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1. Introduction.

Algebras of unbounded operators called O*-algebras have been studying from the
pure mathematical situations (operator theory, topological x-algebras, representations of
Lie algebras etc.) and the physical applications (the Wightman quantum field theory,
unbounded CCR-algebras, quantum groups etc.). To proceed such studies it is
important to study the Tomita-Takesaki theory in O*-algebras [11 ~15]. Weights on
O~-algebras (that is, linear functionals that take positive, but not necessarily finite
valued) are naturally appeared in the studies of the unbounded Tomita-Takesaki theory
[13~15] and the quantum physics [4,15]. Thus it is significant to study weights on
O*-algebras for the structure of O*-algebras and the physical applications. Further, the
weights on O*-algebras occasion some pathological phenomena which don’t occur
for weights on C*- and W*-algebras. From this viewpoint we should study system-
atically weights on O*-algebras.

In Section 2 we shall define quasi-weights and weights on O*-algebras and give the
fundamental examples. Let .# be a closed O*-algebra on a dense subspace 2 in a
Hilbert space s#. We define positive cones #(.#) and #, of # by

k=1
My ={XeM;X >0}

P(M) = {Z X,IXk;XkeJl(kz 1,2,...,n),neN}7

The above positive cones () and .# . are different in general [22,25], and so we need
to define the notions of two types of weights as follows: A map ¢ of #(#) (resp. M)
into R, U{+oo} is said to be a weight on P(MH) (resp. M) if

(W), 9(4+ B) = ¢(A4) + ¢(B),
(W), p(ad) = ap(A)

for all 4,Be P(M) (resp. #) and a > 0, where 0 (+00) =0. The first phenomenon
arises for the GNS-construction of ¢ which is important for such a study: 912 =
{X e M;p(XTX) < o0} is a left ideal of .# in the bounded case, but it is not necessarily
a left ideal of #. For example, the condition ¢(I) < co doesn’t necessarily imply
9(X'X) < oo for all X e #. So, using the left ideal N, of .# defined by

RN, = {X e M;p((4X)'(4X)) < o0 for all 4 € M},
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we shall construct the GNS-representation 7, on the similar method to positive linear
functionals, that is, ©, is a *-homomorphism of .# onto the O*-algebras 7,(.#) on the
dense subspace %(n,) in the Hilbert space s#,. However, there are non-zero weights
@ such that ﬁlg has many elements but %, = {0} (Example 5.1, A) and so the GNS-
construction for such a weight is meaningless. We don’t treat with such a weight. The
second phenomenon arises for the important examples (Example 5.1): For &€
D (M) (= (Vye g P2(X*)\2 we put

we(X) = (X"E|8), Xed.

Then w; is a linear functional on .#, but it is not necessarily positive. For
e #\D* (M) even the definition of the above w, is impossible. Hence, we regard w,
as the map of (N, ) into R, satisfying (W), and (W), for 2(N,,), where N, is a left
ideal of # defined by

N, = {X e M;¢ € D(XT™) and XT*¢ € D).

So, we need to study such a map (called quasi-weight) which is strictly weaker than the
notion of weights. A map ¢ of the positive cone #(N,) generated by a left ideal N, of
 into R, is said to be a quasi-weight on ?(#) if it satisfies the above conditions (W),
and (W), for 2(9,). We have felt that the study of quasi-weights is more useful than
that of weights in case of O*-algebras.

We shall give another important (quasi-)weight of a net {f,} of positive linear
functionals on .#. It is natural to consider whether sup, f, is a (quasi-)weight on
P(M). We show that if {f,} has a certain net property for #(.#) (resp. Z(R,)) then
sup, f, is a weight (resp. a quasi-weight) on 2(.#).

In Section 3 we shall define and study the notions of regularity and singularity for
(quasi-)weights ¢ on P(M#), and give the decomposition theorem of ¢ into the regular
part ¢, and the singular part ¢,. A quasi-weight ¢ on 2#(.#) is said to be regular if
@ = sup, fo on P(N,) for some net {f,} of positive linear functionals on .#, and ¢ is
said to be singular if there doesn’t exist any positive linear functional f on .# such that
F(X1X) < p(X'X) for all X €N, and f #0 on #(N,). Let ¢ be a quasi-weight on
P(M) such that 7, is a self-adjoint. Considering the trio-commutant T'(p), defined by

T(p), = {K = (W (K),X(K), 2.(K)) € ny( M)y, x D(n,) x D(m,);
7' (K)Ap(X) = mp(X) A (K) and 7/ (K)*Ap(X) = 7, (X)A,(K), "X € R,},

where 7,(.#),, is the weak commutant of the O*-algebra m,(.#), we obtain that the
following statements are equivalent:

(R); @ is regular.
(R)z ¢ = sup(we, om,) on P(Ny,)

for some net {&,} in 2(n,), where for & € 9(n,) we o 7, is a positive linear functional on
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M defined by (weo7,)(X) = (n,(X)E|E), X e M.

(R)3 There exists a net {K,} in T(¢)., such that 0 < 7'(K,) < I
for each « and n'(K,) — I strongly.

Further, using this result, we show that ¢ is decomposed into ¢ = ¢, + ¢,, where ¢,
is a regular quasi-weight on #(.#) and ¢, is a singular quasi-weight on 2(.#).

Let ¢ be a weight on #(#). We shall consider when the above (R); and (R),
hold for all A e P(M), that is, when the following statements (R); and (R); hold:

(R)} @ = is regular (iff @ = sup f, on 9’(,//{)).

(R)] p=sup (w, om,) on P(M).
o

For this purpose we define the notions of semifiniteness and normality of ¢. Suppose ¢
is a normal semifinite weight on 2(.#) such that =, is self-adjoint and normal. Then
we obtain the result that the above five statements (R),, (R),,(R);, (R)] and (R)) are
equivalent. Using this result, we show that ¢ is decomposed into ¢ = ¢, + ¢,, where g,
is a regular weight on #(.#) and ¢, is a singular weight on 2(.#).

In Section 4 we shall define and study an important class in regular (quasi-)weights
which is possible to develop the Tomita-Takesaki theory in O*-algebras. Let ¢ be a
faithful (quasi-)weight on 2(#) such that n,(.#),%2(n,) = 2(n,). Then, the map
Ay :my(X) > 2p(X), X €N, is a generalized vector for the O*-algebra n,(.#), that
is, it is a linear map of the left ideal D(A4,) =m,(N,) into PD(m,) satisfying
Ay(ny(A)y(X)) = my(A)Ap(n,(X)) for all A€ # and X e N,. Using (quasi)-standard
generalized vectors defined and studied in [4,13 ~15], we define the notion of (quasi-)
standardness of ¢ as follows: ¢ is said to be standard (resp. quasi-standard) if the
generalized vector A, is standard (resp. quasi-standard). And we obtain that if ¢ is
standard, then the modular automorphism group {o?}, g of R, N SRT is defined and ¢ is

a {6?}-KMS (quasi-)weights, and if ¢ is quasi-standard, then it is extended to a standard
quasi-weight @ on the positive cone 2 (m,(.#),,) of the generalized von Neumann
algebra 7, (),

In Section 5 we shall give some concrete examples of regular (quasi-) weights,
singular (quasi-) weights and standard (quasi-) weights. We first investigate the quasi-
weights w; on #(.#) defined by elements & in the Hilbert space. When is w, extended
to a weight w; on 2(#) such that 95,=N,.? We show that if .4 is commutative and
integrable then the above question is affirmative. Further, we investigate the regularity,
the singularity and the standardness of the quasi-weights w;. We next apply these
results to three physical models, namely the unbounded CCR algebra, a class of
interacting boson model in the Fock space and the BCS-Bogolubov model of super-
conductivity. And we give regular quasi-weights and standard quasi-weights for the
relative models.
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2. Weights and quasi-weights on O~*-algebras.

We first state some of definitions and the basic properties concerning O*-algebras
[7,18,22,28] and define the notions of quasi-weights and weights on O*-algebras.

Let 92 be a dense subspace in a Hilbert space #. We denote by #1(2) the set of
all linear operators X from 2 into 2 such that 2(X*) > 2 and X*2 < 2. Then
£1(2) is a x-algebra with the usual operations and the involution X — X' = X*[2. A
x-subalgebra of #1(9) is called an O*-algebra on @ in # according to the Schmiidgen
book [28] though it is also called by an O,-algebra in many papers. Throughout this
paper we assume that an O*-algebra has always an identity operator. Let .# be an O*-
algebra on 2. The locally convex topology on 2 defined by the family {|| ||;; X € #}
of seminorms: ||&|y = || X¢|| (£ € 2) is called the graph topology on 2, which is denoted
by t. If the locally convex space 2[t 4| is complete, then .# is said to be closed. We
put

G(M)= () 2(X) and X =X[D(M) (X € M).
Xed

Then 9(4) equals the completion of P[t4] and .# = {X;X € .4} is a closed O*
algebra on 9(.#) which is the smallest closed extension of .# and it is called the
closure of #. Hence .# is closed if and only if 2=2(#). If 2*(M)=
Nycy 2(X*) = P(M), then A is said to be essentially self-adjoint, and if 2* (M) = D,
then ./ is said to be self-adjoint. 1If X'* = X for each X € .#, then ./ is said to be
integrable (or standard). Clearly, the integrability of .# implies the self-adjointness.
We define the weak commutant #', of a t-invariant subset .# of £7(2) as follows:

M, ={CeB(H);(CXE|n) = (CE| Xy) for each é,n € P and X € 4},

where () is the set of all bounded linear operators on #. Then .#, is a x-invariant
weakly closed subspace of #(#), but it is not necessarily an algebra. Further, if ./ is
self-adjoint, then 4,2 < 9, and 4.2 < 2 if and only if 4 is a von Neumann
algebra and X is affiliated with (.#.)' for each X € .#. Let .# be an O*-algebra on &
in . We call the locally convex topology defined by the family {P¢,;¢&,n e D} (resp.
{Pe; &€ D}; {P%;E € D)) of seminorms;

Pey(X) = |(XE|n)| (resp. Pe(X) = || X¢[; P; = || X¢&I| + [ XTE]), Xen

the weak topology (resp. strong topology; strong* topology) on .# and denote it by
tw (resp. f;1;). A closed O*-algebra # on 2 in # is said to be a generalized
von Neumann algebra on 2 if M, D < D and M = M), ={X € L1(2);CX < XC,
Ce .} Ttis known that .# is a generalized von Neumann algebra on 2 if and
only if .# equals the strong*-closure of the O*-algebra (#.)[2 on 2 in %'(2)
[14]. A (*-)homomorphism n of a =x-algebra o/ onto an O*-algebra is said to a
(x-)representation of /. A x-representation n of o/ is said to be closed (resp. self-
adjoint) if the O*-algebra n(./) is closed (resp. self-adjoint). Let = be a x-representation
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of /. We put
2@ = () 2@(x), #x)=()[2(),
2(n*) = ﬂx 2(n(x)"), n*(x)=n(x*)"[2(r*), xe.

Then 7 is a closed -representation of ./ such that 7(«/) = n/(:e;) and it is called the
closure of n, and ©* is a closed representation of .« and it is called the adjoint of . A
x-representation 7 of an O*-algebra .# is said to be weakly continuous (resp. strongly
continuous) if it is continuous from the locally convex space .#|ty] (resp. .#[t;]) onto the
locally convex space n(.#)[ty]| (resp. n(#)[ts)).

Throughout the rest of this section let .# be a closed O*-algebra on 2 in »#. For a
subspace A4~ of .# we put

n

P(N) = {Z X]IXk;XkE-/V (k=1,2,...,n), neN}
k=1

and call it the positive cone generated by A"

DEFINITION 2.1. A map ¢ of #(#) into R, U{+0} is said to be a weight on
P(M) if

(i) 9(A+ B) = ¢(4) + ¢(B), A4,BeP(MA);
(i) p(ad) = op(4), AeP(MA), a=0,

where 0 - (+o0) = 0. A map ¢ of the positive cone (N,) generated by a left ideal N,
of # into R, is said to be a quasi-weight on 2(.#) if it satisfies the above conditions (i)
and (i) for 2(N,).

Let ¢ be a quasi-weight on 2#(#). We denote by D(p) the subspace of 4
generated by {XTX;Xe®M,}. Since N, is a left ideal of .#, we have

D(p) = the linear span of {Y'X;X,Y € 9N,},

and so each ), akY,IXk (o € C, Xi, Y € Ny) is represented as Zj ﬂjZ}Zj for some
B;eC and Z;eMN, Then we can define a linear functional on D(p) by

Y w¥ixe— " Bo(Z]Z)
k J

and write it by the same ¢. It is easily shown that
(2.1) (Y X)? < o(YTY)p(XTX), X,Y e,
We put
N,={XeR,;0(X'X)=0}, A(X)=X+N,eRN,/N,, XeR,
Then it follows from (2.1) that N, is a left ideal of M, and A,(N,) = N,/N, is a pre-
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Hilbert space with the inner product
(o(X)| 16(Y)) = p(Y'X), X,Y e,

We denote by 5, the Hilbert space obtained by the completion of the pre-Hilbert space

4p(R,). We define a -representation z) of .# by

o (A)Ag(X) = Ap(AX), A M, XeR,,

and denote by 7, the closure of ng. We call the triple (7,, A, #,) the GNS-construction
for p. Let ¢ be a weight on 2(#) and put

N, = {X € M;0((4X)!(4X)) < oo for all 4 € #}.

Then N, is a left ideal of .# and the restriction ¢p[#(N,) of ¢ to the positive cone
P(N,) is a quasi-weight on #(A) and it is called the quasi-weight on 2(.#) generated
by ¢ and is denoted by ¢,. We denote by (7, 4y, #,) the GNS-construction for the
quasi-weight ¢, generated by 9. We remark that even if ¢ # 0 the case of g, = 0 arises
(Example 5.1, A), and so the GNS-construction for such a weight is meaningless. We
don’t treat with such a weight. We next define a weight by another positive cone
My ={XeMX >0}

DEFINITION 2.2. A map ¢ of A, into R, U{+o0} is said to be a weight on M if
(i) o(X+Y)=9pX)+9(Y), X, Yed,
(it) plaX) =ap(X), XeMy, a>0.

A map ¢ of a hereditary positive subcone D(p), of .#, into R, is said to be a
quasi-weight on .4 if it satisfies the above conditions (i) and (ii) for D(p),. A positive
subcone £ of .4, is said to be hereditary if any element X of .#, majorized by some
element Y of £ (that is, X < Y) belongs to £.

It is clear that if ¢ is a weight on .# then it is a weight on Z(.#). We denote by
@[ P (M) the restriction of ¢ to #(.#). Suppose ¢ is a weight on #,. We define the
finite part ¢, of ¢ by

D(py); ={X € My;9(X) < 0},

?q (Z oszk) = Z wup(Xk), Xk €D(p,),, % =0.
k k

Then D(g,), is a hereditary positive subcone of .#, and ¢, is a quasi-weight on
A . Suppose ¢ is a quasi-weight on .#,. We put

N, ={X e M;(4X)'(4X) e D(p), forall 4 e .#}.

Then N, is a left ideal of .# and the restriction of ¢ to #(N,) is a quasi-weight on
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P(M). In fact, for each X1,X, €N, and 4 € # we have
(X1 + X0) ATA(X + X0) + (X1 — X0) AT A(X) — X0)
=2(X] At 4x) + X] 4T 4X,) € D(9),,

and since D(p), is a hereditary positive subcone of .#,, it follows that
(X1 + X2)'414(X1 + X3) € D(p),, that is, Xi + Xo e M,. It is clear that aX,4X e N,
for all aeC, Ae# and X eR,. Thus, N, is a left ideal of .#. Further, since
P(N,) = D(p),, the restriction of ¢ to P(N,) is a quasi-weight on 2(#). We denote
by [P (M) the quasi-weight ¢ on 4, regarding it as the quasi-weight on 2(#). The

following diagram holds:
4
weight on u\
0[P (M)

weight on 2(.#)
|
9 0[P (M) = (p[P(M)),
quasi-weight on .#, quasi-weight on 2(.#)

The above equality ¢, [P (A) = (p[P(M)), follows from
Ry 124) = Ny, = Ny = Nypp0.4) = Regl2(4)),-
This means that the GNS-constructions of all these (quasi-)weights coincide.

We give two kinds of important examples of weights and quasi-weights on Z(.#) or
M. We first give (quasi-)weights defined by vectors in #. Let £e #\2. We put

Ny, = {X e M;¢ € D(XT™) and XT*E € D},

¢ (Z XIIXk) = Z XTI, X € Ny,
3 3

Then we is a quasi-weight on #(.#). The following question arises: Is w; extended to
a weight on 2(#)? In general, this question is inaffirmative, and so this is one of the
reasons why we have to consider quasi-weights. In Section 5, we shall investigate such
quasi-weights w; in more details.

We next give some (quasi-)weight defined by a net of positive linear functionals on
M. Let {f,} be a net of positive linear functionals on .#. We put

sup fy : A € P(M)—> sup f,(A) € [0,40].
o o
Then it is easily shown that

max(supfo,()("X),supfc,,(YJf Y)) < sup ,(X'X + YY)
(22) o o o
< sup f(X'X) +sup £o,(Y'Y)
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for all X,Y € #. We define the finite part of sup, f, by

n° LE {Xe//l;supfa(XJ’X) < oo}.

sup,
Since
X+NX+N+X-'Xx-7)=2xtx+ 1Y)
for each X,Y e ‘.Tlgupd 7o it follows that mg’upa s is a subspace of .. But,

(sup, f,)(XTX + YY) # sup, fo(XTX) +sup, £o(YTY) in general, and we have the
following result:

LemMA 2.3. Let A be a subspace of SR(s)upu s+ The following statements are

equivalent.

(1) (sup, /)(4 + B) = (sup, fi)(4) + (sup, £,)(B) for all A,BeP(N).

(2) For each finite subset {X1,...,Xm} of N there exists a subsequence {0} of {a}
such that

lim f, (X;X:) = (supf,,> X[ X)), k=1,2,...,m.
n— o0 a

Proor. (1) = (2) Take an arbitrary {X),...,X,} <= A. By (2.2), (sup,fs)
(ZZ’ZI X;Xk) < o0, and so there exists a subsequence {o)} of {a} such that

lim_f, <§m: X;Xk> = (sup ﬁ,) (i X;Xk).
k=1 x k=1

Since sup, fu (Xle) < (sup, fo) O res X,IXk) < o0, there exists a subsequence {a),} of
{0/} such that

lim £ (X]X1) = sup f, (X[ X1) = o(X{ X1).
Since {o//} is a subsequence of {«;,}, we have

lim fy (Z X,jxk) - (sup fa> (Z X,jxk), lim fu(X1X1) = (X[ X7).
k=1 o k=1

Furthermore, since sup, for (XzTXz) < o0, there exists a subsequence f{a, '} of {a;} such
that

nangO Sar (Z X;Xk> = (supfa) <Z X,IXk),
k=1 @ k=1
lim for (X[ X0) = 0(X{X),

Tim fop (X Xo) = (Supfocg)(XzTXz) = o(X]Xs).
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Repeating this argument, there exists a subsequence {a,} of {a} such that

lim f, (f: X;Xk) = (sup ﬁ,) (i X,IXk>,
(2.3) TN G

lim f, (X[ X)) = o(X[X2), k=1,2,....m
n— 0
which implies by the assumption (1) that

m m m
i T T — 1
> o(xlxe) = fim > 1o (X[X0) = lim, 1. (Z Xka)

k=1 k=1

(2.4) ~ (s 1) (Xm)(X,IXk)>

k=1
= kzr::l (st;p fac) (X X).

Since OS(D(X,IXk) < (supaf(,)(X,IXk), k=1,2,...,m, it follows from (2.4) that
¢(X]1Xk) = (supafa)(X,IXk), k=1,2,...,m.Therefore, we have by (2.3)

lim f,, (X} X) = (supfa> Xix), k=1,2,...,m.
n+— oo o

(2) = (1) Take an arbitrary subset {X1, X2,..., X} of #". By the assumption (2)
there exists a subsequence {o,} of {a} such that

lim f,, (X} Xy) = <sup Jf,) (XiX0), k=1,2,....m.

The statement (1) follows from

(supfa) i X,IXk < i(supﬁ) XTXk) = hm Zfan (XTXk)
* k=1 k=1
= lim f, (Z X*Xk)

< (s ) (,; X;Xk).

When {f,} satisfies the condition of Lemma 2.3, (2) we say that {f,} has the net
property for P(A") and then denote the restriction of the map sup, f; to (A7) by
Sup, fu[#(A). In particular, when {f;} has the net property for .4’(9tgupa £.), we simply
say that {f,} has the net property and then denote the map sup, f; by Sup, f,. By
Lemma 2.3 and (2.2) we have the following

ProposITION 2.4. Let {fy} be a net of positive linear functionals on #. Suppose
{f+} has the net property for P(F), where S is a left ideal of .M which is contained in
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%gupa 7.~ Then Sup, f,[?(#) is a quasi-weight on P(M). Suppose {f.} has the net
property. Then Sup, f, is a weight on P(M).

Let { f+} be a net of strongly positive linear functionals on .#. A linear functional f
on ./ is said to be strongly positive if f(X) >0 for all X e #,. We put

sup fy : X € M —> sup f,(X) € [0, +00],
D(supﬁ,) = {Xe.//l+;supﬁ,(X) < oo}.
[+ + o

Then D(sup, f), is a hereditary positive subcone of .#,. Let 2 be a positive subcone
of D(sup, f.),. When {f,} satisfies the condition of Lemma 2.3, (2) for £, we say that
{f2} has the net property for ? and then denote the restriction of the map sup, f, to 2
by Sup, f+[#. In particular, when {f,} has the net property for D(sup, f.),, we simply
say that {f,} has the net property and then denote the map sup, f, by Sup, f,. In
similar to the proofs of Lemma 2.3 and Proposition 2.4 we can show the following
result:

PROPOSITON 2.5. Let {f4} be a net of strongly positive linear functionals on # and
2P a hereditary positive subcone of D(sup, f),. Then {f,} has the net property for 2 if
and only if Sup, f,[? is a quasi-weight on M. Further, {f,} has the net property if and
only if Sup, fy is a weight on M.

Throughout the rest of this paper we treat with only weights and quasi-weights on
P(M).

3. The regularity of quasi-weights and weights.

In this section we define the notions of regularity and singularity of (quasi-)weights
and give the decomposition theorem of (quasi-)weights into the regular part and the
singular part. Let .# be a closed O*-algebra on 2 in #.

DeFINITION 3.1. A quasi-weight ¢ on £(#) is said to be regular if ¢ =
Sup, fu[P(N,)(= sup, fy on P(N,) by Lemma 2.3) for some net {f,} of positive
linear functionals on .#, and it is said to be singular if there doesn’t exist any positive
linear functional f on .# such that f(X1X) < ¢(X1X) for each X e R, and f # 0 on
P(R,). A weight ¢ on P(A) is said to be regular if ¢ = Sup, fo(= sup, f. on P(A)
by Lemma 2.3) for some net {f;,} of positive linear functionals on .#, and ¢ is said to be
quasi-regular if the quasi-weight ¢, on 2(.#) defined by ¢ is regular. If there doesn’t
exist any positive linear functional ' on .# such that f(XTX) < (XTX) for all X € .4
and f #0 on 2(M), then ¢ is said to be singular.

We define trio-commutants T(g); and T(p). for a quasi-weight ¢ which play an
important rule for the regularity of ¢ as follows:
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T(9); = {K = (C,&,7); C e my(M),, &1 € D(x)
s.t. Clp(X) = m(X)¢E and C*A,(X) = n(X)n for all X € Ny},

T(p), = {K = (C,&,n) € T(9)5;¢,n € D(m,)}.
For K = (C,¢,n) € T(p); we put

T(K)=C, X(K)=¢ A(K)=n.
We have the following

LeMMA 3.2. (1) T(p); is a *-invariant vector space under the following operations
and the involution:

Ki+K=(Ci+C, ¢ + &, +1,), oK = (aC,a,an),
K*= (C*7”’f)

for K, = (Cl,fbﬂl)a K, = (CZafZ’”Z) and K = (C7év’7) in T((”)(,s and o€ C.
(2) T(g). is a *-invariant subspace of T(p);. In particular, if n,(M),,D(n,) <
D(n,), then T(p). is a x-algebra under the following multiplication:

4

KiK; = (C1Cy, Ci&,, Comy)

for Ky = (Cy,&1,m,), K2 = (Ca,Ea,m,) € T(9).., and 7' is a x-homomorphism of T(p)., into
the von Neumann algebra n,(#),, and X' is a linear map of T(p), into D(n,) satisfying
7' (KA (Ky) = 2 (K1Ky) for all Ky, K, € T(p)...

LemMMA 3.3, Let ¢ be a quasi-weight on P(M). Suppose a linear functional f on R,
satisfies the following conditions (1) and (ii):

(i) 0<f(X'X)<o(X'X) for each X € N,.

(ii) For any A e M there exists y, > 0 such that |f(A'X))* <y,0(XTX) for each
X eN,.
Then there exists an element K e T(p)s such that 0<7'(K)<I and f(X)=
(Ap(X)| X (K)) for all X € R,. Conversely, for each K € T(p); with 0 <n'(K) <1 we

put
f(X) = (4(X)| X (K)), XeR,
Then f is a linear functional on N, satisfying the above (i) and (ii).

Proor. Suppose f is a linear functional on N, satisfying the conditions (i) and
(ii). In similar to the GNS-construction for quasi-weights, we can define the GNS-
construction (7s, Ar, #r) for f. By (i) there exists a bounded linear transform C from
Hy to Hy such that CA,(X) = Ar(X) for all X e M,. Further, we have

C*Cen,(M), and f(Yx)= (C*Cap(X)| 4(Y)) "X, Y € N,. (3.1)

It follows from (ii) and the Riesz theorem that there exists an element ¢ of 9(n}) such
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that
FX) = (4(X)[8), X ey,
which implies by (3.1) that
(Ap(V)| 7y (X)E) = F(XTY) = (45(Y)| C* Chy(X))
for all X,YeN, and so C'Cl(X)=m,(X){ for all XeN, Hence, K=
(C*C,&,E) e T(p)s, 0 <A/ (K) <I and f(X) = (4,(X)| X (K)) for all X e N,.

We next show the converse. Take an arbitrary K e T(p); such that 0 <
7'(K) <I. Then it is clear that f is a linear functional on 9, and further, since

S(XTX) = (B (X)) 75 (X)X (K)) = (A(X)| 7' (K)2p(X)),
FATX) = (4, (X)| m ()X (K))
for all X e, and 4 € 4, it follows that f satisfies the conditions (i) and (ii).

REMARK 3.4. For K € T(p); the linear functional wy k) °m, on A defined by

(@) © mp)(X) = (my (X)X (K)| X(K)), Xe.

is not necessarily positive in case =z, is not a x-representation of .#. When Ke T (o).
and 0 <7'(K) < I, myom, is a positive linear functional on .# satisfying

(@rx) © T)(XTX) < p(XTX), "X eN,.

But, the above inequality does not hold for all X € .# because the equality
(X)X (K) = 7' (K)4,(X) holds for each X € N, but this doesn’t hold for X € .#\N,

in general.
For the regularity and the singularity of quasi-weights we have the following

THEOREM 3.5. Let ¢ be a quasi-weight on P(M).

1. Consider the following statements:

(1) There exists a net {K,} in T(g), such that 0 <n'(K,) <1 for each o and
7' (Ky) — I strongly.

(2) @ = Sup,(we, om,)[P(N,) for some net {&,} in D(m,).

(3) ¢ is regular.

(4) There exists a net {K,} in T(p); such that 0 <n'(K,) <1 for each a and
n'(K,) — I strongly.

Then the implications (1) = (2) = (3) = (4) hold. In particular, suppose m, is self-
adjoint, then the statements (1)~ (4) are equivalent.

II. Suppose mn, is self-adjoint. Then ¢ is singular if and only if there doesn’t exist
any element K of T(p), such that «'(K) >0 and n'(K) # 0.

Proor. L. (1)= (2) We put & = A'(K,). Since

(¢, 0 7,)(XTX) = || (Ka) Ao (X))*
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for each X e N, and «, and 7/(K,) — I strongly, it follows that the net {we¢, o7y}
of positive linear functionals on .# has the net property for #2(9,) and
¢ = Sup, (we, o 7,) [P(N,).

(2) = (3) This is trivial.

(3) = (4) This follows Lemma 3.3.

Suppose 7, is self-adjoint. Then, T(p); = T(9)., and so the implication (4) = (1)
and the statement II follow from Lemma 3.3.

Similarly we have the following result for the regularity of weights:

THEOREM 3.6. Let ¢ be a weight on P(M). Consider the following statements.
(1) @ = Sup,(wg, om,) for some net {£,} in D(m,).

(2)

(3) @ is quasi-regular.

(4) There exists a net {K,} in T(p); such that 0 <7'(K,) <1 for each « and
7' (Ky) — I strongly.

Then the following implications (1) = (2) = (3) = (4) hold.

@ is regular.

Let ¢ be a weight on 2(#). It follows from the definition of T(p). that the
equality
(X)X (K) = ' (K)A(X), (X € Ry, K € T(p),)

holds, but it doesn’t hold for all X € #. For this reason, even if r, is self-adjoint, the
quasi-regularity of ¢ doesn’t necessarily imply the regularity of ¢. So, we define the
notions of normality and semifiniteness of ¢ to show the equivalence of the regularity
and the quasi-regularity as follows:

DerINITION 3.7. The symbol X} X, 1 X'X means that a net {X,} in # and X € .#
satisfy the following conditions:

(a) XjX, =< X;Xﬂ (that is, X;Xﬁ — X)X, € #(M)) whenever a < f;

b) XiX, < XX

() {X!X,} converges weakly to X'X.
A weight ¢ on 2(#) is said to be normal if p(XX,) T ¢(X1X) whenever XX, 1 XX
({Xo} = M, X € M), and ¢ is said to be semifinite if for each X e .# there exists a net
{X,} in N, such that X]X, T X'X.

A x-representation © of .# is said to be normal if z(X]X,) converges weakly to
n(X'X) whenever X]X, T X' X({X,} = M,X € M).

THEOREM 3.8. Let ¢ be a semifinite normal weight on P(M). Suppose m, is self-
adjoint and normal. Then the statements (1)~ (4) in Theorem 3.6 are equivalent.

PrOOF. Suppose the statement (4) holds. Since =, is seclf-adjoint, we have
T(¢); = T(9)., and so A'(K,) € D(r,) for each a. For each a we put

f:x = CO}](K&) O Typ.

In similar to the proof of Theorem 3.5, we can show that f, is a positive linear
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functional on .# such that
(3.2) Sup fo[2(N,) = o[ P(N,).

We show that the statement (3.2) holds on #(#). Take an arbitrary X € .#. By the
semifiniteness of ¢ there exists a net {X;} in N, such that X }X 3 1 XTX, and since ¢ is
normal and 7, is normal, it follows that

S(X1X) = |mp(X)X (Ky)||* = lim 7o (X) A (K)|*

= lim |17/ (K)o (X2)

(3.3)
< lim p(X;X7)
= p(X'X).
Hence we have ‘th ={XeM;p(X1X) <0} mgupa sn- We show the converse

inclusion. Suppose X ¢ ‘th. By the semifiniteness of ¢ there exists a net {X;} in N,
such that X]X; T XX, and it follows from the normality of ¢ and ¢(X1X) = +oo that
for each y >0 there exists an element Ay of {A} such that XLX % < X'X and
q)(XLX %) > 7. By (3.2) there exists an element oy of {a} such that

P < S (X}, Xi) < fuo (XX,
which implies sup, fx(XTX) = +c0. Hence we have
(3.4) N =Ney, /.

Take an arbitrary {X, Y} < mgupa s+ By the normality of ¢ we have
o(X]X;) T o(X'X) and ¢(Y1Y,) T o(Y'Y),

where {X;} and {Y,} are nets in 9N, such that XJX,l T X'X and Y;j Y,TY'Y. Since
o(X'X) < oo and ¢(YTY) < oo by (3.4), it follows that for each & > 0 there exist 49 and
Ho such that

(3.5) o(X1X) —e<p(X] Xy), o(Y'Y)—e<o(Y]Y,).

By (3.2), for X, and Y, there exists a subsequence {a,} of {a} such that
(3:6) lim f,, (X} X5,) = (X} X5,),  lim £, (Y}, V) = 9(Y} V).
Further, since XLX 2w < XX, it follows that

which implies by (3.3), (3.5) and (3.6) that
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p(X'X) — & < lim £, (X} X3,) < lim f,, (X'X)
n=00 n—o

< lim £, (X'X)
n—oo

< p(X'X).
Hence we have
(3.7) lim f,,(X'X) = p(x'X).
Similarly we have
(3.8) lim £, (Y'¥) = (Y1Y).

The same result as (3.7) and (3.8) holds for any finite subset {Xi,X3,...,Xn}
of mgupa .- Hence it follows from (3.4) and Lemma 2.3 that ¢ =Sup, f, =
Sup, (@ (x,) ©7p), and so the statement (1) holds. This completes the proof.

As the decomposition theorem of (quasi-)weights we have the following

THEOREM 3.9. (1) Suppose ¢ is a quasi-weight on P (M) such that m, is self-
adjoint. Then ¢ is decomposed into

=9+ @

where ¢, is a regular quasi-weight on P(M) and ¢, is a singular quasi-weight on P (M)
such that m, and m, are self-adjoint.

(2) Suppose ¢ is a normal semifinite weight on P (M) such that n, is self-adjoint and
normal. Then ¢ is decomposed into

¢ =9, t ¢

where ¢, is a normal semifinite regular weight on P(M) and ¢, is a normal semifinite
singular weight on P (M) such that n, and m, are self-adjoint and normal.

Proor. (1) We denote by P,p’ the projection from #, onto the closed subspace of
#, generated by 7'(T(p),)#,. Then, P, € n,(#), and there exists a net {K,} in T(p),
such that 0 < «'(K,) < P, for each « and n'(K,) — P, strongly. It is clear that the net
{fa = @y, o mp} of positive linear functionals on .# has the net property for Z(9,),
and so it follows from Lemma 2.3 that ¢, = Sup, f;[2?(N,) is a regular quasi-weight on
P (M) such that N, =N, and

(3.9) 0,(X1X) = ||P)A,(X)|* for each X e N,.

We put
Os =@ — @,

Then ¢, is a quasi-weight on 2(.#) with R, = N,. It follows from (3.9) that =, (resp.
Ty,) is unitarily equivalent to the induced representation (7,)p, (resp. (7,);_p/) of @y, sO
? [4
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that n, and =n, are self-adjoint. We show ¢, is singular. Suppose there exists a
positive linear functional f on .# such that f(X'X) < ¢, (X'X) for all X e N, and
f (XJXO) # 0 for some XoeN,. Since ¢, < ¢, it follows from Lemma 3.3 that there
exists an element K of T(p). such that 0 < 7/(K), #/(K) # 0 and f(X) = (4,(X)| ¥ (K))
for all X e N,. Then we have

(@ (K) 26 (X)| 2p(D)I* = |f (YT X)?
<yl = B)Ap(X)II”
for all X,Y eN,, and so
|(7 (K)2p(X)| 29(1))] = |(Pyhp(X) | 7 (K) 2p(Y))]
= lim | (7' (K)2p(X)| 25())|
< yy lim [|(7 = B)Ap(Xa)|*
=0

for all X,YeMN, where {X,} is a sequence in N, such that lim, ., 4,(X,) =
P l4(X). Hence, n'(K) =0, and so f (XJXO) = 0. This is a contradiction. Hence, ¢,
is singular.

(2) By the normality of =,, any f, = wyk,om, is a normal positive linear
functional on .#. We put

9, (4) = St:pfa(A), A e P(M).

By the proof of the above statement (1) we have

(3.10) ¢, [P(R,) = Sgpfafg’(%),
(3.11) f(XTX) <o(X'X), Xeu,
(3.12) 0, (X1X) = | Py (X)|?, "X e R

Further, by the normality of each f, we have
S(XTX) = lim £,(X]X3) < lim ¢,(X] X;)

whenever XX, 1 X1X({X;} = #, X e #), which implies
(3.13) 2. (X]X3) 1 9, (X' X).

The statements (3.10)~(3.13) imply by the same proof as in Theorem 3.8 that
@, = Sup, f, and it is a regular normal weight on (). By (3.11) we have

0,(X'X) < p(X'X), "Xe,
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and so we put

o (X1X) = { p(X1X) — o, (X1X) if X eR),
o0 if otherwise.
Then ¢, is a weight on #(.#) and ¢ = ¢, + ¢,. In similar to the proof of the singularity
of ¢, in the statement (1), we can show that ¢, is singular. Since ¢, < ¢ and ¢, < ¢, it
is easily shown that ¢, and ¢, are normal and semifinite. We finally show that =, and
(mp) p are unitarily equivalent, and 7=, and (7,),_ p; are unitarily equivalent. Since
N, R, , it follows from (3.12) that (=,) P STy, unitarily, which implies by the self-
adjointness of (7)) P that (7,) P = T, Similarly, we have (7,),_ p; =7y, Hence, 7,
and 7, are self-adjoint and normal. This completes the proof.

4. Standard weights.

In this section we define and study an important class in regular (quasi-)weights
which is possible to develop the Tomita-Takesaki theory in O*-algebras. Let .# be a
closed O*-algebra on 92 in #. A quasi-weight ¢ (resp. weight) on 2 () is said to be
faithful if o(X1X)=0,XeN, (resp. X € #) implies X =0, and ¢ is said to be
semifinite if for each A4 € .# there exists a net {X,} in M, such that XX, T 4T4. Ttis
easily shown that if a quasi-weight ¢ is faithful, then 7,(X) =0, X € N, implies X =0,
and if ¢ is faithful and semifinite, then 7, is a *-isomorphism of the O*-algebra .# onto
the O*-algebra n,(.#). Let ¢ be a faithful quasi-weight on 2(.#). We put

Ap(my(X)) = 25(X), X € Ry,

Then A, is a generalized vector for the O*-algebra n,(.#), that is, it is a linear map of
the left ideal D(4,) = n,(N,) into P(n,) and

Ap(my(A)my(X)) = my(A4) Ap(mp(X))

for all Ae # and X eN,. This A, is called the generalized vector induced by ¢.
Suppose

(Sh mo( M)y D (g) = D(y),
(S), Ap(D(4,) ND(4,)1)?) (= A((Jt, NRE)?)) s total in .

Then we can define the commutant A, of A, which is a generalized vector for the von
Neumann algebra n,(#),, as follows:

D(A5) = {K e my(M),; ek € D(m,) s.t. KAy(X) = XEx for all X € D(4,)},
A5(K) =&k, KeD(A).
We have
(4.1) T(p). = {(K, 45(K), 45(K")); K € D(45) N D(45)"}.

In general, T(p), is always defined, but the commutant 4, of the generalized vector 4,
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is not necessarily defined without the condition (S),. Further, suppose
(S)3 AS((D(A5) N D(A5)*)?) s total in .

We remark that ¢ is regular by (4.1) and (S);. We put

D(A5) = {A € (ny(M),); &4 € Hys.t. AA5(K) = K&, for all K € D(45)},
A5(4) =&y, AeD(A).

Then 4, is a generahzed vector for the von Neumann algebra (m,(.#),)" such that
A“((D(A“)OD(A“) )?) is total in #,, and so the maps A,(X) — 4,(XT), X e
D(4, )ﬂD(A¢)+(— 7y, (N, ﬂﬂt*)) and A;(A4) — AF(4*), AeD(AF)ND(AF)" are
closable in #, and their closures are denoted by S, and S A respectively. Let
Sy = Jo4)/* and Sae = Jged A/f be the polar decompositions of S, and Sy, re-
spectlvely Then we see that Sp = Sy=, and J Acc(n,,,(ull) )'J aee = ny(M),, and

A (rp(M),, )A;ﬁi = (ny(#),,) for all te R by the Tomita fundamental theorem. But,
we don’t know how the unitary group {Altcc}te g acts on the O*-algebra 7,(.#), and so
we define a system which has the best condition:

DEFINITION 4.1. A faithful (quasi-)weight ¢ on 2(.#) is said to be quasi-standard if
the following conditions (i) and (ii) hold:

(i) The above conditions (S);, (S), and (S); hold.

(i) 4%D(n,) < D(n,) for each teR.
Further, if

(iii) A’,’iccny,(,/ll)AAcc = nq,(,//{) for each te R,

(iv) A"CC(D(A¢)nD( )4 = = D(4,) N D(A4,)! for each te R,
then ¢ is said to be standard.

THEOREM 4.2. Let ¢ be a faithful (quasi-)weight on P(M). Suppose ¢ is a
standard. Then the following statements hold:

(1) S, = Sy, and so J, = Jpe and A4, = A

(2) These exists a one-parameter group {o‘, },E g of x-automorphisms of N, N %T such
that my(a?(X)) = Almy(X)A4," for all X e MyNN! and teR.
Suppose m, is a *-isomorphism of M (for example, ¢ is semifinite). Then {o%}, g is a
one-parameter group of x-automorphisms of M.

(3) ¢ is a {a?}-KMS (quasi-)weight, that is, for each X, Y € R, ﬂERT there exists an
element fyy of A(0.1) such that

frx(0) = p(Yol (X)) = (Ap(7 (X)) 2p(Y")) and  fr,y(t+i) = ¢(af(X)Y)

for all te R, where A(0,1) is the set of all complex-valued functions, bounded and
continous on 0 < I,z < 1 and analytic in the interior.

Proor. The standardness of ¢ implies that of the generalized vector 4,. Hence,
this theorem follows from ([14] Theorem 2.5).
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We next consider quasi-standard (quasi-)weights. We first need a natural extension
of a regular quasi-weight ¢ to the generalized von Neumann algebra 7,(.#),.. Let ¢ be
a faithful regular (quasi-)weight on 2(#) satisfying the conditions (S);, and (S),. We
put

D(A,) = {A eny(M)s; 34 € D(my) s.t. A4, (K) = K& 4 for all K € D(4,°)},

/_I;(A) =&y, Ae D(A_w)

Then it is easily shown that A, is a generalized vector for m,(.#),, such that

4

(4.2) A=A, and A=A, .

We now put

¢(Z XIIXk) =Y I4XII?,  {Xe} = D(4y).

k k

Then  is a faithful regular quasi-weight on #(m,(.#),.) such that
(4.3) (5 (g (M)ye), A45)  is unitarily equivalent to (7 (M )y, Ay),

that is, there exists a unitary operator U on #, onto #; such that UD(4,)
=N;, UAy(X) = 243(X) for each X eD(A,) and n;(4) = UAU* for each Ae
"

(M), The above § is said to be the quasi-weight on P(n,(M),,) induced by ¢.
By (4.2), (4.3) and Theorem 4.2 we have the following

THEOREM 4.3. Suppose ¢ is a faithful quasi-standard (quasi-)weight on P?(M). Then
the quasi-weight @ on P(n,(M),,.) induced by ¢ is standard, and so it is a {07}, . g-KMS
quasi-weight on P(r,(M)y,.), where a?(A4) = AZ;CAAZ;’?, Aemn,( M),  teR.

wcC

In [14] we have defined and studied standard generalized vectors which are possible
to generalize the Tomita-Takesaki theory (in particular, the Connes cocycle theorem and
the Pedersen-Takesaki Radon-Nikodym theorem etc.) to generalized von Neumann
algebras. As the notion of generalized vectors is spatial, such a generalization is
possible to a certain extent, but the notion of (quasi-)weights is purely algebraic and not
spatial and the algebraic properties don’t reflect to the topological properties in general
(for example, 7,(.#) is not necessarily a generalized von Neumann algebra when .# is a
generalized von Neumann algebra), and so the generalizations of the Tomita-Takesaki
theory for standard (quasi-)weights have some difficult problems.

5. Examples.

In this section we give some examples of regular (quasi-)weights, singular (quasi-)
weights and standard (quasi-)weights. We first investigate the regularity, the singularity
and the standardness of the quasi-weights w; defined by elements ¢ of the Hilbert space.
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ExampLE 5.1. Let .# be a closed O*-algebra on 2 in # and put
M) = (| 2(X*) and D"(M)= () D(X'[2"(H))).
Xe# Xe#H
Suppose & € 2**(#) and put
we(X) = (XTE(E), Xed.

Then w is a positive linear functional on #. If & e @* (M) — 2™ (M), then w; is a
linear functional on .#, but it is not necessarily positive. If & ¢ 2*(.#), then w; is not
defined, and so we regard w; as the quasi-weight on 2(.#) as follows:

Ny, = {X € M;E e P(XT) and X*E € D},
w(X1X) = | XME)7, X € Ry,
We here investigate such quasi-weights w; (£ ¢ 2*(#)) on P(MA) in details.

A. The extension of w¢ to a weight
Let .# be a commutative integrable O*-algebra on 2 in J# and (e # — D. We

put
o (Z X! Xk> _ (Xk: X\ x| c) if ¢ e @(Ek: X;Xk)
k

o0 if otherwise.

Then w; is a weight on 2(.#) such that
m%{ ={X e M;0;(X'X) <0} ={X e M;¢ e D(X*X)},
N5 = {X e M;AX €N "4 e M}
= mw¢

and it is an extension of w;. In fact, since .# is commutative and integrable, it follows
that £ e .@( Y X ,IXk) if and only if there exists a sequence {&,} in 2 such that &, — &

and {X;¢,} and {X,Ika,,} are Cauchy sequences in s for each k if and only if
&€ D(X} Xy) = D(X;Xy) for each k, and then Y, X Xi& = 3 X;Xx&, which implies
that w; is a weight on 2(.#). It is easy to show that 915;6 = N, and we is an extension
of w;. We give a concrete example. Let H be a positive self-adjoint unbounded
operator in #,2*(H)= ),y 2(H") and Hy = H[9*(H). Then the polynomial
algebra 2(H,) is a commutative integrable O*-algebra on 2*(H) in s and the
following statements hold:

(i) If &¢ D(H?), then mf;{ = CI and Rz = Ny, = {0}.

(ii) If £e Q(H?™) — 2(H?**?) (ne N), then

N = {P(H,); P is a polynomial with the degree < n},

244

N~ =N, = {0}.

@
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B. The regularity and the singularity of we

(1) Suppose that ., = ClI, 91" 2 is dense in # and ER“ < is dense in
D(tu]. Then w is singular. In fact, smce N ¢ is dense in D[t.4], 7o, (./l) is unitarily
equivalent to .#, that is, there exists a umtary operator U of #,, onto 3 such that
Uk (X) = X™¢ for all X € N, and Un,, (A)U* = A for all Ae .#. Take an arbitrary
K € T(w;);. Then there is a constant a € C such that aX'*¢= X™UXN(K) for all
X eN,,. Since 9&;‘%9 is dense in #, we have af = UV (K) € 2*(#), and so a = 0.
Hence K =0, which implies by Lemma 3.3 that w, is singular.

(2) In case # = £1(D), we is a singular quasi-weight on 2(#1(2)). In fact, this
follows since .#1(2) satisfies all conditions of the above (1).

(3) Suppose .# is self-adjoint and Sﬁg‘{é is dense in 2[t4]. We put

={CeMy;C;,Ctec D}, P;=projb:#.

Then ¢ is decomposed into & = ¢, + &, where & = P.¢ and &= (I — P;)¢. On the
other hand, by Theorem 3.9, the quasi-weight w; on 2(.#) is decomposed into
W = (') +co(s) , where cog) is a regular quasi-weight on #(#) and wg) is a singular
quas1-we1ght on #(#) with ‘thé,) = S)tw?) = N, defined by

ol (X1X) = | PP, o (XTX) = - POX"EP, X &N,

We have the relation that the quasi-weights w;, and a)g) are equivalent (we, ~coé')), that
is, my, and n off are unitarily equivalent. In fact, it is clear that cog) < we,, that is,
N (,)( No,) < ﬂtwf and a)(' (XTX) = we (X1X) for all XeRN 0 and SO 7 () < T,
unltanly and = off is self-adjoint. Hence = (,) is unitarily equlvalent to 7o, - Scimilarly,
we have @, ~ w¢ Thus, we, is a regular qua31-we1ght on ?(M) and wg, is a singular
quasi-weight on 2(#) and wg = w¢, + we, on P (Ny,).

Hence, we call & and & the regular part and the singular part of &, respec-
tively. We have the following results:

(a) g is singular if and only if ¥, = {0} if and only if £ =0.

(b) e is regular if and only if %; is a nondegenerate *-subalgebra of .#, if and
only if & =0.

(c) Suppose 0 £ P; 1. Then w; is not regular and not singular.

(4) Suppose .# is an O*-algebra on 2°(H) = ()", 9(H") containing

{f(H)[2®(H); f is a measurable function on R, such that
|f()| <p(t),t e Ry for some polynomial p},

where H is a positive self-adjoint operator in # and SW (¢ 1s dense in J#. Then it is
easily shown that .# is self-adjoint and 9!* .¢ is dense in 9°° (H)[t.#] using the spectral
decomposition theorem of H. Hence, the same results as the above (3) hold.

(5) Let S(R) be the Schwartz space of infinitely differentiable rapidly decreasing
functions and {f»},-; < S(R) an orthonormal basis in the Hilbert space L*(R) of



248 A. INoue and H. Oaci

normalized Hermite functions. We define a number operator N in L?*(R) by

Q0
N=> (n+1), @

n=0
Let o/ be the unbounded CCR-algebra for one degree of freedom and =ny the
Schrédinger representation of /. Then np(/) is a self-adjoint O*-algebra on S(R)
satisfying mo(s/y) = CI. Let .# be the O*-algebra on S(R) generated by mo(#) and
{f(N);f is a real-valued continuous function on R, such that |f(¢)| < p(¢)(t € R,) for
some polynomial p}. Then it is easily shown that .# is self-adjoint and ‘Jtl;‘fé is dense
in S(R). Hence it follows from the above (3) and ¢ ¢ S(R) that w; is singular.

C. The standardness of we

Suppose
(S), {YX"E X, Y e R, AR} s total in ¢,
(S), €:L is dense in .

Then w; is a faithful regular quasi-weight on 2(.#) and £ is a cyclic and separating
vector for the von Neumann algebra (.#/)" and denote by A'é the modular operator for
the left Hilbert algebra (.#.)'¢. We have the following results:

(1) g i1s quasi-standard if and only if the following condition (S); holds:

(S)3 A'é@ c 2 foreachteR.

(2) e is standard if and only if the above condition (S); and the following
condition (S), hold:

(S)4 A”?J{A"Eit = .# foreachteR.

We next give some examples of regular quasi-weights, singular quasi-weights and
standard quasi-weights defined in the Hilbert space of Hilbert-Schmidt operators, which
are important for the quantum physics.

ExaMpPLE 5.2. Let .# be a self-adjoint O*-algebra on 2 in s such that
M., = CI. We denote by # ® # the set of all Hilbert-Schmidt operators on #, and
then it is a Hilbert space with inner product (S|7T) = rT*S. We put

(M) ={TeX@H;TH c Dand XT e # @ #,'X € M},
2(X)T = XT, XeM, Teord).

Then = is a self-adjoint representation of # on oy(#) in 3# ® # such that
n(M)., = 7' (B(H)) and (n(MA),) = n"(B(H)), where n'(A)T = TA and =" (A)T = AT
for Ac B(#) and Te # @ # [4,12].

A. Let Qe # ® #\or(#) and Q >0. Then,

Ry = {7(X); X € M, QH < D(XT) and XT*Q € 05(H)}.
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(1) Suppose %I:n.Q is dense in o(#)[ty ). We define the quasi-weight ¢, on
P (M) by
m(ﬂn = {X € ‘//l?n(X) € m?’n}v

0a(XTX) = r(XT*Q)* (X™*Q) = wa(r(X)'n(X)), X eNR,,.

By Example 5.1, B, (3) we have the following:
(a) @q is singular if and only if

%o = {7 (K); K € B(#) and QK, QK* € 65(#)} = {0}.

(b) ¢go is regular if and only if ¥, is a nondegenerate *-subalgebra of
' (B(H)).
(c)  is decomposed into 2 = 2, + Q;, where £, is the regular part of 2 and
Q, is the singular part of Q. Hence, ¢, is a regular quasi-weight on #(#), ¢, is a
singular quasi-weight on () and ¢, = 9o + 9, on P(R,,).
(2) Suppose there exists a dense subspace & in 9[t,] such that
() >{EQF;¢ne &),
(i) QF =« 2 and Q& is dense in H#.
Then ¢g is regular. In fact, it is easily shown that N, > {7({®7);¢,ne &}, and
mlan is dense in oy(M)[ty.4)), and further %o > {7 ((®7%);&,ned}, and so
CoH @ # is dense in # ® #. Hence, ¢, is regular by the above (1).
Further, suppose
(iii) 27! is densely defined,
(iv) Q"9 <P and Q"MQ™" = M for each teR.
Then ¢, is a standard quasi-weight on #(.#) ([4] Theorem 3.6).
B. Let Q be a positive self-adjoint unbounded operator in #. Suppose there
exists a subspace & of 2N 2(Q2) such that
(i) & is dense in D[t ],
(i) > {E@T¢n¢e8),
(i) Q8 =« 9 and Q& is dense in #.
We put
N,, = {X e M; XD Q € 0y(M)},

Po(X1X) = r(X™*Q)*(XTQ), XeN, .

Then ¢, is a regular quasi-weight on 2#(#). In fact, this is shown in similar to the
proof of the above A, (2).
Further, suppose

(iv) Q7! is densely defined and 2N 2(Q7!) is a core for Q7.
Then by ([4] Theorem 4.2) we have the following results:

(iv); Suppose Q7% < @ for all te R. Then ¢, is a quasi-standard quasi-
weight on ().

(iv), Suppose Q22 < 2 and Q'MQ " = .# for all te R. Then ¢, is a
standard quasi-weight on 2(.#).
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ExampLE 5.3. A. We adopt the notations in Example 5.1, B, (5). We put

s+ = {{on}p01, ;00 >0,n=0,1,...},

0
Q{“n} = Z anﬁi ®.ﬁh {an}nz()’]’_“ € S4,
n=0
and
Pag,, = {X € M;X1*Q € 02( M)},

9o, (X'X) = r(X"Q)"(X*Q), Xe RNyg,

an} )

Since the linear span of {f,;n=0,1,...} satisfies the conditions (i), (ii) and (iii) in
Example 5.2, B, it follows that ¢, ) is a regular quasi-weight on 2(.#). Further since
Qy,,) satisfies the conditions (iv) and (iv), in Example 5.2, B, it follows that P00 is a
quasi-standard quasi-weight on 2(.#).

B. We adopt the notations in ([4], Example 5.2). The total Hamiltonian of the
interacting boson model with a two-body potential is given by a self-adjoint operator H
in &

H=@@ H,,
n=0
where H, = dI',(h)+ V™. We put
Q= e—H/Z,

and
RNy, ={X e M; XT*Q € a3(M)},
Po(X1X) = tr(X™ Q)" (X™*Q), XeN,,.

Then it is shown in similar to the above A that ¢, is a regular quasi-standard quasi-
weight on 2(A).

C. We adopt the notations in ([4], Example 5.1). The total Hamiltonian of the
BCS-model is given by a self-adjoint operator Hp in #|y)

Hy=o (e - (0,M)}.
p=1

We put
Q= e_H"/z,
and
RNy, = {(X € M, X1*Q € 02( M)},
Po(XTX) = r(X™* Q)" (X™Q), XeR,,.
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Then it is shown in similar to the proof of the above A that ¢, is a regular quasi-weight
on #(M#). Further since Q satisfies the conditions (iv) and (iv), in Example 5.2, B, it
follows that ¢, is a standard quasi-weight 2(.#).
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