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1. Introduction.

It is a fundamental problem to show the existence or nonexistence of a harmonic
map between complete Riemannian manifolds. In the case of compact manifolds, a re-
markable existence result is due to Eells-Sampson [3]. They showed that there exists a
harmonic map if the target manifold has nonpositive sectional curvature. However,
there is no general theory in the case the target manifold has positive sectional curvature.
AS for spheres, Smith [5] reduced the harmonic map equation to an ordinary differential
equation and solving it, he constructed harmonic maps between spheres (see [2, 12, 13]
for details and related topics).

This reduction technique works well even if manifolds are noncompact complete
ones. Indeed, Urakawa and the second author [11] proved the existence of harmonic
maps between noncompact cohomogeneity-one Riemannian manifolds. Here, a Rie-
mannian manifold $M$ is called a cohomogeneity-one Riemannian manifold if there exists
a compact Lie group action $G$ on $M$ such that the quotient space $M/G$ is a one-dimen-
sional manifold. If a harmonic map between cohomogeneity-one Riemannian manifolds
is invariant under these Lie group actions, then the harmonic map equation is reduced to
an ordinary differential equation. Using this reduction, they showed the existence of
harmonic maps between the complex hyperbolic spaces, the real hyperbolic spaces and
the standard Euclidean spaces.

Our purpose of this paper is to study the ordinary differential equation $(1.4)-(1.5)$

which appears in [11]. This equation has been already studied in [10], and proved the
existence of a global and unbounded solution. In this paper, under different and more
relaxed conditions, we present another proof of it and consider the finite time blow-up
problem, which asserts the nonexistence of a harmonic map.

Let $f_{i}(t)$ and $h_{i}(r)(i=1,2)$ be given functions defined on $[0, \infty)$ satisfying the fol-
lowing conditions.
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Science and Culture, Japan.
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(1.1) $\{$

. $f_{i}(t)>0$ on $(0, \infty)$ , and $f_{i}(t)\geq 0$ on $[0, \infty)$ ;

there exist positive constants $a_{i}(i=1,2)$ such that
$f_{i}(t)=a_{i}t+O(t^{3})$ (as $tarrow 0$);

for any $t_{0}>0$ there exists a constant $C=C(t_{0})$ such that

$0 \leq pt\frac{\dot{f}_{1}(t)}{f_{1}(t)}+qt\frac{\dot{f}_{2}(t)}{f_{2}(t)}-1\leq C$ on $[0, t_{0}]$ ;

(1.2) $\int_{t_{0}}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau<\infty$ .

(1.3) $\{$

$\{h_{i}h_{i}’\}’(r)\geq 0$ on [$0$ , oo);

there exist positive constants $b_{i}(i=1,2)$ such that

$h_{i}(r)=b_{i}r+O(r^{3})$ (as $rarrow 0$).

Here $\dot{r}$ (resp. $h’$ ) means $\frac{dr}{dt}(resp$ . $\frac{dh}{dr})$ .

For these given functions $f_{i}$ and $h_{i}$ , we consider the following ordinary differential
equation between a variable $t$ and unknown function $r=r(t)$ .

(1.4) $\ddot{r}(t)+\{p\frac{\dot{f}_{1}(t)}{f_{1}(t)}+q\frac{\dot{f}_{2}(t)}{f_{2}(t)}\}\dot{r}(t)$

$- \{\mu^{2}\frac{h_{1}(r(t))h_{1}’(r(t))}{f_{1}(t)^{2}}+v^{2}\frac{h_{2}(r(t))h_{2}’(r(t))}{f_{2}(t)^{2}}\}=0$ on $(0, \infty)$ ;

(1.5) $\lim_{tarrow 0}r(t)=0$ ,

where $\mu$ and $v$ are nonnegative numbers. In an application, $p$ and $q$ stand for dimen-
sions of manifolds, but we suppose here that they satisfy the following condition.

$\{$

$p\geq 1$ and $q\geq 1$ ,

or
$p+q\geq 1$ if $f_{1}(t)\equiv cf_{2}(t)$ for some constant $c>0$ .

If $\mu+v=0$ , then we can easily verify that $r(t)\equiv 0$ is the unique solution to $(1.4)-$

(1.5). Thus we assume $\mu>0$ .
Let

$h(r)=\{$
$\max\{h_{1}(r), h_{2}(r)\}$ $(v>0)$ ,
$h_{1}(r)$ $(v=0)$ .

In \S 2, we prove that if the condition

$\int^{\infty}\frac{dr}{h(r)}=\infty$
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holds, then every solution to $(1.4)-(1.5)$ is a global and bounded one. Since each solu-
tion is increasing in $t$ ([10, Lemma 3.1]), its final value $\lim_{tarrow\infty}r(t)$ always exists.
Conversely, for any given $l\in[0, \infty)$ , we consider the problem of finding a global solution
$r=r(t)$ such that $\lim_{tarrow\infty}r(t)=l$ . This problem is called the final value problem. In \S 3,
we show this problem is solvable for any final value $1\in[0, \infty)$ . This type of problem
has been already considered by Ratto-Rigoli [4, \S 3] in the rotationally symmetric
case. However, it seems to the authors to need more discussions. They use the con-
tinuously dependence of solutions on its initial value. However, it is generally valid only
on finite interval. If we apply their method, we need some information about, for ex-
ample, the stability of solutions.

In \S 4, we assume the condition

$\int^{\infty}\frac{dr}{h(r)}<\infty$ ,

which means any solution is not bounded. In this case, we consider the following
problem: For any given $T\in(O, \infty]$ , find a solution to $(1.4)-(1.5)$ whose life span is
$[0, T)$ . We call this problem the prescribed blow-up time problem. Applying the same
argument in \S 3, for any given $T\in(O, \infty]$ , we can construct a solution $r=r(t)$ such that
$\lim_{tarrow T}r(t)=\infty$ .

In the last section, we apply these results to show the existence of equivariant har-
monic maps between real hyperbolic spaces. Our results have more applications, for
detail, see [11].

Finally, we note that, under different condition, Tachikawa [6], [7] and Akutagawa-
Tachikawa [1] showed the nonexistence results for harmonic maps between noncompact
complete manifolds. They assumed only asymptotic conditions at infinity and made use
of ordinary differential equations to construct a comparison function.

2. Existence of global solutions.

In this section we prove a sufficient condition for the existence of global solutions.
The following lemmas hold under our conditions.

LEMMA 2.1 ([10, Lemma 3.1]). Let $[0, T)$ be the life span of a solution $r$ to (1.4).
Then

$\dot{r}(t)>0$ on $(0, T)$ ,

unless $r(t)\equiv 0$ . Furthermore $\iota fT<\infty$ , then

$\lim_{t\uparrow T}r(t)=\infty$ .

LEMMA 2.2 ([10, Lemma 2.6]). Let $r_{i}=r_{i}(t)(i=1,2)$ be solutions to $(1.4)-(1.5)$ with

$r_{1}(t_{0})=r_{2}(t_{0})$
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for some $t_{0}>0$ . Then it holds that

$r_{1}(t)\equiv r_{2}(t)$ on $[0, t_{0}]$ .

LEMMA 2.3 ([10, Lemma 3.3]). Let $r=r(t)$ be a non trivial solution to $(1.4)-$

(1.5). Then it holds that for $t>0$

(2.1) $\dot{r}(t)^{2}\leq\frac{\mu^{2}}{f_{1}(t)^{2}}h_{1}(r(t))^{2}+\frac{v^{2}}{f_{2}(t)^{2}}h_{2}(r(t))^{2}$ .

If $r(t)=0$ for some $t>0$ , then $r(t)\equiv 0$ by Lemma 2.2. Thus it is a global solution.
In the remainder of this section, we assume $r(t)>0$ for all $t>0$ .

From Lemma 2.1 and Lemma 2.3, we have

$\frac{\dot{r}(t)}{h(r(t))}\leq\gamma\{\frac{1}{f_{1}(t)}+\frac{1}{f_{2}(t)}\}$ ,

where $h(r)$ is defined in the previous section and $\gamma=\max\{\mu, v\}$ . Integrating both sides
from $t_{0}$ to $t$, where $t\in[t_{0}, T]$ , we obtain

(2.2) $\int_{r_{0}}^{r(t)}\frac{dr}{h(r)}\leq\gamma\int_{t_{0}}^{t}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau$ .

THEOREM 2.4. Let $t_{0}$ and $r_{0}sati \oint y$

(2.3) $\int_{r_{0}}^{\infty}\frac{dr}{h(r)}>\gamma\int_{t_{0}}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau$ .

Then there exists a global solution $r=r(t)$ to $(1.4)-(1.5)$ satisfying $r(t_{0})=r_{0}$ and it is
bounded.

PROOF. Let $[0, T)$ be the life span of $r$ , and assume $T<\infty$ . Then by virtue of
Lemma 2.1 and (2.2), we have

$\int_{r_{0}}^{\infty}\frac{dr}{h(r)}=\lim_{t\uparrow T}\rfloor_{r_{0}}^{\sim r(t)}\frac{dr}{h(r)}\leq\gamma\lim_{t\uparrow T}\int_{t_{0}}^{f}\{’\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau\leq\gamma\int_{t_{0}}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau$ ,

which contradicts the assumption. Thus $T=\infty$ .
Suppose $r=r(t)$ is not bounded. Then from the same argument we obtain a con-

tradiction:

$\int_{r_{0}}^{\infty}\frac{dr}{h(r)}=\lim_{tarrow\infty}\int_{r_{0}}^{r(t)}\frac{dr}{h(r)}\leq\gamma\int_{t_{0}}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau$ . $\square$

COROLLARY 2.5. If

(2.4) $\int^{\infty}\frac{dr}{h(r)}=\infty$ ,

then any solution to $(1.4)-(1.5)$ can be extended globally in $t$ and it is bounded.



Initial-final value problems 549

PROOF. The assumption of Theorem 2.4 is always valid. $\square$

REMARK. Since we assume the condition (1.2), the condition (2.3) holds for suffi-
ciently large $t_{0}$ . Thus a non-trivial global solution to $(1.4)-(1.5)$ always exists.

3. The final value problem.

Our problem always has bounded global solution. Thus the set

$L= \{\lim_{tarrow\infty}r(t)|r$ is a bounded global solution to $(1.4)-(1.5).\}$

is not empty. In this section, we shall show that $L=[0, \infty)$ . Indeed, we can prove the
existence of the global solution to $(1.4)-(1.5)$ satisfying $\lim_{tarrow\infty}r(t)=l$ for any given
$l\in[0, \infty)$ .

PROPOSITION 3.1. $L$ is dense in $[0, \infty)$ .

PROOF. Since our problem has trivial solution, $O\in L$ . For any given $l>0$ and
$\epsilon\in(0, l)$ , we shall show

$(l-\epsilon, l+\epsilon)\cap L\neq\emptyset$ .

Let $T_{0}$ be a positive number so that

$\int_{l-\epsilon}^{\infty}\frac{dr}{h(r)}>\gamma\int_{t_{0}}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau$

holds for any $t_{0}>T_{0}$ . Then Theorem 2.4 shows the existence of the global solution to
$(1.4)-(1.5)$ satisfying

$r(t_{0})=l-\epsilon>0$ .

We denote this solution by $r(t;t_{0})$ . Since it is bounded and increasing in $t$ , the limit
$r(\infty;t_{0})$ exists and

$0<l-\epsilon<r(\infty;\iota_{\cup}t-)<\infty$ .

The inequality (2.2) yields

$\int_{l-\epsilon}^{r(\infty;t_{0})}\frac{dr}{h(r)}\leq\gamma\int_{t_{0}}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau$ .

Since the right hand side tends to $0$ as $t_{0}arrow\infty$ , we have

$\lim_{t_{0}arrow\infty}r(\infty;t_{0})=l-\epsilon$ .

Therefore for sufficiently large $t_{0}$ , it holds that

$r(\infty;t_{0})\in(l-\epsilon, l+\epsilon)$ . $\square$

THEOREM 3.2. For any $l\in[0, \infty)$ , there exists the unique solution to $(1.4)-(1.5)$ sat-
isfying $\lim_{tarrow\infty}r(t)=l$ . Therefore $L=[0, \infty)$ .
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PROOF. If $l=0$ , then $r(t)\equiv 0$ is the desired solution. We assume $1>0$ . Proposi-
tion 3.1 asserts that there exist solutions $\underline{r}_{i},\overline{r}_{j}$ to $(1.4)-(1.5)$ such that

$\underline{l}_{1}<\underline{l}_{2}<\cdotsarrow l$ , $\overline{l}_{1}>\overline{l}_{2}>\cdotsarrow l$ ,

where $\underline{l}_{i}=\lim_{tarrow\infty}\underline{r}_{i}(t),\overline{l_{j}}=\lim_{tarrow\infty}\overline{r}_{j}(t)$ . It follows from Lemma 2.2 that

$\underline{r}_{1}(t)<\underline{r}_{2}(t)<\cdots<\overline{r}_{2}(t)<\overline{r}_{1}(t)$ .

Therefore, for any fixed $t_{0}>0$, we have two positive numbers $\underline{\alpha}$ and ct defined by

$\underline{\alpha}=\lim_{iarrow\infty}\underline{r}_{i}(t_{0})$ , $\overline{\alpha}=\lim_{jarrow\infty}\overline{r}_{j}(t_{0})$ .

Let us choose $\alpha$ such that $\underline{\alpha}\leq\alpha\leq\overline{\alpha}$, and let $r_{\alpha}$ be the solution to $(1.4)-(1.5)$ satisfying
$r_{\alpha}(t_{0})=\alpha$ . Then, from Lemma 2.2, we have

$\underline{r}_{i}(t)<r_{\alpha}(t)<\overline{r}_{j}(t)$

for $t>0$ . Hence $r_{\alpha}$ is the global solution. Passing to $tarrow\infty$ firstly, and to $iarrow\infty$ ,
$jarrow\infty$ secondly, we obtain

$\lim_{tarrow\infty}r_{\alpha}(t)=l$ .

NOW we show that $r_{\alpha}$ is the only solution to our problem. Let $r$ be another solution
to $(1.4)-(1.5)$ satisfying $\lim_{tarrow\infty}r(t)=l$ . We denote $r_{\alpha}-r$ by $p$ . Then it holds that

$\ddot{\rho}+(p\frac{\dot{f}_{1}}{f_{1}}+q\frac{\dot{f}_{2}}{f_{2}})\dot{\rho}$

$= \frac{\mu^{2}}{f_{1}^{2}}(h_{1}(r_{\alpha})h_{1}’(r_{\alpha})-h_{1}(r)h_{1}’(r))+\frac{v^{2}}{f_{2}^{2}}(h_{2}(r_{\alpha})h_{2}’(r_{\alpha})-h_{2}(r)h_{2}’(r))$ .

Multiplying both sides by $f_{1}^{p}f_{2}^{q}p$ , we have

$J_{1}^{p}f_{2}^{\overline{q}}p\cross$ (the right-hand side) $\geq 0$ .

Therefore we obtain

$\frac{d}{dt}(f_{1}^{p}f_{2}^{q}\rho\dot{\rho})\geq f_{1}^{p}f_{2}^{q}i^{2}\geq 0$ .

Since $(f_{1}^{p}f_{2}^{q}p\dot{p})(0)=0$ ( $[10$, Corollary]) and $f_{i}(t)>0$ for $t>0$ , it holds that

$pi\geq 0$ .

Thus

$\frac{d}{dt}\{p(t)^{2}\}\geq 0$

for $t>0$ . We can conclude that $\rho$ is identically zero because

$\lim_{tarrow\infty}p(t)^{2}=0$ . $\square$
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4. The prescribed blow-up ime problem.

In this section, we study the prescribed blow-up problem. Namely, for any given
$T(0<T<\infty)$ , we show that there exists a solution $r=r(t)$ to $(1.4)-(1.5)$ satisfying
$\lim_{tarrow T}r(t)=\infty$ .

We suppose that $h(r)$ satisfies

(4.1) $\int^{\infty}\frac{dr}{h(r)}<\infty$ .

REMARK. If the assumption (4.1) does not hold, then every solution is bounded, see
Corollary 2.5.

For $t_{0}>0,$ $r_{0}\geq 0$ , let $r=r(t)$ be the solution to $(1.4)-(1.5)$ with $r(t_{0})=r_{0}$ . Set

$\phi(r_{0}, t_{0})=\int_{r_{0}}^{\infty}\frac{dr}{\sqrt{\gamma_{1}(t_{0})^{2}\{h_{1}(r)^{2}-h_{1}(r_{0})^{2}\}+\gamma_{2}(t_{0})^{2}\{h_{2}(r)^{2}-h_{2}(r_{0})^{2}\}+\beta(r_{0},t_{0})^{2}}}$
,

where

$\gamma_{1}(t_{0})=\frac{\mu}{f_{1}(t_{0})}$ , $\gamma_{2}(t_{0})=\frac{v}{f_{2}(t_{0})}$ and $\beta(r_{0}, t_{0})=\dot{r}(t_{0})$ .

LEMMA 4.1. $\phi(r_{0}, t_{0})$ is well-defined for all $t_{0}>0,$ $r_{0}>0$ and

$\lim_{r_{0}arrow\infty}\phi(r_{0}, t_{0})=0$

for any fixed $t_{0}>0$ .

PROOF. It follows from (1.3) that $(h_{i}^{2})’(r)\geq(h_{i}^{2})’(r-r_{0})$ for $r>r_{0}$ . Integrating
both sides with respect to $r$ from $r_{0}$ to $r$, we get

$h_{i}(r)^{2}-h_{i}(r_{0})^{2}\geq h_{i}(r-r_{0})^{2}$ .

Therefore it holds that for $K>0$

$\int_{r_{0}+K}^{\infty}\frac{dr}{\sqrt{\gamma_{1}(t_{0})^{2}\{h_{1}(r)^{2}-h_{1}(r_{0})^{2}\}+\gamma_{2}(t_{0})^{2}\{h_{2}(r)^{2}-h_{2}(r_{0})^{2}\}+\beta(r_{0},t_{0})^{2}}}$

$\leq C(t_{0})\int_{r_{0}+K}^{\infty}\frac{dr}{\sqrt{h_{1}(r-r_{0})^{2}+h_{2}(r-r_{0})^{2}}}$

$\leq C(t_{0})\int_{K}^{\infty}\frac{dr}{h(r)}$ .

For any $\epsilon>0$ , the last side is smaller than $\epsilon$ if $K$ is sufficiently large.
On the other hand, the mean value theorem and (1.3) assert that

$h_{i}(r)^{2}-h_{i}(r_{0})^{2}=2h_{i}(p_{i})h_{i}’(\rho_{i})(r-r_{0})>0$ ,
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$forsomep_{i}\in(r_{0}, r)$ . Hence we obtain

$\int_{r_{0}}^{r_{0}+K}$

$dr$

$\sqrt{\gamma_{1}(t_{0})^{2}\{h_{1}(r)^{2}-h_{1}(r_{0})^{2}\}+\gamma_{2}(t_{0})^{2}\{h_{2}(r)^{2}-h_{2}(r_{0})^{2}\}+\beta(r_{0},t_{0})^{2}}$

$\leq\frac{1}{\sqrt{2(\gamma_{1}(t_{0})^{2}h_{1}(r_{0})h_{1}’(r_{0})+\gamma_{2}(t_{0})^{2}h_{2}(r_{0})h_{2}’(r_{0}))}}\int_{r_{0}}^{r_{0}+K}\frac{dr}{\sqrt{r-r_{0}}}$

$\leq C(t_{0})\sqrt{K}\min\{\frac{1}{\sqrt{h_{1}(r_{0})h_{1}(r_{0})}},\frac{1}{\sqrt{h_{2}(r_{0})h_{2}’(r_{0})}}\}$ .

NOW we shall show that the last side converges to zero as $r_{0}arrow\infty$ . Assume that both
$h_{1}(r)h_{1}’(r)$ and $h_{2}(r)h_{2}’(r)$ are bounded functions. Then, because of (1.3), we get

$h_{i}(r)^{2}\leq Cr$ ,

which yields a contradiction:

$\int^{\infty}\frac{dr}{h(r)}\geq C\int^{\infty}\frac{dr}{\sqrt{r}}=\infty$ .

Thus

$\lim_{r_{0}arrow\infty}\max\{\sqrt{h_{1}(r_{0})h_{1}’(r_{0})},$ $\sqrt{h_{2}(r_{0})h_{2}’(r_{0})}\}=\infty$

and we have

$\lim_{r_{0}arrow\infty}\int_{r_{0}}^{r_{0}+K}\frac{dr}{\sqrt{\gamma_{1}(t_{0})^{2}\{h_{1}(r)^{2}-h_{1}(r_{0})^{2}\}+\gamma_{2}(t_{0})^{2}\{h_{2}(r)^{2}-h_{2}(r_{0})^{2}\}+\beta(r_{0},t_{0})^{2}}}=0$
.

Summing up these estimates for integrations over $[r_{0}, r_{0}+K]$ and $[r_{0}+K, \infty)$ , we obtain
the assertion. $\square$

We define a set $B$ as follows.

$B=\{T\in(0, \infty)|There$ exists a solution $r=r(t)$ to $(1.4)-(1.5)$ satisfying $\lim_{tarrow T}r(t)=\infty.\}$

PROPOSITION 4.2. $B$ is dense in $(0, \infty)$ .

PROOF. For any fixed $T>0$ and $\epsilon\in(0, T)$ , we shall show

$(T-\epsilon, T+\epsilon)\cap B\neq\emptyset$ .

Let $r_{\alpha}$ be the solution to $(1.4)-(1.5)$ satisfying $r_{\alpha}(T)=\alpha$ and $[0, T_{\alpha})$ its life span. Then
we have

$\phi(\alpha, T)if_{1}(T)^{p}f_{2}(T)^{q}\int_{T}^{T_{\alpha}}\frac{d\tau}{f_{1}(\tau)^{p}f_{2}(\tau)^{q}}$
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([10, Lemma 3.5]). Since the left hand side goes to $0$ as $\alpha$ tends to infinity,

$\lim_{\alphaarrow\infty}T_{\alpha}=T$ .

Hence $T_{\alpha}\in(T-\epsilon, T+\epsilon)$ for sufficiently large $\alpha$ . $\square$

THEOREM 4.3. For any $T(0<T<\infty)$ , there exists a solution $r=r(t)$ to $(1.4)-(1.5)$

satisfying $\lim_{tarrow T}r(t)=\infty$ .

PROOF. By virtue of Proposition 4.2 there exist solutions $\underline{r}_{i},\overline{r}_{j}$ to $(1.4)-(1.5)$ such
that

$0<\underline{T}_{1}<\underline{T}_{2}<\cdotsarrow T$ , $\overline{T}_{1}>\overline{T}_{2}>\cdotsarrow T$ ,

where $[0, \underline{T}_{i})$ (resp. $[0,\overline{T}_{j}$ ) $)$ is the life span of $\underline{r}_{i}$ (resp. $\overline{r}_{j}$ ). It follows from Lemma 2.2
that

$\overline{r}_{1}(t)<\overline{r}_{2}(t)<\cdots<\underline{r}_{2}(t)<\underline{r}_{1}(t)$

as long as they exist. Therefore, for any fixed $t_{0}(0<t_{o}<\underline{T}_{1})$ , we have two positive
numbers $\underline{\alpha}$ and ct defined by

$\underline{\alpha}=\lim_{iarrow\infty}\underline{r}_{i}(t_{0})$ , $\overline{\alpha}=\lim_{jarrow\infty}\overline{r}_{j}(t_{0})$ .

We choose $\alpha$ such that $\overline{\alpha}\leq\alpha\leq\underline{\alpha}$, and denote by $r_{\alpha}$ the solution to $(1.4)-(1.5)$ satisfying
$r_{\alpha}(t_{0})=\alpha$ . Then, for any $i$ and $j$ , it holds that

$\overline{r}_{i}(t)<r_{\alpha}(t)<\underline{r}_{j}(t)$

as long as they exist. Thus

$\underline{T}_{j}<T_{\alpha}<\overline{T}_{i}$ ,

where $[0, T_{\alpha})$ is the life span of $r_{\alpha}$ . Letting $i$ and $jarrow\infty$ , we obtain $T_{\alpha}=T$ . $\square$

Combining Theorem 3.2 and Theorem 4.3, we can prove the existence of a global
and bounded solution to $(1.4)-(1.5)$ .

COROLLARY 4.4 ([10, Theorem $B]$ ). There exists a global solution $r=r(t)$ satisfying

$\lim_{tarrow\infty}r(t)=\infty$ .

PROOF. By virtue of Theorem 3.2 and Theorem 4.3, we can choose sequences of
positive numbers $\{l_{j}\}_{j=1}^{\infty},$ $\{T_{i}\}_{i=1}^{\infty}$ and sequences of solutions $\{\underline{r}_{j}\}_{j=1}^{\infty},$

$\{\overline{r}_{i}\}_{i=1}^{\infty}$ to $(1.4)-(1.5)$

so that

$l_{1}<l_{2}<\cdotsarrow\infty$ , $\lim_{tarrow\infty}\underline{r}_{j}(t)=l_{j}$ ,

$T_{1}<T_{2}<\cdotsarrow\infty$ , $\lim_{t\uparrow T_{i}}\overline{r}_{i}(t)=\infty$ .

For any fixed $t_{0}<T_{1}$ , put

$\overline{\alpha}-\lim_{iarrow\infty}\overline{r}_{i}(t_{0})$ , $\underline{\alpha}=\lim_{jarrow\infty}\underline{r}_{j}(t_{0})$ .
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Note that ct and $\underline{\alpha}$ are well-defined and $0<\underline{\alpha}\leq\overline{\alpha}<\infty$ . Let $\alpha$ be a number satisfying
$\underline{\alpha}\leq\alpha\leq\overline{\alpha}$ and $r_{\alpha}$ the solution to $(1.4)-(1.5)$ such that $r_{\alpha}(t_{0})=\alpha$ . Then, for any $i$ and $j$ ,
we can easily verify that

$\underline{r}_{j}(t)\leq r_{\alpha}(t)\leq\overline{r}_{i}(t)$

as long as they exist. The second inequality implies that $T_{\alpha}=\infty$ , and the first one
asserts

$\lim_{tarrow\infty}r_{\alpha}(t)=\infty$ . $\square$

5. Applications.

AS applications, we show the existence of equivariant harmonic maps between real
hyperbolic spaces and from real hyperbolic spaces to the real Euclidean spaces. The real
hyperbolic space $RH^{m+1}$ can be considered as the product space $R_{+}\cross S^{m}$ equipped with
the metric $dt^{2}+\sinh^{2}td\Theta^{2}$ in the coordinate $(t, \Theta)\in R_{+}\cross S^{m}$ , where $R_{+}=\{r\in R|r\geq 0\}$ ,
$S^{m}$ is the $m$-dimensional unit sphere and $d\Theta^{2}$ is the standard metric on $S^{m}$ . We call a
map $\psi$ : $RH^{m+1}arrow RH^{n+l}$ is equivariant if it has the following form:

ut : $RH^{m+1}\ni(t, \Theta)\mapsto(r(t), \phi(\Theta))\in RH^{n+1}$ ,

where $r$ (resp. $\phi$ ) is a map from $R_{+}$ (resp. $S^{m}$ ) into $R_{+}$ (resp. $S^{n}$ ). The sufficient and
necessary conditions for ut to be a harmonic map from $RH^{m+1}$ into $RH^{n+1}$ are

(5.1) $\ddot{r}(t)+m\frac{\cosh t}{\sinh t}\dot{r}(t)-2e(\phi)\frac{\sinh r(t)\cosh r(t)}{\sinh^{2}t}=0$ , $\lim_{tarrow 0}r(t)=0$ ,

and

(5.2) $\emptyset$ : $S^{m}arrow S^{n}$ is harmonic and $e(\emptyset)$ is constant,

where $e(\emptyset\grave{)}$ denotes the energy density of $\emptyset,\dot{r}(t)=dr/dt$ and $\ddot{r}(t)=d^{2}r/dt^{2}$ . A map $\emptyset$ ,
which satisfies (5.2), is called an eigenmap and its energy density is given by $2e(\phi)=$

$k(k+m-1)(k=1,2, \ldots)$ . In this case, $f_{1}(t)=f_{2}(t)=\sinh t,$ $h_{1}(r)=h_{2}(r)=\sinh r$

and $p+q=m,$ $\mu^{2}+v^{2}=k(k+m-1)$ . Since we can easily verify that these functions
satisfy the conditions $(1.1)-(1.3)$ and (4.1), there exist global solutions $r=r(t)$ of (5.1).
Hence given an eigenmap from $S^{m}$ to $S^{n}$ , then we can construct an equivariant harmonic
map from $RH^{m+1}$ into $RH^{n+1}$ .

THEOREM 5.1. Let $\emptyset$ be an eigenmap from $S^{m}$ to $S^{n}$ . Then there exists an equivar-
iant harmonic map from $RH^{m+1}$ to $RH^{n+1}$ . In particular, if $\emptyset$ is an onto map, then we
can construct an onto harmonic map.

For the existence and properties of eigenmaps, see [8], [9] and their references.
If the target manifold is the real Euclidean space, then $h(r)=r$ so that conditions

$(1.1)-(1.3)$ and (2.4) are fulfilled. Thus, as an application of Corollary 2.5, we have
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THEOREM 5.2. There exist equivariant harmonic maps from $RH^{m+1}$ into $R^{n+1}$ and
each of them is bounded.
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