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Introduction.

ThiS paper iS cOncemed with aSpectS Of the general prOblem Of cOnStructing and
diStinguiShing equivariant algebraic vectOr bundleS Over a baSe Space which iS an affine
variety with an algebraic actiOn Of a cOmplex reductive grOup $G$ i.e. an affine G-variety.

In previOuS paperS (See referenceS.) we have been intereSted in general aSpectS Of
equivariant Stably trivial vectOr bundleS Over a baSe which iS an arbitrary affine G-
variety. In thOSe paperS Special emphaSiS waS placed On the caSe where the baSe iS a
repreSentatiOn. In thiS paper we intrOduce a new claSS Of equivariant varietieS aS baSe
Space. FOr theSe we give a cOmplete deScriptiOn Of a naturally defined SubSet Of Stably
trivial equivariant bundleS and give applicatiOnS.

There are twO impOrtant claSSeS Of baSe SpaceS fOr equivariant vectOr bundleS. TheSe
are hOmOgeneOuS SpaceS and repreSentatiOnS. In the caSe Of hOmOgeneOuS SpaceS all
equivariant vectOr bundleS are knOwn and eaSy tO deScribe. FOr repreSentatiOnS, far
leSS iS knOwn but an intereSting picture iS develOping. What we dO in thiS paper iS tO
intrOduce a claSS Of affine $G$-varietieS called weighted $G$-cones which frOm the pOint Of
view Of the $G$-actiOn are SOmewhat mOre cOmplex than hOmOgenOuS SpaceS but far Sim-
pler than repreSentatiOnS. We are able tO deScribe SOme Of the equivariant vectOr bundleS
Over weighted $G$-cOneS in TheOrem A. AS an applicatiOn we apply the reSultS tO deScribe
familieS Of equivariant vectOr bundleS Over repreSentatiOnS. See TheOremS $B$ and C.

Here iS SOme Of the hiStOry which inSpired thiS wOrk. It illuStrateS the State Of the
Subject. The hiStOry beginS with twO impOrtant prOblemS–the Equivariant Serre
PrOblem and the Linearity PrOblem.

LINEARITY PROBLEM. IS every algebraic action of $G$ on $C^{n}$ conjugate to a linear
action?

KambayaShi in [Ka] cOnjectured an affirmative anSwer and treated thiS in a paper
with RuSSell in [KR]. ThiS Stimulated a lOt Of reSearch. SOmewhat later BaSS-HabOuSh
[BH1] tied thiS in with the Equivariant Serre PrOblem and ShOwed hOw tO prOduce a
negative anSwer tO the Linearity PrOblem frOm a negative anSwer tO the Equivariant
Serre PrOblem.

*Ted Petrie acknowledges support from the National Science Foundation USA.



380 M. MASUDA, L. MOSER-JAUSLIN and T. PETRIE

EQUIVARIANT SERRE PROBLEM. Is an algebraic $G$-vector bundle over a representation
$B$ of $G$ trivial, $i.e.$ , isomorphic to $B\cross F$ for some representation $F$ of $G$?

The answer to both questions is unknown for all groups and in the case of the
Equivariant Serre Problem is rather subtle. It is true for some groups and false for
others. Schwarz [S] gave the first negative solutions to both problems for several
non abelian infinite groups. There are also negative solutions for finite groups. See
[MP1, MP2]. The authors in [MMP3] show that the Equivariant Serre Problem does
have an affirmative answer for abelian groups.

Another interesting feature of this problem is that in the cases where there is a non
trivial $G$-vector bundle over a representation, there are continuous families of G-vector
bundles over this representation. This means that we can expect the problem of
distinguishing equivariant vector bundles in the algebraic category to be more difficult
than in the topological category. In fact the problem of classification of equivariant
vector bundles is probably hopeless and one should concentrate on giving a general
construction of equivariant vector bundles and methods for distinguishing them. In
[MP1] and [MP2], we give a construction $E_{\Phi}$ (See section 3.) of equivariant vector
bundles over an arbitrary affine $G$-variety and give an invariant $\rho$ (See below.) of these
bundles. This construction and invariant were used to establish the existence of amilies
of negative solutions to the Equivariant Serre Problem for certain families of finite
groups mentioned above ([MP1], [MP2]) and for non abelian connected reductive groups
([MMPI], [MMP2]).

Prior to the papers cited above Bass and Haboush made several important
contributions to the Equivariant Serre Problem [BH1] and [BH2]. In particular they
showed that equivariant vector bundles over representations are stably trivial. Their
work together with our experience with stably trivial vector bundles in topology led us to
consider a subset $VEC(B, F;S)$ of stably trivial vector bundles over the affine G-variety
$B$ depending on representations $F$ and $S$ of $G$ . This is the set of isomorphism classes of
$G$-vector bundles over $B$ whose Whitney sum with $S$ is $F\oplus S$, where $F$ resp. $S$ denotes
the trivial $G$-vector bundle over $B$ whose total space is $B\cross F$ resp. $B\cross S$ . There are
two important features of the sets $VEC(B, F;S)$ : Varying $F$ and $S$ gives all equivariant
vector bundles over $B$ when $B$ is a representation. The set $VEC(B, F;S)$ is naturally
isomorphic via Theorem 1.1 to the orbit space of an action of the automorphism group
of the bundle $F\oplus S$ on the space of surjective $G$-vector bundle morphisms of $F\oplus S$

to S.
In [MP1] we produce a function

$p:VEC(B, F;S)arrow(R/I)^{*}/\Gamma$

where $R$ is the ring of $G$-vector bundle endomorphisms of $S,$ $I$ is an ideal in $R,$ $(R/I)^{*}$

denotes the units of this quotient ring and $\Gamma$ is a subgroup of units. (See section 1).

This is essential to all that we do here and is responsible for our contributions to the
existence of the negative solutions to the Equivariant Serre Problem mentioned above.
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AS mentioned the problem of classifying equivariant vector bundles over an
arbitrary affine $G$-variety $B$ seems to be out of the question. A more tractable problem
is to identify and distinguish a natural class of equivariant vector bundles. The con-
struction $E_{\Phi}$ and invariant $\rho$ are our main tools for this and the set $VEC(B,F;S)$ is a
convenient subset of $G$-vector bundles for organizing this problem.

We now define the weighted $G$-cones mentioned above. More specifically these G-
varieties are called weighted $G$-cones with smooth one dimensional quotients, and will
be abbreviated as weighted $G$-cones in this paper. Here is a brief picture of the
equivariant algebraic geometry of these varieties. A variety $B$ is a weighted $G$-cone if
it is an affine $G\cross C^{*}$ -variety whose quotient by $C^{*}$ is a point and whose quotient by $G$

is the complex line $C$ . Each weighted $G$-cone $B$ contains a special $G$-cone $B^{s}$ (section 2)

which may be viewed as a parametrized family of homogeneous spaces in the sense that
there is a $G$-invariant map $\Delta$ : $B^{s}arrow C$ with $\Delta^{-1}(t)\cong G/H$ for $t\neq 0$ . Here $H$ is a fixed
reductive subgroup of $G$ . The special $G$-cone $B^{s}$ captures all the equivariant bundle
information of $B$ because $VEC(B, F;S)arrow VEC(B^{s},F;S)$ is bijective. See 1.3 and 2.2.

The use of cones to treat equivariant vector bundles over representations began
informally several years ago. It started with our realization that the invariant $\rho$ which
we introduced in [MP1] to distinguish equivariant vector bundles over representations
could also be fruitfully employed as an invariant for the restrictions of these bundles
to the closure of an orbit of a linear subspace. These closures are $G\cross C^{*}$ -varieties and
cones. The $C^{*}$ -action comes from scalar multiplication in the representation. The
point is that the determination of the invariant for the restriction of the bundle to the
cone is often more tractable than for the bundle itself. From this informal beginning
developed the wish to find a simple useful setting where the invariant led to an iso-
morphism. We found this setting in the notion of weighted and special $G$-cones. (The

weighted $G$-cones here are associated with the closure of the orbit of a line in a
representation.) An announcement of a preliminary version of this work appears in
[MJ].

One simple but important class of weighted $G$-cones is the set of representations
with one dimensional quotient. Kraft and Schwarz treated vector bundles over such
representations from a different viewpoint in [KS].

We now discuss the main results of the paper. For this $B$ denotes a weighted G-
cone. An essential feature of a weighted $G$-cone is that its ring of $G$-invariant functions
is a polynomial ring in one variable $C[\Delta]$ . The ideal in this ring generated by $\Delta^{m}$ is
denoted by $(\Delta^{m})$ . In our case here $S=C$ and $B$ is a weighted $G$-cone. In this case it
is easy to see that $R=C[\Delta]$ .

THEOREM A. (1) $\rho:VEC(B, F;C)arrow(R/I)^{*}/\Gamma$ is bijective.
(2) The multiplicative group $(R/I)^{*}/\Gamma$ is isomorphic to a vector space $(\Delta)/(\Delta^{d+1})$

$(\cong C^{d})$ via a logarithmic map $\log$ which converts multiplication to addition. Here
$d=d(B, F)$ is a non-negative integer $de_{p}ending$ on $B$ and $F$ .

Hence $\log\rho$ : $VEC(B, F;C)arrow(\Delta)/(\Delta^{d+1})\cong C^{d}$ is bijective.
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DEFINITION. We say that a representation $V$ of $G$ is multiplicity free with respect to
$H$ if each irreducible representation of $H$ occurs in $V$ (viewed as a representation of $H$)

with multiplicity at most 1.

For applications of Theorem $A$ , one must determine $d(B, F)$ . For that purpose we
define an explicit integer $e(B, F)$ which gives good upper bound.

THEOREM B. There is an explicit integer $e(B,F)$ (defined in section 6) such that
$d(B, F)\leq e(B,F)$ with equality holding if $F$ is a multiple of a representation of $G$ which is
multiplicity free with respect to a principal isotropy group of $B$.

This result allows us to give explicit examples of non-trivial equivariant vector
bundles.

Here is a brief picture of applications of the theory on cones to equivariant vector
bundles over representations. Let $V$ be a representation of $G$ such that its ring of
invariants $\mathcal{O}(V)^{G}$ is not $C$ , in other words, there is a non-zero $x\in V$ whose orbit
is closed. From the closure of the $G\cross C^{*}$ -orbit of $x$ , we produce (section 7) a special
$G$-cone $B=B(V;x)$ (or $B_{1}(V;x)$ ) together with a $G$-morphism $\iota$ : $Barrow V$ . This induces
a map

$\iota^{*}$ : $\mathcal{O}(V)_{1}^{G}arrow(\Delta)/(\Delta^{d(B,F)+1})\cong C^{d}$

where $0(V)^{G}1$ is the ideal of invariant functions on $V$ with zero constant term. The
image of $\iota^{*}$ is a complex vector space whose dimension we denote by $f(V, F;x)$ . This
leads to a lower bound for equivariant vector bundles over $V$ . Let

$\log p_{X}$ : $VEC(V, F;C)arrow(\Delta)/(\Delta^{d(B,F)+1})\cong C^{d}$

be the composition of the pull-back $VEC(V,F;C)arrow VEC(B, F;C)$ by $\iota$ and $\log\rho$ .

THEOREM C. Suppose that there is an equivariant morphism $\Phi$ : $Varrow F^{*}=Hom(F, C)$

such that $\Phi^{-1}(0)=0$ . (We call such $\Phi$ a weak duality.) Then the image of $\log p_{X}$ agrees
with $\iota^{*}\mathcal{O}(V)_{1}^{G}$, in particular $\log p$. maps $VEC(V, F;C)$ onto $c^{f(V,F;x)}$ .

Theorems A-C are our main general theorems. In sections 7-11, we give several
applications to specific families of groups where we give a description of $e(B, F)$ and
$f(V,F;x)$ for various weighted $G$-cones and representations, and the calculations of
$d(B, F)$ use Theorem B. E.g. in section 8 we do this for dihedral groups and in section
9, we give a lower bound for $e(B, F)$ when $B=B(V;x)$ and $V$ and $F$ are multiples of
irreducible representations of a connected reductive group (See 9.3). The lower bound
is explicit in the dominant weights of $V$ and $F$ . The integer $e(B, F)$ depends on the
equivariant algebraic geometry of $B$ and the representation theory of $F$ . In the case of
a connected reductive group, it can be determined from information involving the
maximal unipotent subgroup. This connection is made in section 10 and applied in
section 11 to treat equivariant vector bundles over weighted $G$-cones and representations
associated with spherical subgroups of rank 1. It is clear to us that the Equivariant
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Serre Problem for many families of non-abelian finite groups and representations may be
treated by using Theorem $C$ as we do for the dihedral groups in section 8. As evidence
of this we cite the related treatment of this issue for several families of non-abelian finite
groups in [MP2].

ACKNOWLEDGEMENTS. We would like to thank M. Brion for his extensive help with
the results in section 11. The second author was partially supported by a grant from
the Swiss National Science Foundation, Grant No. 8220-025974.

\S 1. Review and general remarks.

In this section we review some notation and some results from [MP2] which we will
use, and give two general remarks (Propositions 1.3 and 1.4) on closed G-subvarieties
which contain all closed orbits in a given affine G-variety.

Let $G$ be a reductive group, $F$ and $S$ be representations of $G$ , and $B$ be an affine
$G$-variety (reduced, but not necessarily irreducible). Denote by sur $(F\oplus S, S)$ the set
of surjective $G$-vector bundle morphisms from $F\oplus S$ to $S$ , and by $aut(F\oplus S)$ the group
of $G$-vector bundle automorphisms of $F\oplus$ S. We note that if $L\in sur(F\oplus S, S)$ , then
its kemel $E(L)$ defines an element in $VEC(B, F;S)$ (see [MP2, I.1.1]).

THEOREM 1.1 ($[MP2$ , I.1.2]). The map which sends $L\in sur(F\oplus S, S)$ to $E(L)$ defines
a bijection

sur$(F\oplus S, S)/aut(F\oplus S)\cong VEC(B, F;S)$ .

This theorem tells us that the study of $VEC(B, F;S)$ can be divided into two steps:
one is the study of sur $(F\oplus S, S)$ and the other is that of $aut(F\oplus S)$ . The former
corresponds to construction of $G$-vector bundles and the latter to distinguishing them.
AS for their construction, the following easy lemma describes a criterion to find elements
of sur $(F\oplus S, S)$ . Denote by $mor(F\oplus S, S)$ the set of $G$-vector bundle morphisms from
$F\oplus S$ to S. There is a simple characterization for an element of $mor(F\oplus S, S)$ to be in
sur $(F\oplus S, S)$ . Note that an element of $mor(F\oplus S, S)$ is of the form $(\Phi, T)$ where
$\Phi\in mor(F, S)$ and $T\in end(S)=mor(S, S)$ .

LEMMA 1.2. $(\Phi, T)\in sur(F\oplus S, S)$ if and only if there are $\Psi\in mor(S, F)$ and $Y\in$

$end(S)$ such that $\Phi\Psi+TY=1$ where 1 denotes the identity element in end $(S)$ .

PROOF. It is known in [BH] that any surjective $G$-vector bundle morphism has
a splitting. If $(\Phi, T)\in sur(F\oplus S, S)$ , then we take $(\Psi, Y)\in mor(S, F\oplus S)$ to be the
splitting of $(\Phi, T)$ . This proves the “only if” part. The converse is evident. $\square$

We will review the definition of the invariant $p$ . To define $p$ , we take a closer look
at sur $(F\oplus S, S)$ and $aut(F\oplus S)$ . Let $U$ and $V$ be representations of $G$ . To emphasize
the source and target of a $G$-vector bundle morphism $D$ from $U$ and V, we write such a
morphism as $D(U, V)$ . For example, any $A\in aut(F\oplus S)$ has components $A(U, V)$ for
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$U=F,$ $S$ and $V=F,$ $S$ and similarly any $L\in sur(F\oplus S, S)$ has components $L(F, S)$ and
$L(S, S)$ .

Denote by $R$ the ring end $(S)$ . Let $I$ be the two-sided ideal in $R$ generated by the
elements which factor through F. That is, the generators of $I$ are given by all the
elements of the form $\Phi\Psi\in end(S)$ , where $\Phi\in mor(F, S)$ and $\Psi\in mor(S, F)$ . It is
shown in [MP2] that for any $A\in aut(F\oplus S)$ the class of $A(S, S)$ in $R/I$ is a unit. As a
consequence, we can consider the following subgroup of the group of units $(R/I)^{*}$ of
$R/I$ :

$\Gamma=\{A(S, S)\in(R/I)^{*}|A\in aut(F\oplus S)\}$ .

Using Theorem 1.1 one shows that the class of $L(S, S)$ is a unit in $R/I$ for any
$L\in sur(F\oplus S, S)$ and that there is a well-defined map

$\rho$ : $VEC(B,F;S)arrow(R/I)^{*}/\Gamma$

given by $p(E(L))=[L(S, S)]\in(R/I)^{*}/\Gamma$ for $L\in sur(F\oplus S, S)$ , where $[L(S, S)]$ means
the class of $L(S, S)$ in $(R/I)^{*}/\Gamma$ . In other words, $\rho(E)$ is an invariant for the iso-
morphism class of the $G$-vector bundle $E$ . This invariant is used to distinguish the G-
vector bundles.

We close this section with two useful results to compare the equivariant vector
bundles over $B$ and over a closed $G$-subvariety which contains all the closed orbits in $B$ .

PROPOSITION 1.3. Suppose that $F$ is a closed $G$-subvariety of $B$ which contains all
closed orbits of B. Then the restriction map $VEC(B, F;S)arrow VEC(B’, F;S)$ is bijective.

PROOF. Each stably trivial $G$-vector bundle is the kemel of a surjective G-vector
bundle morphism between trivial bundles by Theorem 1.1. Any such surjective G-
vector bundle morphism over $F$ extends to a surjective $G$-vector bundle morphism over
$B$ by the Equivariant Nakayama Lemma $([BH$ , \S 6] $)$ since $B’$ contains all closed orbits in
$B$ . This proves the surjectivity.

If two $G$-vector bundles over $B$ are isomorphic when restricted to $B’$ , then the
isomorphism extends to an isomorphism over $B$ again by the Equivariant Nakayama
Lemma. This proves the injectivity. $\square$

PROPOSITION 1.4. Let $H$ be the same as in Proposition 1.3. Then the restriction
map $\mathcal{O}(B)^{G}arrow \mathcal{O}(B’)^{G}$ is an isomorphism.

PROOF. The restriction map $\mathcal{O}(B)arrow \mathcal{O}(E)$ is surjective, since $F$ is a closed
subvariety. Thus the restriction to the $G$-invariants is also $su\dot{\eta}ective$ , since $G$ is
reductive (see e.g. [BH]). This proves the surjectivity.

If $f$ is in the kemel, it vanishes on every closed orbit of $B$ . However, since it is
invariant, it is constant on the closure of any orbit. Thus it is zero everywhere, and the
map is injective. $\square$

REMARK. AS a consequence, if $S=C$ the trivial one-dimensional representation,
then the ring $R=\mathcal{O}(B)^{G}$ , the ideal $I$ and the subgroup $\Gamma$ used to calculate the invariants
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are the same for a $G$-vector bundles over $B$ and their restrictions over a closed
$G$-subvariety of $B$ containing all closed orbits of $B$ .

\S 2. Weighted $G$-cones and special G-cones.

In this section, we will describe the type of affine $G$-variety that will be used as the
base of the $G$-vector bundles. They will be called weighted $G$-cones (with smooth one-
dimensional quotients).

Consider the following two conditions on an affine $G\cross C^{*}$ -variety $B$ :
(CO) $\mathcal{O}(B)^{C}=C$ and $\mathcal{O}(B)$ is positively graded with respect to the $C^{*}$ -action,
(C1) $\mathcal{O}(B)^{G}=C[\Delta]$ for some non-constant homogeneous $\Delta\in \mathcal{O}(B)^{G}$ .

(We say that $f\in O(B)$ is homogeneous of degree $d$ if $f(cx)=c^{d}f(x)$ for any $c\in C^{*}$ and
$x\in B.)$

DEFINITION. We call $B$ a weighted $G$-cone if (CO) is satisfied and a weighted G-cone
with smooth one dimensional quotient if in addition (C1) is satisfied.

REMARKS. (1) In this paper we consider only weighted $G$-cones with smooth one
dimensional quotient and refer to them simply as weighted $G$-cones. We emphasize
that this means both conditions are satisfied.

(2) We also remark that in the presence of (C1), the condition that $\mathcal{O}(B)$ is positively
(or negatively) graded is a consequence of the other two conditions. If $\mathcal{O}(B)$ is
negatively graded, then we change the $C^{*}$ -action via the automorphism of $C^{*}$ which
takes each element to its inverse. With this new $C^{*}$ -action, $\mathcal{O}(B)$ is positively graded.
This reconciles the definition in the introduction with that here.

(3) For any affine $G$-variety $B$ , the (algebraic) quotient is defined to be the affine
variety whose coordinate ring is $\mathcal{O}(B)^{G}$ . A representation whose quotient is one-
dimensional automatically satisfies condition (C1). However, in general, a one-
dimensional quotient of a $G$-variety is not necessarily smooth, and therefore does not
suffice for condition (C1) (see section 8).

Once again $B$ will denote a weighted $G$-cone unless otherwise stated. The following
lemma is a consequence of condition (CO).

LEMMA 2.1. (1) Any closed $C^{*}$ -subvariety $X$ of $B$ satisfies condition $(CO)$ and
$\mathcal{O}(X)^{*}=C^{*}$ , where $\mathcal{O}(X)^{*}$ denotes the group of units in 0(X).

(2) The only closed $C^{*}$ -orbit in $B$ is in fact a $C^{*}- fixed$ point. It is also fixed by the
action of $G$.

PROOF. (1) Since $X$ is closed and $C^{*}$ -invariant, the restriction map $\mathcal{O}(B)arrow \mathcal{O}(X)$

is surjective and $C^{*}$ -equivariant. Thus the restriction to the $C^{*}$ -invariants is also sur-
jective since $C^{*}$ is reductive. This implies that $X$ inherits condition (CO) from $B$ . Thus
the former statement has been proved.

NOW we prove the latter statement. Since $C^{*}$ is connected, $X$ is a union of
irreducible closed $C^{*}$ -subvarieties of $X$ . Any $C^{*}$ -variety contains at least one closed
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$C^{*}$ -orbit and $X$ has only one closed $C^{*}$ -orbit by (CO), so the intersection of the
irreducible components is not empty. Therefore it suffices to show that $\mathcal{O}(X)^{*}=C^{*}$

when $X$ is irreducible.
Suppose $f$ is a unit in 0(X). Decompose $f$ and $h=f^{-1}$ into its homogeneous

parts, and denote by $f_{(n)}$ resp. $h_{(m)}$ the highest non-zero homogeneous part of $f$ resp.
$h$ . Since $X$ is irreducible, $f_{(n)}h_{(m)}\neq 0$ , and thus $n=m=0$ . In other words, $f$ is a non-
zero constant.

(2) The only closed $C^{*}$ -orbit in $B$ is isomorphic to $C^{*}$ or a $C^{*}- fixed$ point. By (1)

the former case does not occur. Since the $C^{*}- fixed$ point is unique and $G$-invariant, it
must be fixed by the action of G. $\square$

The $G$-invariant function $\Delta$ : $Barrow C$ becomes $C^{*}$ -equivariant when we give the
target space $C$ the usual $C^{*}$ -action with weight $\deg\Delta$ . As a matter of fact, the quotient
$B//G$ is isomorphic to $C$ by condition (C1) and then the map $\Delta$ is nothing but the
quotient map. Denote the fiber $\Delta^{-1}(t)(t\in C)$ by $B_{t}$ . By the $C^{*}$ -equivariance of $\Delta$ ,
the fibers $B_{t}(t\neq 0)$ are isomorphic to each other. They are called the generic fibers
while the fiber $B_{0}$ is called the null-fiber. The closed orbits in the generic fibers $B_{t}$

$(t\neq 0)$ are isomorphic to $G/H$ where $H$ is a principal isotropy group of $B$ (as

a G-variety).

DEFINITION. We say that $B$ is special or a special $G$-cone if $B=\overline{(G\cross C^{*})x}$ for some
$x\in B-B_{0}$ whose $G$-orbit is closed. (Overline denotes closure.)

Throughout this paper $H$ will denote a principal isotropy group of $B$ (as a G-
variety) unless otherwise stated. If $B$ is special, $B=G(B-B_{0})^{H}$ .

LEMMA 2.2. (1) The subvariety $G(B-B_{0})^{H}$ is a special $G$-cone and contains all
closed $G$-orbits in $B$.

(2) If $B$ is special, then the generic fibers $B_{t}(t\neq 0)$ are isomorphic to $G/H$.
(3) If $B$ is special and irreducible, then the field of $G$-invariant rational functions on $B$

is the field $C(\Delta)$ .

PROOF. (1) Set $B^{S}=G(B-B_{0})^{H}$ . Clearly $B^{s}$ is a closed $G\cross C^{*}$ -subvariety which
contains all closed $G$-orbits in $B$ . It follows from Lemma 2.1(1) and Proposition 1.4
that $B^{s}$ is a weighted $G$-cone. Then it is obvious from the construction that $B^{s}$ is
special.

(2) For $t\neq 0,$ $B_{t}$ contains a closed orbit isomorphic to $G/H$ . If the dimension of
the fiber is the dimension of $G/H$ , then in fact the fiber consists only of this one
orbit. This is easily seen to be the case, since

$\dim G/H\leq\dim B_{t}<\dim B=\dim(G\cross C^{*})-\dim H=\dim G/H+1$ .

(3) This is an easy consequence of the fact from (2). In fact, suppose that $f$ is a
$G$-invariant rational function on $B$ . Then set of poles is contained in a finite number
of fibers, since it is $G$-stable. Let $h$ be a $G$-invariant regular non-zero function which
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vanishes on those fibers. By multiplying $f$ with a large enough multiple of $h$ , one obtains
a regular $G$-invariant function. Thus $f$ is in the quotient field of $C[\Delta]$ . $\square$

REMARK. By virtue of Proposition 1.3 and Lemma 2.2(1) we may assume that $B$ is
special whenever we study $VEC(B, F;S)$ .

Given any representation $W$ of $G$ , denote by $Mor(B, W)^{G}$ the set of equivariant
morphisms from $B$ to $W$ . Note that there is a natural isomorphism

$Mor(B, Hom(U, V))^{G}\cong mor(U, V)$

where $U$ and $V$ are representations of $G$ . A general theory tells us that $Mor(B, W)^{G}$ is
a finitely generated $0(B)^{G}$-module ( $[Kr$ , II.3.2]). In our case $O(B)^{G}=C[\Delta]$ and we can
say more about $Mor(B, W)^{G}$ if $B$ is special.

LEMMA 2.3. Suppose that $B$ is special. Then
(1) The vector space $Mor(B, W)^{G}\otimes C[\Delta]C[\Delta]/(\Delta-f)$ is isomorphic to $W^{H}$ if $t\neq 0$,

where the isomorphism is given by evaluating elements of $Mor(B, W)^{G}$ at a point of $B_{t}$

whose isotropy group is $H$.
(2) The $C[\Delta]$ -module $Mor(B, W)^{G}$ is free of rank $\dim W^{H}$ for any representation $W$

of $G$.

PROOF. (1) For $t\neq 0,$ $\Delta-t$ generates the ideal of regular functions which vanish
on $B_{t}$ since $\Delta$ : $Barrow C$ is smooth off $B_{0}([L])$ . It follows that the module $Mor(B, W)^{G}$

tensored with $C[\Delta]/(\Delta-t)$ over $C[\Delta]$ agrees with $Mor(B_{t}, W)^{G}$ . The result then follows
because $B_{t}\cong G/H$ and $Mor(G, W)^{G}\cong W^{H}$ .

(2) First we show that $Mor(B, W)^{G}$ is a free $C[\Delta]$ -module. Since $Mor(B, W)^{G}\cong$

$(\mathcal{O}(B)\otimes W)^{G}$ as $C[\Delta]$ -modules, it suffices to show that $0(B)$ is free as a $C[\Delta]$ -module.
Choose $f\in O(B)$ and $h\neq 0\in C[\Delta]$ such that $hf=0$ . Then, for some $x\in B-B_{0},$ $h$ is
not identically $0$ on $C^{*}x$ , thus $f=0$ on $C^{*}x$ . Similarly, $f=0$ on $C^{*}gx$ for any $g\in G$

since $h$ is $G$-invariant. Since $B$ is special, $f=0$ on $B$ by continuity of the func-
tion. This proves that $\mathcal{O}(B)$ is torsion-free as a $C[\Delta]$ -module. Thus it is free since $C[\Delta]$

is a principal ideal domain.
The rank of $Mor(B, W)^{G}$ is calculated by part (1). $\square$

We prepare a lemma which will be used in Section 6. Denote the normalizer of $H$

in $G$ by $N_{G}(H)$ .

LEMMA 2.4. The restriction map $j^{*}$ : $C[\Delta]=\mathcal{O}(B)^{G}arrow \mathcal{O}(B^{H})^{N_{G}(H)}$ is injective and
$O(B^{H})^{N_{G}(H)}$ viewed as a $C[\Delta]$ -module via $j^{*}$ has rank one free part.

PROOF. Let $B’=\overline{GB^{H}}$ . Then $F^{H}=B^{H}$ and the map $j^{*}$ splits into two restriction
maps

$\mathcal{O}(B)^{G}arrow 0(B’)^{G}arrow \mathcal{O}(B^{\prime H})^{N_{G}(H)}=\mathcal{O}(B^{H})^{N_{G}(H)}$ .

The former restriction map is an isomorphism by Proposition 1.4 since $B’$ contains all
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closed $G$-orbits in $B$, and the latter one is injective since the $G$-orbit of $B^{\prime H}$ is dense in
$B’$ . This proves the injectivity of $j^{*}$ .

The above discussion also says that we may assume $B=\overline{GB^{H}}$ . Then $B-B_{0}$ is
isomorphic to the balanced product $GX_{N_{G}(H)}(B-B_{0})^{H}$ . Therefore the restriction map

$\mathcal{O}(B-B_{0})^{G}arrow \mathcal{O}((B-B_{0})^{H})^{N_{G}(H)}$

is an isomorphism. Here since $B_{0}=\Delta^{-1}(0),$ $O((B-B_{0})^{H})^{N_{G}(H)}$ is obtained from
$O(B^{H})^{N_{G}(H)}$ by tensoring with $\mathcal{O}(B-B_{0})^{G}\cong C[\Delta, \Delta^{-1}]$ over $C[\Delta]$ . This implies the
latter statement of the lemma since this operation does not change the rank of the free
part. $\square$

\S 3. Bijectivity of the invariant $p$ .
In this section we prove Theorem A(l), i.e. bijectivity of the invariant $\rho$ when $B$ is a

weighted $G$-cone and $S=C$ .
For $\Phi\in mor(F, C)$ we define

$R(\Phi)_{*}=\{T\in 1+(\Delta)|(\Phi, T)\in sur(F\oplus C, C)\}\subset R=C[\Delta]$ .

Since $B$ has a G-fixed point by Lemma 2.1(2), any element of $VEC(B, F;C)$ is rep-
resented by the kemel of $(\Phi, T)\in sur(F\oplus C, C)$ for some $\Phi\in mor(F, C)$ and $T\in R(\Phi)_{*}$

($[MP2$ , I.3.2]). Note that $VEC(B, F;C)=\{*\}$ if $mor(F, C)=\{0\}$ . Denote by $E_{\Phi}(T)\in$

$VEC(B, F;C)$ the isomorphism class of the kemel of $(\Phi, T)$ . The key result which we
prove is that $E_{\Phi}(T)$ does not depend on $\Phi$ (Theorem 3.5).

We begin with some elementary preliminaries.

PROPOSITION 3.1. Let $\Phi\in mor(F, C)$ and $\Psi\in mor(C,F)$ . Suppose that $\Psi\Phi\in end(F)$

and $\Phi\Psi\in C[\Delta]$ are divisible by $\Delta^{l}(l\geq 0)$ in end $(F)$ and $C[\Delta]$ respectively. Then, for
polynomials $P,$ $P,$ $Q$ and $Q’\in C[\Delta]$ , the endomorphism of $F\oplus C$ defined by

$(\begin{array}{llll}1+ P\Psi\Phi/\Delta^{l} Q\Psi Q\Phi 1+ P\Phi\Psi/\Delta^{l}\end{array})$

is an automorphism if $P,$ $P,$ $Q$ and $Q’$ satisfy the equation

$P+P+PP\Phi\Psi/\Delta^{l}-\Delta^{l}Qg_{=}o$ .

PROOF. In fact, an elementary check shows that

$(\begin{array}{llll}l+ P\Psi\Phi/\Delta^{l} -Q\Psi -Q’\Phi 1+ P\Phi\Psi/\Delta^{l}\end{array})$

is the inverse of the given endomorphism if the given condition is satisfied. $\square$

PROPOSITION 3.2. Let $\Phi,$ $\Phi’\in mor(F, C),$ $\xi\in C[\Delta]$ and $T\in R(\xi\Phi+\Phi’)_{*}$ . Then
$E_{\xi\Phi+\Phi’}(T)=E_{\Phi+\Phi’}(T)$ if there is $\Psi\in mor(C, F)$ such that $(\xi\Phi\Psi, T)=(1)$ and $\Phi’\Psi=0$ .
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PROOF. Since $(\xi\Phi\Psi, T)=(1)$ , there are polynomials $\alpha,\beta\in C[\Delta]$ such that

$\alpha\xi\Phi\Psi+\beta T=1-\xi$ .

One sees that

$A=(\begin{array}{lll}1+ \alpha\Psi\Phi \alpha T\Psi\beta\Phi \alpha 1-\xi\Phi\Psi\end{array})$

is an automorphism by Proposition 3.1 and that $(\xi\Phi+\Phi’, T)A=(\Phi+\Phi’, T)$ where we
use the condition $\Phi’\Psi=0$ . This shows that $E_{\xi\Phi+\Phi’}(T)=E_{\Phi+\Phi’}(T)$ . $\square$

COROLLARY 3.3. Let $\Phi\in mor(F, C)_{2}\xi\in C[\Delta]$ and $T\in R(\xi\Phi)_{*}$ . Then $E_{\xi\Phi}(T)=$

$E_{\Phi}(T)$ .

PROOF. By Proposition 3.2 it suffices to prove the existence of $\Psi\in mor(C, F)$

such that $(\xi\Phi\Psi, T)=(1)$ . Since $T\in R(\xi\Phi)_{*},$ $(\xi\Phi, T)\in sur(F\oplus C, C)$ by definition. It
follows from Lemma 1.2 that there are $\Psi\in mor(C, F)$ and $Y\in C[\Delta]$ such that
$\xi\Phi\Psi+TY=1$ . This shows that the $\Psi$ is the desired element. $\square$

PROPOSITION 3.4. If $B$ is special, then there are a non-negative integer $c$ and elements
$\phi_{i}\in mor(F, C)$ and $\psi_{i}\in mor(C,F)$ which form a basis over $C[\Delta, \Delta^{-1}]$ (when the modules
are localized by $\Delta$ ) such that $\phi_{i}\psi_{j}=\delta_{i}\Delta^{c}/$ where $\delta_{ij}$ denotes Kronecker delta.

PROOF. This follows from the fact that the natural pairing $mor(C, F)\cross$

$mor(F, C)arrow end(C)\cong C[\Delta]$ is non degenerate over $C[\Delta, \Delta^{-1}]$ when the modules are
localized by $\Delta$ . This in tum follows from the fact that these $C[\Delta]$ -modules are free by
Lemma 2.3 and the fact that the induced pairing over $C[\Delta]/(\Delta-t)(\cong C)$ for $t\neq 0$ is
non degenerate. Note: Over $C[\Delta]/(\Delta-t)$ this is the non degenerate natural pairing
$F^{H}\cross F^{*H}arrow C$ by Lemma 2.3(1). $\square$

THEOREM 3.5. Let $\Phi,$ $\Phi’\in mor(F, C)$ . Then $E_{\Phi}(T)=E_{\Phi’}(T)$ for any $T\in R(\Phi)_{*}\cap$

$R(\Phi’)_{*}$ Hence, if $\Phi$ is nowhere zero on $B-B_{0}$ , then $R(\Phi)_{*}=1+(\Delta)$ and

$E_{\Phi}$ : $R(\Phi)_{*}=1+(\Delta)arrow VEC(B,F;C)$

is surjective.

PROOF. Since each element in $VEC(B, F;C)$ is $E_{\Phi}(T)$ for some $\Phi$ and $T\in R(\Phi)_{*}(\subset$

$1+(\Delta))$ , the second assertion is a consequence of the first.
By the remark after Lemma 2.2 we may assume $B$ to be special. If $F^{H}=0$ , then

$mor(F, C)=\{0\}$ by Lemma 2.3 since $mor(F, C)$ is a free module of dimension
$\dim F^{H}$ . Therefore the theorem is trivial in this case.

NOW we assume $\dim F^{H}>0$ . Let $\phi_{i}$ and $\psi_{i}$ for $i=1,$ $\ldots,$
$n=\dim F^{H}$ be the

elements of $mor(F, C)$ and $mor(C, F)$ in Proposition 3.4. We prove that $E_{\Phi}(T)=$

$E_{\phi_{i}}(T)$ for any $i$ . The same argument shows that $E_{\Phi’}(T)=E_{\phi_{i}}(T)$ . Then the theorem
follows. From now on we fix $i$ .

Note that $T\in R(\Delta^{N}\Phi)_{*}$ for any non-negative integer $N$ . By Corollary 3.3
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$E_{\Delta^{N}\Phi}(T)=E_{\Phi}(T)$ . Therefore we can raise the degree of $\Phi$ as we want, so that we
may assume $\Phi=\sum\xi_{j}\phi_{j}$ with $\xi_{j}\in C[\Delta]$ . Here $(\xi_{1}, \ldots, \xi_{n}, T)=(1)$ since $(\Phi, T)\in$

$sur(F\oplus C, C)$ . We may also assume that $\Delta^{c}$ divides each $\xi_{j}$ by taking $N$ sufficiently
large.

Choose $q_{j}\in C[\Delta](j\neq i)$ and define $A\in end(F\oplus C)$ by

$(1+ \sum_{j} \neq iq_{j}\psi_{j}\phi_{i}0 01)$ .

One can easily see that $A$ is an automorphism since $\phi_{i}\psi_{j}=0$ unless $i=j$ , and that

$( \Phi, T)A=((\xi_{i}+\Delta^{c}\sum_{j\neq i}q_{j}\xi_{j})\phi_{i}+\sum_{j\neq i}\xi_{j}\phi_{j},$ $T)$ .

CLAIM. There exist polynomials $q_{j}$ such that $( \xi_{i}+\Delta^{c}\sum_{j\neq i}q_{j}\xi_{j}, T)=(1)$ .

PROOF. Since $C[\Delta]$ is a principal ideal domain, there are $\xi,$ $r\in C[\Delta]$ such that

$(\Delta^{c})(\xi_{1}, \ldots, \xi_{i-1}, \xi_{i+1}, \ldots, \xi_{n})=(\xi)$ , $(\xi_{i}, T)=(r)$ .

Since $(\xi_{1}, \ldots, \xi_{n}, T)=(1)$ and $T(O)=1$ , we have $(\xi, r)=(1)$ . Let $s$ be the product of
all factors of $T/r$ which are relatively prime to $r$ . Note that $(\xi_{i}, s)=(1)$ . One can see
that $(\xi_{i}+s\xi, T)=(1)$ , which proves the claim.

By the claim above we may assume $(\xi_{i}, T)=(1)$ and hence $(\Delta^{N}\xi_{i}, T)=(1)$ for any
$N\geq 0$ since $T(O)=1$ . Since $\phi_{j}\psi_{i}=\delta_{ij}\Delta^{c}$ , Proposition 3.2 can be applied with $\Phi=\phi_{i}$ ,
$"= \sum_{j\neq i}\xi_{j}\phi_{j},$ $\xi=\xi_{i}$ and $\Psi=\psi_{i}$ . Hence we can replace $\xi_{i}$ by 1.

Remember that $\Delta^{c}$ divides each $\xi_{j}$ . We define $A’\in aut(F\oplus C)$ by

$(1- \sum_{J} \neq i\xi_{j}/\Delta^{c}\psi_{i}\phi_{j}0 01)$ .

Then $(\Phi, T)A’=(\phi_{i}, T)$ . This proves that $E_{\Phi}(T)=E_{\phi_{i}}(T)$ . $\square$

COROLLARY 3.6. The map : $VEC(B, F;C)arrow VEC(B, F\oplus F’;C)$ defined by $Earrow$

$E\oplus F’$ is surjective for any representations $F$ and $F’$ of $G$ with $\dim F^{H}\neq 0$.

PROOF. We may assume $B$ to be special as before. Since $\dim F^{H}\neq 0$ , there is a
non-zero homogeneous $\Phi\in mor(F, C)$ . Then $\Phi$ is nowhere zero on $B-B_{0}$ and hence

$E_{\Phi}$ : $R(\Phi)_{*}arrow VEC(B, F;C)$

is surjective by Theorem 3.5. Let $\overline{\Phi}\in mor(F\oplus F’, C)$ be the element induced from $\Phi$

via the projection of $F\oplus F’$ on $F$ . Then again it follows from Theorem 3.5 that

$E_{\overline{\Phi}}$ : $R(\overline{\Phi})_{*}arrow VEC(B, F\oplus F’;C)$

is surjective. Since $E_{\overline{\Phi}}(T)=E_{\Phi}(T)\oplus F’$ , this proves the corollary. $\square$

PROOF OF THEOREM A(l). We may assume $B$ to be special by the remarks
after Proposition 1.4 and Lemma 2.2. If $\dim F^{H}=0$ , then $mor(F, C)=\{0\}$ ; so
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$VEC(B, F;C)=\{*\}$ and $I=(0)$ . Therefore $(R/I)^{*}=C^{*}$ and since $\Gamma\supset C^{*},$
$\rho$ is

trivially bijective in this case.
Suppose $\dim F^{H}>0$ . Then $I=(\Delta^{m})$ for some $m\geq 0$ since $I$ is a homogeneous

ideal in $R=C[\Delta]$ , and there are non-zero homogeneous elements $\Phi\in mor(F, C)$

and $\Psi\in mor(C, F)$ such that $\Phi\Psi=\Delta^{m}$ . Then $R(\Phi)_{*}=1+(\Delta)$ . Since $\Gamma\supset C^{*}$ and
$p(E_{\Phi}(T))=[T]$ by definition, this means that $p$ is surjective.

NOW we prove injectivity of $\rho$ . Suppose $[T]=[T’]$ in $(R/I)^{*}/\Gamma$ . By Theorem 3.5
it suffices to prove that $E_{\Phi}(T)=E_{\Phi}(T’)$ . It follows from the definition of $\Gamma$

that there is $A\in aut(F\oplus C)$ such that $T\equiv T’A(C, C)mod I$ . Set $(\Phi’’, T^{\prime J})=$

$(\Phi, T’)A$ . Then $E_{\Phi}(T’)=E_{\Phi’’}(T’’)=E_{\Phi}(T’’)$ where the latter identity follows from
Theorem 3.5. Thus it suffices to prove that $E_{\Phi}(T)=E_{\Phi}(T’’)$ . Since $T’’=$

$\Phi A(C, F)+T’A(C, C)$ , we have $T’’\equiv T’A(C, C)mod$ $I$ and hence $T\equiv T’’mod I$ .
This means that $T=T’’+p\Delta^{m}$ with some $p\in C[\Delta\rceil$ . Define $A’\in aut(F\oplus C)$ by

$(\begin{array}{ll}1 p\Psi 0 1\end{array})$ .

Then $(\Phi, T’’)A’=(\Phi, T)$ since $\Phi\Psi=\Delta^{m}$ . This proves that $E_{\Phi}(T’’)=E_{\Phi}(T)$ and
completes the proof. $\square$

\S 4. The group structure of $VEC(B,F;C)$ .
We give the set $VEC(B, F;C)$ the group structure of $(R/I)^{*}/\Gamma$ via $\rho$ . It tums out

that the group structure is related to Whitney sum. This is similar to the abelian group
structure described in [S] and [KS, \S 4 in Chapter VII] when $B$ is a representation of $G$

with a one-dimensional quotient (and the bundles are not necessarily trivialized by
$C)$ . Our result of this section was inspired by this description. We denote the group
operation on $VEC(B,F;C)$ by $+$ .

THEOREM 4.1. Let $E,$ $E’\in VEC(B,F;C)$ . Then $E\oplus E’\in VEC(B, F\oplus F;C)$ and
$(E+E’)\oplus F=E\oplus E’$ in $VEC(B, F\oplus F;C)$ .

PROOF. Since $E$ and $E’$ are trivialized by $C$ , $E\oplus E’\oplus C=E\oplus F\oplus C=$

$F\oplus F\oplus$ C. This shows that $E\oplus E’\in VEC(B,F\oplus F;C)$ .
We prove the latter statement in the theorem. We may assume $B$ to be special

as usual. If $I=(0)$ (in other words, $\dim F^{H}=0$ ), then $VEC(B, F;C)=\{*\}$ and the
statement is trivial. Therefore we may assume $I=(\Delta^{m})$ for some $m\geq 0$ and there
are non-zero homogeneous elements $\Phi\in mor(F.C)$ and $\Psi\in mor(C, F)$ such that $\Phi\Psi=$

$\Delta^{m}$ . By Theorem 3.5 $E$ and $E’$ are represented by $E_{\Phi}(T)$ and $E_{\Phi}(T’)$ respectively
for some $T,$ $T’\in R(\Phi)_{*}$ . Then $E+E’$ is represented by $E_{\Phi}(TT’)$ . Thus it suffices to
prove that $E_{\Phi}(TT’)\oplus F=E_{\Phi}(T)\oplus E_{\Phi}(T’)$ . We view the elements at both sides in
$VEC(B, F\oplus F’;C\oplus C)$ . Noting that $VEC(B, F\oplus F;C)$ is naturally a subset of
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$VEC(B, F\oplus F;C\oplus C)$ , it suffices to prove that there is $A\in aut(F\oplus F\oplus C\oplus C)$ such
that

$(\begin{array}{llll}\Phi 0 TT’ 00 \Phi 0 1\end{array})A=(\begin{array}{llll}\Phi 0 T 00 \Phi 0 T\end{array})$ .

LEMMA 4.2. Let $p_{i},$ $q_{i}\in C[\Delta](1\leq i\leq 4)$ . If $p_{i}\equiv q_{i}mod \Delta^{m}$ , then there is $A’\in$

$aut(F\oplus F\oplus C\oplus C)$ such that

$(\begin{array}{llll}\Phi 0 p_{1} p_{2}0 \Phi p_{3} p_{4}\end{array})A’=(\begin{array}{llll}\Phi 0 q_{l} q_{2}0 \Phi q_{3} q_{4}\end{array})$ .

PROOF. Set $r_{i}=(q_{i}-p_{i})/\Delta^{m}$ , which is in $C[\Delta]$ by assumption. We define $A’\in$

$aut(F\oplus F\oplus C\oplus C)$ by

$A’=(\begin{array}{llll}1 0 r_{1}\Psi r_{2}\Psi 0 1 r_{3}\Psi r_{4}\Psi 0 0 1 00 0 0 1\end{array})$ .

Clearly $A’$ is an automorphism and it is easy to check that $A’$ is the desired one.

NOW we retum to the proof of Theorem 4.1. Since $T\in R(\Phi)_{*}$ , there is $Y\in C[\Delta]$

such that $TY\equiv 1mod \Delta^{m}$ . Set $P=1-YT$ and $Q=Y(Y-1)$ . Then $P\equiv 0mod \Delta^{m}$

and $TQ\equiv Y-1mod \Delta^{m}$ . Consider $A_{1}\in end(F\oplus F\oplus C\oplus C)$ defined by

$A_{1}=(\begin{array}{llll}1 0 0 00 1 0 00 0 Y-PQ P0 0 Y-1-(T+P)Q T+P\end{array})$ .

One sees that $A_{1}$ is an automorphism by applying the elementary operation to $A_{1}$ .
Observe that

$(\begin{array}{llll}\Phi 0 TT^{/} 00 \Phi 0 1\end{array})A_{1}=(\begin{array}{llll}\Phi 0 T’+s_{1} s_{2}0 \Phi s_{3} T+s_{4}\end{array})$

where $s_{i}\in C[\Delta]$ . By Lemma 4.2 there is $A_{2}\in aut(F\oplus F\oplus C\oplus C)$ such that

$(\begin{array}{llll}\Phi 0 T’+s_{1} s_{2}0 \Phi s_{3} T+s_{4}\end{array})A_{2}=(\begin{array}{llll}\Phi 0 T’ 00 \Phi 0 T\end{array})$ .

Therefore $A_{1}A_{2}$ is the desired element A. $\square$

\S 5. The structure of $(R/I)^{*}/\Gamma$ .
In this section we prove Theorem A(2), i.e. that the multiplicative group $(R/I)^{*}/\Gamma$

is isomorphic to a vector group $(\Delta)/(\Delta^{d+1})(\cong C^{d})$ by a logarithmic map. The group
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$(R/I)^{*}$ is well understood since $R=C[\Delta]$ and $I$ is a homogeneous ideal in $R$ ; so we
analyze the subgroup $\Gamma$ .

Our $C^{*}$ -action on $B$ defines positive gradings on end $(F\oplus C)$ etc. Hence an element
$A$ in end $(F\oplus C)$ is expressed as $A= \sum_{i\geq 0}A_{(i)}$ where $A_{(i)}$ is homogeneous of degree $i$ .
Note that end $(F\oplus C)$ is a $C[\Delta]$ -module. Associated to $A\in end(F\oplus C)$ and $z\in C[\Delta]$ ,
we define

$A_{Z}= \sum_{i\geq 0}z^{i}A_{(i)}\in end(F\oplus C)$ .

LEMMA 5.1. If $A\in aut(F\oplus C)$ , then $A_{Z}\in aut(F\oplus C)$ for any $z\in C[\Delta]$ ; hence
$[A_{z}(C, C)]\in\Gamma\subset(R/I)^{*}$ where $[]$ denotes the class in $(R/I)^{*}$ .

PROOF. Since the $C^{*}$ -action on $B$ commutes with the $G$-action, we may think of an
element of $C^{*}$ as a $G$-variety automorphism of $B$ . Then the induced element $c^{*}A$ is in
$aut(F\oplus C)$ for any $c\in C^{*}$ . By the definition of the grading we have

$c^{*}A= \sum_{i\geq 0}c^{i}A_{(i)}=A_{c}$ .

Since $(c^{*}A)(c^{*}A^{-1})=c^{*}(AA^{-1})=1$ for any $c\in C^{*}$ , this shows that $A_{z}(A^{-1})_{z}=1$

whenever $z\in C^{*}\subset C[\Delta]$ . Therefore the identity $A_{z}(A^{-1})_{z}=1$ holds even when $z$ is
viewed as an indeterminate. In tum this implies that it holds for any $z\in C[\Delta]$ , i.e. $A_{z}$

has an inverse in end $(F\oplus C)$ . $\square$

Since the ideal $I$ is homogeneous, the quotient $R/I$ inherits the grading from
$R$ . Since $(R/I)_{(0)}^{*}=C^{*}$ and $\Gamma\supset C^{*}$ , we have

$(R/I)^{*}/\Gamma=(1+(R/I)_{1})^{*}/\Gamma_{*}$

where $(R/I)_{1}$ denotes the ideal in $R/I$ with zero constant term and

$\Gamma_{*}=\{\gamma\in\Gamma|\gamma_{(0)}=1\}$ .

If $I=(0)$ or (1), then $(R/I)^{*}/\Gamma$ is trivial; so we assume $I=(\Delta^{m})$ for some
$m\geq 1$ . Then $(1+(R/I)_{1})^{*}=1+(\Delta)/(\Delta^{m})$ and we have a logarithmic map

$log:1+(\Delta)/(\Delta^{m})arrow(\Delta)/(\Delta^{m})$

defined using the formal power series of the logarithmic function. The map $\log$ is an
isomorphism between the multiplicative group and the additive group. In fact, the
inverse is given by an exponential map.

Since the map $\log$ is $C^{*}$ -equivariant and $\Gamma_{*}$ is a multiplicative group, $\log\Gamma_{*}$ is a
$C^{*}$ -invariant additive subgroup of $(\Delta)/(\Delta^{m})$ . We will show that it is in fact a
homogeneous ideal in $C[\Delta]/(\Delta^{m})$ . The homogeneity comes from the $C^{*}$ -action, and the
fact that it is an ideal will come from Lemma 5.1 and the following elementary
proposition.
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PROPOSITION 5.2. For any positive integer $k$, every polynomial in $C[\Delta]$ can be written
as a finite sum of $kth$ powers.

PROOF. Consider the subset $Z\subset C[\Delta]$ of polynomials which can be written as
a finite sum of kth powers. It is a subvector space of $C[\Delta]$ . It is stable by $C^{*}$ , since
if $z= \sum x_{i}^{k}$ , then $c*z= \sum(c*x_{i})^{k}$ , where $c\in C^{*}$ , and the star denotes the $C^{*}$ -action.
Thus it is generated by homogeneous elements. For each $i,$ $(\Delta^{i}+1)^{k}\in Z$ , so each
homogeneous part is in $Z$ . In particular, $Z$ contains $\Delta^{i}$ . Thus $Z$ is the entire ring
$C[\Delta]$ . $\square$

PROPOSITION 5.3. $\log\Gamma_{*}$ is a homogeneous ideal in $C[\Delta]/(\Delta^{m})$ . That is, there exists
a non-negative integer $d=d(B, F)\leq m-1$ such that $\log\Gamma_{*}=(\Delta^{d+1})/(\Delta^{m})$ .

PROOF. Consider the subvector space $V=C\log\Gamma_{*}\subset C[\Delta]/(\Delta^{m})$ . It is a $C^{*}-$

module, and therefore it is generated by homogeneous elements. If $f\in V$ is homo-
geneous of degree $k$ , then by Lemma 5.1, $z^{k}f$ is also in $V$ for any polynomial $z$ . By
Proposition 5.2, $V$ is an ideal. Finally, $V=\log\Gamma_{*}$ , since each homogeneous element of
$V$ has non-zero degree, and by the $C^{*}$ -stability, it is in $\log\Gamma_{*}$ . $\square$

PROOF OF THEOREM A(2). If $I=(0)$ or (1), then $(R/I)^{*}/\Gamma$ is trivial; so $d=0$

in this case. Suppose $I=(\Delta^{m})$ for some $m\geq 1$ . Then $(R/I)^{*}=(1+(R/I)_{1})^{*}=$

$1+(\Delta)/(\Delta^{m})$ and it is isomorphic to $(\Delta)/(\Delta^{m})$ via the logarithmic map. Thus Theorem
A(2) follows from Proposition 5.3. $\square$

\S 6. Estimate of $d(B, F)=\dim(R/I)^{*}/\Gamma$.
In this section we prove Theorem $B$ and give two cases where $VEC(B, F;C)=\{*\}$ .

AS before $H$ will denote a principal isotropy group of $B$ (as a G-variety).

DEFINITION. Suppose $B$ is special. Then we define $e(B, F)=0$ when $F^{H}=0$ , and

$e(B, F)= \min_{\Phi,\Psi,l}${ $\deg(\Psi\Phi/\Delta^{l})/\deg\Delta-1|\Psi\Phi/\Delta^{l}\in end(F)_{1}$ and $\Phi\Psi\neq 0\in C[\Delta]$ }

when $F^{H}\neq 0$ , where $\Phi$ and $\Psi$ range over non-zero homogeneous elements in $mor(F, C)$

and $mor(C, F)$ respectively and end $(F)_{1}$ denotes the subset of end $(F)$ with zero constant
term. If $B$ is not special, we define $e(B, F)$ to be $e(B^{s}, F)$ where $B^{s}$ is the special G-cone
in $B$ .

REMARK. If $\dim F^{H}=1$ , then a non-zero $\Phi\in mor(F, C)$ or $\Psi\in mor(C, F)$ restricted
to $B^{H}$ is an isomorphism from $F^{H}$ to $C$ or from $C$ to $F^{H}$ on a dense subset of
$B^{H}$ . This shows that the condition $\Phi\Psi\neq 0$ in the above definition is automatically
satisfied when $\dim F^{H}=1$ .

Here are some properties of $e(B, F)$ .

LEMMA 6.1. (1) $e(B, F)$ is a non-negative integer.
(2) If $I=(0)$ or (1), then $e(B, F)=0$, and $\iota fI=(\Delta^{m})$ for some $m\geq 1$ , then

$e(B, F)\leq m-1$ .
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(3) If $F^{H}\neq 0$, then $e(B, F)$ is equal to the minimum among $e(B, F_{i})$ where $F_{i}$ are
irreducible $G$-subrepresentations of $F$ such that $F_{i}^{H}\neq 0$ .

PROOF. (1) We may assume $F^{H}\neq 0$ , otherwise the statement is trivial by defini-
tion. Let $\Phi$ and $\Psi$ be the elements im the definition of $e(B, F)$ . Since $\Phi\Psi\in C[\Delta]$ is
non-zero, $\deg\Psi\Phi=\deg\Phi\Psi$ is divisible by $\deg\Delta$ and hence $\deg(\Psi\Phi/\Delta^{l})/\deg\Delta$ in the
definition is a positive integer because $\Psi\Phi/\Delta^{l}\in end(F)_{1}$ . This proves (1).

(2) We note that $I=(0)$ (resp. $I=(1)$ ) if and only if $F^{H}=0$ (resp. $F^{G}\neq 0$). There-
fore the statement is trivial by definition when $I=(0)$ . When $I=(1)$ , there is a
one-dimensional subspace $W$ in $F^{G}$ . We take homogeneous elements $\Phi$ and $\Psi$ in
$mor(W, C)\subset mor(F, C)$ and $mor(C, W)\subset mor(C, F)$ respectively such that $\Phi\Psi\neq 0$ .
Then, since $\dim W=1$ and $W^{G}=W,$ $\Psi\Phi$ can be thought of as a non-zero element of
$C[\Delta]$ . Therefore we can take $l=\deg\Psi\Phi/\deg\Delta-1$ if $\deg\Psi\Phi>0$ and this proves
$e(B, F)=0$ when $I=(1)$ .

NOW suppose $m\geq 1$ . Then there are homogeneous elements $\Phi\in mor(F, C)$ and
$\Psi\in mor(C, F)$ such that $\Phi\Psi=\Delta^{m}$ . Since these specific $\Phi$ and $\Psi$ are members in the
definition of $e(B,F)$ , we have

$e(B,F)\leq\deg(\Psi\Phi/\Delta^{l})/\deg\Delta-1=m-l-1\leq m-1$ .

(3) Since $F=\oplus_{i}F_{i},$ $\Phi$ and $\Psi$ in the definition of $e(B, F)$ are written as $\Phi=\oplus_{i}\Phi_{i}$

and $\Psi=\oplus_{i}\Psi_{i}$ with homogeneous elements $\Phi_{i}\in mor(F_{i}, C)$ and $\Psi_{i}\in mor(C, F_{i})$ . Since
$\Psi\Phi=\oplus_{i,j}\Psi_{i}\Phi_{j}$ and $\Psi_{i}\Phi_{j}$ is in $mor(F_{j}, F_{i}),$

$\Delta^{l}$ divides $\Psi\Phi$ if and only if it divides all
$\Psi_{i}\Phi_{j}$ . Moreover it is clear that $\Phi_{j}\Psi_{i}=0$ unless $i=j$ . Therefore, in the definition of
$e(B, F)$ , it suffices to take elements in $mor(F_{i}, C)$ and $mor(C, F_{i})$ for all $F_{i}$ such that
$F_{i}^{H}\neq 0$ . This proves the statement (3). $\square$

PROPOSITION 6.2. $d(B, F)\leq e(B, F)$ .

PROOF. If $I=(0)$ or (1), then $VEC(B, F;C)=\{*\}$ as noted in the proof of
Theorem A(2), and $e(B, F)=0$ by Lemma 6.1(2); so the proposition is trivial in
this case. Suppose $I=(\Delta^{m})$ for some $m\geq 1$ (hence $F^{H}\neq 0$). Let $\Phi,$ $\Psi$ be the
homogeneous elements which attain the minimum in the definition of $e(B, F)$ , so
$\Phi\Psi/\Delta^{l}=\Delta^{e(B,F)+1}$ up to a scalar non-zero constant. Then the equation in Proposition
3.1 has a solution for any polynomial $P$ since $e(B, F)+1\geq 1$ . It follows that the
$C[\Delta]$ -module $\log\Gamma_{*}$ contains $(\Delta^{e(B,F)+1})/(\Delta^{m})$ , which means $d(B, F)\leq e(B, F)$ by
Proposition 5.3. $\square$

Here are two results derived from Proposition 6.2.

COROLLARY 6.3. If $\dim F=1$ , then $e(B, F)=0$ and hence $VEC(B, F_{1}C)=\{*\}$ .

PROOF. We may assume $F^{H}\neq 0$ (so $\dim F^{H}=1$ ) since otherwise $e(B, F)=0$ by
definition. Then there are non-zero homogeneous elements $\Phi\in mor(F, C)$ and $\Psi\in$

$mor(C, F)$ . Since $F$ is one-dimensional, the action of $G$ on End $(F)$ is trivial. Therefore
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end $(F)\cong C[\Delta]$ and $\Psi\Phi$ can be thought of as a monomial of $\Delta$ ; so we can take
$l=\deg\Psi\Phi/\deg\Delta-1$ in the definition of $e(B, F)$ . Thus $e(B, F)=0$ . $\square$

THEOREM 6.4. If $G$ is abelian, then any stably trivial $G$-vector bundle over $B$ is in

fact trivial.

PROOF. The theorem is equivalent to the statement that $VEC(B, F;S)=\{*\}$

for any representations $F$ and $S$ of $G$ . Since $G$ is abelian, any representation of $G$

decomposes into a sum of one-dimensional representations of $G$ . Thus it suffices
to prove $VEC(B, F;S)=\{*\}$ when $S$ is one-dimensional. Moreover by tensoring with
the dual representation of $S$ it suffices to prove $VEC(B, F;C)=\{*\}$ for any $F$ . As
usual we may assume $F^{H}\neq 0$ . Then, since $G$ is abelian, $F$ contains a one dimensional
representation of $G$ on which $H$ acts trivially. It follows from Corollaries 3.6 and 6.3
that $VEC(B, F;C)=\{*\}$ . $\square$

We prepare a proposition before the proof of Theorem B. Let $W$ be a repre-
sentation of $G$ . In the following the subscript 1 will indicate the set of elements with
zero constant term as is used in end $(F)_{1}$ in the definition of $e(B, F)$ . Suppose that $B$ is
special and consider the restriction map

$r:end(W)_{1}=Mor(B, End(W))_{1}^{G}arrow Mor(B^{H}, End(W)^{H})_{1}^{N_{G}(H)}$ .

This map is a $C[\Delta]$ -module homomorphism when the right hand side is viewed as a
$C[\Delta]$ -module through the restriction map : $C[\Delta]=\mathcal{O}(B)^{G}arrow \mathcal{O}(B^{H})^{N_{G}(H)}$ , and is injective
since the $G$-orbit of $B^{H}$ is dense in $B$ . Set

$M=Mor(B^{H}, End(W^{H}))_{1}^{N_{G}(H)}\subset Mor(B^{H}, End(W)^{H})_{1}^{N_{G}(H)}$ .

PROPOSITION 6.5. Suppose $\dim W^{H}=1$ and let $\tilde{A}\in end(W)$ . Then

$\det\tilde{A}\equiv a$ constant $mod \Delta^{e(B,W)+1}$

if $\tilde{A}-\tilde{A}_{(0)}\in end(W)_{1}$ is in $r^{-1}(M)$ , where $\tilde{A}_{(0)}$ denotes the constant term of $\tilde{A}$.

PROOF. If $W^{G}\neq 0$ , then $e(B, W)=0$ as is shown in the proof of Lemma 6.1(2).

Therefore the proposition is trivial in this case. We assume $W^{G}=0$ in the following.
Since $\dim W^{H}=1,$ $End(W^{H})$ is one-dimensional and the action of $N_{G}(H)$ on it is

trivial. Therefore $M$ is isomorphic to $o(B^{H})_{1}^{N_{G}(H)}$ . By Lemma 2.3 end $(W)$ is free as a
$C[\Delta]$ -module, so the submodule $r^{-1}(M)$ is also free since $C[\Delta]$ is a principal ideal
domain. Since the map $r$ is injective and the rank of the free part of $M\cong \mathcal{O}(B^{H})_{1}^{N_{G}(H)}$

as a $C[\Delta]$ -module is one by Lemma 2.4, the free submodule $r^{-1}(M)$ must be of rank
one.

Again since $\dim W^{H}=1,$ $mor(W, C)$ and $mor(C, W)$ are free of rank one as $C[\Delta]-$

modules by Lemma 2.3. Let $\Phi’$ and $\Psi’$ be their homogeneous generators respectively
which are of positive degrees since $W^{G}=0$ . Let $l$ be the maximum integer such that $\Delta^{l}$

divides $\Psi’\Phi’$ in end $(W)_{1}$ . It follows from Schur’s Lemma that $\Psi’\Phi’/\Delta^{l}$ restricted to
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$B^{H}$ is an endomorphism of $W^{H}$ , so $\Psi’\Phi’/\Delta^{l}$ is in $r^{-1}(M)$ . Since $\deg(\Psi’\Phi’/\Delta^{l})/\deg\Delta=$

$e(B, W)+1$ by definition, it suffices to prove

CLAIM. $\Psi’\Phi’/\Delta^{l}$ generates the submodule $r^{-1}(M)$ over $C[\Delta]$ .

PROOF. Let $\mu\in r^{-1}(M)$ be a generator which is homogeneous. Then $\Psi’\Phi’/\Delta^{l}=$

$p(\Delta)\mu$ with a non-zero monomial $p$ . If $\deg p\geq 1$ , then $\Delta$ divides $\Psi’\Phi’/\Delta^{l}$ in $r^{-}1$
$(M)\subset$

$end(W)_{1}$ , which contradicts the definition of $l$ . Thus $p$ is a non-zero constant, and
hence $\Psi’\Phi’/\Delta^{l}$ is a generator. This proves the claim and completes the proof of the
proposition. $\square$

PROOF OF THEOREM B. By Proposition 6.2 it remains to prove $d(B, F)=e(B, F)$

when $F$ is a multiple of a representation of $G$ which is multiplicity free with respect to
$H$ . We may assume $I=(\Delta^{m})$ for some $m\geq 1$ as noted in the proof of Proposition 6.2
and $B$ to be special as usual.

Let $A\in aut(F\oplus C)$ . Remember that $A$ is of the form

$A=$ ( $A(CA(CF)|_{c})$ ).
Looking at the degrees, one sees that $\det A\equiv\det A(F, F)\det A(C, C)mod \Delta^{m}$ . Here
$\det$ $A$ is a non-zero constant since $A$ is an automorphism, and $\det A(C, C)=A(C, C)$

since $A(C, C)$ is 1 $\cross 1$ matrix. Therefore the congruence above reduces to

(6.6) a $\det A(F, F)\equiv A(C, C)$ $mod \Delta^{m}$

with some non-zero constant $a$ .
By assumption $F=kW$ for some positive integer $k$ and a representation $W$ of $G$

which is multiplicity free with respect to $H$ . Then $\dim W^{H}=0$ or 1 and it suffices to
treat the latter case because if $\dim W^{H}=0$ , then $\dim F^{H}=0$ and hence $d(B, F)=$

$e(B, F)=0$ .
We define a map

$Det:end(F)=end(kW)arrow end(W)$

$P \vdasharrow\sum_{\sigma}(-1)^{sgn\sigma}\prod_{i=1}^{k}P_{i\sigma(i)}$

where $\sigma$ runs over all permutations on $k$ letters and $P_{ij}$ is the $(i,j)th$ entry of $P$ which
sends the jth factor $W$ of $kW$ to the ith factor $W$ of $kW$ . Set $\tilde{A}=Det(A(F, F))$ . The
restrictions of $A(F, F)$ and $\tilde{A}$ to $B^{H}$ decompose into sum of factors $A(F, F)_{\chi}$ and $\tilde{A}_{\chi}$

respectively according to irreducible $H$-representations $\chi$ which occur in $W$ viewed as a
representation of $H$ . Since $F=kW,$ $A(F, F)$ consists of $k^{2}$ blocks where each block is
a square matrix of size $\dim W$ and its restriction to $B^{H}$ is a diagonal matrix by Schur’s
Lemma and the multiplicity free condition. Therefore one sees that

(6.7) $\det A(F, F)_{\chi}=\det\tilde{A}_{\chi}$ for each $\chi$ .
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Taking the product at the both sides of (6.7) over $\chi$ , one obtains that $\det A(F, F)=$

$\det\tilde{A}$ on $B^{H}$ and hence on the whole space $B$ because $\det A(F, F)$ and $\det\tilde{A}$ are both
invariant functions on $B$ and the $G$-orbit of $B^{H}$ is dense in $B$ . Moreover $\tilde{A}-\tilde{A}_{(0)}\in$

$r^{-1}(M)$ . TO see this, note that since $W$ is multiplicity free with respect to $H,\tilde{A}_{\chi}$ is
multiplication by some $a_{\chi}\in \mathcal{O}(B^{H})$ . On the other hand since $A$ is an automorphism,
$\det A(F, F)_{\chi}\in \mathcal{O}(B^{H})$ is a unit and hence $\det\tilde{A}_{\chi}$ is a constant by Lemma 2.1(1) and (6.7)

unless $\chi$ is the trivial representation. Hence $a_{\chi}$ must be a constant for non-trivial $\chi$ ,
which means that $\tilde{A}-\tilde{A}_{(0)}\in r^{-1}(M)$ .

Thus it follows from Proposition 6.5 that

$\det A(F, F)=\det\tilde{A}\equiv aconstant$ $mod \Delta^{e(B,W)+1}$ .

Here $e(B, W)=e(B, kW)=e(B, F)$ by Lemma 6.1(3) and $e(B, F)+1\leq m$ by Lemma
6.1 (2). Hence it follows from (6.6) that

$A(C, C)\equiv$ a constant $mod \Delta^{e(B,F)+1}$ .

This shows that $\log\Gamma_{*}$ is contained in $(\Delta^{e(B,F)+1})/(\Delta^{m})$ , which means $d(B, F)\geq e(B, F)$

by Proposition 5.3. The opposite inequality is established in Proposition 6.2, so
$d(B,F)=e(B, F)$ . $\square$

\S 7. Pulling back $G$-vector bundles over representations to cones.

Suppose $V$ is a representation of $G$ such that $\mathcal{O}(V)^{G}\neq C$ , in other words, there
exists a non-zero point $x\in V$ whose orbit is closed. We define $B’=B’(V;x)\subset V$ to be
$(G\cross C^{*})x$ where the $C^{*}$ -action is scalar multiplication. The $G\cross C^{*}$ -variety $B’$ satisfies
condition (CO) and has a one-dimensional irreducible quotient $B’//G$ ; however $B’//G$ is
not necessarily isomorphic to $C$ , i.e. $B’$ does not necessarily satisfy condition (C1) (see

e.g. the next section). There are two ways to get around this trouble. One is to take
the fiber product of $B’$ and the normalization of $E//G$ over $B’//G$ , and the other is to
take the normalization of $B’$ .

Let $L$ be the line $Cx$ in $B’$ and $N$ the stabilizer of $L$ in $G$ . Observe that $L//N$ is
isomorphic to $C$ and the natural map $\tau$ : $L//Narrow B’//G$ is bijective since $L$ intersects all
the closed orbits of $B’$ .

PROPOSITION 7.1. The reduced fiber product $B(V;x)$ of $B’$ and the normalization of
$B’//G$ over $E//G$ is a special G-cone.

REMARK. We specify that the fiber product should be reduced, because in algebraic
geometry, the usual definition of fiber product (see e.g. [H]), does not necessarily require
this. Here we mean the fiber product which satisfies the necessary universal property
for all reduced varieties. It is the same as the reduced variety associated to the
(unreduced) fiber product of [H]. It is not hard to see that the fiber product of
$\alpha$ : $Xarrow Z$ and $\beta:Yarrow Z$ is the subvariety of $X\cross Y$ of elements $(x,y)$ such that
$\alpha(x)=\beta(y)$ .
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PROOF. Let $B=B(V;x)$ . The observation made just above the proposition shows
that $L//N$ is the normalization of $B’//G$ . By definition,

$B=\{(x’, c)\in E\cross L//N|\pi’(x’)=\tau(c)\}$

where $\pi’$ : $Earrow F//G$ is the quotient map. The projection of $B$ on $L//N$ induces a
morphism $B//Garrow L//N$ . The universal property of fiber products shows that this is
an isomorphism. Thus $B//G\cong L//N\cong C$ and $B$ satisfies condition (C1). It is easy to
check that $B$ satisfies condition (CO).

Let $\kappa:Barrow B’$ be the projection. Note that the map $\kappa$ is bijective and finite, and $B$

and $H$ have unique open $G\cross C^{*}$ -orbits respectively on which $\kappa$ is an isomorphism. Let
$C$ be the closure of the open $G\cross C^{*}$ -orbit in $B$ . Then its image $\kappa(C)$ is closed by the
finiteness of $\kappa$ . Since $\kappa(C)$ contains the open $G\cross C^{*}$ -orbit in $B’$ , it follows from the
construction of $E$ that $\kappa(C)=B’$ . Now it follows from the bijectivity of $\kappa$ that $C=B$

which means that $B$ is special. $\square$

NOW we consider the normalization of $B’$ . In this case we need to assume $G$ to be
connected so that $F$ is irreducible and then the normalization of $B’$ makes sense. Since
$R$ is an affine $G\cross C^{*}$ -variety, so is its normalization (see [Kr, p. 261]).

PROPOSITION 7.2. Suppose $G$ is connected. Then the normalization $B_{1}(V;x)$ of $B’$ is
a special G-cone.

PROOF. Let $B=B_{1}(V;x)$ . First note that the quotient $B//G$ is isomorphic to the
normalization of $B’//G$ . This is because the natural map $B//Garrow B’//G$ is a finite and
birational map between rational curves. Thus in particular, the map $B//Garrow B’//G$ is
one-to-one. Also, this proves condition (C1).

TO prove that $B$ satisfies condition (CO), it is enough to know that the inverse image
of the origin under the normalization map is a unique point. Then the closure of every
$C^{*}$ -orbit would pass through this point. This is clearly the case, since if it contained
several points, each would be fixed by $G$ , and one could separate them with an invariant
function, which is impossible since $B//Garrow B’//G$ is one-to-one. The ring $\mathcal{O}(B)$ inherits
the positive grading from that of $\mathcal{O}(B’)$ .

Since $F$ has a unique open $G\cross C^{*}$ -orbit, so does $B$ . Since $B$ is irreducible, the
closure of this open orbit is $B$ , and thus it is special. $\square$

PROOF OF THEOREM C. Since $\Phi$ is a weak duality, $E_{\Phi}(1+P)\in VEC(V, F;C)$ if
$P\in O(V)_{1}^{G}$ . The $p$ invariant of the pull-back bundle of $E_{\Phi}(1+P)$ by $\iota$ is $1+\iota^{*}P$ .
Since $\log(1+\iota^{*}(\mathcal{O}(V)_{1}^{G}))=\iota^{*}(\mathcal{O}(V)_{1}^{G})$ , this proves the theorem. $\square$

\S 8. Applic tions to dihedral groups.

In this section we illustrate the previous material by treating the group $O(2)$ and its
dihedral subgroups. We begin with $O(2)$ , a base representation $V_{1}$ which is a weighted
$G$-cone and $F=V_{m}$ a representation which is multiplicity free with respect to a principal
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isotropy group of $V_{1}$ . We describe $VEC(V_{1}, V_{m};C)$ in this case. We then restrict it to
dihedral subgroups. The representation $V_{1}$ itself no longer satisfies condition (C1) for
these subgroups. Thus to treat vector bundles over $V_{1}$ when the group is dihedral, we
first describe $VEC(B, F;C)$ for a special $G$-cone $B$ associated to $V_{1}$ , as described in the
previous section. We then use Theorem $C$ to get a lower bound for equivariant vector
bundles over $V_{1}$ .

Remember that $O(2)=C^{*}>\triangleleft Z/2Z$ . Denote by $g$ an element of $C^{*}$ , and by $h$ the
non-trivial element of $Z/2Z$ . For a positive integer $k$ we define the two-dimensional
representation $V_{k}$ of $O(2)$ by

$g(a, b)=(g^{k}a, g^{-k}b)$ $h(a, b)=(b, a)$

where $(a, b)\in V_{k}=C^{2}$ .
Let $G=O(2),$ $B=V_{1}$ and $F=V_{m}$ . We find that $\mathcal{O}(B)^{G}=C[\Delta]$ where $\Delta=ab$ and

that $B$ is a special $G$-cone whose principal isotropy group $H$ is $Z/2Z$ . Since $B$ is a
representation, $B$ has the $C^{*}$ -action defined by scalar multiplication. Note that $F$ is
multiplicity free with respect to $H$ . It is easy to check that $mor(F, C)$ is free and of
rank one as a $C[\Delta]$ -module and the generator $\Phi$ is given by

$\Phi(a, b)(x,y)=b^{m}x+a^{m}y$

where $(a, b)\in B=V_{1}$ and $(x,y)\in F=V_{m}$ . Observe that $\Phi$ is a weak duality. Similarly
$mor(C, F)$ is also free and of rank one as a $C[\Delta]$ -module and the generator $\Psi$ is given by

$\Psi(a, b)(z)=(a^{m}z, b^{m}z)$

where $z\in C$ . Thus we have

$\Phi\Psi(a, b)(z)=\Delta^{m}z$

$\Psi\Phi(a, b)(x,y)=(\begin{array}{ll}\Delta^{m} a^{2m}b^{2m} \Delta^{m}\end{array})(\begin{array}{l}Xy\end{array})$ .

The former identity implies that $I=(\Delta^{m})$ and the latter implies that $e(B, F)=m-1$

since the $2\cross 2$ matrix above is not divisible by $\Delta$ . Thus it follows from Theorems A
and $B$ that

THEOREM 8.1. Suppose $G=O(2),$ $B=V_{1}$ and $F=V_{m}$ . Then
(1) $VEC(B,F;C)\cong C^{m-l}$ . $([S].)$

(2) More precisely any element in $VEC(B, F;C)$ is represented by $E_{\Phi}(T)$ for some
$T\in R(\Phi)_{*}=1+(\Delta)$ , and $E_{\Phi}(T)=E_{\Phi}(T’)$ in $VEC(B, F;C)$ for $T,$ $T’\in R(\Phi)_{*}$ if and
only if $T\equiv T’mod \Delta^{m}$ . ($[MP2]$ , [MP3].)

NOW we consider the dihedral groups $D_{n}$ where $D_{n}=Z/nZ\lambda Z/2Z$ . Since $D_{n}$ is a
subgroup of $O(2)$ , the $O(2)$ -vector bundles above can also be thought of as $D_{n}$ -vector
bundles. We will show that for $n$ large enough, they stay non-isomorphic as $D_{n}$ -vector
bundles. The basic difference between this and the $O(2)$ case is that the base rep-
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resentation no longer has a one-dimensional quotient, and thus we use the special
$G$-cone associated to $V_{1}$ .

In the following we set $G=D_{n}$ and regard $V_{m}$ as a representation of $G$ via
restriction. Then $V_{m}=V_{m+n}$ and if $m\leq n$ , then $V_{m}=V_{n-m}$ ; thus we may assume that
$2m\leq n$ . It is not hard to check that $\mathcal{O}(V_{1})^{G}=C[ab, a^{n}+b^{n}]$ .

Let $x=(1,1)\in V_{1}$ . The isotropy group of $x$ is $H=Z/2Z$ . Let $E=H(V\iota;x)$

from section 7. Then

$B’=\{(c\zeta, c\zeta^{-1})|c\in Cand\zeta isannthrootofunity\}$ .

It is a union of lines through the origin. One finds that

$\mathcal{O}(B’)=\{$

$C[a, b]/(a^{n/2}-b^{n/2})$ if $n$ is even
$C[a, b]/(a^{n}-b^{n})$ if $n$ is odd

and

$\mathcal{O}(B’)^{G}=\{$

$C[ab]$ if $n$ is even
$C[ab, a^{n}+b^{n}]/((a^{n}-b^{n})^{2})(\cong C[c^{2}, c^{n}])$ if $n$ is odd.

Therefore if $n$ is even, $F$ is a special $G$-cone; so we take $B=B’$ . If $n$ is odd, $F//G$ is a
cusp; so $B’$ is not even a weighted $G$-cone, but $B=B(V_{1;X})$ , defined in Proposition 7.1,
is a special $G$-cone. In either case the principal isotropy group of $B$ is $H$ . It is easy to
check that

(8.2) $B=\{(a, b, c)\in C^{3} ab=c^{2}, a^{n}=b^{n}=c^{n}\}$

when $n$ is odd. Thus $\mathcal{O}(B)^{G}=C[\Delta]$ in any case where

$\Delta=\{$

$ab$ if $n$ is even
$c$ if $n$ is odd.

We have a natural map 1: $Barrow V_{1}$ . Denote by $\iota^{*}\Phi$ and $\iota^{*}\Psi$ the pull-back of $\Phi$ and
$\Psi$ by $\iota$ where $\Phi$ and $\Psi$ are given above for $O(2)$ .

LEMMA 8.3. $\iota^{*}\Phi$ and $\iota^{*}\Psi$ generate $mor(F, C)$ and $mor(C, F)$ as $C[\Delta]$ -modules
respectively.

PROOF. We prove the claim only for $\iota^{*}\Phi$ since the proof for $\iota^{*}\Psi$ is the same.
Since $B$ is special and $\dim F^{H}=1$ , the rank of $mor(F, C)$ as a $C[\Delta]$ -module is one.
Since $\deg\iota^{*}\Phi=m$ , it suffices to prove that any homogeneous element of $mor(F, C)=$

$Mor(B, F^{*})^{G}$ has degree at least $m$ .
Suppose $n$ is even. Then $B$ is a closed $G$-subvariety of $V_{1}$ and hence the restriction

map $Mor(V_{1},F^{*})^{G}arrow Mor(B,F^{*})^{G}$ is surjective. Thus it suffices to prove that any
homogeneous element $Q$ of $Mor(V_{1}, F^{*})^{G}=Mor(V_{1}, V_{m})^{G}$ (note that $F=V_{m}$ is self-
dual) has degree at least $m$ . It follows from the $H$-equivariance that $Q$ is of the form

$Q(a, b)=(q(a, b),$ $q(b, a))$
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with a polynomial $q$ . If $q(a, b)= \sum c_{ij}a^{i}b^{j}$ with $c_{ij}\in C$ , then $i-j\equiv mmod n$ by
the $Z/nZ(\subset D_{n})$ -equivariance. Since $2m\leq n$ , this congruence implies $i+j\geq m$ ; so
$\deg Q\geq m$ . If $n$ is odd, we can apply the same reasoning after noting that $B$ is aclosed
$G$-subvariety in $V_{1}+C$ . Therefore the lemma has been proven. $\square$

THEOREM 8.4. Suppose $0<2m\leq n$ . For $G=D_{n},$ $B$ constructed above and $F=V_{m}$ ,

$d(B,F)=\{$

$\min\{m-1, n/2-m-1\}$ if $n$ is even $\neq 2m$

$0$ $\iota fn=2m$

$\min\{2m-1, n-2m-1\}$ $\iota fn$ is odd.

PROOF. Since $F=V_{m}$ is multiplicity free with respect to $H=Z/2Z$, Theorem $B$

can be applied; so we compute the number $e(B, F)$ in the following. By virtue of
Lemma 8.3 the computation of the number $e(B, F)$ reduces to finding the maximum
integer $l$ such that $\Delta^{l}$ divides $\iota^{*}\Psi\iota^{*}\Phi$ in end $(F)_{1}$ . Note that $e(B, F)=m-l-1$ by
definition.

Calculation of $l$. We note that

$\iota^{*}\Psi\iota^{*}\Phi=(\begin{array}{ll}\Delta^{m} a^{2m}b^{2m} \Delta^{m}\end{array})$

at $(a, b)\in B$ or $(a, b, c)\in B$ according as $n$ is even or odd. This shows that $\Delta^{l}$ divides
$\iota^{*}\Psi\iota^{*}\Phi$ if and only if it divides both $a^{2m}$ and $b^{2m}$ . By the $H$-equivariance $\Delta^{l}$ divides
$a^{2m}$ if and only if it divides $b^{2m}$ . Thus $\Delta^{l}$ divides $\iota^{*}\Psi\iota^{*}\Phi$ if and only if it divides $a^{2m}$ .

CASE 1. The case where $n$ is even $\neq 2m$ .
Remember that $\Delta=ab$ in this case. If $\Delta^{l}$ divided $a^{2m}$ , then one could solve

(8.5) $a^{2m}-f\Delta^{l}\in(a^{n/2}-b^{n/2})\subset C[a, b]$

for some polynomial $f$ of $a$ and $b$ since $\mathcal{O}(B)=C[a, b]/(a^{n/2}-b^{n/2})$ .
If $n\geq 4m$ , then one checks the term of degree $2m$ to see that there is no polynomial

$f$ which satisfies (8.5). This means that $l=0$ if $n\geq 4m$ . Suppose $2m<n<4m$ . Then
$\Delta^{2m-n/2}$ does divide $a^{2m}$ , in fact, if we take $f=b^{n-2m}$ , then

$a^{2m}-f\Delta^{2m-n/2}=a^{2m-n/2}(a^{n/2}-b^{n/2})$ .

Since $n>2m,$ $\deg f>0$ which means that $\iota^{*}\Psi\iota^{*}\Phi/\Delta^{2m-n/2}$ is in end $(F)_{1}$ ; so $l\geq 2m-$

$n/2$ . We will show equality. Now $a^{2m}=b^{n-2m}\Delta^{2m-n/2}$ in $\mathcal{O}(B)$ . We must show that
$\Delta$ does not divide $b^{n-2m}$ . If it did, one could solve

$b^{n-2m}-f’\Delta\in(a^{n/2}-b^{n/2})\subset C[a,b]$

for some polynomial $f’$ . But this is not possible since $n-2m<n/2$ (remember that we
assume $n<4m$ ).

CASE 2. The case where $n=2m$ .
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The argument developed just above almost works when $n=2m$ . The only thing which
we have to be careful about is that the degree of the $f$ is zero as $n=2m$ . Therefore we
must take $f=b^{n-2m+2}$ in this case. Then one sees that $l=2m-n/2-1=m-1$ .

CASE 3. The case where $n$ is odd.

Remember that $\Delta=c$ in this case. If $\Delta^{l}$ divided $a^{2m}$ , then we could write

(8.6) $a^{2m}=cff(a, b, c)\in O(B)$

for some homogeneous polynomial $f$ of degree $2m-l$ . Solving the defining equations
(8.2) of $B$, we have

$a=\zeta c$ , $b=\zeta^{-1}c$

with an $n$th root $\zeta$ of unity. Replace $a$ and $b$ in (8.6) by $\zeta c$ and $\zeta^{-1}c$ respectively and
look at the exponents of $\zeta$ at the both sides. Then one sees that $l$ cannot be positive
if $n\geq 4m$ . Thus $l=0$ in this case. Now suppose $n<4m$ . Then since $a=\zeta c$ and
$b=\zeta^{-1}c$ , we have $a^{2m}=c^{4m-n}b^{n-2m}$ in $\mathcal{O}(B)$ ; so $l\geq 4m-n$ . Just like the above case
where $n\geq 4m$ , one checks that $c$ does not divide $b^{n-2m}$ . Therefore $l=4m-n$ when
$n<4m$ .

Noting that $e(B, F)=m-l-1$ , one sees that this proves the theorem. $\square$

THEOREM 8.7 (cf. [MP2, II.1.3]). Suppose that $G=D_{n},$ $0<2m\leq n$ and $x=(1,1)\in$

$V_{1}$ . Then $\log\rho_{X}$ : $VEC(V_{1}, V_{m}; C)arrow c^{f(V_{1)}V_{m},x)}$ is surjective, where

$f(V_{1}, V_{m}; x)=\{$
$\min\{m-1, [(n-1)/2]-m\}$ $\iota fn\neq 2m$

$0$ $lfn=2m$ .

PROOF. Theorem $C$ applies since $\Phi^{-1}(0)=0$ . It is not difficult to see that the
image under $\iota^{*}$ of $\mathcal{O}(V_{1})^{G}$ in $\mathcal{O}(B)^{G}=C[\Delta]$ is $C[\Delta]$ or $C[\Delta^{2}]$ according as $n$ is even or
odd. Hence the theorem follows from Theorems $C$ and 8.4. $\square$

The lower bound for $VEC(V_{1}, V_{m};C)$ in the theorem above is obtained by pulling
back bundles over $V_{1}$ to $B$ . Actually in some cases a better bound is obtained by using
the equivariant cone $B’$ . We illustrate this in the next two results.

PROPOSITION 8.8. Suppose $n$ is odd and $2m<n<4m$ . Suppose also that $T$ and $T’$

are polynomials of $\Delta=ab$ with 1 as the constant term. If the $G$-vector bundles $E_{\Phi}(T)$

and $E_{\Phi}(T’)$ over $V_{1}$ are isomorphic over $B’$, then $T\equiv T’mod \Delta^{m}$ .

REMARK. This is not implied by Theorem 8.7, since some of the vector bundles
there have been shown to pull back to equivalent vector bundles on $B$ .

PROOF. The natural dominant morphism from $B$ to $B’$ induces an inclusion $\mathcal{O}(B’)\subset$

$O(B)$ . This means that the set of automorphisms of the $G$-vector bundle $B’\cross(F\oplus C)$

are included in those of $B\cross(F\oplus C)$ .
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Suppose $E_{\Phi}(T)=E_{\Phi}(T’)$ in $VEC(B’, F;C)$ . Then there is an automorphism $A$ of
$B’\cross(F\oplus C)$ which takes one to the other. Since $A$ can be thought of as an auto-
morphism of $B\cross(F\oplus C)$ as remarked above, we know from the proof of Proposition
6.5 and the proof of Theorem 8.4 (see Case 3) that

$(A-A_{(0)})(F, F)=p(c)\iota^{*}\Psi\iota^{*}\Phi/c^{4m-n}$

with some polynomial $p$ , in other words,

$(A-A_{(0)})(F, F)=p(c)(\begin{array}{ll}c^{n-2m} a^{n-2m}b^{n-2m} c^{n-2m}\end{array})$ .

We will show that in order for all the terms to be in $\mathcal{O}(B’),$ $p(c)$ must be divisible by
$c^{4m-n}$ . Then we are done, since then $A(C, C)$ would have to be a constant modulo
$c^{2m}$ . (See the proof of Theorem B.)

CLAIM. (1) If $p(c)\in \mathcal{O}(B’)$ , then $p(c)$ has no odd terms of degree $<n$ .
(2) If $p(c)a^{k}\in \mathcal{O}(B’)$ , then $p(c)$ has no odd terms of degree $<n-2k$.

PROOF. We note that $p(c)$ is $G$-invariant as so is $c$ . On the other hand we know
that $\mathcal{O}(B’)^{G}=C[c^{2}, c^{n}]$ , so the first case follows. Multiplying $p(c)a^{k}$ by $b^{k}$ , the second
case reduces to the first one.

By the claim above, $p(c)a^{n-2m}\in \mathcal{O}(B’)$ implies that $p(c)$ has no odd terms of
degree $<4m-n$ . Also, $p(c)c^{n-2m}\in \mathcal{O}(B’)$ implies that $p(c)$ has no even terms of
degree $<2m$ (since $n$ is odd). Thus $p(c)$ is divisible by $c^{4m-n}$ because $4m-n<2m$ by
assumption. $\square$

The above proposition gives a better estimate for $VEC(V_{1}, V_{m}; C)$ than Theorem 8.7
when $n$ is odd. The following corollary follows from Theorem 8.7 and Proposition 8.8.

COROLLARY 8.9. Suppose that $G=D.$ , $0<2m<n$ and $n$ is odd. Then
$VEC(V_{1}, V_{m};C)$ contains a subspace isomorphic to $C^{m-1}$ .

\S 9. Applications to connected reductive groups.

Suppose $G$ is a connected reductive group. Given a dominant weight $\mu$ of $G$ , we
denote by $V(\mu)$ the irreducible representation of $G$ with highest weight $\mu$ , and by $\mu^{*}$ the
highest weight of $V(\mu)^{*}$ In [MMP2] we investigated $VEC(V, F;S)$ where

$V=jV(\beta)$ , $F=kV(\phi)$ , $S=lV(\sigma)$

for some dominant weights $\beta,$ $\phi,$ $\sigma$ and positive integers $j,k,$ $l$ . In fact we gave a lower
bound for $VEC(V, F;S)$ in terms of the weights when there is a reductive subgroup $H$

such that $V(\beta)^{H}\neq 0$ and $V(\emptyset)$ is multiplicity free with respect to $H$ . Some of the non-
trivial equivariant vector bundles obtained there can also be distinguished using the
method developed here when $S=C$ (i.e. $l=1$ and $\sigma=0$). We form $B=B(V;x)$ from
Proposition 7.1 where $x$ is a non-zero point of $V^{H}$ . In this section we give a lower
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bound for $e(B, F)$ in terms of the weights $\beta$ and $\emptyset$ (Proposition 9.3) and use this via
Theorems $B$ and $C$ to obtain a lower bound for $VEC(V, F;C)$ (Theorem 9.7).

We consider the partial ordering on the additive group of weights of $G$ tensored
with $Q:\lambda\geq\mu$ if and only if $\lambda-\mu$ is a sum of positive roots with non-negative
rational coefficients. This ordering behaves well with respect to addition and scalar
multiplication.

LEMMA 9.1. Any irreducible representation in $O(B)_{(i)}$ has the highest weight at most
$i\beta^{*}$ .

PROOF. By construction $B$ is a closed $G\cross C^{*}$ -subvariety of $jV(\beta)\cross C$ , so the
restriction map : $\mathcal{O}(jV(\beta)\cross C)arrow \mathcal{O}(B)$ is surjective, degree preserving and G-
equivariant. This implies the lemma since $\mathcal{O}(jV(\beta)\cross C)_{(i)}=\oplus_{s+t=i}\mathcal{O}(jV(\beta))_{(s)}\otimes$

$\mathcal{O}(C)_{(t)}$ and $\mathcal{O}(jV(\beta))_{(s)}$ is the sth symmetric product of $jV(\beta)^{*}=jV(\beta^{*})$ . $\square$

LEMMA 9.2. If $F^{H}\neq 0$, then there is a non-negative integer $i$ such that $\emptyset+\phi^{*}\leq i\beta^{*}$ .

PROOF. Since $F^{H}\neq 0$ , there is a non-zero homogeneous element $\Phi\in mor(F, C)$ by
Lemma 2.3. The map $\Phi$ induces a non-trivial equivariant linear map : $Farrow \mathcal{O}(B)_{(\deg\Phi)}$ .
This means that $\mathcal{O}(B)_{(\deg\Phi)}$ contains $V(\phi)$ since $F=kV(\emptyset)$ . Therefore we obtain
an inequality $\emptyset\leq(\deg\Phi)\beta^{*}$ by Lemma 9.1. The above argument applied to $F^{*}$ instead
of $F$ shows that $\phi^{*}\leq(\deg\Phi)\beta^{*}$ . Thus $\emptyset+\phi^{*}\leq 2(\deg\Phi)\beta^{*}$ and this proves the
lemma. $\square$

DEFINITION. For fixed weights $\beta$ and $\emptyset$ , consider the inequality $\emptyset+\phi^{*}\leq r\beta^{*}$ for
a non-negative integer $r$ . Lemma 9.2 ensures that this inequality has a solution if
$F^{H}\neq 0$ . We define an integer $r(\beta, \phi)$ to be $0$ when $F^{H}=0$ , and to be the smallest
(non-negative) integer such that the above inequality holds when $F^{H}\neq 0$ .

The definition of $r(\beta, \phi)$ allows us to estimate the integer $e(B, F)$ as follows.

PROPOSITION 9.3. $e(B, F)\geq r(\beta, \phi)/\deg\Delta-1$ .

PROOF. The following proof is essentially the same as in [MMP2, Proposition
3.2]. If $F^{H}=0$ , then $e(B, F)=r(\beta, \phi)=0$ by definition; so the proposition is trivial in
this case. We assume $F^{H}\neq 0$ in the following. Let $\Phi$ and $\Psi$ be non-zero homo-
geneous elements in $mor(F, C)$ and $mor(C, F)$ respectively. Suppose $\Delta^{l}$ divides $\Psi\Phi$ in
end $(F)_{1}$ . The element $\Psi\Phi/\Delta^{l}$ induces the equivariant linear map $\Omega$ : $F^{*}\otimes Farrow \mathcal{O}(B)_{(i)}$

defined by

$\Omega(v_{*}\otimes v)(u)=\langle v_{*}, (\Psi\Phi/\Delta^{l})(u)(v)\rangle$

for $u\in B,$ $v\in F$ and $v_{*}\in F^{*}$ , where $i=\deg(\Psi\Phi/\Delta^{l})$ and $\langle$ , $\rangle$ denotes the natural
pairing between $F^{*}$ and $F$ . Let $v^{+}$ and $v_{*}^{+}$ be the highest weight (or maximal) vectors of
$F$ and $F^{*}$ respectively.

CLAIM. $\Omega(v_{*}^{+}\otimes v^{+})\neq 0$ .
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We admit this claim for a moment and complete the proof of the proposi-
tion. Since the weights of $v_{*}^{+}$ and $v^{+}$ are respectively $\phi^{*}$ and $\phi$ , we obtain an inequality
$\phi^{*}+\emptyset\leq i\beta^{*}$ from Lemma 9.1 and the claim above. Thus $\deg(\Psi\Phi/\Delta^{l})=i\geq r(\beta, \phi)$ by
the definition of $r(\beta, \phi)$ and hence the proposition follows from the definition of $e(B, F)$ .

NOW we prove the claim above. We regard $\Phi$ and $\Psi$ as elements of $Mor(B, F^{*})^{G}$

$andMor(B, F)^{G}$ respectively. $SinceB-B_{0}isdenseinB,$ $thereisapointw\in B-B_{0}$ on
which $\Phi$ and $\Psi$ are both non-zero. It is not difficult to see that there is $g\in G$ such that

$\langle gv_{*}^{+}, \Psi(w)\rangle\neq 0$ and $\langle\Phi(w), gv^{+}\rangle\neq 0$

(see e.g. [MMP2, Lemma 3.3]). Then

$\Omega(v_{*}^{+}\otimes v^{+})(g^{-1}w)=\langle v_{*}^{+}, (\Psi\Phi/\Delta^{l})(g^{-1}w)(v^{+})\rangle$

$=\langle gv_{*}^{+}, (\Psi\Phi/\Delta^{l})(w)(gv^{+})\rangle$

$=\langle\Phi(w), gv^{+}\rangle\langle gv_{*}^{+}, \Psi(w)\rangle/\Delta^{l}(w)\neq 0$ .

This proves the claim. $\square$

The case where $\emptyset=m\beta^{*}$ is an important example in [MMPI] and [MMP2]. In this
case the integer $r(\beta, \phi)$ can be estimated in terms of $\beta$ .

DEFINITION. We define $q(\beta)$ to be the smallest rational number such that
$\beta\leq q(\beta)\beta^{*}$ if it exists.

The number $q(\beta)$ exists if and only if $\beta\neq 0$ and $\beta$ or $\beta^{*}$ restricts to zero on the
identity component of the center of $G$, and it is easily computed. One sees that $q(\beta^{*})=$

$q(\beta)$ and $q(\beta)\geq 1$ for any $\beta$ with equality holding if and only if $\beta^{*}=\beta$ . The following
lemma follows directly from the definition of $r(\beta, \phi)$ and $q(\beta)$ .

LEMMA 9.4. If $\emptyset=m\beta^{*}$ or $m\beta$ and the number $q(\beta)$ exists, then $r(\beta, \phi)\geq$

$(q(\beta)+1)m$ . If $\beta^{*}=\beta$ moreover, then $r(\beta, \phi)\geq 2m$ .

Combining Proposition 9.3 with Theorem $B$ and Lemma 9.4, we obtain

COROLLARY 9.5. Let the situation be as above. If $V(\emptyset)$ is multiplicity free with
respect to $H$, then

$d(B, F)\geq r(\beta, \phi)/\deg\Delta-1$ .

If $\emptyset=m\beta^{*}$ or $m\beta$ and $q(\beta)$ exists moreover, then

$d(B, F)\geq(q(\beta)+1)m/\deg\Delta-1$ .

NOW we apply this via Theorem $C$ using the natural map $\iota$ : $Barrow V=jV(\beta)$ . As
an example we take $\emptyset=m\beta^{*}$ and $j\leq k$ , since in this case we know that there is a weak
duality in $Mor(V, F^{*})^{G}$ (see [MMP2, \S 4]); so it suffices to find the image $\iota^{*}\mathcal{O}(V)_{1}^{G}$ .

LEMMA 9.6. Suppose that $\beta^{*}=\beta$ and $\dim V(\beta)^{H}=1$ . Then there is a degree 2
homogeneous function $\Delta_{V}\in \mathcal{O}(V)^{G}$ such that $\iota^{*}\Delta_{V}\in \mathcal{O}(B)^{G}=C[\Delta]$ is non-zero. Therefore
$\deg\Delta$ must be 1 or 2, and accordingly $\iota^{*}\Delta_{V}=\Delta^{2}$ or $\Delta$ (up to a scalar non-zero constant).
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PROOF. The assumption $\beta^{*}=\beta$ means that $V(\beta)$ is self-dual, so there is a non-
degenerate invariant bilinear form $\langle, \rangle$ on $V(\beta)$ . It is still non-trivial on $V(\beta)^{H}$ since
$\dim V(\beta)^{H}=1$ . Take a projection $\pi$ : $V=jV(\beta)arrow V(\beta)$ such that $\pi(x)\neq 0$ where $x$

is the chosen point to construct $B$ . We define $\Delta_{V}\in O(V)^{G}$ by $\Delta_{V}(v)=\langle\pi(v), \pi(v)\rangle$ .
Since $\pi(x)\neq 0,$ $\Delta_{V}(x)\neq 0$ . This shows that $\iota^{*}\Delta_{V}\in \mathcal{O}(B)^{G}$ is non-zero. $\square$

THEOREM 9.7 (cf. [MMP2, Theorem 4.6]). Suppose $\beta^{*}=\beta(\neq 0)$ and there is a
reductive subgroup $H$ such that

(1) $\dim V(\beta)^{H}=1$

(2) $V(m\beta)$ is multiplicity free with respect to $H$.
Then $VEC(V, F;C)$ surjects onto $C^{m-1}$ where $V=jV(\beta)$ and $F=kV(m\beta)$ .

PROOF. When $j\leq k$ , there is a weak duality in $Mor(V, F^{*})^{G}$ as remarked above;
so the theorem follows from Theorem $C$ , Corollary 9.5 and Lemma 9.6. When $j>k$ ,
we consider the projection from $V=jV(\beta)$ on $kV(\beta)$ . It induces an injection of
$VEC(kV(\beta), F;C)$ to $VEC(V, F;C)$ . Since the above result can be applied to $kV(\beta)$ ,
this shows that the statement holds even when $j>k$ . $\square$

\S 10. U-invariants.

Suppose $G$ is a connected reductive group. Let $U$ be a maximal unipotent
subgroup of $G$ and $O(B)^{U}$ the ring of $U$-invariants. In this section we will see that
the integer $e(B,F)$ introduced in Section 6 can be described in a different way, only
depending on $0(B)^{U}$ , under certain conditions. This is useful when $\mathcal{O}(B)^{U}$ is easy to
describe. We will see an example of this in the next section.

An element $\Phi\in mor(F, C)$ defines an equivariant linear map $\tilde{\Phi}$ : $Farrow 0(B)$ and vice
versa. In fact, the correspondence is given by $\tilde{\Phi}(v)(u)=\Phi(u)(v)$ for $u\in B$ and $v\in F$ .
Let $F_{i}$ be an irreducible subrepresentation of $F$ and let $\tilde{\Phi}_{i}\in \mathcal{O}(B)^{U}$ be the image of the
highest weight vector of $F_{i}$ by $\tilde{\Phi}$ . The element $\tilde{\Phi}_{i}$ is defined up to a non-zero
constant. We can define $\tilde{\Psi}_{i}$ similarly for $\Psi\in mor(C, F)$ with $F_{i}$ replaced by $F_{i}^{*}$ .

LEMMA 10.1. If $B$ is normal, then $\Delta^{l}$ divides $\Psi\Phi$ in end $(F)$ if and only $\iota f$ it divides
$\tilde{\Psi}_{i}\tilde{\Phi}_{j}$ in $\mathcal{O}(B)^{U}$ for all $i,j$ .

PROOF. First we prove that $\Delta^{l}$ divides $\Psi\Phi$ in end $(F)$ if and only if it divides
$(g\tilde{\Psi}_{i})(g’\tilde{\Phi}_{j})$ in $\mathcal{O}(B)$ for any $g,$ $g’\in G$ . Note that $\Psi\Phi$ corresponds to an equivariant
linear map $--:$ $F^{*}\otimes Farrow \mathcal{O}(B)$ and that $\Delta^{l}$ divides $\Psi\Phi$ if and only if it divides each
element in the image of $\Xi$ . Since the image $of^{-}-$ is the linear span of elements of the
form $(g\tilde{\Psi}_{i})(g’\tilde{\Phi}_{j})(g, g’\in G)$ , the assertion follows.

Next we prove that $\Delta^{l}$ divides $(g\tilde{\Psi}_{i})(g’\tilde{\Phi}_{j})$ in $0(B)$ for any $g,$ $g’\in G$ if and only if
it divides $\tilde{\Psi}_{i}\tilde{\Phi}_{j}$ in $\mathcal{O}(B)$ . Since $B$ is normal, we know that $\Delta^{l}$ divides $\tilde{\Psi}_{i}\tilde{\Phi}_{j}$ in $0(B)$ if
and only if it divides $\tilde{\Psi}_{i}\tilde{\Phi}_{j}$ in every local ring $\mathcal{O}_{B,X}$ for codimension one irreducible
subvarieties $X$ of $B$ . For any subvariety not in the null-fiber $B_{0},$ $\Delta$ is invertible. Thus
we need only consider irreducible components $X$ of $B_{0}$ . Since $G$ is connected, $X$ is
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stable by the action of $G$ and the valuation $v$ on $\mathcal{O}_{B,X}$ is thus stable under the action of
$G$ . Thus

$v(\tilde{\Psi}_{i}\tilde{\Phi}_{j})=v(\tilde{\Psi}_{i})+v(\tilde{\Phi}_{j})=v(g\tilde{\Psi}_{i})+v(g’\tilde{\Phi}_{j})=v((g\tilde{\Psi}_{i})(g’\tilde{\Phi}_{j}))$

for any $g,$ $g’\in G$ . This shows that $\Delta^{l}$ divides $\tilde{\Psi}_{i}\tilde{\Phi}_{j}$ in $\mathcal{O}_{B,X}$ if and only if it divides
$(g\tilde{\Psi}_{i})(g’\tilde{\Phi}_{j})$ for any $g,$ $g’\in G$ in the same ring. Thus the assertion follows.

Finally since $B$ is irreducible and $\Delta^{l}$ is $G$-invariant (in particular, $U$-invariant), the
divisibility of $\tilde{\Psi}_{i}\tilde{\Phi}_{j}$ by $\Delta^{l}$ in $\mathcal{O}(B)$ is the same as in $O(B)^{U}$ . $\square$

Observe that $\tilde{\Phi}_{i}$ are homogeneous if $\Phi$ is, and that the weight of $\tilde{\Phi}_{i}$ agrees with the
highest weight of $F_{i}$ . The same observation applies to $\tilde{\Psi}_{i}$ . Motivated by Lemma 10.1
together with this observation we introduce a non-negative integer analogous to $e(B, F)$ .

DEFINITION. Suppose that $B$ is special. Then we define $e^{U}(B, F)=0$ when $F^{H}=0$ ,
and

$e^{U}(B, F)= \min_{f^{*},f,l}\{\deg(f^{*}f/\Delta^{l})/\deg\Delta-1|f^{*}f/\Delta^{l}\in O(B)_{1}^{U}\}$

when $F^{H}\neq 0$ , where $f^{*}$ and $f$ run over non-zero homogeneous elements in $\mathcal{O}(B)^{U}$ whose
weights agree with the highest weights of $F_{i}^{*}$ and $F_{i}$ respectively for some $i$ . (Note that
such $f^{*}$ and $f$ exist if and only if $F_{i}^{H}\neq 0.$ ) Unless $B$ is special, we define $e^{U}(B, F)$ to be
$e^{U}(B^{s}, F)$ where $B^{s}$ is the special $G$-cone in $B$ as before.

PROPOSITION 10.2. Suppose $B$ is normal. Then $e(B, F)\geq e^{U}(B, F)$ for any $F$ and
the equality holds if $\dim F_{i}^{H}\leq 1$ for every irreducible subrepresentation $F_{i}$ of $F(e.g$ . if $F$

is a multiple of a representation which is multiplicity free with respect to $H$ ).

PROOF. We assume $F^{H}\neq 0$ since otherwise the statement is trivial. It is clear
from the definition that $e^{U}(B, F)$ is the minimum of $e^{U}(B, F_{i})$ over $F_{i}$ with $F_{i}^{H}\neq 0$ .
This together with Lemma 6.1(3) says that it suffices to prove the statement for such
$F_{i}$ . By Lemma 10.1 the divisibility conditions in the definitions of $e(B, F_{i})$ and $e^{U}(B, F_{i})$

are equivalent. Since there is an extra condition in the definition of $e(B, F_{i})$ , we have
the inequality $e(B, F_{i})\geq e^{U}(B, F_{i})$ . But if $\dim F_{i}^{H}=1$ , then the extra condition is
automatically satisfied as remarked after the definition of $e(B, F)$ in Section 6; so the
equality holds. $\square$

Remember that if the ideal $I$ is (0) or (1), then $VEC(B, F;C)=\{*\}$ ; so we assume
$I=(\Delta^{m})$ for some $m\geq 1$ in the following. Since the integer $m$ depends on $B$ and $F$, we
specify them as $m(B, F)$ . The integer $m(B, F)$ is easier to compute than $e(B, F)$ , and
$e(B, F)$ is closely related to the dimension of $VEC(B, F;C)$ as observed in Section 6.
Therefore it would be meaningful to compare these two integers. By Lemma 6.1(2)
$e(B, F)\leq m(B, F)-1$ and the equality does not necessarily hold as is seen in the
dihedral case. But we have
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PROPOSITION 10.3. Suppose $B$ is normal and $\dim F_{i}^{H}\leq 1$ for all irreducible sub-
representations $F_{i}$ of F. Then

(1) $e(B, F)=m(B,F)-1$ or $m(B, F)-2\iota f$ the null-fiber $B_{0}$ is irreducible,
(2) $e(B, F)=m(B, F)-1$ if $B$ is $UFD$ and $G$ is semisimple.

This proposition follows immediately from Proposition 10.2 and this lemma.

LEMMA 10.4. Suppose $B$ is normal. Let $f^{*},$ $f$ be non-zero homogeneous elements of
$O(B)^{U}$ which are not divisible by $\Delta$ in $O(B)^{U}$ . Suppose $\Delta^{l}$ divides $f^{*}f$ in $\mathcal{O}(B)^{U}$ for some
$l\geq 0$ . Then

(1) $l\leq 1$ if the null-fiber $B_{0}$ is irreducible,
(2) $l=0$ if $B$ is $UFD$ and $G$ is semisimple.

PROOF. (1) Since $B$ is normal and $B_{0}$ is irreducible, the local ring $\mathcal{O}_{B,B_{0}}$ is a valuation
ring for a valuation $v$ . If $f^{*}f/\Delta^{2}$ is in this ring, then $2v(\Delta)\leq v(f^{*})+v(f)$ . But then
we would have that $v(\Delta)\leq v(f^{*})$ or $v(f)$ , and that would mean that $\Delta$ would divide $f^{*}$

or $f$ in $\mathcal{O}_{B,B_{0}}$ . But $\Delta$ is invertible in the other local rings of irreducible subvarieties of
codimension 1. Thus $\Delta$ would divide $f^{*}$ or $f$ in $0(B)$ , hence in $O(B)^{U}$ as remarked at
the end of the proof of Lemma 10.1. This is a contradiction.

(2) Since $0(B)$ is UFD and $G$ is semisimple, one easily sees that the generator $\Delta$ of
$0(B)^{G}$ is irreducible. Hence, if $\Delta$ divides $f^{*}f$ , then it must divide $f^{*}$ or $f$ , which is a
contradiction. $\square$

THEOREM 10.5. Let $B$ be a representation of a semisimple group $G$ with one
dimensional quotient. If the generic fiber of $Barrow B//G$ is isomorphic to $G/H$ for some
reductive subgroup $H$ and $F$ is a multiple of a representation which is multiplicity free with
respect to $H$, then $VEC(B, F;C)\cong C^{m(B,F)-1}$ .

PROOF. The theorem follows from Theorem $B$ and Proposition 10.3(2). $\square$

EXAMPLES. Theorem 10.5 can be applied to the cases listed in the following table
(cf. [KS, TABLE III in chapter VII]). For the verification of the multiplicity free
condition, see section 5 of [MMP2].

Table 1
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In this table $\varphi_{1}$ denotes the standard representations for $SL(n)$ and $SO(n)$ , and the non-
trivial irreducible representations of dimension 7 and 26 for $G_{2}$ and $E_{6}$ respectively.
The $m$ and $k$ are positive integers and $\varphi_{1}^{p}$ denotes the pth Cartan power of $\varphi_{1}$ (i.e. the
irreducible representation whose highest weight is $p$ times the highest weight of $\varphi_{1}$ ). For
all the examples above $m(B, F)=m$ and hence $VEC(B, F;C)\cong C^{m-1}$ .

\S 11. Spherical subgroups of rank one.

In this section we compute the integer $e(B,F)$ when $B$ is a special $G$-cone associated
to a spherical subgroup of $G$ . We continue to assume $G$ to be connected reductive and
denote by $V(\mu)$ the irreducible representation of $G$ with highest weight $\mu$ as before. We
suppose that there is a reductive spherical subgroup $H$ of rank one. This means that
a Borel subgroup of $G$ has a dense orbit in $G/H$ and the minimal codimension of a
$U$-orbit in it is one. In the following we fix the Borel subgroup, the unipotent subgroup
$U$ and the maximal torus $T$ in the Borel subgroup. The spherical rank one property
is equivalent to saying that $\mathcal{O}(G/H)^{U}=C[w]$ where $w$ is an eigenvector for the
maximal torus $T$ , or that $O(G/H)\cong\oplus_{k\geq 0}V(k\lambda)$ where a is the character of $w$ , (see

[Br] $)$ . We call $\lambda$ the spherical character of $H$ in $G$ .

LEMMA 11.1. (1) $\dim V(\mu)^{H}=1$ if $\mu=k\lambda$ for some $k\geq 0$ and $0$ otherwise.
Moreover $V(k\lambda)$ is self-dual.

(2) The isotropy subgroup $H_{k}$ at a non-zero element of $V(k\lambda)^{H}$ has index 1 or 2 in its
normalizer $N_{G}(H_{k})$ .

(3) $H_{1}=H$ .

REMARK. The statement (3) does not necessarily hold for $H_{k}$ unless $k=1$ . For
example, when $G=SL(2)$ and $H=C^{*},$ $H_{k}=H$ if $k$ is odd, but $H_{k}=N_{G}(H)$ if $k$ is
even.

PROOF. (1) Since $\mathcal{O}(G)\cong\oplus_{\mu}V(\mu)\otimes V(\mu)^{*}$ as is well known ( $[Kr,$ $II.3.1$ , Satz 3]),

where $\mu$ runs over all the dominant weights of $G$ , we have

$\mathcal{O}(G/H)\cong \mathcal{O}(G)^{H}\cong\oplus_{\mu}V(\mu)\otimes(V(\mu)^{*})^{H}$ .

On the other hand since $H$ is spherical of rank one, we have $0(G/H)\cong\oplus_{k\geq 0}V(k\lambda)$ .
Since $\dim(V(\mu)^{*})^{H}=\dim V(\mu)^{H}$ , this implies (1).

(2) By (1) the action of $N_{G}(H_{k})/H_{k}$ on $V(k\lambda)^{H}$ induces an injective homomorphism
$v_{k}$ : $N_{G}(H_{k})/H_{k}arrow C^{*}$ defined by $gv=v_{k}(g)v$ for $v\in V(k\lambda)^{H}$ and $g\in N_{G}(H_{k})/H_{k}$ , and
there is an invariant non-degenerate bilinear form $\langle, \rangle$ on $V(k\lambda)$ . It follows that

$\langle v, v\rangle=\langle gv, gv\rangle=\langle v_{k}(g)v, v_{k}(g)v\rangle=v_{k}(g)^{2}\langle v, v\rangle$

for any $v\in V(k\lambda)^{H}$ and $g\in N_{G}(H_{k})/H_{k}$ . Here $\langle v, v\rangle\neq 0$ if $v\neq 0$ , because the bilinear
form is non-degenerate and $\dim V(kA)^{H}=1$ . Hence $v_{k}(g)^{2}=1$ for any $g\in N_{G}(H_{k})/H_{k}$ .
Since $v_{k}$ is injective, this proves (2).
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(3) Since $V(\lambda)^{H_{1}}\neq 0,$ $V(k\lambda)^{H_{1}}\neq 0$ for any $k$ . This together with (1) implies that
$V(k\lambda)^{H_{1}}=V(k\lambda)^{H}$ , equivalently $(V(k\lambda)^{*})^{H_{1}}=(V(k\lambda)^{*})^{H}$ for any $k$ . Moreover, unless

$\mu$ is a multiple of $\lambda,$ $(V(\mu)^{*})^{H_{1}}=0$ because $H_{1}\supset H$ and $(V(\mu)^{*})^{H}=0$ by (1). Thus

$\mathcal{O}(G/H_{1})=\mathcal{O}(G)^{H_{1}}=\oplus_{\mu}V(\mu)\otimes(V(\mu)^{*})^{H_{1}}$

$=\oplus_{\mu}V(\mu)\otimes(V(\mu)^{*})^{H}=0(G)^{H}=\mathcal{O}(G/H)$ ,

which implies $H_{1}=H$ . $\square$

Let $B^{(k)}$ be the normalization of $GV(k\lambda)^{H}$ , i.e. $B^{(k)}=B_{1}(V(k\lambda);x)$ from section 7
where $x$ is a non-zero point in $V(k\lambda)^{H}$ . This is an especially nice situation, since as we
shall see in the next proposition, the ring of $U$-invariants is simply a polynomial ring.

PROPOSITION 11.2. $\mathcal{O}(B^{(k)})^{U}=\oplus_{i=0}^{\infty}C[\alpha, \Delta]_{(ki)}$ , where $\alpha$ has degree 1 and weight $\lambda$,

and $\Delta$ has degree 1 or 2 and weight $0$.

PROOF. First we consider the case where $k=1$ . Let $B=B^{(1)},$ $B’=\overline{GV(\lambda)^{H}}\subset$

$V(\lambda)$ and let $\kappa:Barrow B’$ be the normalization map. Remember that $B$ and $H$ have
unique open $G\cross C^{*}$ -orbits respectively on which $\kappa$ is an isomorphism. Denote by $B_{0}’$

the complement of the open $G\cross C^{*}$ -orbit in $F$ . It is not zero since $\dim B_{0}’=$

$\dim G/H\geq 1$ ( $[Kr$ , Satz 1 in p. 37]). The complement of the open $G\cross C^{*}$ -orbit in $B$ is
nothing but the null-fiber $B_{0}$ . Since $\kappa$ is surjective, we know $\kappa(B_{0})=B_{0}’$ . Now let $\alpha’$

be the function of $F\subset V(\lambda)$ defined by the highest weight vector of $V(\lambda)^{*}$ and let
$\alpha=\alpha’\kappa$ . Note that $\alpha\in 0(B)^{U}$ . Since $B_{0}’$ is $G$-invariant and $V(\lambda)$ is irreducible, the
linear span of $B_{0}’$ agrees with $V(\lambda)$ . Hence $\alpha’$ is not identically $0$ on $B_{0}’$ . This shows
that $\alpha$ is also not identically $0$ on $B_{0}$ since $\kappa(B_{0})=B_{0}’$ .

We know that $O(B)^{U}$ is generated by homogeneous eigenvectors of the maximal
torus $T$ . Suppose $\beta$ is a homogeneous eigenvector of character $\eta$ . We show that $\eta$ is a
multiple of $\lambda$ . Restrict $\beta$ to a generic fiber of $Barrow B//G$ on which $\beta$ is not identically
$0$ . The generic fiber is isomorphic to $G/H$ by Lemma 11.1 (3) and $\beta$ is an eigenvector of
the character $\eta$ . Therefore, by the rank one spherical property, we know that $\eta=s\lambda$ for
some $s\geq 0$ .

Consider the rational function $\beta/\alpha^{s}$ . This is a rational function on $B$ which is
invariant under the Borel subgroup $TU$ . Since the generic fiber is isomorphic to $G/H$ ,
the Borel subgroup has an open orbit in it by the spherical property; so we know that
$\beta/\alpha^{s}$ is $G$-invariant. Since the function is homogeneous, it is an integral power of $\Delta$ (up
to a non-zero constant) by Lemma 2.2(3), where $\Delta$ is the generator of $\mathcal{O}(B)^{G}$ . If that
power were negative, then $\alpha$ would be identically $0$ on $B_{0}$ , which is not the case as
observed above. That is, $\beta=\alpha^{s}\Delta^{t}$ (up to a non-zero constant) for some $t\geq 0$ .

NOW we show that there are no relations between $\alpha$ and $\Delta$ in $0(B)^{U}$ . If there were,
then $B//U$ would be 1-dimensional where $B//U$ is the affine variety whose coordinate
ring is $O(B)^{U}$ . But $B//U$ contains the quotient of a generic fiber which is isomorphic to
$(G/H)//U$ . It is 1-dimensional (since $0(G/H)^{U}=C[w]$ ), contained in $B//U$ properly
and $B//U$ is irreducible ( $[Kr$ , III.3.3]), so $\dim B//U\geq 2$ . Thus the assertion follows.
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We know that $\kappa:Barrow H=\overline{GV(\lambda)^{H}}$ is isomorphic on $B-B_{0}$ . This shows that
$B-B_{0}$ is equivariantly isomorphic to the balanced product $G\cross_{N_{G}(H)}(V(\lambda)^{H}-0)$ .
Therefore we have an isomorphism

$\mathcal{O}(B-B_{0})^{G}\cong \mathcal{O}(V(\lambda)^{H}-0)^{N_{G}(H)}$ .

Since $\dim V(\lambda)^{H}=1$ , the right hand side is a Laurent polynomial ring $C[\delta,\delta^{-1}]$ with a
homogeneous generator $\delta$ of degree $|N_{G}(H)/H|$ which is 1 or 2 by Lemma 11.1(2)(3).

On the other hand $\mathcal{O}(B-B_{0})^{G}=C[\Delta, \Delta^{-1}]$ . This shows that $\deg\Delta=\deg\delta$ and it is 1
or 2.

Finally note that $B^{(k)}$ is the quotient of $B^{(1)}=B$ by the cyclic group of order
$k$ . Thus $\mathcal{O}(B^{(k)})^{U}$ is just the subring of $0(B)^{U}$ which consists of homogeneous elements
of degree divisible by $k$ . This completes the proof of the proposition. $\square$

THEOREM 11.3. Suppose $H$ is a reductive spherical subgroup of rank one. Let $\lambda$ be
the spherical character of $H$ in $G$ and $j$ a non-negative integer. Then

$e(B^{(k)}, V(i\lambda))=\{$

$\{2j/k\}-1$

$\{j/k\}-1$

$0$

$if_{\deg\Delta=2andk,jeven>0}^{\deg\Delta=1andj>0,or}$

$\iota f\deg\Delta=2,$ $k$ odd and $j>0$

otherwise

where $\{r\}$ denotes the least integer greater than or equal to $r$.

PROOF. By Proposition 10.2 and Lemma 11.1(1) we may compute $e^{U}(B^{(k)}, V(j\lambda))$ .
The proof follows from a case-by-case study using Proposition 11.2. For example,
suppose $\deg\Delta=1$ and $j>0$ . Since $V(j\lambda)$ is irreducible and self-dual, the elements $f^{*}$

and $f$ in the definition of $e^{U}(B^{(k)}, V(j\lambda))$ , which have weight $j\lambda$ , can be written as

$f^{*}=\alpha^{j}\Delta^{rkarrow}$ , $f=\alpha^{j}\Delta^{sk-j}$

(up to a non-zero constant) with some positive integers $r$ and $s$ by Proposition 11.2.
Therefore $f^{*}f=\alpha^{2j}\Delta^{(r+s)k-2j}$ . On the other hand $\mathcal{O}(B^{(k)})^{G}=C[\Delta^{k}]$ again by Propo-
sition 11.2. This shows that the generator $\Delta_{k}$ of $\mathcal{O}(B^{(k)})^{G}$ is given by $\Delta^{k}$ . Therefore

$f^{*}f/\Delta_{k}^{l}$ is in $0(B^{(k)})^{U}]$ if and only if $l\leq[r+s-2j/k]$ (here we use the assumption that
$j>0)$ . Since

$\deg(f^{*}f/\Delta_{k}^{l})/\deg\Delta_{k}=r+s-l$

and $[r+s-2j/k]=r+s-\{2j/k\}$ , we obtain the desired formula.
The other cases will be treated in a similar way. $\square$

Using Theorem 11.3 together with Theorems A and $B$ , we obtain the description of
$VEC(B^{(k)}, F;C)$ if $F$ is a multiple of $V(j\lambda)$ and $V(j\lambda)$ is multiplicity free with respect to
$H$ . There are some examples from [Br] which do satisfy the multiplicity free condition.

EXAMPLES. For the cases listed in the following table, $H$ is a spherical subgroup of
rank one of $G$ and $V(j\lambda)$ is multiplicity free with respect to $H$ for any $j$ .
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Table 2

In this table, $\epsilon$ denotes the highest weight of the adjoint representation and $\lambda_{1}$ denotes
that of the non-trivial irreducible $G$-representation of the smallest dimension. For the
verification of the multiplicity free condition, see section 5 of [MMP2]. The degree of $\Delta$

is calculated using the fact that it is the order of $N_{G}(H)/H$ .

REMARK. Using Theorems $B$ and $C$ we obtain a lower bound for $VEC(V, F;C)$

when $V=V(k\lambda)$ and $F=V(mk\lambda)^{*}$ . In this case there is a weak duality $\Phi$ : $Varrow F^{*}$

defined by the m-th Cartan power $\Phi(u)=u^{m}$ for $u\in V$ . See [MMP2].
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