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1. Introduction.

Let $R$ be a complete discrete valuation ring, which is fixed once for all as our base
ring. Let $K$ denote the quotient field of $R$ . As for basic terminology such as R-lattice,
$R$-order etc., we mostly follow that of [CR]. Let $\Lambda$ be an $R$-order in a $K$-algebra $\tilde{\Lambda}$

$:=$

$K\Lambda\simeq K\otimes_{R}\Lambda$ , and let Ind $\Lambda$ denote the set of isomorphism classes of indecomposable
left $\Lambda$ -lattices. For an overorder $\Gamma$ of $\Lambda$ in $\tilde{\Lambda}$, we may naturally consider Ind $\Gamma$ as
a subset of Ind $\Lambda$ . A subset ,9“ of Ind $\Lambda$ will be called a rejectable subset if there is
an overorder $\Gamma$ such that $\mathscr{L}=Ind\Lambda$ –Ind $\Gamma$ . The map $\Gamma\vdasharrow$ (Ind $\Lambda$ –Ind $\Gamma$) defines a
bijection from the set of all overorders of $\Lambda$ onto the set of all rejectable subsets of Ind $\Lambda$ .
Indeed, the inverse map is given by $\mathscr{L}->\Lambda(\mathscr{L})$ . Here, for any subset $\mathscr{L}$ of Ind $\Lambda,$ $\Lambda(\mathscr{L})$

is defined as the intersection $\bigcap_{L\in Ind\Lambda-9},$ $O_{l}(L)$ of the left multiplier $O_{l}(L)$ $:=$

$\{x\in\tilde{\Lambda}|xL\subseteq L\}$ .
For any subset $\mathscr{L},$ $\Lambda(\mathscr{L})$ is an $R$-subalgebra of $\tilde{\Lambda}$ containing $\Lambda$ , but is not necessarily

an $R$-order of $\tilde{\Lambda}$. A subset $\mathscr{L}$ will be called cofaithful if $\Lambda(\mathscr{L})$ is an $R$-order of $\tilde{\Lambda}$ . In
particular, a rejectable subset ,9“ is always cofaithful. A subset $\mathscr{L}$ will be called trivial if
$\Lambda(\mathscr{L})=\Lambda$ . While a subset $\mathscr{L}$ will be called bounded if the rational length $l(L)$ $:=$

$1ength_{J\overline{t}}(K\otimes_{R}L)$ is bounded on Y. When $\mathscr{L}$ is a singleton set, there is known a crite-
rion ($=determinable$ necessary and sufficient condition) for $\Psi$ to be rejectable, i.e. Re-
jection Lemma of Drozd-Kirichenko [DK].

1.1 D-K Rejection Lemma $\mathscr{L}=\{P\}$ is rejectable if and only if $P$ is bijective
($=projective$ and injective) and $P\neq radP$ .

1.1.1 Utility of D-K Rejection Lemma was well exhibited in [DK] where it was
applied for Bass orders, and more generally quasi-Bass orders in semi-simple K-algebras.
Further, in [HN-1], it was applied for Bass orders in non-semi-simple K-algebras.

1.1.2 Hijikata [H] studied also almost Bass orders, which is defined as a Gorenstein
order $\Lambda$ such that $O_{l}(rad\Lambda)$ is also Gorenstein. He has shown that very precise results
for almost Bass orders (including classification) can be derived by D-K Rejection
Lemma, and suggested a possibility to extend Rejection Lemma for $\mathscr{L}$ with more than
two points. Notably, the result of [HN-2] shows that, excepting for a small number of
them (counted in representation type), each local order $\Lambda$ of finite representation type has
a minimal rejectable subset $\mathscr{L}$ consisting of four points of a definite shape, whose $\Lambda(\mathscr{L})$

is the unique minimal local overorder of $\Lambda$ , and this is the reason, in a sense, why the $\Lambda$

can be of finite representation type.
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1.2. Our Results. In this paper we assume that the ambient $K$-algebra $\tilde{\Lambda}$ is semi-
simple. For main results, we moreover have to assume that $\mathscr{L}$ is bounded.

In 4.6, we give a criterion for $\mathscr{L}$ to be cofaithful, in particular a bounded rejectable
subset $\mathscr{L}$ is necessarily finite.

In 5.3, we give a criterion for $\mathscr{L}$ to be trivial.
In 5.5, assuming $\mathscr{L}$ to be finite rejectable, we give an algorithm to describe the

Auslander-Reiten quiver $\mathfrak{U}(\Lambda(\mathscr{L}))$ of $\Lambda(\mathscr{L})$ from $\mathfrak{U}(\Lambda)$ .
In principle, the above three Theorems together give a criterion for bounded $\mathscr{L}$ to be

rejectable ($=Rejection$ Lemma). Because, for any non-trivial $\mathscr{L}$ , any minimal non-
trivial cofaithful subset $\mathscr{L}’$ of $\mathscr{L}$ is rejectable, which is determined by 4.6 and 5.3. Then,
by 5.5, the problem for $\Lambda$ is reduced to that of the overorder $\Lambda(\mathscr{L}’)$ .

1.2.1. A remarkable fact is that the criterion for $\mathscr{L}$ to be rejectable depends, as in
the case of D-K Rejection Lemma, only on the structure of $\mathscr{L}$ , but not on the structure
of the whole $\mathfrak{U}(\Lambda)$ . To be precise, the information we need is the following.

(1) Structure of .9‘ as valued translation quiver.
(2) Preassignment of the subset $\mathscr{L}_{p}$ (resp. $\mathscr{L}_{i}$ ) consisting of projective (resp. injective)
vertices in $\mathfrak{U}(\Lambda)$ contained in $\mathscr{L}$ .

1.2.2. One of the basic problems is to determine all minimal finite rejectable sub-
sets, which has an intimate connection with the classification of (the sequence of) orders
of finite representation type. We shall describe, in the next 1.3, some of the results to-
ward the above problem, obtained as an application of \S 5, supplemented by some addi-
tional considerations such as an analogy of Bautista-Brenner Theorem [BB] for rejectable
subsets.

1.3. EXAMPLES. If $\mathscr{L}$ is minimal finite rejectable, then each of $\mathscr{L}_{p}$ and ,9? is a
singleton set (5.3.2), so that we write as $\mathscr{L}_{p}=\{P\},$ $\mathscr{L}_{i}=\{I\}$ . In the diagrams below,
unspecified arrow– has the valuation $(1,1)$ .

1.3.1. Assume that $\mathscr{L}$ has at most four points, $\#\mathscr{L}\leq 4$ . If $\mathscr{L}$ is minimal reject-
able, then it should have one of the following forms.

(1) $P=I\bullet$

(2) $p^{\bullet}Iarrow\bullet$

$(3- 0)(3- 0)$
$PIPI\bullet\bulletrightarrow\bulletrightarrow\bullet(a,b)rightarrow\bulletrightarrow\bullet(a,b)\}(a, b)=(1,1),$ $(1,2)$ or $(2, 1)$

(3-1) $PI\bullet(a,b)(b,a)$
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$(4- 0’)(4- 0)(4- 0)$
$PIP^{arrowrightarrow\bullet}IP^{rightarrow\bullet\bullet}I\bullet\bullet\bullet\bullet\bullet\bullet(ap)rightarrowrightarrow\bullet(a,b)arrow\bullet(a,b)$ $\}(a, b)=(1,1),$ $(1,2)$ or $(2, 1)$

$(4- 1)(4- 1)$
$P^{arrow\bullet}Y^{arrow}IP^{arrow}X^{arrow\bullet}I\bullet\bullet\bullet(a,b)(b,a)arrow\bullet\bullet(a,b)(b,a)rightarrow\bullet$ $X=\tau IP=\tau Y\}(a,b)=(1,2)$ or $(2, 1)$

(4-2)

$PI\bulletarrow\bullet|^{\bullet}x_{I_{arrow\bullet}}$
$P=\tau I,$ $X=\tau X$

$(2\cross 2)P\bullet\bullet|_{rightarrow}^{arrow}|P=\tau I\bullet\bullet I$

The occurence of the above minimal rejectable subsets will be discussed in elsewhere.
Here we only remark that the last one $(2\cross 2)$ appeared in the sequence of local orders of
finite representation type.

1.3.2. For any $n\geq 1,$ $m\geq 1$ , the following square (with $n\cross m$ vertices) is minimal
rejectable.
$(n\cross m)$

..

where diagonal arrows indicate $\tau$ .
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There is an infinite sequence of orders of finite representation type $\Lambda_{1}\supset\Lambda_{2}\supset\cdots$

such that ,se $=Ind\Lambda_{i}$ –Ind $\Lambda_{i+1}$ has the above form for any $i$ for one fixed $(n, m)$ .

1.4. Our Method. We shall use, so to speak, a kind of deformation of a complex of
$\Lambda$ -lattices by means of an almost split sequence. Suppose that the n-th term $A_{n}$ of a
complex $A=(A_{l}, a_{l})$ has the form $A_{n}=A\oplus T$ with $T\in Ind\Lambda$ and $a_{n}|\tau\in rad(T,A_{n+1})$ .
Let $\theta^{-}T$ denote the target of the source map ($=minimal$ left almost split morphism)
from $T,$ $Tarrow\theta^{-}T$ .

We construct a new complex $A’=(A_{l}’, a_{l}’)$ of which n-th term is $A_{n}’=A\oplus\theta^{-}T$ , to-
gether with a chain homomorphism $f$ : $Aarrow A’$ with some appropriate properties which
are described in 3.2. Intuitively said, we can replace $T$ by $\theta^{-}T$ , and we call the process
as rejection, rejecting $T$ from $A_{n}$ . The whole idea is to reach a desirable result by a
successive rejection, and is extremely simple. However, to keep track of the effect of re-
jections numerically, we had better work in the $Z$-module $Z(Ind\Lambda)$ rather than in the
category of $\Lambda$-lattices. Moreover, to cope with apparent obstacles caused by the lack of
quotient in the lattice category, we shall prepare some remarks on rationally exactness
(2.2). These make up a rather lengthy preliminary \S 2.

The method seems to have a variety of applications other than the ones given in this
paper.

1.5. Artin algebras. The methods and proofs of this paper apply for an artin
algebra $\Lambda$ . One should of course replace the overorder $\Gamma$ by the quotient algebra $\Lambda/\mathfrak{a}$ .
At each step, the proof is the same or simpler in this case. It is simpler because con-
siderations for cofaithfulness and rationally exactness are totally unnecessary in artinian
case.

2. Preliminaries.

Let $R,$ $K,$ $\Lambda,\tilde{\Lambda}$ be as in \S 1 and $\pi$ the prime of $R$ . Recall that we have assumed that
$\tilde{\Lambda}$ is semi-simple throughout in this paper. Besides Ind $\Lambda$ in \S 1, we fix the following
notation:

lat $\Lambda:=the$ set of isomorphism classes of left $\Lambda$ -lattices.

proj $\Lambda:=the$ subset of Ind $\Lambda$ consisting of projective lattices.

inj $\Lambda:=the$ subset of Ind $\Lambda$ consisting of injective lattices.

While, by abuse of notation $X\in$ lat $\Lambda$
’ is often used to mean ‘X is a left $\Lambda$ -lattice’,

for example.
We adopt the convention that morphisms will be written on the right side of the

object on which they operate.

2.0.1. We want to use the notation in which the dual statement is visible by the
original one. The source map from $L\in Ind\Lambda$ is written as $Larrow\theta^{-}L$ , the sink map to $L$

is written as $\theta^{+}Larrow L$ . The Auslander (resp. inverse Auslander) translate of $L$ is written
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as $\tau^{+}L$ (resp. $\tau^{-}L$). We put $\tau^{-}L$ (resp. $\tau^{+}L$) $:=0$ if $L$ is injective (resp. projec-
tive). Thus, for example, if $L\not\in inj\Lambda$ , the almost split sequence from $L$ is written as
$0arrow Larrow\theta^{-}Larrow\tau^{-}Larrow 0$ .

2.0.2. $Z(Ind\Lambda)$ . The set lat $\Lambda$ is a monoid by the direct sum $\oplus$ . We had better
work in the group of fractions of the monoid lat $\Lambda$ . By Krull-Schmidt Theorem we can
identify the group of fractions with the free $Z$-module $Z(Ind\Lambda)$ generated by the base set
Ind $\Lambda$ .

On $Z(Ind\Lambda)$ , we introduce the inner product $\langle, \rangle$ taking Ind $\Lambda$ as an orthonormal
base, then identify lat $\Lambda$ with the submonoid $N(Ind\Lambda)$ as

lat $\Lambda\ni X=\bigoplus_{L\in Ind\Lambda}L^{\langle X,L\rangle}=\sum_{L\in Ind\Lambda}\langle X, L\rangle L\in N(Ind\Lambda)\subset Z(Ind\Lambda)$ ,

where $N$ denotes the submonoid $\{0,1,2, \ldots\}$ of $Z$ .
Any map $\xi$ from Ind $\Lambda$ to (a subset of) an abelian group $C$ can be uniquely extended

to a $Z$-morphism $Z(Ind\Lambda)arrow C$, which we denote by the same letter $\xi$ . In particular
$\theta^{-}$ : Ind $\Lambdaarrow lat\Lambdaarrow Z(Ind\Lambda)$ defines $\theta^{-}\in End_{Z}(Z(Ind\Lambda))$ . Using similar reading of
$\tau^{-},$ ff and $\tau^{+}$ , we put

$\phi^{-}:=1-\theta^{-}+\tau^{-}$ $(X\mapsto X-\theta^{-}X+\tau^{-}X)$ ,

$\phi^{+}:=1-\theta^{+}+\tau^{+}$ $(X\mapsto X-\theta^{+}X+\tau^{+}X)$ .

These endomorphisms of $Z(Ind\Lambda)$ will play fundamental roles.
Any monoid homomorphism $\lambda$ : lat $\Lambdaarrow C$ to an abelian group $C$ uniquely de-

termines a $Z$-morphism A : $Z(Ind\Lambda)arrow C$ . Among such $\lambda’ s$ , the following will be used
in this paper.

$(^{-})$ : lat $\Lambdaarrow mod \tilde{\Lambda}$ (X– $\tilde{X}:=K\otimes_{R}X$).

For an irreducible central idempotent $\epsilon$ (i.e. $\Lambda\epsilon$ is simple) of $\tilde{\Lambda}$,

$\epsilon$ : lat $\Lambdaarrow lat(\Lambda\epsilon)$ $(X-\epsilon X)$ .

For an overorder $\Gamma$ of $\Lambda$ ,

$()$ : lat $\Lambdaarrow$ lat $\Gamma$ $(X-\dot{X}:=\Gamma X)$ ,

$($ . $)$ : lat $\Lambdaarrow lat\Gamma$ (X-$>X:=\{x\in X|\Gamma x\subseteq X\}$ ).

Note that $X\simeq Hom_{\Lambda}(\Gamma, X)$ is the maximum $\Gamma-$ sublattice of $X$, while $\dot{X}$ is the mini-
mum $\Gamma$-overlattice of $X$ in $\tilde{X}$ .

The rational length $l:Z(Ind\Lambda)arrow Z$ is the composite of $(^{-})$ and the $1ength_{\Lambda}-$.
We shall also introduce an ordering in $Z(Ind\Lambda)$ by

$X\leq Y\Leftrightarrow\langle X, L\rangle\leq\langle Y, L\rangle$ for any $L\in Ind\Lambda$ .

Thus, if $X,$ $Y\in lat\Lambda$ , then $X\leq Y\Leftrightarrow X|Y$ i.e. $X$ is (isomorphic to) a summand of Y.

2.0.3. $Zg$. Let $\mathscr{L}$ be a non-empty subset of Ind $\Lambda$ . The inclusion $\mathscr{L}\subseteq$ Ind $\Lambda$ in-
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duces a $Z$-monomorphism $i_{P}$ : $Z\mathscr{L}arrow Z(Ind\Lambda)$ , by which we often identify as $Z\mathscr{L}\subseteq$

$Z(Ind\Lambda)$ . Then $Z(Ind\Lambda-\mathscr{L})$ is the orthogonal complement of $Z\mathscr{L}$ with respect to the
inner product $\langle$ , $\rangle$ . Let $p_{\ovalbox{\tt\small REJECT}}$ : $Z(Ind\Lambda)arrow Z\mathscr{L}$ denote the orthogonal projection.

For any $\xi\in End_{Z}(Z(Ind\Lambda))$ , put $\xi_{g’}$ $:=pp\circ\xi\circ ig\in End_{Z}(Z\mathscr{L})$ . In partic lar, the
maps $\phi_{\ovalbox{\tt\small REJECT}}^{-},$ $\theta_{g}^{-},,$

$\tau_{\overline{g}}$, will play fundamental roles.

2.0.4. $\mathfrak{U}(\Lambda)$. The Auslander-Reiten quiver $\mathfrak{U}(\Lambda)$ of $\Lambda$ is, by definition, a valued

translation quiver with the vertex set Ind $\Lambda$ ; the valued arrow $LM\underline{(a_{LM},a_{LM}’)}$ with $a_{LM}$ $:=$

$\langle L, ffM\rangle,$ $d_{LM}:=\langle\theta^{-}L, M\rangle$ (provided $a_{LM}\neq 0$); the translation $\tau:=\tau^{+}$ i.e. $\tau L:=\tau^{+}L$

(provided $L\not\in proj\Lambda$ ). Moreover, $\mathfrak{U}(\Lambda)$ has the subadditive function $l$, the rational
length. Whenever we regard $\mathscr{L}$ as a subset of the vertex set of $\mathfrak{U}(\Lambda)$ , we consider $\mathscr{L}$ to
be a full subquiver of $\mathfrak{U}(\Lambda)$ .

Note that the endomorphism $\phi_{g}^{-}$, can be readfrom the full subquiver structure of $\mathscr{L}$ in
$\mathfrak{U}(\Lambda)$ .

2.1. Complex. Let $A=(A\iota, a_{l})$ denote a complex of $\Lambda$ -lattices

$A$ :. . . $arrow A_{l-1^{arrow A_{l}arrow A_{l+1}}}^{a_{l- 1}a_{l}}arrow--.$

Since we write the action of $\Lambda$-morphism from right, the condition for $A$ to make a
complex is given by $a_{l-1}a_{l}=0$ for any $l$. There is associated the group of homology
$H^{l}(A):=kera_{l}/ima_{l-1}$ . We also use an invariant $\chi_{l}(A):=A_{l}-A_{l+1}\in Z(Ind\Lambda)$ .

The direct sum $\Lambda\oplus B$ of the two complexes $A$ and $B=(B_{l}, b_{l})$ is defined as

$A\oplus B:=(A_{l}\oplus B_{l}$ , ( $a0l$ $b0l$ )). We obviously have $\chi_{l}(A\oplus B)=\chi_{l}(A)+\chi_{l}(B)$ .

Although we formulate the result in \S 3 for infinite complexes since it is a little
smoother in this way, main results of this paper will be concemed only for finite
complexes.

When we want to look a finite complex, say $0arrow Xarrow Yarrow Zarrow 0$ as an infinite
complex $\Lambda$ placing, say $Y$ at n-th term we write as

$\Lambda:0arrow Xarrow\check{Y}narrow Zarrow 0$ ,

where we understand that all the other term $A_{l}(l\neq n-1,n, n+1)$ is $0$ .
In particular, for $L\in Ind\Lambda$ , we define as

$I(\check{L})n$ : $0arrow\check{L}^{1}arrow Lnarrow 0$

$\Phi^{-}(\check{L})n$ : $0arrow\check{L}arrow\theta^{-}Lnvarrow\tau^{-}L\muarrow 0$

$\Phi^{+}(\check{L})n$ : $0arrow\tau^{+}Larrow\theta^{+}Larrow\check{L}narrow 0$ .

For $T\in 1at\Lambda$ , writing as $T=\Sigma L_{i}(L_{i}\in Ind\Lambda)$ , we define as

$I( \check{\tau}^{n}):=\bigoplus_{i}I(\check{L}_{i})n$ $\Phi^{-}(\check{\tau}^{n}):=\bigoplus_{i}\Phi^{-}(\check{L}_{i})n$ $\Phi^{+}(\check{\tau}^{n}):=\bigoplus_{i}\Phi^{+}(\check{L}_{i})n$ .
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They are uniquely determined by $T$ up to isomorphism of complexes.
AS usual, we call that a complex $A=(A_{\iota,a_{l}})$ is exact at n-th term (or at $A_{n}$ ) if

$H^{n}(A)=0$ , we call that $A$ is exact if it is exact at every term. While we call that $A$ is
rationally exact at n-th term (or at $A_{n}$ ) if $H^{n}(A)$ is an $R$-torsion module.

2.1.1. $t^{1)}$

$\Phi^{-}(\check{\tau}^{n})$ is rationally exact at $(n+1)$ -th term $\theta^{-}T$ , exact at every other
term. $\Phi^{+}(\check{T})$ is rationally exact at n-th term $T$, exact at every other termn

(2) If $T$ has no injective (resp. projective) summands, then $\Phi^{-}(\check{T})$ (resp. $\Phi^{+}(\check{\tau}^{n})$ ) is
exact.

2.1.2. For a given complex $\Lambda=(A_{l}, a_{l})$ of $\Lambda$ -lattices, by tensoring $K\otimes_{R}$ , there
arises a complex $\tilde{A}=(\tilde{A}_{l},\tilde{a}_{l})$ of $\tilde{\Lambda}$-modules. Similarly for an overorder $\Gamma$, there arises a
complex $\dot{A}=(\dot{A}_{l},\dot{a}_{l})$ with $A_{l}:=\Gamma A_{l}$ , and $\dot{a}_{l}$ : $\dot{A}_{l}arrow\dot{A}_{l+1}$ is the unique extension of $a_{l}$ . Ob-
viously, we have chain homomorphism $Aarrow\dot{A}arrow\tilde{A}$ induced from natural inclusions, and

(1) If $A$ is rationally exact at $A_{n}$ , then $\dot{A}$ is rationally exact at $\dot{A}_{n}$ .
(2) If $A$ is rationally exact at $A_{n}$ , then $\tilde{A}$ is exact at $A_{n}$ . (This is the reason why we

used ‘rationally’.)

2.2. Rationally exactness. Let $\Lambda$ : $0arrow Xarrow fYarrow Zgarrow 0$ be a complex of $\Lambda$ -lattices,
which is rationally exact at $Y$ and exact at $Z$ .

(1) Let $h:Yarrow W$ be a $\Lambda$ -morphism such that $fh=0$ . Then there is a unique $\Lambda-$

morphism $\overline{h}$ : $Zarrow W$ such that $h=gh$ .
(2) Let $i:Tarrow Y$ be a split monomorphism, and let $\alpha$ : $Yarrow Y$ be a $\Lambda$ -morphism.

If $ig\in rad(T, Z)$ and $f=f\alpha f$
’

then $i\alpha$ : $Tarrow Y$ is a split monomorphism.
(3) Let $B:0arrow Xarrow Y’arrow Z’g’arrow 0$ be a complex of $\Lambda$ -lattices, which is rationally

exact at $Y’$ and exact at $Z’$ . Let $\rho$ : $Yarrow Y’,$ $\sigma:Y’arrow Y$ be $\Lambda$ -morphisms such that
$fp=f’,$ $f’\sigma=f$ . $Thenthereare\Lambda- morphisms\overline{\rho}:Zarrow Z’,\overline{\sigma}:Z’arrow Zsuchthatg\overline{\rho}=pg’$ ,
$g’\overline{\sigma}=\sigma g$ . If $\sigma\rho\in Aut(Y$

‘
$)$ , then $\overline{\sigma}\overline{\rho}\in Aut(Z’)$ and $ker\rho\simeq ker\overline{\rho}$ .

(4) If $f$ is a split monomorphism, then $A$ is a split exact sequence.
(5) If $A$ is exact at $X$ and $\epsilon$ is a central idempotent of $\tilde{\Lambda}$, then $l(X-Y+Z)=$

$l(\epsilon(X-Y+Z))=0$ .

PROOF. (1) We shall show that $kerg\subseteq kerh$ . Pick any $y\in kerg$ . Rationally
exactness at $Y$ means that $y=\pi^{-i}(xf)$ by some $x\in X$ , so that $yh=\pi^{-i}(xfh)=0$ .

(2) By assumption, $f(\alpha-1)=0$ . By (1), there is $\gamma:Zarrow Y$ such that $\alpha-1=g\gamma$ .
Hence, ict–i $=ig\gamma\in rad(T, Y)$ , so that $i\alpha=i+ig\gamma\in i+rad(T, Y)$ is a split mono-
morphism.

(3) The first assertion is obvious from (1).
We assume $\sigma\rho\in Aut(Y’)$ . Put $\mu:=(\sigma\rho)^{-1}$ , then (1) shows that there is $\overline{\mu}$ such that

$g’\overline{\mu}=\mu g’$ . Since $g’\overline{\mu}\overline{\sigma}\overline{\rho}=\mu g’\overline{\sigma}\overline{\rho}=\mu\sigma\rho g’=g’$ and $g’\overline{\sigma}\overline{\rho}\overline{\mu}=g’$ , the second assertion follows.
We shall show that $g|_{kerp}$ induces $ker\rho\simeq ker\overline{\rho}$ . Obviously $(ker\rho)g\subseteq ker\overline{\rho}$ . If

$y\in ker(g|_{ker\rho})$ , then we can put $y=\pi^{-i}(xf)$ . By $y=\pi^{-i}xf=\pi^{-i}xf’\sigma=\pi^{-i}xf\rho\sigma=$

$yp\sigma=0,$ $g|_{kerp}$ is a monomorphism. On the other hand, for all $z\in ker\overline{\rho}$, exactness of $A$
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at $Z$ shows that we can put $z=yg$ . Then we have $(y-yp\mu\sigma)\rho=y\rho-y\rho=0$ and
$(y-y\rho\mu\sigma)g=z-yg\overline{\rho}\overline{\mu}\overline{\sigma}=z-z\overline{\rho}\overline{\mu}\overline{\sigma}=z$ . Hence $g|_{kerp}$ is an epimorphism.

(4) We shall show that $kerg\subseteq$ im$f$ . Pick any $y\in kerg$ . There is some $x\in X$

with $y=\pi^{-}‘(xf)$ . Applying a retraction $\sigma:Yarrow X,$ $f\sigma=1$ , we get $X\ni y\sigma=\pi^{-i}x$, i.e.
$y\in imf$ .

(5) Obviously $\tilde{A}:0arrow\tilde{X}arrow\tilde{Y}arrow\tilde{Z}arrow 0$ is a split exact sequence of $\tilde{\Lambda}$-modules.
Hence $\tilde{X}-\tilde{Y}+\tilde{Z}=0$ and $\epsilon(\tilde{X}-\tilde{Y}+\tilde{Z})=0$ . $\blacksquare$

2.3. Let $A=(A_{l}, a_{l})$ be a complex of $\Lambda$ -lattices. If $A_{n}$ has a summand $T\in 1at\Lambda$

$(T\leq A_{n})$ such that nthe restriction $a_{n}|\tau$ is a split monomorphism. Then $A$ decom-

poses as $\Lambda=B\oplus I(\check{T})$ up to isomorphism of complexes.

Although it is obvious, we give one explicit split exact sequence which helps to prove
our main lemma 3.2.

Write as $A_{n}=:B_{n}\oplus T,$ $A_{n+1}=:B_{n+1}\oplus T,$ $a_{n}=:(\begin{array}{ll}\alpha \beta\gamma \delta\end{array})(\delta$ : $Tarrow T$ is an auto-

morphism) etc.. Putting $B_{l}:=A_{l}(l\neq n, n+1),$ nthe following commutative diagram

gives the split exact sequence of complexes $0arrow I(\check{T})arrow Aarrow Barrow 0$ .

$I(\check{\tau}^{n}):-$ $0$ – $T$ $arrow 1$

$\downarrow$ $\downarrow(01)$

$(\begin{array}{l}\alpha\beta\delta\gamma\end{array})$

$(\begin{array}{l}b_{n+1}c_{n+1}\end{array})$

$\downarrow$

$\downarrow(\gamma\delta)T-$

$0$ –

$\Lambda$ : $-A_{n-1}\underline{(b_{n- 1}c_{n- 1})}B_{n}\oplus\tau\oplus-A_{n+2}-$

$\downarrow 1$ $\downarrow(\begin{array}{l}l0\end{array})$ $\downarrow(\begin{array}{l}l-\delta^{-1}\gamma\end{array})$ $\downarrow 1$

$B$ : $-B_{n-1}arrow b_{n- 1}$ $B_{n}$

$\underline{\alpha-ffl^{-1}\gamma}$

$B_{n+1}$ $arrow B_{n+2}b_{n+1}-$

Here, a retraction is given as follows.

$I(\check{\tau}^{n})A:$

$:arrow 0arrow-A_{n-1}arrow\uparrow 0(b_{n- 1}c_{n- 1})B_{n}TB_{n+1}T^{-0}|^{arrow T}\tau^{1}(\begin{array}{l}\beta^{-|}l\end{array})\uparrow(\begin{array}{l}0\delta^{-1}\end{array})|0arrowarrow$

2.4. Cofaithfulness. For a subset $\mathscr{L}$ of Ind $\Lambda$ , the following conditions are mutually
equivalent.

(0) $\mathscr{L}$ is cofaithful ( $i.e$. $\Lambda(\mathscr{L})$ is an order in $\tilde{\Lambda}$).
(1) $\oplus_{L\in Ind\Lambda-g}L$ is a faithful $\Lambda$-module.
(2) $\oplus_{L\in Ind\Lambda-g}\tilde{L}\dot{i}$ a faithful A-module.
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(3) For any irreducible central idempotent $\epsilon$ of $\tilde{\Lambda}$ ( $i.e.\tilde{\Lambda}\epsilon$ is simple), there is some
$L\in Ind\Lambda-\mathscr{L}$ such that $\epsilon L\neq 0$ .

(4) For any $X,$ $Y\in 1at\Lambda$ , there is a $\Lambda$-lattice $Z$ without summands in $\mathscr{L}$ such that
$Hom_{\Lambda}(X, Y)\supseteq Hom_{\Lambda}(X, Z)Hom_{\Lambda}(Z, Y)\supseteq\pi^{a}Hom_{\Lambda}(X, Y)$ by some $a\geq 0$ .

(5) There is a faithful $\Lambda$ -lattice $Z$ without summands in $\mathscr{L}$ .
(6) There is a $\Lambda$ -lattice $W$ without summands in $\mathscr{L}$ and there is an exact sequence of

$\Lambda$ -lattices $0arrow\Lambda(\mathscr{L})arrow Warrow Yarrow 0$ .

PROOF. (1) $\Leftrightarrow(2)\Rightarrow(3)\Rightarrow(4)$ : Obvious since $\tilde{\Lambda}$ is semi-simple.
(4) $\Rightarrow(5)$ : Take $X=Y=\Lambda$ in (4), then $Z$ must be $\Lambda$-faithful.
(5) $\Rightarrow(6)$ : $O_{l}(Z)$ is an order in $\tilde{\Lambda}$ such that $O_{l}(Z)\supseteq\Lambda(\mathscr{L})\supseteq\Lambda$ . Hence

$O_{l}(Z)/A(\mathscr{L})$ is artinian, we can take $X=Z\oplus L_{1}\oplus\cdots\oplus L_{m}(L_{i}\in Ind\Lambda-\mathscr{L})$ such
that $O_{l}(X)=\Lambda(\mathscr{L})$ .

Put $E:=End_{\Lambda}X$ . Then $X$ is a finitely presented $E$-module, $E^{m}arrow E^{n}arrow Xarrow 0$ .
Taking $Hom_{E}(, X)$ , we get

$0arrow Hom_{E}(X, X)arrow Hom_{E}(E^{n}, X)arrow Hom_{E}(E^{m}, X)$ .

Because $X$ is $\Lambda$ -faithful, $Hom_{E}(X, X)=\Lambda(\mathscr{L})$ and $Hom_{E}(E^{n}, X)=X^{n}$ . We may
take as $W:=X^{n},$ $Y:=im(X^{n}arrow X^{m})$ .

(6) $\Rightarrow(0)$ : $\Lambda(\mathscr{L})\llcornerarrow W$ means that $\Lambda(\mathscr{L})$ is an $R$-lattice, hence an order.
(0) $\Rightarrow(2)$ : Suppose (2) does not hold so that $\bigcap_{L\in Ind\Lambda-\ovalbox{\tt\small REJECT}}Ann\tilde{L}\neq 0$ , then

$\Lambda(\mathscr{L})\supseteq\bigcap_{L\in Ind\Lambda-9}$, Ann $\tilde{L}$ is not an order. $\blacksquare$

2.4.1. Let .9‘ be a non-cofaithful subset of Ind $\Lambda$ . Then there is an irreducible
central idempotent $\epsilon$ of $\tilde{\Lambda}$ such that

$\mathscr{L}\supseteq Ind_{\epsilon}\Lambda:=\{L\in Ind\Lambda|\epsilon L\neq 0\}$ .

$\mathscr{L}$ contains at least one projective, at least one injective and at least one irreducible
$\Lambda$ -lattice.

PROOF. The first assertion is (3) 2.4. The second assertion is an obvious con-
sequence of the first. $\blacksquare$

2.4.2. Let $\mathscr{L}$ be a subset of Ind $\Lambda$ and $\mathscr{L}_{p}:=\mathscr{L}\cap proj\Lambda$ , ,se $:=\mathscr{L}\cap$ inj $\Lambda$ . Suppose
$\mathscr{L}_{p}=\emptyset$ or $\mathscr{L}_{i}=\emptyset$ . Then $\Lambda=\Lambda(\mathscr{L})$ , i.e. $\mathscr{L}$ is trivial.

3. Deformation of complexes.

Let $\Lambda=(A_{l}, a_{l})$ be a complex of $\Lambda$-lattices and $T$ a non-zero $\Lambda$ -lattice. Assume
that, up to the end of 3.2, there is a split monomorphism $i:Tarrow A_{n}$ satisfying the
following property:

(0) $ia_{n}\in rad(T,A_{n+1})$ ,
where rad$(T, A_{n+1})$ is defined by the same way as [R] 2.5.
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3.1. There is a chain homomorphism $u:\Phi^{-}(\check{\tau}^{n})arrow A$ given by the following com-
mutative diagram.

$\Phi^{-}(\check{\tau}^{n})$ :– $0$ – $T\underline{v}\theta^{-}Tarrow\tau^{-}T\mu-$ $0$ $arrow$

$\downarrow u$ $\downarrow$ $\downarrow i$ $\downarrow p$ $\downarrow\sigma$ $\downarrow$

$\Lambda$ : $arrow A_{n-1}arrow A_{n}A_{n+1}arrow A_{n+2}a_{n- 1}\underline{a_{n}}a_{n+1}\underline{a_{n+2}}A_{n+3^{-}}$

PROOF. Since $v:Tarrow\theta^{-}T$ is a (direct sum of) source map, by the assumption (0),

there is $\rho$ . By 2.1.1, we can apply (1) 2.2 and conclude that $\rho$ induces $\sigma$ . $\blacksquare$

3.2. Main Lemma. Identifying imi with $T$, we write as $A_{n}=A\oplus T$ . Define
$f_{l}$ : $A_{l}arrow A_{l}’,$ $d_{l}$ : $A_{l}’arrow A_{l+1}’$ as $A_{l}=A_{l}’(l\neq n, n+1),$ $a_{l}=d_{l}(l\neq n-1,n, n+1),$ $f_{l}=1$

$(l\neq n, n+1)$ and the $rema\dot{\min}g$ ones as in the diagram below.

$(\begin{array}{l}\gamma vp\end{array})$

$A:\downarrow farrow A_{n-1}\downarrow 1\underline{(\alpha\beta v)}A\oplus\theta^{-}T-A_{n+1}\oplus\tau^{-}TA_{n+2^{-}}\underline{(\begin{array}{l}a_{n+1}\sigma\end{array})}$

$\Lambda$ : $-A_{n-1}arrow(\alpha\beta)$

$A\oplus Tarrow\downarrow(\begin{array}{l}l00v\end{array})$
$A_{n+1}\downarrow(10)$

$\underline{a_{n+1}}A_{n+2,\downarrow 1}arrow$

Then we have the following.
$(rO)$ $\Lambda’:=(A_{l}’, d_{l})$ is a complex of $\Lambda$ -lattices and $f$ : $Aarrow\Lambda$ is a chain homomorphism.
(r1) $\chi_{n}(\Lambda’)=A_{n}’-A_{n+1}’=A_{n}-A_{n+1}-\phi^{-}T=\chi_{n}(A)-\phi^{-}T$ .
(r2) If $X\in 1at\Lambda$ and $\langle$X, $T\rangle$ $=0$ , then $a_{n-1}Hom_{\Lambda}(A_{n}, X)=d_{n-1}Hom_{\Lambda}(A_{n}’, X)$ .
(r3) There are exact sequences of homology:

$0arrow H^{n}(A)arrow H^{n}(A’)arrow ker\mu/imvarrow H^{n+1}(A)arrow H^{n+1}(A’)arrow 0$

$0arrow H^{l}(A)arrow H^{l}(A’)arrow 0$ $(l\neq n,n+1)$

DEFINITION. Thus obtained $A’$ (to be precise the chain morphism $f$ : $Aarrow A’$ ) will
be called the complex obtained from $\Lambda$ by rejecting $T$ from $A_{n}$ , and will be denoted as

$A’=\Lambda-\check{\tau}^{n}$ .

PROOF. $(rO)$ Immediate from the diagram.
(r1) $A_{n}’-A_{n+1}’=(A+\theta^{-}T)-(A_{n+1}+\tau^{-}T)=A_{n}-A_{n+1}-\phi^{-}T$ .
(r2) Since $d_{n-1}=a_{n-1}f_{n},$ $d_{n-1}Hom_{\Lambda}(A_{n}’, X)\subseteq a_{n-1}Hom_{\Lambda}(A_{n}, X)$ . We shall show

the opposite inclusion. For a given $h:A_{n}arrow X$ , according to the decomposition $A_{n}=$

$A\oplus T$, write as $h=(\begin{array}{l}\xi\eta\end{array})$ . Then, since $\langle X, T\rangle=0,$ $\eta\in rad(T, X)$ so that there is
$\zeta:\theta^{-}Tarrow X$ such that $\eta=v\zeta$ . The claim follows from the commutative diagram below.
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(r3) We will prove this assertion in the following paragraphs. $\blacksquare$

3.2.1. In general, let $u:Barrow A$ be a chain morphism of complexes of $\Lambda$ -lattices.
Then arises a commutative diagram.

–
$\downarrow(10)A_{l-1}$

$arrow(\begin{array}{ll}a_{l- 1} 0u_{l} -b_{l}\end{array})a_{l- 1}$
$1^{A_{l}}(10)$

$u_{l+1}-b_{l+1}a_{l}0\underline{a_{l}})$
$\downarrow(10)A_{l+1}$

$arrow$

$-A_{l-1}\oplus B_{l}-A_{l}\oplus B_{l+1}-A_{l+1}\oplus B_{l+2}arrow$

$\downarrow(\begin{array}{l}01\end{array})$ $\downarrow(\begin{array}{l}01\end{array})$ $\downarrow(\begin{array}{l}0l\end{array})$

– $B_{l}$
$arrow-b_{l}$

$B_{l+1}$
$arrow-b_{l+1}$

$B_{l+2}$ $arrow$

In other words we have new complexes $B_{-}:=(B_{l+1}, -b_{l+1})$ , $C:=$

$(A_{l}\oplus B_{l+1},$ $(\begin{array}{ll}a_{l} 0u_{l+l} -b_{l+1}\end{array}))$ and a short exact sequence of complexes

$0_{-}ACB_{--}0\underline{(10)}\underline{(\begin{array}{l}0l\end{array})}$

which induces a long exact sequence of homology,

$-H^{l}(A)-H^{l}(C)arrow H^{l}(B_{-})=H^{l+1}(B)-H^{l+1}(A)-$ .

3.2.2. We apply 3.2.1 to $u:\Phi^{-}(\check{\tau}^{n})arrow A$ , and write down the map $Aarrow(10)C$ around
$l=n$ , according to the decomposition $A_{n}=A\oplus T$ .

$\Lambda:arrow A_{n-2^{arrow}}^{a_{n- 2}}$ $A_{n-1}$
$arrow(\alpha\beta)$

$A\oplus T$

$arrow(\begin{array}{l}\gamma v\rho\end{array})$

$\downarrow(10)$ $\downarrow 1$ $\downarrow(10)$

$\downarrow(\begin{array}{l}l000l0\end{array})(\begin{array}{ll}\gamma 0v\rho 0\rho -\mu\end{array})$

$(\begin{array}{l}a_{n+1}\sigma\end{array})$

$A_{n+1}\downarrow(10)$
$arrow A_{n+2 ’\downarrow 1}arrow a_{n+1}$

$C:arrow A_{n-2}arrow A_{n-1}(a_{n- 2}0)\oplus Tarrow A(\begin{array}{ll}\beta\alpha 00l -\mathcal{V}\end{array})\oplus T\oplus\theta^{-}Tarrow A_{n+1}\oplus\tau^{-}Tarrow A_{n+2}arrow$

Here we have $C_{n-1}=A_{n-1}\oplus T$ and $c_{n-1}|\tau=$ $(0 1 -v)$ is a split monomorphism.

By 2.3, we have a split exact sequence $0arrow I(\check{T})n-1arrow Carrow A’parrow 0$ .
AS is easily seen, the composite (10)$p:Aarrow\Lambda’$ coincides with $f$ : $Aarrow A’$ of 3.2.

$n-1$

Since $H^{l}(C)=H^{l}(A’)\oplus H^{l}(I(\check{T}))=H^{l}(A’)$ , we get (r3) from the long exact se-
quence in 3.2.1. $\blacksquare$
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3.2.3. REMARK. It is not hard to see that the chain map $f$ : $\Lambdaarrow\Lambda’$ (in 3.2, con-
structed from $i:Tarrow A_{n}$ ) has the following properties and is characterized uniquely up
to isomorphism in the category of complexes of $\Lambda$-lattices by the properties

(1) $\iota f_{n}\in rad(T,A_{n}’)$ .
(2) If $g:\Lambdaarrow B$ satisfies $ig_{n}\in rad(T, B_{n})$ , then there is $h$ : $A’arrow B$ such that $g=fh$ .
(3) $f$ is left minimal.
In other words, $f$ : $Aarrow A’=A-\check{\tau}^{n}$ is a sort of substitute for ,source map’ in the

category of complexes of $\Lambda$ -lattices.

3.3. Duality. We explain the dual version of the above lemma. Namely, it is
obviously valid for right $\Lambda$ -lattices (i.e. for lat $\Lambda^{op}$ ) by the same proof. Taking the R-
dual $($ $)^{*}:=Hom_{R}( R)$ , then we get the dual result. However, in this paper, it is more
economical to take the dual for final results in \S 5, so that we refrain from writing down
the dual of 3.2. Instead we give a dictionary of duals here. The map

$($ $)$

’ : $Z(Ind\Lambda)arrow Z(Ind\Lambda^{op})$ , $X\vdasharrow X^{*}$

is a $Z$-isomorphism compatible with the inner product $\langle$ , $\rangle$ , which induces a bi-
jection proj $\Lambdaarrow inj\Lambda^{op}$ , inj $\Lambdaarrow proj\Lambda^{op}$ . Endomorphism $\theta^{-},$ $\tau^{-},$ $\phi^{-}$ corresponds to
$ff^{\vdash},$ $\tau^{+},$ $\phi^{+}$ . For an overorder $\Gamma$ of $\Lambda,$ $()$ corresponds to $($ . $)$ in the obvious sense, for
examples

$(\theta^{-}L)^{*}=\theta^{+}(L^{*}),$ $(\dot{L})^{*}=(L^{*})$ etc.

3.4. Successive $\mathscr{L}^{-}$ -rejection sequence. Let $\mathscr{L}$ be a subset of Ind $\Lambda$ . A (finite or
infinite) sequence $(A^{(0)}, A^{(1)}, A^{(2)}, \ldots)$ of complexes of $\Lambda$ -lattices will be called a successive
$\mathscr{L}^{-}$ -rejection sequence with the initial complex $\Lambda$ , if there is a sequence $(T_{j})$ with

$n$

$0\neq T_{j}\in N\mathscr{L}$ , by which $A^{(j)}$ is defined inductively as $\Lambda^{(0)}:=\Lambda,A^{(j+1)}:=A^{(j)}-\check{T}_{j}$ .
Where $n$ is an arbitrarily chosen (then fix$ed$ ) integer. As will be seen in the sequel,

the choice of $n$ has not much meaning, so that the reference to $n$ will be omitted.
Of cource, there is implicitly associated a chain homomorphism $f^{(j)}$ : $\Lambda^{(j)}arrow A^{(j+1)}$

for each $j$. If that is so, by 3.2, they enjoy the following properties.
$(srO)$ $A_{l}^{(j)}=A_{l}(l\neq n, n+1)$ .
(srl) $\chi_{n}(A^{(j)})=A_{n}^{(j)}-A_{n+1}^{(j)}=\chi_{n}(\Lambda^{(j-1)})-\phi^{-}T_{j-1}=\chi_{n}(A)-\sum_{i=0}^{j-1}\phi^{-}T_{i}$ .
(sr2) If $X\in 1at\Lambda$ and $p_{y}X=0$ (i.e. $\langle$X, $L\rangle=0$ for any $L\in Y$), then

$a_{n-1}^{(j)}Hom_{\Lambda}(A_{n}^{(j)}, X)=a_{n-1}Hom_{\Lambda}(A_{n}, X)$ .

(sr3) If $A$ is exact at $A_{n+1}$ , then $\Lambda^{(j)}$ is exact at $A_{n+1}^{(j)}$ .
If $A$ is rationally exact at $A_{n}$ , then $A^{(j)}$ is rationally exact at $A_{n}^{(j)}$ .
If $\Lambda$ is exact at $A_{n}$ and moreover ,9“ contains no injectives, then $A^{(j)}$ is exact
at $A_{n}^{(j)}$ .

3.4.1. Suppose that the initial complex $A$ is three termed finite, $\Lambda$ : $0arrow A_{n-1}arrow$

$A_{n}arrow A_{n+1}arrow 0$ , which is rationally exact at $A_{n}$ and exact at $A_{n+l}$ . Then for any $j\geq 0$ ,

$a_{n-1}^{(j)}\not\in a_{n-1}^{(j+1)}Hom_{\Lambda}(A_{n}^{(j+1)}, A_{n}^{(j)})$ .
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$PR\infty F$ . Supposing to be contrary, since we have $\alpha_{j}$ : $A_{n}^{(j+1)}arrow A_{n}^{(j)}$ such that $a_{n-1}^{(j)}=$

$a_{n-1}^{(j+1)}\alpha_{j}$ , so $a_{n-1}^{(j)}=a_{n-1}^{(j)}f_{n}^{(j)}\alpha_{j}$ . For any $j\geq 1$ , (sr3) assures that $A^{(j)}$ is rationally exact
at n-th term, exact at $(n+1)$ -th $te$rm. Applying (2) 2.2 to the split monomorphism
$i:T_{j}arrow A_{n}^{(j)}$ , we conclude that $ifn(j)_{\alpha_{j}}$ (hence $if_{n}^{(j)}$ ) is a split monomorphism. But this is
impossible since, in view of 3.2, $ifn(j)$ should have the form

$if_{n}^{(j)}$ : $\tau_{j^{arrow A\oplus\theta^{-}T_{j}}}^{(0v)}$

with a source map $v:T_{j}arrow\theta^{-}T_{j}$ . $\blacksquare$

3.4.2. Suppose that the initial complex $A$ is $I(\check{A})n-1$ . Let $\Gamma$ be an overorder of $\Lambda$

such that $Y\cap$ Ind $\Gamma=\emptyset$ . Then, the induced $\Gamma$-complex $z\dot{4}^{(j)}$ is split exact for any $j\geq 1$ .

PROOF. Let $\iota_{l}$ : $A_{l}^{(j)}arrow A\dot{4}_{l}^{(j)}$ be natural inclusions. (sr2) assures $a_{n-1}^{(j)}Hom_{\Lambda}(A_{n}^{(j)},\dot{A})=$

$Hom_{\Lambda}(A, \lrcorner\dot{4})\ni\iota_{n-1}$ , hence $\iota_{n-1}$ decomposes as $a_{n-1}^{(j)}f$ . We have the following diagram.

$A^{(j)}$ : $0arrow A_{arrow}^{a_{n- 1}^{(j)}}A_{n}^{(j)_{arrow A_{n+1}^{(j)}}^{a_{n}^{(j)}}}arrow 0$

$1^{l}n-1\nearrow f\downarrow\iota_{n}a^{(j)}$
$\downarrow\iota_{n+1}$

$\dot{A}^{(j)}$ : $0-\dot{A}\underline{n- 1}A\dot{4}_{n}^{(j)}A\dot{4}_{n+1^{-0}}^{(j)}\underline{\dot{a}_{n}^{(j)}}$

Then $f$ decomposes as $\iota_{n}\dot{f}$ , and $\iota_{n-1}\dot{a}_{n-1}^{(j)}\dot{f}=a_{n-1}^{(j)}\iota_{n}\dot{f}=\iota_{n-l}$ . Since $\sim\iota_{n-1}$ is the identity
map of $\tilde{A}$, we get $\dot{a}_{n-1}^{(j)}\dot{f}=1$ , i.e. $\dot{a}_{n-1}^{(j)}$ is a split monomorphism. By (sr3) and (4) 2.2,
$z\dot{4}^{(j)}$ is a split exact sequence of $\Gamma$-lattices. $\blacksquare$

3.5. Let $A$ be a complex of $\Lambda$ -lattices and $0\neq T\in 1at\Lambda$ . Assume that

$\sup\{0, \langle\chi_{n}(A),L\rangle\}\geq\langle T, L\rangle$ for any $L\in Ind\Lambda$ .

Then there is a split monomorphism $i:Tarrow A_{n}$ such that $ia_{n}\in rad(T, A_{n+1})$ .

PROOF. Pick an indecomposable summand $L$ of $T$, and put $t:=\langle T, L\rangle>0,$ $r:=$

$\langle A_{n+1}, L\rangle\geq 0$ . $Theassumptionimpliesthat\langle A_{n}, L\rangle=m+rwithsomem\geq t$ . The L-
homogeneous part of $a_{n}$ : $A_{n}arrow A_{n+1}$ can be represented as $(m+r)\cross r$ matrix over the
local ring $End_{\Lambda}L$ . Since $m\geq t$, the claim is now obvious. $\blacksquare$

3.6. $\mathscr{L}^{-}$ -sequence. Let $\mathscr{L}$ be a subset of Ind $\Lambda$ and $V\in Z(Ind\Lambda)$ . A (finite or
infinite) sequence $(T_{j})=(T_{0}, T_{1}, \ldots)$ will be called an $\mathscr{L}^{-}$ -sequence for $V$ if the following
two conditions are satisfied for any $j$.

(1) $0\neq T_{j}\in N\mathscr{L}$.
$Moreover(2)\sup\{_{1_{j-1}^{\geq\langle T_{j},L\rangle foranyL.\in Ind\Lambda}}0,\langle V-\sum_{:}ij=-0\phi^{-}T_{i},L\rangle putV_{0}=V,V_{j}:=1-\phi^{-}T_{j-1}(j\geq 1)Then$

the sequence $(V_{j})=$

$(V_{0}, V_{1}, \ldots)$ (in $Z(Ind\Lambda)$ ) will be called the associated $\mathscr{L}^{-}$ -rejected sequence for $V$. In
terms of $(V_{j}),$ (2) is written as

(2) $\sup\{0, \langle V_{j}, L\rangle\}\geq\langle T_{j}, L\rangle$ for any $L\in Ind\Lambda$ .
Hence, in view of 3.4 and 3.5, we hav$e$ the followings.
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3.6.1. Let $(T_{j})$ be an $\mathscr{L}^{-}$ -sequence for $V$ and $A$ a complex of $\Lambda$-lattices with
$\chi_{n}(\Lambda)=A_{n}-A_{n+1}=V$ . Then there arises a successive $\mathscr{L}^{-}$ -rejection sequence of com-

$n$

plexes $(A^{(0)},A^{(1)}, \ldots),$ $A^{(0)}:=A,$ $A^{(j)}:=A^{(j-1)}-\check{T}_{j-1}$ with $\chi_{n}(A^{(j)})=V_{j}$ .

3.6.2. Under (1), the condition (2) is equivalent with
(2) $\sup\{0, \langle p_{\ovalbox{\tt\small REJECT}}V-\sum_{i=0}^{j-1}\phi_{g}^{-},T_{i}, L\rangle\}\geq\langle T_{j}, L\rangle$ for any $L\in \mathscr{L}$ .
This means that the condition for $(T_{/}\cdot)$ to be an $\mathscr{L}^{-}$ -sequence for $V$ is read from the

full subquiver structure of $\mathscr{L}$ in $\mathfrak{U}(\Lambda)$ .
Let $(T_{j})$ be an $\mathscr{L}^{-}$ -sequence for $V$. By (2) and definitions, we have
(A) If $p_{g}V’\geq p_{9’}V$, then $(T\cdot)$ is an $\mathscr{L}^{-}$ -sequence for $V’$ .
(B) If $\mathscr{L}’\supseteq \mathscr{L}$ , then $(T_{j})$ is an $(\mathscr{L}’)^{-}$ -sequence for $V$.

3.6.3. $[g]^{-}V$ and $\{g\}^{-}V$. For a given $V\in Z(Ind\Lambda)$ , let $[\mathscr{L}]^{-}V$ denote the
set consisting of all members of (some) finite $\mathscr{L}^{-}$ -rejected sequence for $V$. While let
$\{\mathscr{L}\}^{-}V$ denote the set consisting of the last term of some maximal (i.e. not extendable)
finite $\mathscr{L}^{-}$ -rejected sequence for $V$. Namely,

$[\mathscr{L}]^{-}V\ni U\Leftrightarrow There$ exists an $\mathscr{L}^{-}$ -rejected sequence $(V_{0}, \ldots, V_{m})$ with $V_{0}=V,$ $V_{m}=U$ .

$\{\mathscr{L}\}^{-}V\ni U\Leftrightarrow U\in[\mathscr{L}]^{-}V$ and there exists no non-zero $T\in N\mathscr{L}$ satisfying
$\sup\{0, \langle U,L\rangle\}\geq\langle T, L\rangle$ for any $L\in Ind\Lambda$ .

$\Leftrightarrow U\in[\mathscr{L}]^{-}V$ and $\langle U, L\rangle\leq 0$ for any $L\in \mathscr{L}$ .

(1) By definition, $[\mathscr{L}]^{-}V$ contains $V$, while $\{\mathscr{L}\}^{-}V$ might be empty.
(2) If $0\neq V\in N\mathscr{L}$ and $\phi_{\ovalbox{\tt\small REJECT}}^{-},$ $V\leq 0$ (i.e. $\langle\phi^{-}V,$ $L\rangle\leq 0$ for any $L\in \mathscr{L}$), then

(V, $V,$ $V,$
$\ldots$ ) is an infinite $\mathscr{L}^{-}$ -sequence for $V$.

3.6.4. Assume that $\mathscr{L}$ is not cofaithful, so that by 2.4.1, there is an irreducible
central idempotent $\epsilon$ of $\tilde{\Lambda}$ such that $\mathscr{L}\supseteq Ind_{\epsilon}\Lambda$ .

(1) If $U\in Z(Ind\Lambda)$ and $l(\epsilon U)>0$ , then there is $L\in Ind_{\epsilon}\Lambda$ such that $\langle U,L\rangle>0$ .
(2) If $V\in Z(Ind\Lambda)$ and $l(\epsilon V)>0$ (in particular if $V\in Ind_{\epsilon}\Lambda$ ), then $\{\mathscr{L}\}^{-}V=\emptyset$ .

PROOF. (1) Put $U= \sum_{L\in Ind\Lambda}\langle U, L\rangle L$ . Then $\epsilon U=\sum_{L\in Ind\Lambda}\langle U,L\rangle\epsilon L$ . Hence,
$l( \epsilon U)=\sum_{L\in Ind_{e}\Lambda}\langle U,L\rangle l(\epsilon L)>0$ implies $\langle U, L\rangle>0$ for some $L\in Ind_{\epsilon}\Lambda$ .

(2) By definition, any $U\in[\mathscr{L}]^{-}V$ has the form $U=V-\phi^{-}T,$ $T\in N\mathscr{L}$ . By (5)
2.2, $l(\epsilon\phi^{-}T)=0$ , so that $l(\epsilon U)=l(\epsilon V)>0$ . By (1), $U$ cannot be an end $te$rm. $\blacksquare$

4. Fimite finishing of $\mathscr{S}^{-}$ -rejection.

For $L,$ $M\in Ind\Lambda$ , let $|LM|$ denote the distance of $L$ and $M$ in $\mathfrak{U}(\Lambda)$ , i.e. $|LM|$ is
the length of the shortest path connecting $L$ and $M(|LM|:=\infty$ if they are not con-
nected). For $X,$ $Y\in 1at\Lambda$ , put

$|X Y|:=\inf\{|LM||\langle L, X\rangle>0, \langle Y, M\rangle>0,L, M\in Ind\Lambda\}$ .

In this section, we use the following abbreviation.
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(X, $Y$) $:=Hom_{\Lambda}(X, Y)$

$(X, Y)_{\ovalbox{\tt\small REJECT}}:=\sum_{L\in Ind\Lambda-\ovalbox{\tt\small REJECT}}Hom_{\Lambda}(X, L)Hom_{\Lambda}(L, Y)$
, a sub $R$-module of(X, $Y$).

4.1. Let $\mathscr{L}$ be a non-empty bounded subset of Ind $\Lambda$ . There is a natural number
$m(\mathscr{L})>0$ minimal with respect to the following property:

For any $m\geq m(\mathscr{L})$ , if $L_{i}\in \mathscr{L}(0\leq i\leq m),$ $f_{i}\in rad(L_{i}, L_{i+1})$ $(0\leq i<m)$ , then
$im(f_{0}\cdots f_{m-1})\subseteq\pi L_{m}$ .

PROOF. This is a direct consequence of Harada-Sai’s Lemma and Maranda’s
Theorem ([CR] 30-19). Note that the separability of $\tilde{\Lambda}$ (assumed in [CR] 30-19) is not
necessary, since the proof of [CR] (30-13) depends only on the existence of maximal
orders. $\blacksquare$

4.2. Let $\mathscr{L}$ be bounded and $m:=m(\mathscr{L})$ be the same as defined in 4.1. Then for
any $X,$ $Y\in 1at\Lambda,$ $|XY|\geq m$ implies (X, $Y$) $=(X, Y)_{y}$ .

PROOF. We prove first the assertion for indecomposable lattices.
If $L\not\in \mathscr{L}$ , then $(L, M)_{g},$ $\supseteq(L, L)(L, M)=(L, M)$ , so that $(L, M)_{\ovalbox{\tt\small REJECT}}=(L, M)$ .
Suppose that $|LM|\geq m>0$ , so that $(L, M)=rad(L, M)$ . For any $f\in(L, M)$ ,

there is $g:\theta^{-}Larrow M$ such that $f=vg$ where $v:Larrow\theta^{-}L$ is a source map. In other
words, we have $(L, M)= \sum_{M|\theta^{-}L}(L, M’)(M’, M)$ .

If each $M’\not\in \mathscr{L}$ , then $(L, M)=(L, M)_{\ovalbox{\tt\small REJECT}}$, and we are through.
For $M’\in \mathscr{L}$ , we can further decompose as $(M’, M)= \sum_{M|\theta^{-}M},(M’, M’’)(M’’, M)$ .
$Re$peating the procedure, in view of 4.1, we $get$

$(L, M)\subseteq(L, M)_{\ovalbox{\tt\small REJECT}}+\pi(L, M)$ .

Applying Nakayama’s Lemma for $R$-module $(L, M)$ , we get $(L, M)=(L, M)_{g}$ .
In general cases, since $|XY|\geq m\Leftrightarrow|LM|\geq m$ for any $L|X$ and $M|Y$ , the claim is

obvious. $\blacksquare$

4.3. For a commutative diagram of $\Lambda$ -lattices

$I_{g}^{1}I^{u}Xarrow YX^{\underline{g0}}Y_{0}$

put $\mathscr{L}:=\{L\in Ind\Lambda|g_{0}(Y_{0}, L)\neq g(Y, L)\}$ . If $\mathscr{L}$ is bounded, then $\mathscr{L}$ is contained in a
finite set $U=U(Y_{0},m(\mathscr{L})):=\{M\in Ind\Lambda||Y_{0}M|<m(\mathscr{L})\}$ .

PROOF. Assuming that $M\not\in U$ , we shall show that $g_{0}(Y_{0}, M)\subseteq g(Y, M)$ . Indeed,
we have

$g(Y, M) \supseteq\sum_{L\in Ind\Lambda-\ovalbox{\tt\small REJECT}}g(Y, L)(L, M)=\sum_{L\in Ind\Lambda-\ovalbox{\tt\small REJECT}}g_{0}(Y_{0}, L)(L, M)$

$=g_{0}(Y_{0}, M)_{g}=g_{0}(Y_{0}, M)$ ,

where the last equality is by 4.2. Since $\mathfrak{U}(\Lambda)$ is locally finite, $U$ is a finite set. $\blacksquare$
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4.3.1. PROPOSITION. A bounded rejectable subset $\mathscr{L}$ of Ind $\Lambda$ is necessarily finite,
which is a generalization of Roiter’s Theorem ($=Brauer$-Thrall I).

PROOF. Put $\Gamma:=\Lambda(\mathscr{L})$ so that $\mathscr{L}=$ Ind $\Lambda$ –Ind $\Gamma$ . In 4.3, take as $X=Y_{0}=\Lambda$ ,
$Y=\Gamma,$ $g_{0}=1,$ $g=u=\iota:\Lambdaarrow\Gamma$ . Then by the map $g_{0}f\vdasharrow 1(g_{0}f),$ $g_{0}(Y_{0}, L)\simeq L$ ,
$g(Y, L)\simeq\{x\in L|\Gamma x\subseteq L\}=L$ , so that $\{L\in Ind\Lambda|g_{0}(Y_{0}, L)\neq g(Y,L)\}=Ind\Lambda-$

Ind $\Gamma$ .
The latter part is obvious, since if Ind $\Lambda$ is bounded, then $\mathscr{L}:=Ind\Lambda$ –Ind $\Gamma$ is

bounded for any maximal overorder $\Gamma$, so that ,9‘ is finite. $\blacksquare$

4.4. Consider a family of commutative diagrams of $\Lambda$ -lattices $(j\geq 0)$ :

$X\underline{g_{j}}Y_{j}$

$\downarrow 1$ $\downarrow u_{j}$

$\chi_{arrow Y_{j+1}}^{g_{j+1}}$ .

Assume that there exists a bounded cofaithful subset $\mathscr{L}$ of Ind $\Lambda$ satisfying the fol-
lowing property.

(0) $g_{0}(Y_{0}, L)=g_{j}(Y_{j},L)$ for any $L\in N(Ind\Lambda-\mathscr{L})$ and $j\in N$ .
Then, for almost all $j$ , we have

$g_{j}(Y_{j}, L)=g_{j+1}(Y_{j+1},L)$ for any $L\in N$ Ind $\Lambda$ .

In particular, for $e$ach sufficiently large $j$, there always, exists $\alpha_{j}$ : $Y_{j+1}arrow Y_{j}$ such that
$g_{j}=g_{j+1}\alpha_{j}$ .

PROOF. Put $\mathscr{L}_{j}:=\{L\in Ind\Lambda|g_{0}(Y_{0}, L)\neq g_{j}(Y_{j}, L)\}$ and $\mathscr{L}’:=\bigcup_{j\in N}\mathscr{L}_{j}$ .
By (0), each $\mathscr{L}_{j}$ is contained in $\mathscr{L}$ , which is bounded and cofaithful. Applying 4.3,

each $\mathscr{L}_{j}$ is contained in the finite set $U(Y_{0},m(\mathscr{L}))$ , so that $\mathscr{L}’$ is a finite cofaithful subset
of Ind $\Lambda$ . We shall see $\oplus_{L\in Ind\Lambda}g_{j}(Y_{j},L)=\oplus_{L\in Ind\Lambda}g_{j+1}(Y_{j+1}, L)$ for almost all $j$, or
equivalently,

(1) $\oplus_{L\in}g’g_{j}(Y_{j}, L)=\oplus_{L\in\ovalbox{\tt\small REJECT}},,$ $g_{j+1}(Y_{j+1}, L)$ for almost all $j$ .
Sinc$e\mathscr{L}’$ is finite cofaithful, by (4) 2.4, there is $Z\in N(Ind\Lambda-\mathscr{L}’)$ and $a\geq 0$ such that
(2) $g_{j}(Y_{j}, \oplus_{L\in}g’ L)\supseteq g_{j}(Y_{j}, Z)(Z, \oplus_{L\in\ovalbox{\tt\small REJECT}’}L)=g_{0}(Y_{0},Z)(Z, \oplus_{L\in S^{\mu}}L)\supseteq\pi^{a}$

$g_{0}(Y_{0}, \oplus_{L\in F’}L)$ for all $j$.
NOW (1) is clear from (2). $\blacksquare$

4.5. LEMMA. Let $A$ : $0arrow A_{n-1}arrow A_{n}arrow A_{n+1}arrow 0$ be a finite complex which is
rationally exact at $A_{n}$ and exact at $A_{n+1}$ . Let $\mathscr{L}$ be a bounded cofaithful subset of
Ind $\Lambda$ . Then any successive $\mathscr{L}^{-}$ -rejection with the initial complex $A$ (cf. 3.4) terminates at
a finite number of steps.

PROOF. Supposing to be contrary, we get a family of commutative diagrams.

$A_{n-l}^{(j)}=A_{n_{1}-1^{arrow}}^{a_{n- 1}^{(/)}}\downarrow A_{n}^{(j)}\downarrow f_{n}^{(j)}$

$A_{n-1}^{(j+1)}=A_{n-1^{arrow A_{n}^{(j+1)}}}^{a_{n- 1}^{(j+1)}}$



A generalization of Rejection Lemma 713

The condition (0) of 4.4 is $satisfiedby(j+l)$
(sr2) 3.4. By 4.4, for large enough $j$, there is

$\alpha_{j}$ : $A_{n}^{(j+1)}arrow A_{n}^{(j)}$ such that $a_{n-1}^{(j)}=a_{n-1}\alpha_{j}$ , which contradicts with 3.4.1. $\blacksquare$

4.5.1. REMARK. Although the above lemma is sufficient for applications in this
paper, we can in fact prove: If $\mathscr{L}$ is bounded and cofaithful, then successive $\mathscr{L}^{-}$ -rejec-
tion of any complex $A$ $te$rminates at a finite number of steps. Indeed, the general case
can easily be $re$duced to the special case treated in th$e$ above lemma.

4.5.2. COROLLARY. Assume that $\mathscr{L}$ is bounded and cofaithful. Then any $\mathscr{L}^{-}-$

sequence for any $V\in 1at\Lambda$ is finite. In particular, $\{\mathscr{L}\}^{-}V$ is always non-empty.

PROOF. Suppose to be contrary. Then the complex $A$ : $0arrow Varrow\check{V}arrow 01n$ has an
infinite successive,$\mathscr{L}^{-}- rejectionby3.6.1$ . This is not the case by4.5. $\blacksquare$

4.6. Criterion for cofaithfulness. Let $\mathscr{L}$ be a non-empty bounded subset of Ind $\Lambda$ .
Put $\mathscr{L}_{p}:=\mathscr{L}\cap$ proj $\Lambda,$ $\mathscr{L}_{i}:=\mathscr{L}\cap$ inj $\Lambda,$ $P_{g}:=\oplus_{L\in 9_{p}},$ $L$ and $I_{9’}:=\oplus_{L\in}$ se L. Then the
following conditions for $\mathscr{L}$ are equivalent.

(1) $\mathscr{L}$ is cofaithful.
(2) For any $V\in 1at\Lambda$ , every $\mathscr{L}^{-}$ -sequence for $V$ is finite.
(3) $\{\mathscr{L}\}^{-}P_{\ovalbox{\tt\small REJECT}}$ is not empty.
(4) $\{\mathscr{L}\}^{-}I_{\ovalbox{\tt\small REJECT}}$ is not empty.

PROOF. (1) $\Rightarrow(2)$ : By 4.5.2.
(2) $\Rightarrow(3)$ ( $re$sp. (4)): Obvious by definitions.
(3) $\Rightarrow(1)$ : If $\mathscr{L}$ is not cofaithful, then $l(\epsilon P_{9’})>0$ so that $\{\mathscr{L}\}^{-}P_{\ovalbox{\tt\small REJECT}}$ is empty by (2)

3.6.4 where $\epsilon$ is a central idempotent given in 3.6.4. $\blacksquare$

Our rejection theory has wide applications for the problem characterizing $\mathfrak{U}(\Lambda)$ with
a subquiver of some special type. Among others, we apply our method, in the next 4.7,
to give an altemative proof for Wiedemann’s Theorem [W].

4.7. Wiedemann’s Theorem. Let $\Lambda$ be a connected $R$-order ( $i.e$. $\Lambda$ has no nontrivial
central idempotent) and assume that there is $L_{0}\in Ind\Lambda$ with an irreducible map to itself
( $i.e$. $\mathfrak{U}(\Lambda)$ has a subquiver $CL_{0}$ ). Then $\mathfrak{U}(\Lambda)$ has the following form by some $n\geq 0$ ;
$l(L_{i})=1(0\leq i\leq n),$ $L_{n}\in proj\Lambda\cap inj\Lambda,$ $\tau L_{i}=L_{i}(0\leq i<n)$ .

$C^{L_{0}}\Leftrightarrow L_{1}\Leftrightarrow\cdots\cdots\Leftrightarrow L_{n-1}\Leftrightarrow L_{n}$

PROOF. Let $\mathscr{C}$ be a connected component of $\mathfrak{U}(\Lambda)$ containing $L_{0}$ . Take a $ve$rtex
$L_{n}$ from $\mathscr{C}$ and a path $L_{0}-L_{1}-\cdots-L_{n-1}-L_{n}$ connecting $L_{0}$ with $L_{n}$ , and put
$\mathscr{L}:=\{L_{0}, \ldots, L_{n}\}$ .

Step 1 Suppose that the following condition (0) is satisfied.
(0) $\tau L_{i}=L_{i}(0\leq i<n)$ .
Then it is easy to observe the following (1) $-(3)$ .
(1) $l(L_{0})\geq l(L_{1})\geq\cdots\geq l(L_{n-1})\geq l(L_{n})$

(2) $\mathscr{L}$ contains the following subquiver:

$CL_{0}\Leftrightarrow L_{1}\Leftrightarrow\cdots\cdots\Leftrightarrow L_{n-1}\Leftrightarrow L_{n}$
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(3) If $\mathscr{L}=Ind\Lambda$ and the diagram in (2) is a full subquiver of $\mathscr{L}$ , then
$l(L_{0})=\cdots=l(L_{n})$ and $\tau L_{n}=0$ .

Step2 $ThereexistsomeL\in \mathscr{C}suchthat\tau L\neq L$ .
If that is not the case, the condition (0) must be satisfied for any $L\in \mathscr{C}$ and any path

$L_{0}-\cdots-L_{n}=L$ . Hence $l(L)\leq l(L_{0})$ by Step 1. Thus $\mathscr{C}$ is bounded, so we get
$\mathscr{C}=\mathfrak{U}(\Lambda)$ by Auslander’s Theorem [R]. This is impossible since any $L=\tau L$ is not
projective.

Step 3 From the set $\{L\in \mathscr{C}|\tau L\neq L\}$ , pick one $L$ with the shortest distance
$|L_{0}L|=:n$ from $L_{0}$ . Then the shortest path $L_{0}-\cdots-L_{n}=L$ satisfies the condition
(0). Putting $V:= \sum_{i=0}^{n}L_{i}\in N\mathscr{L}$ , by (0) and (2), $\theta_{\ovalbox{\tt\small REJECT}}^{-}V\geq 2\sum_{i=0}^{n-1}L_{i}+L_{n},$

$\tau_{\ovalbox{\tt\small REJECT}}^{-}V=$

$\sum_{i=0}^{n-1}L_{i}$ , so that we have
(4) $\phi_{\ovalbox{\tt\small REJECT}}^{-}V\leq 0$ .
(5) $\phi_{g}^{-},V=0\Leftrightarrow the$ diagram in (2) is a full subquiver of ,9‘.

By (2) 3.6.3 and 4.5.2, (4) implies that $\mathscr{L}$ is not cofaithful. By 2.4.1, $Ind_{\epsilon}\Lambda(\subseteq \mathscr{L})$

contains at least one projective and irreducible lattice. By (1), $L_{n}$ is irreducible,
$l(L_{n})=1$ . By (0), $L_{n}$ is the only projective in $Ind_{\epsilon}\Lambda$ , so that $\epsilon M=0$ for any
$M\in proj\Lambda-\{L_{n}\}$ . Since $\Lambda$ is connected, $\epsilon\Lambda=\Lambda$ , i.e. $\epsilon=1$ and $\mathscr{L}=Ind\Lambda$ . By (5)
2.2, $l(\phi^{-}V)=0$ , so $\phi^{-}V=0$ by (4). Hence the diagram in (2) is a full subquiver of $\mathscr{L}$

by (5). By (3), we have $l(L_{0})=\cdots=l(L_{n})=1$ . $\blacksquare$

5. Main Results.

Let $\mathscr{L}$ be a subset of Ind $\Lambda$ and $\mathscr{L}_{p}$ , ,se, $P_{\ovalbox{\tt\small REJECT}},$ $I_{\ovalbox{\tt\small REJECT}}$ the sam$e$ as those of 4.6.

5.1. If the following condition (t4) holds, then $\mathscr{L}$ is trivial (i.e. $\Lambda(\mathscr{L})=\Lambda$ ).
(t4) For any $P\in \mathscr{L}_{p}$ , there exists $T\in N(\mathscr{L}-\mathscr{L}_{i})$ such that $\phi_{\ovalbox{\tt\small REJECT}}^{-}T\geq P$ .

PROOF. Suppose that $\mathscr{L}$ is not cofaithful. Then $\mathscr{L}\supseteq Ind_{\epsilon}\Lambda$ for a central idempo-
tent $\epsilon$ by 2.4.1. Take $P\in \mathscr{L}_{p}$ with $\epsilon P\neq 0$ . There exists $T\in N(\mathscr{L}-\mathscr{L}_{i})$ such that
$\phi_{g’}^{-}T\geq P$ by (t4). By (5) 2.2, we have $l(\epsilon\phi_{\ovalbox{\tt\small REJECT}}^{-}T)=0$ , so $l(\epsilon P)\leq l(\epsilon\phi_{\ovalbox{\tt\small REJECT}}^{-}T)=0$ , a contra-
diction. Hence $\mathscr{L}$ is cofaithful and $\Gamma:=\Lambda(\mathscr{L})$ is an order with $\mathscr{L}\supseteq$ Ind $\Lambda$ –Ind $\Gamma$ .

For any $P\in \mathscr{L}_{p}$ , take the complex

$A$ : $0arrow P\oplus Tarrow P\oplus n\vee Tarrow 0arrow 0$ .

We can reject $T$ from n-th term getting

$\Lambda’:=\Lambda-\check{\tau}^{n}:0arrow P\oplus Tarrow A_{n}’arrow A_{n+1}’arrow 0$ .

Since $T$ has no injective summand, $A’$ is exact. Since $\chi_{n}(\Lambda’)=A_{n}’-A_{n+1}’=\chi_{n}(A)-$

$\phi^{-}T=P+T-\phi^{-}T$, we have $\langle P+T-A_{n}’+A_{n+1}’,L\rangle=\langle\phi^{-}T, L\rangle\geq$ $\langle P, L\rangle\geq 0$ for
any $L\in \mathscr{L}$ . Applying the next general simple lemma 5.1.1 to the exact sequence $A’$ ,
we have $0=\langle P+T-A_{n}’+A_{n+1}’, L\rangle$ for any $L\in Ind\Lambda$ –Ind $\Gamma$, so that
$\langle P, L\rangle=0$ . Hence $\mathscr{L}_{p}\subseteq$ Ind $\Gamma$ , i.e. $\Gamma=\Lambda(\mathscr{L})=\Lambda$ . $\blacksquare$
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5.1.1. Let $0arrow Xarrow\alpha Yarrow Z\betaarrow 0$ be an exact sequence of $\Lambda$ -lattices, $\Gamma$ be an over-
order of $\Lambda$ in $\tilde{\Lambda}$, and ,9” $:=Ind\Lambda$ –Ind $\Gamma$ . If $\langle X-Y+Z, L\rangle\geq 0$ for any $L\in \mathscr{L}’$ , then
$\langle X-Y+Z, L\rangle=0$ for any $L\in \mathscr{L}$‘.

PROOF. $Deno$tin$g_{\dot{\beta}}as\dot{\alpha}\cdot\dot{X}:=\Gamma X,\dot{\alpha}:=$ (the unique extension of $\alpha$ ) etc., there arises a
complex $0arrow Xarrow Yarrow\dot{Z}arrow 0$ which induces a complex of $\Lambda$ -modul$es0arrow\dot{X}/Xarrow\dot{Y}/$
$Yarrow\dot{Z}/Zarrow 0$ , which is exact at $\dot{X}/X$ and $\dot{Z}/Z$ . Henc$e$ we have $0\geq l_{\Lambda}(\dot{X}/X)-$

$1_{\Lambda}(\dot{Y}/Y)+l_{\Lambda}(\dot{Z}/Z)=\sum_{L\in Ind\Lambda}\langle X-Y+Z, L\rangle l_{\Lambda}(\dot{L}/L)=\sum_{L\in\Psi}\langle X-Y+Z, L\rangle l_{\Lambda}(\dot{L}/L)$ .
This, together with the assumption $\langle X-Y+Z, L\rangle\geq 0$ for any $L\in \mathscr{L}’$ , obviously
implies that $\langle X-Y+Z, L\rangle=0$ for any $L\in \mathscr{L}’$ . $\blacksquare$

5.2. If ,9‘ is trivial, then the following condition (t1) holds.
(t1) $\langle U, I\rangle\leq 0$ for any $U\in[\mathscr{L}-\mathscr{L}_{i}]^{-}P_{9’}$ and $I\in \mathscr{L}_{i}$ .

PROOF. Suppose that $\Lambda=\Lambda(\mathscr{L})$ and (t1) does not hold. In particular $\mathscr{L}$ is
cofaithful and, by (6) 2.4, there is an exact sequence with $p_{y}W=0$, which we look as a
complex $A$ of $\Lambda$ -lattices

$A$ : $0arrow\check{P}_{\ovalbox{\tt\small REJECT}}narrow Warrow Yarrow 0$

so that $\chi_{n}(A)=P_{9’}-W,$ $p_{g}\chi_{n}(A)=P_{\ovalbox{\tt\small REJECT}}$ .
Since (t1) does not hold, there exist $I\in \mathscr{L}_{i}$ and $U\in[\mathscr{L}-\mathscr{L}_{i}]^{-}P_{\ovalbox{\tt\small REJECT}}$ such that $\langle U, I\rangle>0$

and $U=P_{g}- \sum_{j=0}^{m-1}\phi^{-}T_{j}$ by some $(\mathscr{L}-\mathscr{L}_{i})^{-}$ -sequence $(T_{j})$ for $P_{\ovalbox{\tt\small REJECT}}$ . By 3.6.1, there
is successive $\mathscr{L}^{-}$ -rejection sequence $A^{(0)}=A,$ $\Lambda^{(j)}=\Lambda^{(j-1)}-\check{\tau^{n}}_{j-1}$ . By 3.4, writing
$\alpha:=a_{n}^{(m)},$ $A^{(m)}$ has the following form

$A^{(m)}$ : $0arrow A_{n}^{(m)_{arrow}^{\alpha}}A_{n+1}^{(m)}arrow Yarrow 0$

with $\chi_{n}(\Lambda^{(m)})=A_{n}^{(m)}-A_{n+1}^{(m)}=U-W$ .
Since $T_{j}\in N(\mathscr{L}-\mathscr{L}_{i})$ has no injective summands, $A^{(m)}$ is exact by (sr3).
Since $\langle U-W, I\rangle=\langle U, I\rangle>0$ , by 3.5, there is a split monomorphism $i:Iarrow A_{n}^{(m)}$

such that $i\alpha\in rad(I, A_{n+1}^{(m)})$ . Since $i$ is split, we $get$ the exact sequence of $\Lambda$ -lattices

$0arrow Iarrow A_{n+1}^{(m)}i\alphaarrow coki\alphaarrow 0$

which must be split since $I$ is injective. But it is impossible since $i\alpha\in rad(I, A_{n+1}^{(m)})$ . $\blacksquare$

5.3. THEOREM. Assume that ,9‘ is bounded. Then the following five conditions are
equivalen $t$ .

(t) $\mathscr{L}$ is trivial $(i.e. \Lambda(\mathscr{L})=\Lambda)$ .
(t1) in 5.2.
(t2) $\langle U, I\rangle\leq 0$ for any $U\in\{\mathscr{L}-P_{i}\}^{-}P_{g}$ and $I\in \mathscr{L}_{i}$ .
(t3) There exists $U\in\{\mathscr{L}-\mathscr{L}_{i}\}^{-}P_{\ovalbox{\tt\small REJECT}}$ such that $\langle U, I\rangle\leq 0$ for any $I\in \mathscr{L}_{i}$ .
(t4) in 5.1.

PROOF. $(t)\Rightarrow(tl)$ : By 5.2, $(t4)\Rightarrow(t)$ : By 5.1, $(tl)\Rightarrow(t2)$ : trivial.
$(t2)\Rightarrow(t3)$ : By 2.4.1, $\mathscr{L}-\mathscr{L}_{i}$ is cofaithful, it is bounded by assumption. By 4.5.2,

$\{\mathscr{L}-\mathscr{L}_{i}\}^{-}P_{g}$ is not empty. Hence (t2) implies (t3).
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$(t3)\Rightarrow(t4)$ : By Definition 3.6.3, $U$ (in $(t3)$ ) has the form $U=P_{\ovalbox{\tt\small REJECT}}-\phi^{-}T,$ $T=$

$\sum_{j=0}^{m-1}T_{j}$ with some $(\mathscr{L}-\mathscr{L}_{i})^{-}$ -sequence $(T_{j})$ . Since $T\in N(\mathscr{L}-\mathscr{L}_{i}),$ $P_{9’}=p_{9’}Pg’=$

$\phi_{g}^{-},T+p_{\ovalbox{\tt\small REJECT}}$ U. $p_{g}U\leq 0$ shows $P-\phi_{g}^{-},T\leq P_{\ovalbox{\tt\small REJECT}}-\phi_{\ovalbox{\tt\small REJECT}}^{-}T=p_{\ovalbox{\tt\small REJECT}}U\leq 0$ for any $P\in \mathscr{L}_{p}$ . $\blacksquare$

5.3.1. By duality (cf. 3.3), (t) is equivalent with the condition $(tl)^{+}(l=1,2,3,4)$ ,
obtained from $(tl)$ by interchanging the role of projective with injective, $($ $)^{-}$ with $($ $)^{+}$ ,
for example

$(t4)^{+}$ For any $I\in \mathscr{L}_{i}$ , there exists $T\in N(\mathscr{L}-\mathscr{L}_{p})$ such that $\phi_{g}^{+}T\geq I$ .

5.3.2. (1) Any bounded non-trivial subset $\mathscr{L}$ of Ind $\Lambda$ contains at least one pro-
jective and at least one injective.

(2) Let $\mathscr{L}$ be a minimal non-trivial subset of Ind $\Lambda$ . If $\mathscr{L}$ is bounded, then it con-
tains exactly one projective and exactly one injective.

PROOF. (1) By 5.3 and its dual. But the claim is in fact trivial by 2.4.2 without
assuming the boundedness.

(2) If ,9‘ is non-trivial, it does not satisfy (t1), so that there is some $I\in \mathscr{L}_{i},$ $U\in$

$[\mathscr{L}-\mathscr{L}_{i}]^{-}P_{\ovalbox{\tt\small REJECT}}$ with $\langle U, I\rangle>0$ . Again from (t1) and 3.6.2 (B), a subset $(\mathscr{L}-\mathscr{L}_{i})\cup\{I\}$

of $\mathscr{L}$ is also non-trivial. By the minimality ,se $=\{I\}$ . By duality, $\mathscr{L}_{p}=\{P\}$ .
However, the claim can in fact be proved without assuming the boundedness. $\blacksquare$

5.4. THEOREM. Let $\mathscr{L}$ be a finite rejectable subset of Ind $\Lambda$ and put $\Gamma:=\Lambda(\mathscr{L})i.e$ .
Ind $\Lambda$ –Ind $\Gamma=\mathscr{L}$ . For any $V\in 1at\Lambda,$ $\{\mathscr{L}\}^{-}V$ is a singleton set consisting of $\dot{V}=\Gamma V$ .

PROOF. Take any $U\in\{\mathscr{L}\}^{-}V$ . By 3.6, $U=V- \sum_{j=0}^{m-1}\phi^{-}T_{j}$ with an $\mathscr{L}^{-}-$

sequence $(T_{j})$ for $V$. We take an initial complex $\Lambda$ as below and get successive $\mathscr{L}^{-}-$

rejection $A^{(1)},$
$\ldots,$

$A^{(m)}$ .

$A$ : $0arrow Varrow\check{V}narrow 0arrow 0$

$A^{(m)}$ : $0arrow Varrow A_{n}^{(m)_{arrow}^{a_{n}^{(m)}}}A_{n+1}^{(m)}a_{n- 1}^{(m)}arrow 0$

By 3.4.2, the assosiated $\Gamma$-complex $\dot{A}^{(m)}$ is split exact.

$\dot{A}^{(m)}$ : $0arrow\dot{V}arrow A\dot{4}_{n}arrow\dot{A}_{n+1}^{(m)}\dot{a}_{n-\iota(m)^{\dot{a}_{n}^{(m)}}}^{(m)}arrow 0$ (split exact)

Let $Z$ be a summand of $A_{n}^{(m)}$ which is maximal among the summands with the
property that $a_{n}^{(m)}|_{z}$ is a split monomorphism.

By 2.3, $\Lambda^{(m)}$ decomposes as follows.

$A^{(m)}$ .
$0I_{n}^{1}$ $arrow V-\downarrow 1$

$A_{n_{I^{1}}}^{(m)}$

–
$A_{n+1,\downarrow 1}^{(m)}$

– $0$

$B\oplus I(\check{Z})$ :
$0-VB_{n}\underline{(b_{n- 1}0)}\oplus Zarrow B_{n+1}(\begin{array}{ll}b_{n} 00 l\end{array})\oplus Zarrow$

$0$
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Since $U=\chi_{n}(A^{(m)})=\chi_{n}(B)$ and $\langle U, L\rangle\leq 0$ for any $L\in \mathscr{L}$ , we can write as
(1) $B_{n}=X\oplus E,$ $B_{n+1}=X\oplus Y\oplus F$ with $X,$ $Y\in N\mathscr{L}$ and $E,$ $F\in N(Ind\Lambda-\mathscr{L})$ .
The maximality of $Z$ implies that $b_{n}\in rad(B_{n}, B_{n+1})$ , so that we have
(2) $\dot{b}_{n}|_{E}\in rad(E,\dot{B}_{n+1})$ .
$Now(m)$ we can see the claim as
$a_{n}$ : split epimorphism $\Rightarrow\dot{b}_{n}$ : split epimorphism $\Rightarrow\dot{b}_{n}(2)|_{X}$ : split epimorphism

$\Rightarrow(1)(Y=F=0,E=\dot{V})\Rightarrow U=V.$
$\blacksquare$

5.4.1. By duality, $\{\mathscr{L}\}^{+}V$ is a singleton set consisting of the maximum $\Gamma$-sublattice
$V\simeq Hom_{\Lambda}(\Gamma, V)$ .

5.5. Recovering $\mathfrak{U}(\Gamma)$ from $\mathfrak{U}(\Lambda)$ . Let ,9‘ be a finite rejectable subset of Ind $\Lambda$ and
$\Gamma=\Lambda(\mathscr{L})$ . For $M\in Ind\Gamma=Ind\Lambda-\mathscr{L}$ , we write the $\Gamma$-source map from $V$ as

$0arrow Marrow\dot{\theta}^{-}Mparrow\dot{\tau}^{-}Marrow 0$ .

5.5.1. For any $M\in Ind\Gamma$, we have $\dot{\theta}^{-}M-\dot{\tau}^{-}M=(\theta^{-}M)-(\tau^{-}M)$ .

PROOF. Since $v:Marrow\theta^{-}M$ is in the radical, so is $\dot{v}$ : $Marrow(\theta^{-}M)$ , and there exists
$f$ such that $\dot{v}=\rho f$ , getting the commutative diagram

$0arrow Marrow\downarrow 1p\dot{\theta}^{-}M\downarrow farrow\dot{\tau}_{I^{\overline{f}}}^{-M}arrow 0$

$0arrow Marrow(\theta^{-}M)arrow(\tau^{-}M)arrow 0\dot{v}$

$1^{1}$ $I^{\iota}$ $|$

$0arrow Marrow v\theta^{-}Marrow\tau^{-}Marrow 0$

where $\overline{f}$ is uniquely induced from $f$ by (1) 2.2.
Since $\rho$ : $Marrow\dot{\theta}^{-}M$ is in the radical, there exists $g:\theta^{-}Marrow\dot{\theta}^{-}M$ such that $\rho=vg$ ,

which decomposes as $g=\iota\dot{g},\dot{g}$ : $(\theta^{-}M)arrow\dot{\theta}^{-}M$ .
We have $\rho f\dot{g}=\dot{v}\dot{g}=v\iota\dot{g}=vg=\rho$ .
Since $\rho$ is left minimal, $f\dot{g}$ is an automorphism of $\dot{\theta}^{-}M$ , so that $\dot{g}$ is a split epi-

morphism. By (3) 2.2, $\dot{g}$ induces $\overline{\dot{g}}$ : $(\tau^{-}M)arrow\dot{\tau}^{-}M$ and $\overline{f\dot{g}}$ is an automorphism of $\dot{\tau}^{-}M$ ,
$ker\dot{g}\simeq ker\overline{\dot{g}}$ . These imply that $\dot{\theta}^{-}M-\dot{\tau}^{-}M=(\theta^{-}M)-(\tau^{-}M)$ . $\blacksquare$

5.5.2. Write $(\theta^{-}M).-(\tau^{-}M)$ as
(1) $(\theta^{-}M)-(\tau^{-}M)=U-V,$ $U,$ $V\in 1at\Gamma,$ $\langle U, V\rangle=0$ .
Then we have one of the following three results.
(A) If $V\neq 0$ , then $M\not\in inj\Gamma,$ $V\in Ind\Gamma$ and the $\Gamma$-almost split sequence from $M$ is

given by
$0arrow Marrow Uarrow Varrow 0$ .

(B) If $V=0$ and $M\in inj\Gamma$, the complex of the $\Gamma$-source map from $M$ is given by

$0arrow Marrow Uarrow 0arrow 0$ .
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(C) If $V=0$ and $M\not\in inj\Gamma$ , the $\Gamma$-almost split sequence from $M$ is given by

$0arrow Marrow U\oplus Marrow Marrow 0$ .

Consequently $\mathfrak{U}(\Gamma)$ has a connected component of the form of 4.7.

PROOF. By (1), we can write, with some $X\in 1at\Gamma$ , as
(2) $\dot{\theta}^{-}M=U\oplus X,\dot{\tau}^{-}M=V\oplus X$

Since $\dot{\tau}^{-}M$ is indecomposable or $0,$ $V\neq 0$ implies $X=0$ , so that $V=\dot{\tau}^{-}M\in$

Ind $\Gamma$, showing (A).
Assume that $V=0$ . If $M\in inj\Gamma$, then $X=0$ and we meet with the case (B). If

$M\not\in inj\Gamma,$ $X=\dot{\tau}^{-}M\in Ind\Gamma$ and $\Gamma$-almost split sequence from $M$ has the form $0arrow$

$Marrow U\oplus Xarrow Xarrow 0$ . Then there is an irreducible map from $X$ to itself, by 4.7,
$X=M$ . $\blacksquare$
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