$ ),
3. real sections of $TP^{1}$ (sections invariant under $\sigma$);
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b) is equipped with bundle lifts

$\parallel^{\wedge}$

$arrow\overline{\delta}_{l}$

$\gamma$ $\gamma$
$arrow\overline{\sigma}$

$\gamma*$

$\downarrow$ $\downarrow$ and $\downarrow$ $\downarrow$

$\overline{TP}^{1}$ $arrow\delta_{t}$ $\overline{TP}^{1}$

$\overline{TP}^{1}$ $arrow\sigma$ $\overline{TP}^{1}$

1. $\tilde{\delta}_{t}$ , a one-parameter family of holomorphic transformations fixing $\gamma$ above the
section at infinity, and

2. $\tilde{\sigma}$ , an antiholomorphic lift of $\sigma$ such that the induced hermitian metric on $\gamma\nearrow$

restricted to a fixed point of $\sigma$ is positive definite; equivalently, such that the induced lift
to the principal bundle of frames acts on fibres of fixed points of $\sigma$ by $X\mapsto X^{*-1}$ ;
and c) has a framing, $\emptyset\in H^{0}(P_{-1}, frames(\parallel^{-}))$ , of the bundle $\gamma$ restricted to the fibre
$P_{-1}=\{\lambda=-1\}\subset\overline{TP}^{1}$ such that $\tilde{\sigma}(\emptyset)=\emptyset$ .

REMARK 2.6. In \S 6 we will prove that condition a) 3. is unnecessary.

2.7. MONODROMY CONSTRUCTION. From [Anl], we will also require the fact that
Uhlenbeck’s extended solution can be computed by composing the cycle of iso-
morphisms

$\gamma_{\lambda,\infty}$

$\underline{eval}$
$H^{0}(G_{\infty}, \gamma)$

$\underline{eval}$
$\gamma_{-1,\infty}$

$eval|$ $1^{eva1}$

(2.8) $H^{0}(P_{\lambda}, \gamma)$ $H^{0}(P_{-1}, \gamma)$

$eval\downarrow$ $\downarrow eval$

$\gamma_{(\lambda,z-2t\lambda-\lambda^{2}\overline{z})}\underline{eval}H^{0}(G_{(z,t,\overline{z})}, \gamma)arrow eval\gamma_{(-1,z+2t-\overline{z})}$

counter clockwise, beginning at the top. The existence of the bundle isomorphism $\tilde{\delta}_{t}$

(time translation) ensures that the result doesn’t depend on $t$ . Finiteness, i.e. extension
to $S^{2}$ , follows from the compactness of $\overline{TP}^{1}$ . Recall that the extended solution is the
‘twistor lift’ of the harmonic map, $S=E_{1}$ . (Waming: the convention $S=E_{-1}$ is more
common. For an explanation of extended solutions see [Uhl].)

Altematively, we can use the language of moving frames. Define a meromorphic
frame $g$ which agrees with the fixed frame and is holomorphic on $G_{\infty}\cup TC^{*}$ (remember
that $\gamma$ I $G_{\infty}\cup TC$ is trivial); and a family of frames $f_{y}$ of $\nu^{-}|_{G_{y}}$ (also trivial) which agree
with the fixed frame of $\gamma|_{P_{-1}}$ . The triviality properties make the frames unique. The
extended solution is the change of frame

(2.9) $E_{\lambda}(z)=g^{-1}\cdot f_{\lambda}|_{(\lambda,\eta=z-\overline{z}\lambda^{2})}$ .
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3. Uniton bundles and $P^{2}$ monads

The triviality properties of uniton bundles allow us to identify them with bundles on
$P^{2}$ which have a well-known monad representation. These monads have two essential
features:

1. they are self-dual, i.e. the transposed monad is a monad of the same form rep-
resenting the dual bundle, and

2. we know when the represented bundle is trivial on hyperplanes. In the usual
notation (described below), $\gammaarrow P^{2}$ is trivial on a hyperplane $L=\overline{p_{1}p_{2}}\Leftrightarrow\det(K_{p_{2}}oJ_{p_{1}})$

$\neq 0$ , and any choice of spanning representatives of $kerK_{p_{i}}/imJ_{p_{i}}$ frames $r|_{L}$ canoni-
cally, in particular a basis of $kerK_{p\iota}\cap kerK_{p_{2}}$ does. (See [Do].)

3.1. THE BIRATIONAL EQUIVALENCE. If $X,$ $Y$ and $W$ are homogeneous coordinates
on $P^{2}$ , and $\lambda$ and $\eta$ affine base and fibre coordinates on $\overline{TP}^{1}$ ,

$\{X=\lambda Y, (X+Y)W=\eta Y^{2}\}\subset\overline{TP}^{1}\cross P^{2}$

is the graph of the birational equivalence $\rho$, which comes from
1. blowing up the point $(\lambda=-1, \eta=0)$ ,
2. blowing down $\tilde{P}_{-1}$ (the proper transform of the fibre $\{\lambda=-1\}$ ), and
3. blowing down the image of $G_{\infty}$ .
Under the birational equivalence $\rho$, the ruling $\{P_{\lambda} : \lambda\in P^{1}\}$ of $\overline{TP}^{1}$ is mapped to the

pencil of lines $\{X=\lambda Y\}$ on $P^{2}$ , except for the fibre $P_{-1}$ , which is mapped to a point;
the line $X+Y=0$ is the exceptional divisor of the blowup. The curve $G_{\infty}$ becomes the
point $[0,0,1]\in P^{2}$ . Since push forward gives an isomorphism between bundles on $\overline{TP}^{1}$

and bundles on $P^{2}$ which are trivial on $G_{\infty}\cup P_{-1}$ and $\{X+Y\}$ respectively, we will use
the same letter for a bundle and its push forward.

Assume now that $\gamma$ is a uniton bundle. Since $\gamma$ is trivial on generic lines, $\gamma$

admits a monad representation [OSS, example 3, p249], $\gamma=kerK/imJ$ , where

(3.2) $0arrow \mathcal{O}_{P^{2}}(-1)^{k_{arrow}^{J}}\mathcal{O}_{P^{2}}^{2k+N_{arrow}^{K}}\mathcal{O}_{P^{2}}(1)^{k}arrow 0$

is a complex of linear maps, such that $K\circ J=0$, and on each fibre $J$ is injective and $K$

$su\dot{\eta}ective$ , with $k=c_{2}(\gamma)$ .
The monad representation (3.2) is not unique; $G1(k)\cross G1(2k+N)\cross G1(k)$ acts on

the vector spaces linearly, inducing monad equivalences. Given that $\gamma|_{\{X+Y\}}$ is trivial,
we can assume that the monad has the block form

(3.3) $J^{d}=^{ef}(\begin{array}{l}I00\end{array})W+(\begin{array}{l}0I0\end{array})(X-Y)+(\begin{array}{l}\alpha_{l}\alpha_{2}a\end{array})(X+Y)$ ,

(3.4) $K^{d}=^{ef}$ ( $0$ I $0$) $W+(-I 0 0)(X-Y)+(-\alpha_{2} \alpha_{1} b)(X+Y)$ ,

where the $\alpha_{i},$ $a$ and $b$ are $k\cross k,$ $N\cross k$ and $k\cross N$ matrices, respectively. This form is
stabilised by an action of $G1(k)\cross G1(N)$ . The $G1(N)$ action corresponds to changes of
frame. Since uniton bundles are framed it does not act.
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The monad equation $KoJ=0$ is

(3.5) $[\alpha_{1}, \alpha_{2}]+ba=0$

and nondegeneracy says that

$(\begin{array}{l}\alpha_{l}+u\alpha_{2}+va\end{array})$ and $(-\alpha_{2}-v \alpha_{1}+u b)$

$havefullrankforallu,$ $v\in C$ . Since

$K|_{[0,0,1]}\circ J|_{[\lambda,1,0]}=const(\alpha_{2}(\lambda+1)+(\lambda-1))$ ,

$\nu’|_{\{X=\lambda Y\}}$ is holomorphically nontrivial iff $(1-\lambda)/(1+\lambda)$ is an eigenvalue of $\alpha_{2}$ .
Since only $\parallel^{\wedge}|_{\{X=0\}}$ and $\gamma|_{\{Y=0\}}$ are nontrivial,

$\alpha_{2}=(-I -2\gamma’ I +2\gamma)$

for some nilpotent matrices $\gamma,$
$\gamma’$ . If we correspondingly decompose

$\alpha_{1}=(\begin{array}{ll}\alpha_{l}^{//} \phi_{1}\phi_{2} \alpha_{l}’\end{array})$

the monad equation (3.5) implies that $\phi_{1}$ and $\phi_{2}$ are determined by $\gamma,$
$\gamma’,$ $a$ and $b$ .

REMARK 3.6. We know from [Hu] that bundles on $P^{2}$ can be profitably studied by
decomposing them into a collection of framed local jumps. Such local data can be
uniquely glued back into a trivial bundle on the complement of the jumping lines by
using the framing along a fixed section which is part of the data.

This technique has a direct translation into the language of monads. The eigen-
values of $\alpha_{2}$ correspond to the jumping lines in the pencil of lines through $\{X=0=Y\}$ .
Decomposing the space on which $\alpha_{2}$ acts

$C^{k}=\oplus V_{\mu}$ ; $V_{\mu}^{d}=^{ef}ker(\alpha_{2}-\mu)^{k}$

and defining projections $\pi_{\mu}$ : $C^{k}arrow V_{\mu}$ , and injections $\iota_{\mu}$ : $V_{\mu}arrow C^{k}$ , the monad data

$\pi_{\mu}\alpha_{2}\iota_{\mu},$ $\pi_{\mu}\alpha_{1}\iota_{\mu},$ $\pi_{\mu}a,$
$b\iota_{\mu}$

represent the bundle $\gamma_{\mu}$ formed by gluing the single framed local jump at {X $=\mu Y$}
into the trivial bundle on its complement. Concretely, we are putting $\alpha_{2}$ into block
diagonal form and throwing out the off-diagonal blocks of the corresponding decom-
position of $\alpha_{1}$ . The ’diagonal blocks’ of the monad equation are monad equations for
the decomposition products, while the off-diagonal pieces give nondegenerate linear
equations which determine the off-diagonal blocks of $\alpha_{1}$ .
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In our case, there are two pieces, resulting in two bundles $\gamma_{0}$ and $\gamma_{\infty}$ . The real
structure interchanges them, so

rank $I+\gamma=\dim V_{0}=c_{2}(\gamma_{0})=c_{2}(\gamma_{\infty})=\dim V_{\infty}=rankI+\gamma’$ .

in particular, $k$ is even.

3.7. REALITY. On the monad level, the real structure is represented by a monad
map

$(J, K)arrow(\sigma^{*}K^{t}, \sigma^{*}J^{t})$ .

Motivated by the previous remark, it is not hard to show that real bundles have real
monads with the block form

(3.8a) $\alpha_{2}=(\begin{array}{llll}-I -2\gamma^{*} I +2\gamma\end{array})$ ,

(3.8b) $\alpha_{1}=(\begin{array}{ll}-\alpha_{1^{*}}’ \phi_{l}\phi_{2} \alpha_{l}’\end{array})$ ,

(3.8c) $b=(\begin{array}{l}ia^{/*}b’\end{array})$ ,

(3.8d) $a=(ib^{\prime*} d)$ .

The off-diagonal blocks can be calculated explicitly to be

$\phi_{1}=-\frac{i}{2}\sum_{j\geq 1}\gamma^{*(j-1)}(I+\gamma^{*})^{-j}a^{;*}d(I+\gamma)^{-j}\gamma^{j-1}$ ,

(3.9)
$\phi_{2}=\frac{i}{2}\sum_{j\geq 1}\gamma^{j-1}(I+\gamma)^{-j}b’b^{\prime*}(I+\gamma^{*})^{-j}\gamma^{*(j-1)}$ .

4. The closed form

We will calculate the monodromy interpretation of the uniton (2.8) in terms of bases
for the vector spaces given by the monad data $\alpha_{1},$ $\alpha_{2},$ $a,$

$b$ .
Under the birational equivalence $\rho$ , the lines $G_{\infty}$ and $P_{-1}$ are identified to a

point. The line $P_{\lambda}$ corresponds to $\{X=\lambda Y\}$ , and the lines $G_{(z,(\overline{z}-z)/2,\overline{z})}$ are sent to the
degenerate quadrics $(\overline{z}X-zY+W)(X+Y)=0$ . Since the bundle is time-translation
invariant it suffices to parametrise the sections of $\parallel^{-}|_{\{X=\lambda Y\}}$ and of $Y|_{\{\overline{z}X-zY+W=0\}}$ .

Sections of $\gamma|_{\{\overline{z}X-zY+W=0\}}$ are parametrised by

$kerK_{p_{1}}\cap kerK_{p_{2}}$ ,

where $\overline{p_{1}p_{2}}=\{\overline{z}X-zY+W=0\}$ . Taking $p_{1}=[1,1, z-\overline{z}]$ and $p_{2}=[1, -1, -z-\overline{z}]$ ,

$H^{0}(\gamma|_{\overline{p_{1}p_{2}}})\cong ker(\begin{array}{l}K_{p_{2}}K_{p_{1}}\end{array})=ker(\begin{array}{llll}-I -X 0-\alpha_{2} \alpha_{l} +iy a\end{array})$ .
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Real triviality is equivalent to

$0\neq\det 4((z-\overline{z})J_{W}+2J_{X+Y})((-z-\overline{z})K_{W}+2K_{X-Y})$

(4.1)
$=\det(\alpha_{1}+x\alpha_{2}+iyI)$ ,

which implies that the kemel is

(4.2) $\{(\begin{array}{l}+x(\alpha_{1}+x\alpha_{2}iyI)^{-1}bs+-(\alpha_{1}+x\alpha_{2}iyI)^{-1}bss\end{array})\in C^{2k+N}$ : $s\in C^{N}\}$ .

In terms of the moving frame $f_{y}$ , the sections are

(4.3) $f_{y}\cdot s=(\begin{array}{l}+x(\alpha_{1}+x\alpha_{2}iyI)^{-1}bs+-(\alpha_{1}+x\alpha_{2}iyI)^{-1}bss\end{array})+imJ$ .

Sections of $\gamma|_{\{X=\lambda Y\}}$ are similarly represented by

(4.4) $g\cdot s=(_{S}^{(\alpha_{2}+\frac{\lambda-1}{\lambda+1}I)^{-1}bs}0)+imJ$

as $s$ varies in $C^{N}$ .
The evaluation map $H^{0}(\{X=\lambda Y\}, \gamma)arrow\gamma_{p}$ is given by $s\mapsto(4.4)+imJ_{p}$ . To

compute

$H^{0}(\{\overline{z}X-zY+W=0\}, \gamma)arrow\gamma_{p}arrow H^{0}(\{X+\lambda Y\}, \parallel^{\nearrow})$

we take the expression (4.2) and add an element of $imJ_{p}$ to obtain a representative of the
form (4.4).

At the point of intersection $p=[\lambda, 1, z-\lambda\overline{z}]$

$J_{p}=(1+ \lambda)(\alpha_{2}+\frac{\lambda-1}{1+\lambda})$ .

When $\lambda\in C^{*}$ , we translate (4.2) into the form of (4.4) by adding

$\frac{2}{1-\lambda}J_{p}((\alpha_{2}+\frac{\lambda-1}{1+\lambda})^{-1}(\alpha_{1}+x\alpha_{2}+iyI)^{-1}bs)$ .
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In the language of moving frames

$(gE_{\lambda})s=f_{y}s=(\begin{array}{l}(\alpha_{1}+x\alpha_{2}+iyI)(\alpha_{2}+\frac{\lambda-1}{1+\lambda})^{-1}(\alpha_{l}+x\alpha_{2}+iyI)^{-l}bs0(I+a(\alpha_{2}+\frac{\lambda-1}{1+\lambda})^{-l}(\alpha_{l}+x\alpha_{2}+iyI)^{-1}b)s\end{array})+imJ$

$=g(I+a( \alpha_{2}+\frac{\lambda-1}{1+\lambda})^{-1}(\alpha_{1}+x\alpha_{2}+iyI)^{-1}b)s$ .

We conclude that

(4.5) $E_{\lambda}=I+a( \alpha_{2}+\frac{\lambda-1}{1+\lambda})^{-1}(\alpha_{1}+x\alpha_{2}+iyI)^{-1}b$ ;

when $\lambda=1,$ $S=E_{1}$ is the sought expression of Theorem A.
Since the parametrisations of $H^{0}(\{X=\lambda Y\}, \gamma)$ agree at $[0,0,1]$ , as do the para-

metrisations of $H^{0}(\{X+Y=0\}, \gamma)$ and $H^{0}(\{\overline{z}X-zY+W=0\}, \gamma)$ at $[-1,1, z+\overline{z}]$ ,
this agrees with the full computation of the diagram (2.8).

REMARK 4.6. We will show in a future paper [An3] that this construction of unitons
can be generalised to give a construction of certain solutions of Ward’s chiral model, and
in this more general context it will be easy to see that the generalised equations are
satisfied. In this case, however, it is easy to verify that the solutions are unitary and to
use a symbolic calculator to evaluate the equations on specific solutions or families of
solutions.

5. Interpretation of uniton number

We now prove part 3 of Theorem B. Recall from [Uhl] that $S\in Harm(S^{2}, U(N))$

has uniton number $n$ if $S$ admits an extended solution of the form

$\tilde{E}_{\lambda}=\lambda^{-n}T_{0}+\lambda^{1-n}T_{1}+\cdots+T_{n}$

and this is the shortest possible such solution. We will assume, without loss of general-
ity, that $\tilde{E}_{\lambda}$ is a fixed shortest-length extended solution in Uhlenbeck normal form, i.e.

$span\{imT_{0}(z) : z\in C\}=C^{N}$ .

LEMMA 5.1. Let $\gamma$ be the uniton bundle represented by the data $(\alpha_{1}’, \gamma, d, b‘)$ , and let
$P_{0}^{(l)}$ be the $lth$ formal neighbourhood of the line. The following numbers are the same.

1. the largest $l$ such that there exists a map

$\mathcal{O}_{P_{0}^{(l)}}(1)arrow\gamma_{P_{0}^{(l)}}s$ $s|_{P_{0}}\neq 0$ ;
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2. the largest $l$ such that there exists a map

$\gamma_{P_{0}^{(l)}}arrow \mathcal{O}_{P_{0}^{(l)}}(-1)s$ $s|_{P_{0}}\neq 0$ ;

3. the smallest $l$ such that $\gamma^{l+1}=0$.

We will call 1 the length of the jump at $P_{0}$ . See [Ti] for another definition of length.

PROOF. Observe that if $p_{1}$ and $p_{2}$ are two points on $P_{0}\subset P^{2}$ , then

$kerK_{p_{2}}\circ J_{p\iota}=\{s\in H^{0}(P_{0}, \gamma) : s(p_{1})=0\}\cong H^{0}(P_{0}, \gamma(-1))$ ,

and that this works just as well for $P_{0}^{(l)}$ in which case all objects are defined over
$C[\lambda]/(\lambda^{l+1})$ instead of over $C$ . The equivalence of 1. and 3. can now be reduced to the
calculation of

$ker(\lambda+\gamma)|_{P_{0}^{(l)}}=\{\lambda^{i}\gamma^{j}\cdot\lambda^{l+1}(\lambda+\gamma)^{-1} : i,j\geq 0\}$

(5.2)
$=\{\lambda^{i}\gamma^{j}\cdot(\gamma^{l}-\lambda\gamma^{l-1}+\cdots+(-\lambda)^{l-1}\gamma+(-\lambda)^{l}) : i,j\geq 0\}$ .

Since the dual bundle is described by the transposed monad, 2. and 3. are also equiva-
lent. See [Ti] for another definition of length. $\square$

Recall that the triviality properties of a uniton bundle $\gamma$ define two sorts of framings
of $\gamma$ : $g$ over $G_{\infty}\cup TC^{*}$ and $f_{y}$ over $G_{y}$ where $y$ is in a neighbourhood of the real sec-
tions in $C^{3}$ . The monodromy diagram (2.8) can be interpreted as relating the two
frames via the standard extended solution:

(5.3) $f_{y}=gE_{\lambda}(y)$ .

Among extended solutions, $E_{\lambda}$ is determined by the property $E_{\lambda}(\infty)=I$ . Unique-
ness of extended solutions implies that

$E_{\lambda}(y)=\tilde{E}_{\lambda}(\infty)^{-1}\tilde{E}_{\lambda}(y)$ .

The reality condition on $E_{\lambda}$ implies that,

$E_{\lambda}^{-1}=(E_{\overline{\lambda}-1})^{*}=T_{n}^{*}+\cdots+\lambda^{n-1}T_{1}^{*}+\lambda^{n}T_{0}^{*}$ .

Substituting these expressions into (5.3), for example, tells us that

$f_{y}\cdot\tilde{E}_{\lambda}(y)^{-1}=g\cdot\tilde{E}_{\lambda}(\infty)^{-1}$

are holomorphic sections on a neighbourhood of $P_{0}$ in $\overline{TP}^{1}$ and have full rank away
from $P_{0}$ .

5.1. UNITON NUMBER $\leq LENGTH+1$ . Since $\tilde{E}_{\lambda}$ is in Uhlenbeck normal form, we
can find $z_{0},$ $z_{1}$ such that

$T_{n}(z_{0})^{*}T_{0}(z_{1})\neq 0$ .

The reality condition on $\tilde{E}_{\lambda}$ implies that the $N$ sections

$\lambda^{n}f_{y}\cdot\tilde{E}_{\lambda}(y)^{-1}\tilde{E}_{\lambda}(z_{0})=\lambda^{n}g\cdot\tilde{E}_{\lambda}(\infty)^{-1}\tilde{E}_{\lambda}(z_{0})$
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are zero on $P_{0}^{(n-1)}\cap G_{(z_{0},0,-\overline{z}_{0})}$ , but are not all zero on $P_{0}\cap G_{(z_{1},0,-\overline{z}_{1})}$ . This shows that
$l\geq n-1$ (by the first characterization of length).

5.2. UNITON $\aleph^{\iota}UMBER\geq LENGTH+1$ . Assume, on the other hand, that $l>n-1$

and let $s$ be a section

$\gamma^{s}arrow \mathcal{O}_{P_{0}^{(l)}}(-1)$ ; $s|_{P_{0}}\neq 0$ .

We can find a $y_{0}\in R^{3}$ and a $v\in\gamma_{P_{0}\cap G_{y_{0}}}$ such that $s(v)\neq 0$ . Let $v=f_{y0}\cdot v’$ . It follows
that the section

$\lambda^{n}f_{y}\cdot E_{\lambda}(y)^{-1}E_{\lambda}(y_{0})v’$

on $P_{0}^{(n)}\cap G_{y0}$ is not mapped to zero by $s$, but since its image is a section of
$\mathcal{O}_{P_{0}^{(n)}}(-1)\cong \mathcal{O}_{P_{0}}(-1)^{\oplus(n+1)}$ , it must be zero, contradicting the assumption $l>n-1$ . We
conclude that $n=l+1$ , which is part 3 of Theorem B.

6. Real triviality

In [Anl] we formulated the definition of a uniton bundle and found it necessary
to include the assumption that the bundle was trivial on real sections. Using the monad
representation of the bundle, however, we are able to show that this assumption is
unnecessary.

Since the group of real translations in the space of sections acts transitively, and the
induced action on $\overline{TP}^{1}$ pulls uniton bundles back to uniton bundles, it is enough to prove

LEMMA 6.1. Any bundle which satisfies the reality property of a uniton bundle, and
which is trivial on nonpolar fibres, and the section at infinity is also trivial on the zero
section.

PROOF. The assumed triviality properties are enough to identify such bundles with
bundles over $P^{2}$ , and to consider monad representatives. In the language of monads, we
must show that any set of monad data $\alpha_{1}’,$

$\gamma$ nilpotent, $d,$ $b’$ satisfying the monad equa-
tion and nondegeneracy conditions (see Theorem B) also satisfies (4.1)

$0\neq\det\alpha_{1}=\det(\begin{array}{ll}-\alpha_{l^{*}}’ \phi_{l}\phi_{2} \alpha_{1}’\end{array})$ ,

where $\phi_{1}$ and $\phi_{2}$ are given by (3.9).
If $M$ is a complex matrix, $(u, v)=u^{*}M^{*}Mv$ defines a nonnegative (possibly degener-

ate) symmetric sesquilinear form. The sum of such forms is again such a form, so we
see from (3.9) that $i\phi_{1}and-i\phi_{2}$ define such forms.

Choose a basis for $C^{k}$ which is orthogonal with respect to $i\phi_{1}$ by first choosing a
basis for $kerd_{1}$ and extending it to a basis of the whole space. In other words, in the
chosen basis the first columns of Od will be zero and the remaining columns have full
rank, and $\phi_{1}$ will be diagonal.

Let $\theta$ be a parametrix for $\alpha_{1}’$ , by which we mean an invertible matrix such that
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$\theta\alpha_{1}’=(0 I)$

in the chosen basis.
Fix the hermitian metric in which the chosen basis is unitary. Taking adjoints with

respect to this metric,

$\alpha_{1^{*}}’\theta^{*}=(0 I)$

tells us that $\theta^{*}$ : $ker\alpha_{1}’arrow ker\alpha_{1}^{\prime*}$ .
Use $\theta$ to rewrite the determinant as

(6.2) $\frac{1}{|\det\theta|^{2}}\det(-I \theta) (\begin{array}{ll}-\alpha_{1^{*}}’ \phi_{l}\phi_{2} d_{1}\end{array})(\theta^{*} I)$

(6.3) $= \frac{1}{|\det\theta|^{2}}\det(\begin{array}{ll}( ) -\phi_{l}\theta\phi_{2}\theta^{*} ( )\end{array})$ ;

expand this determinant using the fact that $\phi_{1}$ is diagonal in this basis,

(6.4) $= \frac{1}{|\det\theta|^{2}}$ $\sum$ $\det(-i\theta\phi_{2}\theta^{*})|_{V}\det(i\phi_{1})|_{V}$ ,
$ker\alpha_{1}’\subset V\subset C^{k}$

$V$ is generated
by basis vectors

where $\phi|_{V}$ means the restriction of the form to the subspace, i.e. $\pi\phi\iota$ in terms of orthog-
onal projection $\pi$ onto $V$ and injection $\iota$ : $Varrow C^{k}$ . Since $i\phi_{1}$ and $-i\theta\phi_{2}\theta^{*}$ are non-
negative, their restrictions to $V$ are also nonnegative, as are all the terms in the
expansion of the determinant. It remains to show that one of the terms is not zero.

The determinant of a symmetric, sesquilinear form $\emptyset$ is nonzero iff the form is non-
degenerate iff null $\emptyset=\{0\}$ . We will show in the next lemma that null $i\phi_{1}\cap ker\alpha_{1}’=$

$\{0\}$ . A similar argument shows that null $i\phi_{2}\cap ker\alpha_{1^{*}}’=\{0\}$ . Putting this together with
the fact that $\theta^{*}$ maps $kerd_{1}$ to $ker\alpha_{1}^{J*}$ , we have

$\det(-i\theta\phi_{2}\theta^{*})|_{ker\alpha_{1}’}\det(i\phi_{1})|_{ker\alpha_{1}’}=\det(-i\phi_{2})|_{ker\alpha_{1}’’}\det(i\phi_{1})|_{ker\alpha_{1}’}\neq 0$ ,

completing the proof that the determinant is not zero, and that the bundle is not trivial
on the zero section. $\square$

LEMMA 6.5. Let $(u, v)=u^{*}(i\phi_{1})v$ be the form defined by $i\phi_{1}$ , then

$ker\alpha_{1}’\cap$ null $\phi_{1}=\{0\}$ .

PROOF. The key observation is that

(6.6) $(e, e)=0\Leftrightarrow d(I+\gamma)^{-j}\gamma^{j-1}e=0$ for all $j>0$ .
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Let $e\in ker\alpha_{1}’$ . Either $a\gamma^{j}e=0$ for all $j\geq 0$ , or there exists a $j\geq 0$ such that
$a\gamma^{j}e\neq 0$ , and $a\gamma^{l}e=0$ for all $l>j$ (because $\gamma$ is nilpotent).

In the latter case,

$df(I+7)^{-(n+1)}e=dfe\neq 0$

so $(e, e)\neq 0$ .
In the former case, applying the monad equation inductively implies Od $\gamma^{l}e=0$ for all

$l\geq 0$ . $Since\gamma isnilpotent,$ $thereisanlsuchthat\gamma^{l+1}e=0,$ $then(6.6)implies\gamma^{l}e\in kerd$

and therefore

$\gamma^{l}e\in ker\sqrt{1}\cap ker\gamma\cap kerd=\{0\}$ ,

or $a’\gamma^{l}e\neq 0$ , and $(e, e)\neq 0$ as above. It follows by induction that $e=0$ , or $(e, e)\neq 0$ .
It follows that $\phi_{1}|_{ker\alpha_{1}’}$ is nondegenerate, as required. $\square$

7. Time translation

Because
$\bullet$

$\gamma|_{n\underline{on}p\circ 1ar}$ fibres is holomorphically trivial,. $\delta_{t}$ : $TP^{1}arrow\overline{TP}^{1}$ preserves the fibres,
$\bullet$ $\delta_{t}$ fixes $G_{\infty}$ and its lift $\tilde{\delta}_{t}$ fixes $\gamma|_{G_{\infty}}$ , and
$\bullet$ the union of the nonpolar fibres is a Zariski open set,
the lift of time translation to the bundle is unique if it exists. We therefore refer to
‘time-invariant’ holomorphic bundles and time-invariant jumps.

We will prove in Lemma 7.4 that a local framed jump at $P_{0}$ admits a lift of time
translation $\eta->\eta+\lambda t$ iff it admits a lift of the group of fibre-preserving transformations
$\eta\mapsto\eta+\lambda(1+\lambda)t$ . Since the latter is equivalent to the linear action

(7.1) $X\mapsto X$ $Y\mapsto Y$ $W\vdasharrow W+tX$

it induces a map of monads. We can calculate the effect of time-translation on the
normalized monad data to be $\alpha_{1}’->d_{1}-t\gamma$ .

The existence of a bundle lift is equivalent to the existence of a one parameter sub-
group $G(t)\in G1(k/2)$ which fixes $\gamma,$

$d$ and $b’$ , and sends $\alpha_{1}’$ to $d_{1}-t\gamma$ . Infinitesimally,
this says there exists $g\in g(k/2)$ such that

(7.2) $[g, d_{1}]=\gamma$ , $[g, \gamma]=0$ , $gb’=0$ , $a’g=0$ .

AS we have said, $g$ is unique (up to the group action). When it exists, it is the $\delta$ of
Theorem B.

The following simple lemma implies that 2-unitons have energy 4 or more. There is
evidence that energy is bounded below by the square of the uniton number.

LEMMA 7.3. NO monad with

$\gamma\in\{(N_{n}),$ $(N_{2} 0),$ $(N_{m} Z_{r})$ : $n>1,m>2,$ $r>0\}$
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where

$N_{n}^{def}=(\begin{array}{lll}0 1 0 1 0\end{array})\in gl(n)$ , and $Z_{r}^{d}=^{ef}(0)\in g(r)$

exists

PROOF. Use the relations (7.2) $\square$

We now justify the assumption that invariance under $\delta_{t}$ is equivalent to a linear
group action on $P^{2}$ :

LEMMA 7.4. Let $\eta,$

$\lambda$ be affine base andfibre coordinates on $P^{1}\cross Carrow C$ . $Let\parallel^{-}be$

a holomorphic vector bundle defined over some neighbourhood of $\{\lambda=0\}$ , with a fixed
framing above $\{\eta=\infty\}$ such that $\gamma|_{\{\lambda\neq 0\}}$ is trivial.

Let $f(\lambda)$ and $g(\lambda)$ be holomorphic functions on a neighbourhood of $\lambda=0$ , with
$g(O)\neq 0$ . Then the 1-parameter group of transformations

$\lambda\mapsto\lambda$ $\eta->\eta+f(\lambda)t$

lifts to a family offramed bundle homomorphisms iff
$\lambda\vdasharrow\lambda$ $\eta\mapsto\eta+g(\lambda)f(\lambda)t$

does.

REMARK 7.5. i) It is not true that the induced pull-back actions on the space
of framed jumps are equivalent-only that the fixed points are. ii) This lemma suggests
filtering the space of framed holomorphic jumps by the subspaces consisting of bundles
which admit a lift of $\eta\mapsto\eta+\lambda^{n}t$ .

PROOF. Let $T(\lambda,\eta)=T(\lambda, \eta, 1/\eta)$ be a clutching function for the bundle with
respect to the open cover $\{\eta\neq 0\},$ $\{\eta\neq\infty\}$ . Since $\lambda=0$ is the only jumping line, we
can assume that $T(\lambda, \eta, 1/\eta)$ is invertible for $\lambda\neq 0$ . As described at the beginning of
this section, the triviality properties of the bundle and the framing define a unique lift
away from $\{\lambda=0\}$ . Assume without loss of generality that this unique lift acts trivially
on the trivialization near $\eta=\infty$ . It follows that on the other trivialization it acts by

$L(\lambda, \eta, t)^{d}=^{ef}T(\lambda, \eta+f(\lambda)t)T(\lambda, \eta+t)^{-1}$

Of course, this will be singular on the jumping line when the bundle does not admit a
lift. The condition that a lift exists is equivalent to the condition that $L$ is continuous
near $\lambda=0$ .

Since $L$ defines a group homomorphism (when considered as a function of $t$), a lift
exists globally iff it exists locally iff the linearisation $(\partial L/\partial t)|_{t=0}$ is continuous.
Differentiating $L$ and the analogous expression with $f$ replaced by $f\cdot g$ , one sees that one
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is continuous iff the other is. For this calculation it is convenient (if not necessary) to
assume that $T$ is in ‘jumping-line normal form’, see [Hu] $\square$

THANKS. I am grateful to Francis Burstall, Arleigh Crawford, Martin Guest, Nigel
Hitchin, Paul Norbury, John Rawnsley, and especially Jacques Hurtubise for helpful
discussions and friendly suggestions.
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