On a class of multilinear oscillatory singular integral operators

By Guoen Hu, Shanzhen Lu and Dachun YANG

(Received Apr. 1, 1996) (Revised Sept. 19, 1996)

1. Introduction.

We will work on \mathbb{R}^n $(n \ge 1)$. Let $\Phi(x) \in C^{\infty}(\mathbb{R}^n \setminus \{0\})$ be a real-valued function which satisfies

$$|D^{\alpha}\Phi(x)| \leq B_1|x|^{a-|\alpha|}, \quad |\alpha| \leq 3,$$

and

(2)
$$\sum_{|\alpha|=2} |D^{\alpha} \Phi(x)| \geq B_2 |x|^{a-2},$$

where a is a fixed real number, B_1 and B_2 are positive constants. Let K_0 be a standard Calderón-Zygmund kernel. Define the oscillatory singular integral operator T by

(3)
$$Tf(x) = \int_{\mathbf{R}^n} e^{i\Phi(x-y)} K_0(x-y) f(y) dy.$$

For the special case $\Phi(x) = |x|^a$, such operators have been studied by many authors (see [1], [2], [7], [10], for example). Recently, Fan and Pan [6] considered the operators defined by (3) with smooth phase functions satisfying (1) and (2). They showed that

THEOREM A. Let $1 , T be defined as in (3). Suppose that <math>\Phi$ satisfies (1) and (2) for some $a \neq 0$. Then T is bounded on $L^p(\mathbb{R}^n)$ with bound C(n,p).

THEOREM B. Let T be defined as in (3). Suppose that Φ satisfies (1) and (2) for some $a \neq 0, 1$. Then T is a bounded operator on the Hardy space $H^1(\mathbf{R}^n)$.

The purpose of this paper is to consider a class of multilinear operators related to the operators defined by (3). Let m be a positive integer, K be C^1 away from the origin and satisfy

(4)
$$|K(x)| \le C|x|^{-n}, \quad |\nabla K(x)| \le C|x|^{-n-1},$$

and

(5)
$$\int_{a<|x|< b} K(x)x^{\alpha} dx = 0, \quad \text{for any } 0 < a < |x| < b < \infty \text{ and } |\alpha| = m.$$

Let A have derivatives of order m in BMO(\mathbb{R}^n), $R_{m+1}(A; x, y)$ denote the (m+1)-th order

¹⁹⁹¹ Mathematics Subject Classification. 42B20.

Key words and phrases. multilinear operator, oscillatory singular integral, BMO.

Taylor series remainder of A at x expanded about y, i.e.,

$$R_{m+1}(A; x, y) = A(x) - \sum_{|\alpha| \le m} \frac{1}{\alpha!} D^{\alpha} A(y) (x - y)^{\alpha}.$$

The operators we consider here are of the form

(6)
$$T_{A}f(x) = \int_{\mathbf{R}^{n}} e^{i\Phi(x-y)} K(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^{m}} f(y) dy.$$

As well-known, operators of this type related to the standard Calderón-Zygmund singular integral operators were first studied by Cohen [4], and then by Cohen and Gosselin [5] and Hofmann [9]. If the phase functions are replaced by real-valued polynomials on $\mathbb{R}^n \times \mathbb{R}^n$, the corresponding multilinear operators have been considered by Chen, Hu and Lu [3]. Our first result in this paper can be stated as follows.

THEOREM 1. Let m be a positive integer, K(x) be C^1 away from the origin and satisfy (4) and (5), A have derivatives of order m in $BMO(\mathbb{R}^n)$. Let T_A be defined as in (6). Suppose that Φ satisfies (1) and (2) for some $a \neq 0$. Then for 1 ,

$$||T_A f||_p \le C(n, m, p) \sum_{|\alpha|=m} ||D^{\alpha} A||_{BMO} ||f||_p.$$

Let f^{\sharp} be the sharp function of Fefferman-Stein [8], i.e.,

$$f^{\sharp}(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_{Q} |f(y) - m_{Q}(f)| dy,$$

where $m_Q(f)$ is the mean value of f on Q. In this paper, we will establish the sharp function estimate for the operator T_A .

THEOREM 2. Let m be a positive integer, K(x) be C^1 away from the origin and satisfy (4) and (5), A have derivatives of order m in $BMO(\mathbb{R}^n)$. Let T_A be defined as in (6). Suppose that Φ satisfies (1) and (2) for some $a \neq 0, 1$. Then for any $1 , there exists a positive constant <math>C_{m,n,p}$ such that

$$(T_A f)^{\sharp}(x) \leq C \sum_{|\alpha|=m} \|D^{\alpha} A\|_{\mathrm{BMO}} M_p f(x), \quad f \in L_0^{\infty}(\mathbf{R}^n),$$

where M is the Hardy-Littlewood maximal operator, and $M_p f(x) = [M(|f|^p)(x)]^{1/p}$.

As a consequence of Theorem 2, we have the following endpoint estimate for the operator T_A .

COROLLARY. Under the hypotheses of Theorem 2, T_A maps $L^{\infty}(\mathbf{R}^n)$ to $BMO(\mathbf{R}^n)$ boundedly, with bound $C \sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO}$.

2. Proof of Theorem 1.

To begin with, we give some preliminary lemmas.

LEMMA 1. Let m be a positive integer, K(x) be C^1 away from the origin and satisfy (4) and (5), A have derivatives of order m in BMO(\mathbb{R}^n). Define the operator

$$\tilde{T}_A f(x) = \sup_{\varepsilon > 0} \left| \int_{|x-y| > \varepsilon} K(x-y) \frac{R_{m+1}(A; x, y)}{|x-y|^m} f(y) \, dy \right|.$$

Then for any 1 ,

$$\|\tilde{T}_A f\|_p \le C(n, m, p) \sum_{|\alpha|=m} \|D^{\alpha} A\|_{\text{BMO}} \|f\|_p.$$

For the case of m = 1, this result has been obtained by Cohen [4]. For general positive integer m, Lemma 1 can be proved by repeating the argument used in [4], together with some computation techniques of Cohen and Gosselin [5].

LEMMA 2. (see [5]). Let b(x) be a function on \mathbb{R}^n with derivatives of order m in $L^q(\mathbb{R}^n)$ for some $n < q \le \infty$. Then

$$|R_m(b;x,y)| \le C_{m,n}|x-y|^m \sum_{|\alpha|=m} \left(\frac{1}{|\tilde{Q}(x,y)|} \int_{\tilde{Q}(x,y)} |D^{\alpha}b(z)|^q dz\right)^{1/q},$$

where $\tilde{Q}(x,y)$ is the cube centered at x with diameter $5\sqrt{n}|x-y|$.

LEMMA 3. Let A have derivatives of order m in $BMO(\mathbb{R}^n)$. Then the maximal operator

$$M_A f(x) = \sup_{r>0} r^{-n-m} \int_{|x-y|< r} |R_{m+1}(A; x, y) f(y)| \, dy,$$

is bounded on $L^p(\mathbf{R}^n)$ for $1 with bound <math>C \sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO}$.

PROOF. Clearly, it suffices to consider the operator

$$\tilde{M}_{A}f(x) = \sup_{r>0} r^{-n-m} \int_{r/2<|x-y|\leq r} |R_{m+1}(A;x,y)f(y)| \, dy.$$

For fixed $x \in \mathbb{R}^n$ and r > 0, let Q(x, r) be the cube centered at x and having side length r. Set

$$\tilde{A}(y) = A(y) - \sum_{|\alpha|=m} \frac{1}{\alpha!} \, m_{Q(x,r)}(D^{\alpha}A) y^{\alpha}.$$

Note that for each fixed α with $|\alpha| = m$, $D^{\beta}y^{\alpha} = 0$ if $|\beta| \ge m + 1$. Thus

$$R_{m+1}((\cdot)^{\alpha}; x, y) = x^{\alpha} - \sum_{|\beta| < m} \frac{1}{\beta!} D^{\beta}(y^{\alpha})(x - y)^{\beta} = 0, \quad |\alpha| = m,$$

which means

$$R_{m+1}(\tilde{A};x,y) = R_{m+1}(A;x,y) - \sum_{|\alpha|=m} \frac{1}{\alpha!} m_{Q(x,r)}(D^{\alpha}A) R_{m+1}((\cdot)^{\alpha};x,y) = R_{m+1}(A;x,y).$$

Note that if $r/2 < |x-y| \le r$, then $\tilde{Q}(x,y)$, the cube centered at x with diameter $5\sqrt{n}|x-y|$, is contained in a fixed multiple of Q(x,r). Thus by Lemma 2, it follows that for some q > n,

$$|R_{m}(\tilde{A}; x, y)| \leq C|x - y|^{m} \sum_{|\alpha| = m} \left(|\tilde{Q}(x, y)|^{-1} \int_{\tilde{Q}(x, y)} |D^{\alpha} A(z) - m_{Q(x, r)}(D^{\alpha} A)|^{q} dz \right)^{1/q}$$

$$\leq C \sum_{|\alpha| = m} ||D^{\alpha} A||_{BMO} |x - y|^{m}.$$

Thus for any $1 < t < \infty$,

$$\begin{split} \tilde{M}_{A}f(x) &\leq \sup_{r>0} r^{-n-m} \int_{|x-y| < r} |R_{m}(\tilde{A}; x, y)| |f(y)| \, dy \\ &+ C \sum_{|\alpha| = m} \sup_{r>0} r^{-n} \int_{|x-y| < r} |D^{\alpha}A(y) - m_{Q(x,r)}(D^{\alpha}A)| |f(y)| \, dy \\ &\leq C \sum_{|\alpha| = m} \|D^{\alpha}A\|_{\text{BMO}} Mf(x) \\ &+ C \sum_{|\alpha| = m} \sup_{r>0} r^{-n} \left(\int_{|x-y| < r} |D^{\alpha}A(y) - m_{Q(x,r)}(D^{\alpha}A)|^{t'} \, dy \right)^{1/t'} \\ &\times \left(\int_{|x-y| < r} |f(y)|^{t} \, dy \right)^{1/t} \\ &\leq C \sum_{|\alpha| = m} \|D^{\alpha}A\|_{\text{BMO}} M_{t}f(x). \end{split}$$

For each fixed p, 1 , we choose <math>t such that 1 < t < p, then

$$\|\tilde{M}_A f\|_p \le C \sum_{|\alpha|=m} \|D^{\alpha} A\|_{\text{BMO}} \|f\|_p.$$

Proof of Theorem 1. Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ such that

$$\operatorname{supp} \varphi \subset \{1/2 \le |x| \le 2\} \quad \text{and} \quad \sum_{j=-\infty}^{\infty} \varphi(2^{-j}x) \equiv 1, \quad \text{for } |x| \ne 0.$$

Let $\varphi_j(x) = \varphi(2^{-j}x)$ for integer j. To prove Theorem 1, we consider the following two cases.

Case I a > 0. Let $\psi(x) = 1 - \sum_{j=1}^{\infty} \varphi_j(x)$. It is obvious that $\sup \psi \subset \{|x| \le 4\}$ and $\psi(x) \equiv 1$ if |x| < 1. Write

$$T_{A}f(x) = \int_{\mathbb{R}^{n}} e^{i\Phi(x-y)} K(x-y) \psi(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^{m}} f(y) dy$$

$$+ \sum_{j=1}^{\infty} \int_{\mathbb{R}^{n}} e^{i\Phi(x-y)} K(x-y) \varphi_{j}(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^{m}} f(y) dy$$

$$= T_{A}^{0} f(x) + \sum_{j=1}^{\infty} T_{A}^{j} f(x).$$

Let us first consider the term T_A^0 . Write

$$|T_{A}^{0}f(x)| \leq \left| \int_{|x-y| \leq 1} K(x-y)\psi(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^{m}} f(y) dy \right|$$

$$+ \left| \int_{|x-y| \leq 1} (e^{i\Phi(x-y)} - 1)K(x-y)\psi(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^{m}} f(y) dy \right|$$

$$+ \left| \int_{|x-y| > 1} e^{i\Phi(x-y)} K(x-y)\psi(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^{m}} f(y) dy \right|$$

$$= E + F + G.$$

Recall that $\psi(x) \equiv 1$ for $|x| \le 1$. Therefore,

$$E = \left| \int_{|x-y| \le 1} K(x-y) \frac{R_{m+1}(A; x, y)}{|x-y|^m} f(y) \, dy \right|.$$

Lemma 1 now tells us that

$$\|\mathbf{E}\|_p \le C \sum_{|\alpha|=m} \|D^{\alpha}A\|_{\mathrm{BMO}} \|f\|_p, \quad 1$$

On the other hand, by the fact that a > 0 and (1), trivial computation shows that

$$F \le C \int_{|x-y| \le 1} \frac{|R_{m+1}(A; x, y)|}{|x-y|^{n+m-a}} |f(y)| dy \le CM_A f(x).$$

This via Lemma 3 leads to that

$$\|\mathbf{F}\|_{p} \le C \sum_{|\alpha|=m} \|D^{\alpha}A\|_{\text{BMO}} \|f\|_{p}, \quad 1$$

Obviously,

$$G \leq \int_{1 \leq |x-y| \leq 4} \frac{|R_{m+1}(A; x, y)|}{|x-y|^{n+m}} |f(y)| dy \leq CM_A f(x),$$

which in turn implies that

$$\|G\|_{p} \le C \sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO} \|f\|_{p}, \quad 1$$

Combining the estimates for E, F and G yields that

$$||T_A^0||_p \le C \sum_{|\alpha|=m} ||D^{\alpha}A||_{\text{BMO}} ||f||_p, \quad 1$$

Now we consider the operator T_A^j for $j \ge 1$. By Lemma 3 we have the following crude estimate

(7)
$$||T_A^j f||_p \le C \sum_{|\alpha|=m} ||D^{\alpha} A||_{\text{BMO}} ||f||_p, \quad 1$$

Our goal is to obtain a refined L^2 estimate for T_A^j , i.e., we want to show that there exists a positive constant $\varepsilon > 0$ such that

(8)
$$||T_A^j f||_2 \le C 2^{-\varepsilon j} \sum_{|\alpha|=m} ||D^{\alpha} A||_{\text{BMO}} ||f||_2.$$

If we can do this, an interpolation between the inequalities (7) and (8) then gives

$$||T_A^j f||_p \le C2^{-\tilde{\epsilon}j} \sum_{|\alpha|=m} ||D^{\alpha} A||_{\text{BMO}} ||f||_p, \quad 1$$

Summing over the last inequality for all $j \ge 1$ gives

$$\left\| \sum_{j=1}^{\infty} T_A^j f \right\|_p \le C \sum_{|\alpha|=m} \left\| D^{\alpha} A \right\|_{\text{BMO}} \left\| f \right\|_p, \quad 1$$

We turn our attention to the operator

(9)
$$\tilde{T}_A^j f(x) = \int_{1/2 < |x-y| \le 2} e^{i\Phi(2^j(x-y))} K(x-y) \varphi(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^m} f(y) dy.$$

By dilation-invariance, we see that the inequality (8) is equivalent to the estimate

(10)
$$\|\tilde{T}_{A}^{j}f\|_{2} \leq C2^{-\varepsilon j} \sum_{|\alpha|=m} \|D^{\alpha}A\|_{\text{BMO}} \|f\|_{2}.$$

Write $R^n = \bigcup_d Q_d$, where each Q_d is a cube with side length 1 and these cubes have disjoint interiors. Set $f_d = f\chi_{Q_d}$. Since the support of $\tilde{T}_A^j f_d$ is contained in a fixed multiple of Q_d , the supports of various terms $\tilde{T}_A^j f_d$ have bounded overlaps. So we have the "almost orthogonality" property

$$\|\tilde{T}_A^j f\|_2^2 \le \sum_d \|\tilde{T}_A^j f_d\|_2^2.$$

Thus we may assume that supp $f \subset Q$ for some cube with side length 1. Denote by Q^* the cube with the same center as Q but side length 100n. Let $\phi \in C_0^{\infty}(\mathbb{R}^n)$ such that $0 \le \phi \le 1$, ϕ is identically one on 10nQ and vanishes outside of 20nQ, $||D^{\nu}\phi||_{\infty} \le C_{\nu}$ (independent of Q) for all multi-index ν . Let x_0 be a point on the boundary of 40nQ. Set

$$A^{\phi}(y) = R_m \Big(A(\cdot) - \sum_{|\beta|=m} \frac{1}{\beta!} m_{\mathcal{Q}^{\bullet}} (D^{\beta} A)(\cdot)^{\beta}; y, x_0 \Big) \phi(y).$$

The observation of Cohen and Gosselin [5] says that for $y \in Q$ and $x \in 10nQ$,

$$R_{m+1}(A; x, y) = R_{m+1}(A^{\phi}; x, y).$$

Define the operator

$$\tilde{T}_{\alpha}^{j}h(x) = \int_{1/2 < |x-y| < 2} e^{i\Phi(2^{j}(x-y))} K(x-y) \varphi(x-y) \frac{(x-y)^{\alpha}}{|x-y|^{m}} h(y) dy.$$

We see that

$$\begin{split} \tilde{T}_A^j f(x) &= \tilde{T}_{A^{\phi}}^j f(x) \\ &= A^{\phi}(x) \tilde{T}_0^j f(x) - \sum_{|\alpha| < m} \frac{1}{\alpha!} \, \tilde{T}_{\alpha}^j ((D^{\alpha} A^{\phi}) f)(x) - \sum_{|\alpha| = m} \frac{1}{\alpha!} \, \tilde{T}_{\alpha}^j ((D^{\alpha} A^{\phi}) f)(x) \\ &= \mathbf{H} + \mathbf{I} + \mathbf{J}. \end{split}$$

The estimates for these three terms follows from the following lemma.

LEMMA 4. Suppose that Φ satisfies (1) and (2). Then for $j \in \mathbb{Z}$ and multi-index α

$$\|\tilde{T}_{\alpha}^{j}h\|_{2} \leq C2^{-ja/2}\|h\|_{2}.$$

Lemma 4 can be proved by the same way as in [6]. We omit the details for brevity. We now return to the proof of Theorem 1. Let α be a multi-index such that $|\alpha| \le m$. A straightforward computation (see [5, p. 452]) yields that

(11)
$$D^{\alpha}A^{\phi}(y) = \sum_{\alpha = \mu + \nu} \frac{\alpha!}{\mu! \, \nu!} \, R_{m - |\mu|} \left(D^{\mu} \left(A(\cdot) - \sum_{|\beta| = m} \frac{1}{\beta!} \, m_{Q^{\star}} (D^{\beta}A)(\cdot)^{\beta} \right); y, x_0 \right) D^{\nu}\phi(y).$$

Recall that supp $\phi \subset 20nQ$, Lemma 2 now shows that if $|\alpha| < m$, then

$$|D^{\alpha}A^{\phi}(y)| \leq C \sum_{|\beta|=m} \left(|\tilde{Q}(y,x_0)|^{-1} \int_{\tilde{Q}(y,x_0)} \left| D^{\beta}A(z) - m_{Q^*}(D^{\beta}A) \right|^q dz \right)^{1/q}$$

$$\leq C \sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO},$$

where $n < q < \infty$. So by Lemma 4,

$$\|\mathbf{H}\|_{2} \le C \|A^{\phi}\|_{\infty} \|\tilde{T}_{0}^{j} f\|_{2} \le C \sum_{|\alpha|=m} \|D^{\alpha} A\|_{\mathrm{BMO}} 2^{-aj/2} \|f\|_{2},$$

and

$$\begin{aligned} \|\mathbf{I}\|_{2} &\leq C \sum_{|\alpha| < m} \left\| \tilde{T}_{\alpha}^{j} \Big((D^{\alpha} A^{\phi}) f \Big) \right\|_{2} \leq C 2^{-aj/2} \sum_{|\alpha| < m} \|D^{\alpha} A^{\phi}\|_{\infty} \|f\|_{2} \\ &\leq C 2^{-aj/2} \sum_{|\alpha| = m} \|D^{\alpha} A\|_{\text{BMO}} \|f\|_{2}. \end{aligned}$$

To estimate J, observe that

$$\|\tilde{T}_{\alpha}^{j}h\|_{\infty}\leq C\|h\|_{1},$$

which together with Lemma 4 gives

(12)
$$\|\tilde{T}_{\alpha}^{j}h\|_{q} \leq C2^{-aj/q}\|h\|_{q'}, \quad 2 < q < \infty,$$

where q' = q/(q-1). If $|\alpha| = m$, by (11) and Lemma 2 we have

$$\begin{split} &|D^{\alpha}A^{\phi}(y)| \\ &\leq \sum_{\alpha=\mu+\nu, |\mu|< m} C_{\mu,\nu} \bigg| R_{m-|\mu|} \bigg(D^{\mu} \bigg(A(\cdot) - \sum_{|\beta|=m} \frac{1}{\beta!} m_{Q^{*}} (D^{\beta}A) (\cdot)^{\beta} \bigg); \, y, x_{0} \bigg) D^{\nu} \phi(y) \bigg| \\ &+ \sum_{|\beta|=m} |(D^{\beta}A(y) - m_{Q^{*}} (D^{\beta}A)) \phi(y)| \\ &\leq C \left(\sum_{|\beta|=m} \|D^{\beta}A\|_{\mathrm{BMO}} + \sum_{|\beta|=m} \bigg| D^{\beta}A(y) - m_{Q^{*}} (D^{\beta}A) \bigg| \right) \chi_{Q^{*}}(y). \end{split}$$

Thus for any $1 < s < \infty$,

$$||D^{\alpha}A^{\phi}||_{s} \leq C_{s} \sum_{|\alpha|=m} ||D^{\alpha}A||_{\mathrm{BMO}}.$$

Choose q_0 , q_1 such that $2 < q_0 < \infty$ and $1/q'_0 = 1/q_1 + 1/2$. Since supp $\tilde{T}^j_\alpha(D^\alpha A)f$ $\subset 20nQ$, it follows from the inequality (12) that

$$\begin{split} \|\mathbf{J}\|_{2} &\leq C \|\mathbf{J}\|_{q_{0}} \leq C \sum_{|\alpha|=m} \left\| \tilde{T}_{\alpha}^{j} \left((D^{\alpha} A^{\phi}) f \right) \right\|_{q_{0}} \\ &\leq C 2^{-aj/q_{0}} \sum_{|\alpha|=m} \left\| (D^{\alpha} A^{\phi}) f \right\|_{q_{0}'} \\ &\leq C 2^{-aj/q_{0}} \sum_{|\alpha|=m} \left\| D^{\alpha} A^{\phi} \right\|_{q_{1}} \|f\|_{2} \\ &\leq C 2^{-aj/q_{0}} \sum_{|\alpha|=m} \left\| D^{\alpha} A \right\|_{\mathrm{BMO}} \|f\|_{2}. \end{split}$$

This is our desired estimate.

Case II
$$a < 0$$
. Let $\eta(x) = 1 - \sum_{j=-\infty}^{-1} \varphi_j(x)$. Decompose T_A as
$$T_A f(x) = \int_{\mathbb{R}^n} e^{i\Phi(x-y)} K(x-y) \eta(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^m} f(y) \, dy$$

$$+ \sum_{j=-\infty}^{-1} \int_{\mathbb{R}^n} e^{i\phi(x-y)} K(x-y) \varphi_j(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^m} f(y) \, dy$$

$$= \overline{T}_A^0 f(x) + \sum_{j=-\infty}^{-1} T_A^j f(x).$$

Noting that $\|\eta\|_{\infty} \le C$, $\eta(x) \equiv 1$ if |x| > 1, and $\eta(x) \equiv 0$ if |x| < 1/2, thus as in Case I, we have

$$|\overline{T}_{A}^{0}f(x)| \leq \left| \int_{|x-y|>1} K(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^{m}} f(y) \, dy \right|$$

$$+ \int_{|x-y|>1} \frac{|R_{m+1}(A;x,y)|}{|x-y|^{n+m-a}} |f(y)| \, dy$$

$$+ \int_{1/2 \leq |x-y|<1} \frac{|R_{m+1}(A;x,y)|}{|x-y|^{n+m}} |f(y)| \, dy$$

$$\leq \left| \int_{|x-y|>1} K(x-y) \frac{R_{m+1}(A;x,y)}{|x-y|^{m}} f(y) \, dy \right| + CM_{A}f(x).$$

So

$$\|\overline{T}_{A}^{0}f\|_{p} \leq C \sum_{|\alpha|=m} \|D^{\alpha}A\|_{\text{BMO}} \|f\|_{p}, \quad 1$$

Similarly to Case I, it follows that

$$||T_A^j f||_2 \le C \sum_{|\alpha|=m} ||D^{\alpha} A||_{\text{BMO}} 2^{-\varepsilon aj} ||f||_2, \quad j \le -1,$$

for some positive constant ε . Hence

$$||T_A f||_p \le C \sum_{|\alpha|=m} ||D^{\alpha} A||_{\text{BMO}} ||f||_p, \quad 1$$

This finishes the proof of Theorem 1 for the case a < 0.

3. Proof of Theorem 2.

To prove Theorem 2, we need the following lemma.

LEMMA 5 (see [6]). Let $0 < \delta < \infty$, $\xi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\xi(x) \equiv 1$ if $1 \le |x| \le 2$ and $\xi(x) \equiv 0$ if |x| < 3/4 or |x| > 4. Suppose that the real-valued C^{∞} function Φ satisfies (1) and (2). Then there exists a small positive number d, such that for any cube $Q \subset Q_0 = [-1/2, 1/2]^n$ with diameter diam Q < d and positive integer j with $2^j \ge 3\sqrt{n}$, the operator

$$S_Q^j f(x) = \xi(2^{-j}x) \int_Q e^{i\Phi(\delta x - \delta y)} f(y) \, dy$$

is bounded on $L^2(\mathbf{R}^n)$ with bound $C2^{jn/2} \left[(2^j \delta)^{a-1} \delta \right]^{-1/12}$, where C is independent of j, d and δ .

PROOF OF THEOREM 2. Without loss of generality, we may assume that $\sum_{|\alpha|=m} \|D^{\alpha}A\|_{BMO} = 1$. Let Q_0 be the cube centered at the origin with side length 1, i.e. $Q_0 = [-1/2, 1/2]^n$. For each fixed $\delta > 0$, define

$$T_{\delta,A}f(x) = \int_{\mathbf{R}^n} e^{i\mathbf{\Phi}(\delta x - \delta y)} K(x - y) \frac{R_{m+1}(A; x, y)}{|x - y|^m} f(y) dy.$$

By Theorem 1 and dilation-invariance, we have

$$||T_{\delta,A}f||_p \leq C \sum_{|\alpha|=m} ||D^{\alpha}A||_{\text{BMO}} ||f||_p, \quad 1$$

Observe that if $b \in BMO(\mathbb{R}^n)$, then for any t > 0 and $z \in \mathbb{R}^n$, $b_t^z(x) = b(tx + z)$ also belongs to the space $BMO(\mathbb{R}^n)$ and $\|b_t^z\|_{BMO} = \|b\|_{BMO}$. Thus it suffices to show that for some $c = c(T_{\delta,A}f)$,

$$\int_{O_0} |T_{\delta,A}f(y) - c| dy \le C \inf_{x \in Q_0} M_p f(x), \quad 1$$

with C independent of δ . Split f as

$$f = f \chi_{8\sqrt{n}O_0} + f \chi_{\mathbf{R}^n \setminus 8\sqrt{n}O_0} = f_1 + f_2.$$

Schwarz's inequality then shows that

$$\int_{O_0} |T_{\delta,A} f_1(y)| \, dy \le \|T_{\delta,A} f_1\|_p \le C_{m,n,p} \|f_1\|_p \le C \inf_{x \in Q_0} M_p f_1(x).$$

Thus our proof can be reduced to proving that for some $c = c(T_{\delta,A}f)$,

(13)
$$\int_{Q_0} |T_{\delta,A}f_2(y) - c| \, dy \le C_{m,n,p} \inf_{x \in Q_0} M_p f(x), \quad 1$$

We consider the following three cases.

Case I
$$a > 1$$
. Set $r = \max\{8, \delta^{-a/(a-1)}\}$ and

$$f_2 = f \chi_{r\sqrt{n}Q_0 \setminus 8\sqrt{n}Q_0} + f \chi_{\mathbb{R}^n \setminus r\sqrt{n}Q_0} = f_{21} + f_{22}.$$

We first estimate $T_{\delta,A}f_{21}$. Write

$$T_{\delta,A}h(x) = \int_{\mathbb{R}^n} [e^{i\Phi(\delta x - \delta y)} - e^{i\Phi(\delta y)}] K(x - y) \frac{R_{m+1}(A; x, y)}{|x - y|^m} h(y) dy$$
$$+ \int_{\mathbb{R}^n} K(x - y) \frac{R_{m+1}(A; x, y)}{|x - y|^m} e^{i\Phi(\delta y)} h(y) dy.$$

By (1) we see that if $x \in Q_0$, and $y \in \mathbb{R}^n \setminus 8\sqrt{n}Q_0$, then

$$|e^{i\Phi(\delta x - \delta y)} - e^{i\Phi(\delta y)}| \le C\delta^a |y|^{a-1}$$

So we have that for any function h with supp $h \subset \mathbb{R}^n \setminus 8\sqrt{n}Q_0$ and $x \in Q_0$,

(14)
$$|T_{\delta,A}h(x) - c| \le C\delta^{a} \int_{\mathbb{R}^{n} \setminus 8\sqrt{n}Q_{0}} \frac{|R_{m+1}(A; x, y)|}{|x - y|^{n+m+1-a}} |h(y)| dy$$

$$+ \left| \int_{\mathbb{R}^{n}} K(x - y) \frac{R_{m+1}(A; x, y)}{|x - y|^{m}} h(y) e^{i\Phi(\delta y)} dy - c \right|.$$

Using the techniques of Cohen and Gosselin [5], we can prove that for some c

$$\int_{Q_0} \left| \int_{\mathbb{R}^n} K(x - y) \frac{R_{m+1}(A; x, y)}{|x - y|^m} e^{i\Phi(\delta y)} f_{21}(y) dy - c \right| dx$$

$$\leq C_{m,n,p} \sum_{|\alpha| = m} \|D^{\alpha} A\|_{BMO} \inf_{x \in Q_0} M_p f(x).$$

For each fixed $j \in N$, set

$$A_j(y) = A(y) - \sum_{|\alpha|=m} \frac{1}{\alpha!} m_{2^j \sqrt{n}Q_0}(D^{\alpha}A) y^{\alpha},$$

then $R_{m+1}(A; x, y) = R_{m+1}(A_j; x, y)$. Let $j_0 \in N$ such that $2^{j_0} < r \le 2^{j_0+1}$. It is easy to find that for $x \in Q_0$,

$$\delta^{a} \int_{r\sqrt{n}Q_{0} \setminus 8\sqrt{n}Q_{0}} \frac{|R_{m+1}(A; x, y)|}{|x - y|^{m+n+1-a}} |f(y)| dy$$

$$\leq C\delta^{a} \sum_{j=1}^{j_{0}} \int_{2^{j+1}\sqrt{n}Q_{0} \setminus 2^{j}\sqrt{n}Q_{0}} \frac{|R_{m+1}(A_{j}; x, y)|}{|y|^{m+n+1-a}} |f(y)| dy$$

$$\leq C\delta^{a} \sum_{j=1}^{j_{0}} \int_{2^{j+1}\sqrt{n}Q_{0} \setminus 2^{j}\sqrt{n}Q_{0}} \frac{|R_{m}(A_{j}; x, y)|}{|y|^{n+m+1-a}} |f(y)| dy$$

$$+ C\delta^{a} \sum_{|\alpha|=m} \int_{2^{j+1}\sqrt{n}Q_{0} \setminus 2^{j}\sqrt{n}Q_{0}} \frac{|D^{\alpha}A(y) - m_{2^{j}\sqrt{n}Q_{0}}(D^{\alpha}A)|}{|y|^{n+1-a}} |f(y)| dy$$

$$\leq C\delta^{a} \sum_{j=2}^{j_{0}} 2^{j(a-1)} \inf_{x \in Q_{0}} M_{p}f(x)$$

$$\leq C\delta^{a} r^{a-1} \inf_{x \in Q_{0}} M_{p}f(x), \quad 1$$

In the second-to-last inequality, we have invoked the fact that

 $|R_m(A_j;x,y)| \le C|x-y|^m, \quad \text{if } x \in Q_0 \quad \text{and} \quad y \in 2^{j+1}\sqrt{n}Q_0 \setminus 2^j\sqrt{n}Q_0 \quad \text{for } j \ge 2.$

If $T_{\delta,A}f_{21} \neq 0$, then r > 8 and $r^{a-1}\delta^a = 1$. Thus by (14) we see that for some c,

$$\int_{O_0} |T_{\delta,A} f_{21}(y) - c| \, dy \le C \inf_{x \in Q_0} M_p f(x), \quad 1$$

Now we estimate $T_{\delta,A}f_{22}$. Let $K_A(y,z) = K(y-z)R_{m+1}(A;y,z)|y-z|^{-m}$, $y_0 \in 3\sqrt{n}Q_0 \setminus 2\sqrt{n}Q_0$. Then

$$T_{\delta,A}f_{22}(y) = \int_{\mathbf{R}^n} e^{i\mathbf{\Phi}(\delta y - \delta z)} \Big[K_A(y,z) - K_A(y_0,z) \Big] f_{22}(z) dz$$
$$+ \int_{\mathbf{R}^n} e^{i\mathbf{\Phi}(\delta y - \delta z)} K_A(y_0,z) f_{22}(z) dz$$
$$= Rf_{22}(y) + Sf_{22}(y).$$

Obviously,

$$|Rf_{22}(y)| \le \int_{\mathbb{R}^n \setminus 8\sqrt{n}O_0} |K_A(y,z) - K_A(y_0,z)| |f(z)| dz.$$

The standard arguement (see [5]) shows that

$$|Rf_{22}(y)| \le C \inf_{x \in Q_0} M_p f(x), \quad y \in Q_0, \quad 1$$

Let d be the small positive constant appeared in Lemma 5. Decompose Q_0 as

$$Q_0 = \bigcup_{k=1}^N Q_k,$$

where N=N(d) is a fixed positive integer, each Q_k is a cube with diameter smaller than d, and the cubes $\{Q_k\}$ have disjoint interiors. Let $\xi \in C_0^{\infty}(\mathbb{R}^n)$ such that supp $\xi \subset \{3/4 \le |x| \le 4\}$ and $\xi(x) \equiv 1$ if $1 \le |x| \le 2$. Denote by V_j the set $\{2^j < |x| \le 2^{j+1}\}$ for $j \in \mathbb{N}$. Define the operator

$$T_{Q_k}^j h(x) = \chi_{Q_k}(x) \int_{\mathbb{R}^n} e^{i\Phi(\delta x - \delta y)} \xi(2^{-j}y) h(y) dy$$

and write

$$Sf_{22}(y)\chi_{Q_k}(y) = \sum_{j=0}^{\infty} \chi_{Q_k}(y) \int_{2^j < |z| \le 2^{j+1}} e^{i\Phi(\delta y - \delta z)} \xi(2^{-j}z) K_A(y_0, z) f_{22}(z) dz$$
$$= \sum_{j=0}^{\infty} T_{Q_k}^j \Big(K_A(y_0, \cdot) \chi_{V_j} f_{22} \Big)(y).$$

By Lemma 5 and the duality, we see that

(15)
$$||T_{Q_k}^j h||_2 \le C 2^{jn/2} \Big[(2^j \delta)^{a-1} \delta \Big]^{-1/12} ||h||_2, \quad 2^j \ge 3\sqrt{n}.$$

On the other hand, we have the crude estimate

(16)
$$||T_{O_k}^j h||_1 \le ||h||_1.$$

Interpolation between the inequalities (15) and (16) leads to that

(17)
$$||T_{Q_k}^j h||_q \le C 2^{jn/q'} \left[(2^j \delta)^{a-1} \delta \right]^{-1/(6q')} ||h||_q, \quad 2^j \ge 3\sqrt{n}, \quad 1 < q \le 2.$$

For each fixed p, let $1 < q < \min(2, p)$. Then

$$\int_{Q_0} |Sf_{22}(y)| \, dy \le C \sum_{k=1}^N \|(Sf_{22})\chi_{Q_k}\|_q
\le C \sum_{k=1}^N \sum_{2^{j+1} \ge r\sqrt{n}} \|T_{Q_k}^j(K_A(y_0,\cdot)\chi_{V_j}f_{22})\|_q
\le C \sum_{k=1}^N \sum_{j=j_0-1}^\infty 2^{jn/q'} \left[(2^j\delta)^{a-1}\delta \right]^{-1/(6q')} \|K_A(y_0,\cdot)\chi_{V_j}f_{22}\|_q.$$

Set

$$\tilde{A_j}(y) = A(y) - \sum_{|\alpha|=m} \frac{1}{\alpha!} m_{V_j}(D^{\alpha}A) y^{\alpha}, \quad j \in N.$$

We have

$$\begin{split} \left\| K_{A}(y_{0}, \cdot) \chi_{V_{j}} f_{22} \right\|_{q} &= \left\| K_{\tilde{A_{j}}}(y_{0}, \cdot) \chi_{V_{j}} f_{22} \right\|_{q} \\ &\leq C \left(\int_{V_{j}} \left(\frac{\left| R_{m}(\tilde{A_{j}}; y_{0}, y) \right|}{\left| y - y_{0} \right|^{n+m}} \left| f_{22}(y) \right| \right)^{q} dy \right)^{1/q} \\ &+ C \sum_{|\alpha| = m} 2^{-jn} \left(\int_{V_{j}} \left(\left| D^{\alpha} A(y) - m_{V_{j}}(D^{\alpha}) \right| \left| f_{22}(y) \right| \right)^{q} dy \right)^{1/q}. \end{split}$$

If $y \in V_j \cap (\mathbb{R}^n \setminus r\sqrt{nQ_0})$, by the familiar argument involving Lemma 2,

$$|R_m(\tilde{A_j}; y_0, y)| \le C|y - y_0|^m$$

Hölder's inequality now gives

$$\left\| K_{A}(y_{0},\cdot)\chi_{V_{j}}f_{22} \right\|_{q} \leq C2^{-jn/q'} \inf_{x \in Q_{0}} M_{q}f(x) + C2^{-jn/q'} \inf_{x \in Q_{0}} M_{p}f(x)$$

$$\leq C2^{-jn/q'} \inf_{x \in Q_{0}} M_{p}f(x).$$

Therefore,

$$\int_{Q_0} |Sf_{22}| \, dy \le C \sum_{k=1}^N \sum_{j=j_0-1}^\infty \left[(2^j \delta)^{a-1} \delta \right]^{-1/(6q')} \inf_{x \in Q_0} M_p f(x)$$

$$\le C \left(\delta^a r^{a-1} \right)^{-1/(6q')} \inf_{x \in Q_0} M_p f(x) \le C \inf_{x \in Q_0} M_p f(x).$$

Case II a < 1, $a \ne 0$ and $\delta^{a/(1-a)} \le 4$. Note that for each $y \in Q_0$ and 1 ,

$$\int_{\mathbb{R}^{n} \setminus 8\sqrt{n}Q_{0}} \frac{|R_{m+1}(A; y, z)|}{|y - z|^{m+n+1-a}} |f(z)| dz$$

$$\leq \sum_{j=2}^{\infty} \int_{2^{j+1}\sqrt{n}Q_{0} \setminus 2^{j}\sqrt{n}Q_{0}} \frac{|R_{m}(A_{j}; y, z)|}{|y - z|^{m+n+1-a}} |f(z)| dz$$

$$+ C \sum_{j=2}^{\infty} \sum_{|\alpha|=m} \int_{2^{j+1}\sqrt{n}Q_{0} \setminus 2^{j}\sqrt{n}Q_{0}} \frac{|D^{\alpha}A(z) - m_{2^{j}\sqrt{n}Q_{0}}(D^{\alpha}A)|}{|x - y|^{n+1-a}} |f(z)| dz$$

$$\leq C \sum_{j=2}^{\infty} 2^{(a-1)j} \inf_{x \in Q_{0}} M_{p}f(x) \leq C \inf_{x \in Q_{0}} M_{p}f(x), \quad 1$$

and that for some c,

$$\int_{Q_0} \left| \int_{\mathbb{R}^n \setminus 8\sqrt{n}Q_0} K(y-z) \frac{R_{m+1}(A;y,z)}{|y-z|^m} f(z) dz - c \right| dy$$

$$\leq C_{m,n,p} \inf_{x \in Q_0} M_p f(x), \quad 1$$

The inequality (14) then gives our desired estimate (13) in this case.

CASE III a < 1, $a \ne 0$ and $\delta^{a/(1-a)} \ge 4$. Let $r = \delta^{a/(1-a)}$ and $j_0 \in N$ such that $2^{j_0} < r \le 2^{j_0+1}$. For $y \in Q_0$, we have

$$\delta^{a} \int_{\mathbb{R}^{n} \backslash r \sqrt{n} Q_{0}} \frac{|R_{m+1}(A; y, z)|}{|y - z|^{m+n+1-a}} |f(z)| dz$$

$$= \delta^{a} \sum_{j=j_{0}}^{\infty} \int_{2^{j+1} \sqrt{n} Q_{0} \backslash 2^{j} \sqrt{n} Q_{0}} \frac{|R_{m}(A_{j}; y, z)|}{|y - z|^{m+n+1-a}} |f(z)| dz$$

$$+ \delta^{a} \sum_{j=j_{0}}^{\infty} \sum_{|\alpha|=m} \int_{2^{j+1} \sqrt{n} Q_{0} \backslash 2^{j} \sqrt{n} Q_{0}} \frac{|D^{\alpha}A(z) - m_{2^{j} \sqrt{n} Q_{0}}(D^{\alpha}A)|}{|y - z|^{n+1-a}} |f(z)| dz$$

$$\leq C \delta^{a} \sum_{j=j_{0}}^{\infty} 2^{j(a-1)} \inf_{x \in Q_{0}} M_{p} f(x)$$

$$\leq C \inf_{x \in Q_{0}} M_{p} f(x), \quad 1$$

Again by (14), we see that for some c,

$$\int_{Q_0} |T_{\delta,A}(f\chi_{\mathbf{R}^n\setminus r\sqrt{n}Q_0})(y) - c| dy \le C \inf_{x\in Q_0} M_p f(x), \quad 1$$

Using inequality (17), as in Case I, we can verify that

$$\int_{Q_0} |T_{\delta,A}(f\chi_{r\sqrt{n}Q_0 \setminus 8\sqrt{n}Q_0})(y)| \, dy \le C \sum_{j=1}^{j_0} \left[(2^j \delta)^{a-1} \delta \right]^{-\gamma} \inf_{x \in Q_0} M_p f(x)$$

$$\le C \inf_{x \in Q_0} M_p f(x), \quad 1$$

where γ is a positive constant. This finishes the proof of Theorem 2.

ACKNOWLEDGEMENT. The authors would like to thank the referee for some valuable suggestions and corrections.

References

- [1] S. Chanillo, Weighted norm inequalities for strongly singular convolution operators, Trans. Amer. Math. Soc. 281 (1984), 77-107.
- [2] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and the weighted L^p estimate for oscillating kernels, Trans. Amer. Math. Soc. **295** (1986), 127–145.
- [3] W. Chen, G. Hu and S. Lu, On a multilinear oscillatory singular integral operator (II), Chin. J. of Contemporary Math., 18 (1997), 31-42.

- [4] J. Cohen, A sharp estimate for a multilinear singular integral in \mathbb{R}^n , Indiana Univ. Math. J. 30 (1981), 693-702.
- [5] J. Cohen and J. Gosselin, A BMO estimate for multilinear singular integrals, Illinois J. of Math. 30 (1986), 445-464.
- [6] D. Fan and Y. Pan, Boundedness of certain oscillatory singular integrals, Studia Math. 114 (1995), 106-116.
- [7] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36.
- [8] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- [9] S. Hofmann, On certain nonstandard Calderón-Zygmund operators, Studia Math. 109 (1994), 105-131.
- [10] P. Sjölin, Convolution with oscillating kernels on H^p spaces, J. London Math. Soc. 23 (1981), 442–454

Guoen Hu, Shanzhen Lu and Dachun YANG

Department of Mathematics Beijing Normal University Beijing 100875 People's Republic of China E-mails: lusz@bnu.edu.cn (S. Lu) dcyang@bnu.edu.cn (D. Yang)