J. Math. Soc. Japan
Vol. 50, No, 3, 1998

On a class of multilinear oscillatory singular integral operators

By Guoen Hu, Shanzhen Lu and Dachun YANG

(Received Apr. 1, 1996)
(Revised Sept. 19, 1996)

1. Introduction.

We will work on R* (n>1). Let &(x) e C°(R"\{0}) be a real-valued function
which satisfies

(1) ID*®(x)| < Bi|x|*™™,  Jo| <3,

and

(2) > " ID*®(x)| = Balx|*?,
ja|]=2

where a is a fixed real number, B; and B, are positive constants. Let K; be a standard
Calderon-Zygmund kernel. Define the oscillatory singular integral operator T by

3 T7(x) = [ e* Ko~ 01 0) .

For the special case &(x) = |x|, such operators have been studied by many authors (see
(1], [2], [7], [10], for example). Recently, Fan and Pan [6] considered the operators
defined by (3) with smooth phase functions satisfying (1) and (2). They showed that

THEOREM A. Let 1 <p < oo, T be defined as in (3). Suppose that @ satisfies (1)
and (2) for some a # 0. Then T is bounded on L?(R") with bound C(n,p).

THEOREM B. Let T be defined as in (3). Suppose that @ satisfies (1) and (2) for
some a #0,1. Then T is a bounded operator on the Hardy space H'(R").

The purpose of this paper is to consider a class of multilinear operators related to the
operators defined by (3). Let m be a positive integer, K be C' away from the origin and
satisfy

(4) IK(x)| < Clx|™",  [VK(x)| < Clx|™,

and

(5) J K(x)x*dx =0, forany0<a<|x|<b<ooand|af=m.
a<|x|<b

Let A4 have derivatives of order m in BMO(R"), Ry+1(4; x,y) denote the (m + 1)-th order
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Taylor series remainder of 4 at x expanded about y, i.e.,

R (4; %,7) = A(x) = 3+ D*A0)(x - )"

la] <m
The operators we consider here are of the form

(6) Taf ) = [ %K (- )'",—;‘(A—,’ﬁ—y—)f(y) dy.

As well-known, operators of this type related to the standard Calderén-Zygmund sin-
gular integral operators were first studied by Cohen [4], and then by Cohen and Gosselin
[5] and Hofmann [9]. If the phase functions are replaced by real-valued polynomials on
R" x R", the corresponding multilinear operators have been considered by Chen, Hu and
Lu [3]. Our first result in this paper can be stated as follows.

THEOREM 1. Let m be a positive integer, K(x) be C' away from the origin and satisfy
(4) and (5), A have derivatives of order m in BMO(R"). Let T4 be defined as in (6).
Suppose that @ satisfies (1) and (2) for some a #0. Then for 1 <p < o0,

ITaf, < C(n, m, p) Z | D*Allgmoll 1l ,-

|ot|=m

Let f* be the sharp function of Fefferman-Stein [8], i.e.,

140) = sup 0 | 170) = mo()
where mg(f) is the mean value of f on Q. In this paper, we will establish the sharp
function estimate for the operator 7.

THEOREM 2. Let m be a positive integer, K(x) be C' away from the origin and satisfy
(4) and (5), A have derivatives of order m in BMO(R"). Let T4 be defined as in (6).
Suppose that @ satisfies (1) and (2) for some a #0,1. Then for any 1 < p < o0, there
exists a positive constant Cy, , , such that

(Tuf)f(x) < C Z | D*Allgmo M, f(x), f € Lg(R"),

|a|=m

where M is the Hardy-Littlewood maximal operator, and M, f(x) = [M(|fI)(x)]'/*.

As a consequence of Theorem 2, we have the following endpoint estimate for the
operator T4.

COROLLARY. Under the hypotheses of Theorem 2, T4 maps L*(R") to BMO(R")
boundedly, with bound C 3, _,, | D*A||gmo-

2. Proof of Theorem 1.

To begin with, we give some preliminary lemmas.
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LEMMA 1. Let m be a positive integer, K(x) be C' away from the origin and satisfy
(4) and (5), A have derivatives of order m in BMO(R"). Define the operator

Ture) =supl] Ko ) 2D 1)

0

Then for any 1 < p < o0,

ITafll, < Cn,m,p) D 10" Allpmoll /-

|od=m

For the case of m =1, this result has been obtained by Cohen [4]. For general
positive integer m, Lemma 1 can be proved by repeating the argument used in [4],
together with some computation techniques of Cohen and Gosselin [5].

LeEMMA 2. (see [5]). Let b(x) be a function on R" with derivatives of order m in
Li(R") for some n < g < 0. Then

1/q
1
R (b; %, )] < Counlt — 3| }:( _ J ID“b(Z)I"dz) ,
= \ Q% ¥)] I G0xy)

where Q(x, y) is the cube centered at x with diameter 5./n|x — y|.

LEMMA 3. Let A have derivatives of order m in BMO(R"). Then the maximal
operator

M, f(x) = sup r™ jl Rt (45 %,9) £ )] .,
xX—=y|<r

r>0

is bounded on LP(R") for 1 < p < oo with bound C }_,,_,, || D*4||gmo-

Proor. Clearly, it suffices to consider the operator

M, f(x)=supr "™

J |Rms1(4; %, ) f(v)| dy.
r>0 r/2<|x—y|<r

For fixed x €e R" and r > 0, let Q(x,r) be the cube centered at x and having side length
r. Set

~ 1
A(y) = A(y) - Z a mQ(x,r) (DaA)ya'
|aj]=m ="
Note that for each fixed « with |a| = m, Dfy* =0 if || >m + 1. Thus
1
Rui(()5x,9) =% = > = DPOM)(x =y =0, |o|=m,
B!
Bl<m
which means

~ 1
Rm+l(A;x)y) = Rm+1(A;xay) - Z a mQ(x,r)(DaA)Rm+l((')a;x,y) = Rm+1(A;x,y).

lot|=m
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Note that if r/2 < |x—y| <r, then Q(x,y), the cube centered at x with diameter
5y/n|x — y|, is contained in a fixed multiple of Q(x,r). Thus by Lemma 2, it follows
that for some g > n,

1/q
|Rn(d; x,y)| < Clx —y" Y (IQ(x,y)l‘1 JQ( ) |D*A(z) — mQ(x,r)(D“A)I"dZ)
X,y

|ot|=m
<C Z |10 Al|gmolx — »I™.
|ot|=m

Thus for any 1 < ¢ < o0,

Maf(x) < sup r™ j R(ds x,9)I1f ()| dy
r>0 r/2<|x—y|<r
+C Y supr J. _1DA0) = (DA O]
|<x|=m r> xX—=y|<r

<C Z || D* Al gmo M (x)

fotj=m

1/¢
+CY supr (jl 1pA0) —mg(x,,)(D“A)l”dy)
x—y|<r

|“|=m r>0

1/t
x (] If(y)l’dy)
[x=yl<r

< C Y [ID*4llgmoM:f (%)-

|ot|=m
For each fixed p, 1 < p < o0, we choose ¢ such that 1 < ¢ < p, then
IMafll, < C Y ID*Allgmoll f1l,-

|ot|=m

Proor oF THEOREM 1. Let p € C°(R") such that

suppp = {1/2<|x| <2} and ) ¢(27x)=1, for|x|#0.

Jj=—w
Let g;(x) = 9(27x) for integer j. To prove Theorem 1, we consider the following two
cases.

Case I a>0. Let y(x)=1~3 2, ¢;(x). It is obvious that suppy < {|x| <4}
and Y(x) = 11if |x| <1. Write

Taf () = | %K=yt - ) BT 1) 0y

Rm+l(A; X, y)

X7 f)dy

o0
ny j EPEIK (x — y)p;(x — )
=1 'K

=Tf(x) + > T)f(x).
j=1
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Let us first consider the term 79. Write

Rpi1(4;x

TS/ ()] < 252 f0)

J K(x—y)(x—y)
[e-y|<1

|x -y

H @ K- we-y) Bm—“%’f,,:i)f@) dy
[x—y|<1

iD(x—y) _ _ Rm+1 (A7 X, y)
wl] L Kyt PR ) ay

=E+F+G.
Recall that y(x) =1 for |x| < 1. Therefore,

Rm+l (A‘l X, y)

E= J]x-y.g K(x—y) 22520 1(5) dy

Lemma 1 now tells us that

IEll, <C Y ID*4llpmollfll,, 1<p<co.

|ot|=m

On the other hand, by the fact that a > 0 and (1), trivial computation shows that

Ryi1(4; x,
il n+m—J:)| If)dy < CMf(x).
-yt |x =y

FsCJ

This via Lemma 3 leads to that
IF|, <C Z |D*Allgmoll f1l,, 1 <p < 0.
|ot|=m

Obviously,

Rm' ’44;x,
G| et lisold < Mas()
<|x—y -

which in turn implies that
IGll, < € |‘|\: 1D* Allgmoll AN, 1 <p < oo
Combining the estimates for E, F and G yields that
121, < C “I[, ID*Allgmoll /N,y 1 <p <oo.
of=m

Now we consider the operator TI{; for j > 1. By Lemma 3 we have the following
crude estimate

(7) 1731, < € D 1D Allgyollfll,, 1 <p < co.

lot|=m
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Our goal is to obtain a refined L? estimate for Tfi, i.e., we want to show that there exists
a positive constant ¢ > 0 such that

(8) ITif Nl < €279 3 ID*Allgyoll S

|a|=m

If we can do this, an interpolation between the inequalities (7) and (8) then gives

IT4f1l, < €279 3 IID*Allpmoll fll,s 1 <p < 0.

|a|=m

Summing over the last inequality for all j > 1 gives
e8]
> T
j=1

We turn our attention to the operator

<C Z I1D*Allgmoll fll,» 1 <p < o0.

p la|=m

iy . R,.11(4;
O T RN K (x — y)p(x —y) Rt 1) 4,
1/2<|x—y| <2 lx - yl
By dilation-invariance, we see that the inequality (8) is equivalent to the estimate
(10) IS, < €279 ) |1D*Allgmoll fl>-
la|=m

Write R” = U404, where each Qy, is a cube with side length 1 and these cubes have dis-

joint interiors. Set f; = f X, Since the support of T * fa 1s contained in a fixed multiple

of Qg, the supports of various terms T “Ja have bounded overlaps. So we have the
“almost orthogonality” property

IZLf1l7 < Z 1T fall3-

Thus we may assume that supp f < Q for some cube with side length 1. Denote by Q*
the cube with the same center as Q but side length 100n. Let ¢ € CP(R") such that
0<¢ <1, ¢ is identically one on 10nQ and vanishes outside of 20nQ D¢, <
(independent of Q) for all multi-index v. Let xo be a point on the boundary of
40nQ. Set

4%(y) = Ry (4 0= 5 mQ-<DﬂA) Y53,%)909).
Iﬂl—m

The observation of Cohen and Gosselin [5] says that for y € Q and x € 10nQ,

Rpy1(4;x,y) = Rm+l(A¢§x’ y)-

Define the operator

T4 = | DMK (x— yo(x - ) ETI niy) ay.
1/2<|x—y|<2 |x —yI”
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We see that
T (%) = Ty f (%)
= BT~ 3 H(D ) - Y = P04 )
lef<m = laf=m

=H+I+1J.

The estimates for these three terms follows from the following lemma.

LEMMA 4. Suppose that & satisfies (1) and (2). Then for j € Z and multi-index o
I TSAll, < C272|hl,.

Lemma 4 can be proved by the same way as in [6]. We omit the details for brevity.
We now return to the proof of Theorem 1. Let o be a multi-index such that
|a| <m. A straightforward computation (see [5, p. 452]) yields that

) Da0) = Y 5 Resa(D(40) = X g me (DPAF )in30) D600

a=p+v |ﬂ|—m
Recall that supp ¢ = 20nQ, Lemma 2 now shows that if |x| < m, then
g \!4
dz)

DPA(z) — mg-(

D*4%(y)| < C 0y, x0)| !
D 4%(y) |g:;(@(y %0)| Jé(y'xo)

<C > |D*4|lgyo,

la|=m

where n < ¢ < 0. So by Lemma 4,

IHll, < ClA I T3S Nl < € D 1D*Allgmo2 1S 2,

la}=m

and

(e ah)s)||, < 27 37 10411,

| <m la|<m

< C29/? Z | D* Allgmo | f112-

jat|=m

[P

To estimate J, observe that
1Tkl < Clikll;,
which together with Lemma 4 gives

(12) IT}hl, < C2-¥4|All,, 2< g <o,
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where ¢ =q/(q—1). If |a| =m, by (11) and Lemma 2 we have

ID*4% ()|
< Y GufRn(P(10- X o PP AP ) D60
a=p+v,|ul<m Bl *m
+ ) (DPA®) — m-(DP4))8()|
\Bl=m
< c(Z ID°Allgmo + ) |D"'A ») - mg(DﬁA)|>xQ(y
|Bl=m |Bi=m

Thus for any 1 < s < 00,

ID*4%), < C; Y 1D 4llzmo-

jor)=m

Choose qo, q1 such that 2 < go < o0 and 1/gp =1/¢g1 +1/2. Since supp T ((D“A)f)
< 20nQ, it follows from the inequality (12) that

19l < i, < € S || T((0*4%)f)
|a}=m 9o
< c2ln 3 |[(D*ah) S,
lo=m

< cralo 3 DA, 111,

lot|=m

< C27 /%0 Z | D* Al gmol f 1l

o|=m
This is our desired estimate.

CaseIl a<0. Lety(x)=1- Zj;l_oo 9;(x). Decompose T as

T ) = [ Kk ynta - y) RS2 £5)

T O I SR S

fanrd |x — ™
-1

=T/ + Y Tif(x).

j==

Noting that |||l < C, n(x) =1 if |x| > 1, and (x) = 0 if |x| < 1/2, thus as in Case I,
we have
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Rm+1 (Aa X,y)

To@is|| K-y IR )y

R I(A;x,y)|
+ JI [>l I |:i y|n+m—a |f(y)ldy
X=y

IR I(A;x9y
| Rt (52 )1) 103y
12<lx—yl<1  |x =]

Rm 1(A;X,y)
GC—_ylm—"fO’) dy| + CM 4 f (x).

<

J K(x—y)
|x—y|>1
So

._0 o
IT,f1l, <€ D 1D Allgmoll fll,, 1< p <o

|ot|=m

Similarly to Case I, it follows that

ITifll < € > ID*Allpmo2 I f 1 J< -1,

joe|=m

for some positive constant e. Hence

ITafll, < C > ID*Allgmoll fll,, 1<p< 0.

|e|=rm

This finishes the proof of Theorem 1 for the case a < 0.

3. Proof of Theorem 2.
To prove Theorem 2, we need the following lemma.

LEMMA 5 (see [6]). Let 0 <d < o0, & € CP(R") such that &(x) =1 if 1 < |x| <2 and
E(x)=01if|x| <3/4 or |x| > 4. Suppose that the real-valued C* function @ satisfies (1)
and (2). Then there exists a small positive number d, such that for any cube
Q < Qo = [-1/2, 1/2]" with diameter diam Q < d and positive integer j with 2 > 3\/n, the
operator

Spf(x) = &@7x) | &2 r()dy
Qo
i . -1/12
is bounded on L*(R") with bound C2"/? [(2’5)“‘16] , where C is independent of j, d and
0.

PrROOF OF THEOREM 2. Without loss of generality, we may assume that
> =m ID*Allpmo = 1. Let Qo be the cube centered at the origin with side length 1,
ie. Qo =[-1/2,1/2]". For each fixed § > 0, define

; Rm A; y
Toaf () = | | 0 K(x ) Rus1(Ai%)) 1y gy,
R lx - J’I
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By Theorem 1 and dilation-invariance, we have

1T5.4/1, < € Y IID*Allpmollfll,y 1 <p < co.

|a|=rm

Observe that if b€ BMO(R"), then for any ¢ >0 and ze€ R", bi(x) = b(tx+z) also
belongs to the space BMO(R") and ||b?||gmo = I16llgmo- Thus it suffices to show that
for some ¢ = ¢(T5.4f),

| 1T70) - clay < € int M1, 1<p<co,
Qo x€lo

with C independent of 6. Split f as

f ZfXSﬁQo +fXR"\8ﬁQ0 =fi + /2

Schwarz’s inequality then shows that

J,, ROy < ITsafilly < Conglifilly < C inf. Myfi ).

0

Thus our proof can be reduced to proving that for some ¢ = ¢(75.4f),

(13) |, 1740) = cldy < Conp inf Mp7 (), 1<p <o,
Qo x€Qo

We consider the following three cases.

Casel a>1. Setr=max{8,6¥@ D} and

S =f){'\/'_'Qo\g\/'—'Qo +fXR"\’ﬁQo =fu + /o
We first estimate 75 4fo1. Write
Rui(4i%,9) ,
————m— h(y)dy
=y )
R A; x, ;
+J K(x — y) Rt i %)) ioony ) gy,
R lx — |
By (1) we see that if x € Qp, and y € R"\8,/nQ,, then

Ty ah(x) = j [P0 _ o0 K (x — y)
R

Ieidi(éx—éy) _ ei¢(6y)| < C5a|y|a—l.
So we have that for any function 4 with supp s < R"\8,/nQy and x € Qy,

a Rm A; x?
(14) Ts.ah(x) ol < €5 | Rt D))

R"\8vAQ, |x — |

Rm+1 (A5 X, y)

i®©y) 4, _
x— T h(y)e dy — c|.

o e
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Using the techniques of Cohen and Gosselin [5], we can prove that for some ¢

L

Ry (A4;x,y)
| Kxx-») Rust(i%,3) ot g, () dy — | dx
R IX —J’|

< G I ID°Allgo inf Myf(x).

|ot|=m

For each fixed j € NV, set

1
4i(y) = A(y) - Z o mzjﬁQo(D“A)y“,
laj=m
then Rp.1(4;,y) = Rmy1(4j;x,p). Let jo € N such that 20 <r <20t Tt is easy to
find that for x € Qy,

R 1 A;x,
”| Ronerls x D) ay
rv/nQo \8v/nQo Ix "}’I
Jo

< Cs° Z

=1 Lf“ N SVIN T S

R (Aj; x,
Rl o 2|13ty

R 1 A';xay
Rt (A3 2D 1)

Jo
< Co° J
,; 24 /RQ\VVAGs |V
DPA() — my g, (D°4)
|y|n+1—a

+ Co* |fO)dy

|aj=m L’*‘ VnQo\2//nQo

Jo
<Cs* S 2ED inf M,
]2; nf Myf(x)

< 7! inf M,f(x), 1<p<o0.
xe@Qo

In the second-to-last inequality, we have invoked the fact that

Rn(4;;%,9)| < Clx—y", fxeQy and ye2*VnQo\¥vnQ, forjz2.
If T5 451 # 0, then r > 8 and r*~16° = 1. Thus by (14) we see that for some c,

J |T5.4f21(y) —cldy < C inf M,f(x), 1<p<oo.
Qo xeQo

Now we estimate Ts4f»n. Let K4(»,z) = K(y — 2)Rmy1(4;y,2)ly — 2", yoe
3v/nQo\2v/nQo. Then

Toafn0) = [ %0 [Ka0,2) ~ Kaln,2) i)
+ JR»: PO K 4 (yo, 2) fra(2) dz

= Rfn(y) + S ).
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Obviously,

|Rf2(y)| < L“MQ |K4(y,2) — K4(p0,2)| | f(2)| dz.

The standard arguement (see [S]) shows that
IRf2(y)| < C inf Mpf(x), y€Qo, 1<p<o0.

Let d be the small positive constant appeared in Lemma 5. Decompose Qp as

N
QO = U Qk,
k=1

where N = N(d) is a fixed positive integer, each Oy is a cube with diameter smaller than
d, and the cubes {Qi} have disjoint interiors. Let ¢ e C3°(R") such that supp¢ <
{3/4 <|x| <4} and é(x) =1 if 1 <|x| <2. Denote by V; the set {2 < |x| < 2!} for
j € N. Define the operator

Thh(x) = 1,9 | | X0 e@Iyhr) dy

and write

S 0ta0) =3 10.0) 052 2)K (0, 2) fin(2) dz

= J 2<|z| <241

= .0_.20 Ték (KA (o, ')XVifZZ) )-

By Lemma 5 and the duality, we see that

] inf2 | 14j sya—1 ~1/12 i
(15) Tl < €22 | @8y ~'s| "l 2 23V

On the other hand, we have the crude estimate
(16) 1T, A0, < Al
Interpolation between the inequalities (15) and (16) leads to that

: o i <vamt ]~ 1/64) .
(17) 1%, ll, < 29 [(215) 15] Ik, 2 =3vm 1<g<2.

For each fixed p, let 1 < g < min(2, p). Then

N
JQ IS0y < C 3 1(Sh)xglly
o k=1

N
<CY Y NThKa(o, Mty ),

k=1 2i*1>r/n

N © —
cc 30 3 2w @t " 1K e il

k=1 j=jo—1
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Set

40) = A0) ~ Y o my (DA, jeN.

laj=m =

We have

[ Ka 0. Yt S|, = 1K 00, ol

. 7 \la
sc[ (Bt ) @
V; [y = »ol

+C Y 2 (JV (ID“A(J’) — my,(D%)] Ifzz(y)|>q dy)

|a|=m

1/q

If ye V;N(R"\r\/nQp), by the familiar arguement involving Lemma 2,

|Ru(Aj; y0,9)| < Cly — yo|™

Holder’s inequality now gives

HKA(yo, ‘)xV,.fzz“q < 27 xié’& M, f(x)+ C27"4 xiggo M, f(x)
< C27M9 inf M,f(x).
xe Qo

Therefore,

N 00 -
JQ Sfaldy<C Y S [(21'5)““5] Ve inf M, f(x)

k=1 j=jo—1

)~1/(6q’

)
< c(a‘wl inf M,f() < C inf M,/(»).

Case Il a<1,a+#0andé”""% <4. Note that for each y € Qp and 1 < p < o0,

R Ay, z
g, Tl 1)
R\8VAQ, |y — 2|

Q0

]R (A‘;y,Z)I

<>S| o BRI a
j=2 Y2*1y/nQo\2/\/nQo ly - 2]

re Y | e -0l o
72 |amm 21 VR0\2 Qo jx =y

v 0]
< (a-1)j ; <C i
<C ]};5 26 inf M,f(x) < C inf Mpf(x), 1<p<co,
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and that for some c,

L

Rm+l(A;yaZ)
RS f e de — |y

< Cunp inf Mpf(x), 1<p<o0.
xeQo

[ k-2
R"\8v/nQo

The inequality (14) then gives our desired estimate (13) in this case.

Cast I a<1, a#0 and 6719 >4. Let r=061"% and joe N such that
20 < r < 2%l For y e Qo, we have

Rins1(4; y,2
5”J | m+1(m+n+l_)a| |f(Z)|dz
R'\rv/nQo Iy-z]
- Rin(4;;y,72)|
=0 J _lLJ’—’ 1) dz

ij; 2+ 700 \2 /00 |V _Z’m+n+l—a If ()

) D*A(2) — my /g, (D*4
+0°% J |D*A(z) 2nﬁ92( )| o)

T |almm 2 VRQ0\Y VG, ly — z|

a0
<Cs* S 2ED inf M,
; xngo pf(x)

<C inf M,f(x), 1<p<o0.
xe Qo
Again by (14), we see that for some c,

| 1Tsatrtieumo)0) = cldy < C inf M9, 1<p<co.
& xeQo

Using inequality (17), as in Case I, we can verify that
Jo a1 77
J,, B4t mosmo) 0Ny < € D2 (@8] ing 100
o j=1
<C inf Mpf(x), 1<p< 0,
xeQo

where y is a positive constant. This finishes the proof of Theorem 2.
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