Regular weights on algebras of unbounded operators

By Atsushi INOUE and Hidekazu OGI

(Received Sept. 8, 1995) (Revised Feb. 13, 1996)

1. Introduction.

Algebras of unbounded operators called O^* -algebras have been studying from the pure mathematical situations (operator theory, topological *-algebras, representations of Lie algebras etc.) and the physical applications (the Wightman quantum field theory, unbounded CCR-algebras, quantum groups etc.). To proceed such studies it is important to study the Tomita-Takesaki theory in O^* -algebras [11 ~15]. Weights on O^* -algebras (that is, linear functionals that take positive, but not necessarily finite valued) are naturally appeared in the studies of the unbounded Tomita-Takesaki theory [13 ~15] and the quantum physics [4,15]. Thus it is significant to study weights on O^* -algebras for the structure of O^* -algebras and the physical applications. Further, the weights on O^* -algebras occasion some pathological phenomena which don't occur for weights on O^* -algebras. From this viewpoint we should study systematically weights on O^* -algebras.

In Section 2 we shall define quasi-weights and weights on O^* -algebras and give the fundamental examples. Let \mathcal{M} be a closed O^* -algebra on a dense subspace \mathcal{D} in a Hilbert space \mathcal{H} . We define positive cones $\mathcal{P}(\mathcal{M})$ and \mathcal{M}_+ of \mathcal{M} by

$$\mathcal{P}(\mathcal{M}) = \left\{ \sum_{k=1}^{n} X_{k}^{\dagger} X_{k}; X_{k} \in \mathcal{M}(k=1,2,\ldots,n), n \in \mathbb{N} \right\},$$

$$\mathcal{M}_{+} = \{ X \in \mathcal{M}; X \geq 0 \}.$$

The above positive cones $\mathscr{P}(\mathscr{M})$ and \mathscr{M}_+ are different in general [22, 25], and so we need to define the notions of two types of weights as follows: A map φ of $\mathscr{P}(\mathscr{M})$ (resp. \mathscr{M}_+) into $R_+ \cup \{+\infty\}$ is said to be a weight on $\mathscr{P}(\mathscr{M})$ (resp. \mathscr{M}_+) if

$$(\mathbf{W})_1$$
 $\qquad \qquad \varphi(A+B) = \varphi(A) + \varphi(B),$ $(\mathbf{W})_2$ $\qquad \qquad \varphi(\alpha A) = \alpha \varphi(A)$

for all $A, B \in \mathscr{P}(\mathscr{M})$ (resp. \mathscr{M}_+) and $\alpha \geq 0$, where $0 \cdot (+\infty) = 0$. The first phenomenon arises for the GNS-construction of φ which is important for such a study: $\mathfrak{N}_{\varphi}^0 \equiv \{X \in \mathscr{M}; \varphi(X^{\dagger}X) < \infty\}$ is a left ideal of \mathscr{M} in the bounded case, but it is not necessarily a left ideal of \mathscr{M} . For example, the condition $\varphi(I) < \infty$ doesn't necessarily imply $\varphi(X^{\dagger}X) < \infty$ for all $X \in \mathscr{M}$. So, using the left ideal \mathfrak{N}_{φ} of \mathscr{M} defined by

$$\mathfrak{N}_{\varphi} \equiv \{X \in \mathcal{M}; \varphi((AX)^{\dagger}(AX)) < \infty \text{ for all } A \in \mathcal{M}\},$$

we shall construct the GNS-representation π_{φ} on the similar method to positive linear functionals, that is, π_{φ} is a *-homomorphism of \mathscr{M} onto the O^* -algebras $\pi_{\varphi}(\mathscr{M})$ on the dense subspace $\mathscr{D}(\pi_{\varphi})$ in the Hilbert space \mathscr{H}_{φ} . However, there are non-zero weights φ such that \mathfrak{N}_{φ}^0 has many elements but $\mathfrak{N}_{\varphi} = \{0\}$ (Example 5.1, A) and so the GNS-construction for such a weight is meaningless. We don't treat with such a weight. The second phenomenon arises for the important examples (Example 5.1): For $\xi \in \mathscr{D}^*(\mathscr{M}) (\equiv \bigcap_{X \in \mathscr{M}} \mathscr{D}(X^*)) \backslash \mathscr{D}$ we put

$$\omega_{\xi}(X) = (X^{\dagger *} \xi \mid \xi), \quad X \in \mathcal{M}.$$

Then ω_{ξ} is a linear functional on \mathcal{M} , but it is not necessarily positive. For $\xi \in \mathcal{H} \setminus \mathcal{D}^*(\mathcal{M})$ even the definition of the above ω_{ξ} is impossible. Hence, we regard ω_{ξ} as the map of $\mathcal{P}(\mathfrak{N}_{\omega_{\xi}})$ into \mathbf{R}_+ satisfying $(W)_1$ and $(W)_2$ for $\mathcal{P}(\mathfrak{N}_{\omega_{\xi}})$, where $\mathfrak{N}_{\omega_{\xi}}$ is a left ideal of \mathcal{M} defined by

$$\mathfrak{N}_{\omega_{\varepsilon}} = \{ X \in \mathcal{M}; \xi \in \mathcal{D}(X^{\dagger *}) \text{ and } X^{\dagger *} \xi \in \mathcal{D} \}.$$

So, we need to study such a map (called *quasi-weight*) which is strictly weaker than the notion of weights. A map φ of the positive cone $\mathscr{P}(\mathfrak{N}_{\varphi})$ generated by a left ideal \mathfrak{N}_{φ} of \mathscr{M} into R_+ is said to be a *quasi-weight* on $\mathscr{P}(\mathscr{M})$ if it satisfies the above conditions $(W)_1$ and $(W)_2$ for $\mathscr{P}(\mathfrak{N}_{\varphi})$. We have felt that the study of quasi-weights is more useful than that of weights in case of O^* -algebras.

We shall give another important (quasi-)weight of a net $\{f_{\alpha}\}$ of positive linear functionals on \mathcal{M} . It is natural to consider whether $\sup_{\alpha} f_{\alpha}$ is a (quasi-)weight on $\mathscr{P}(\mathcal{M})$. We show that if $\{f_{\alpha}\}$ has a certain net property for $\mathscr{P}(\mathcal{M})$ (resp. $\mathscr{P}(\mathfrak{N}_{\varphi})$) then $\sup_{\alpha} f_{\alpha}$ is a weight (resp. a quasi-weight) on $\mathscr{P}(\mathcal{M})$.

In Section 3 we shall define and study the notions of regularity and singularity for $(quasi\text{-})weights\ \varphi\ \text{on}\ \mathscr{P}(\mathcal{M})$, and give the decomposition theorem of φ into the regular part φ_r and the singular part φ_s . A quasi-weight φ on $\mathscr{P}(\mathcal{M})$ is said to be regular if $\varphi = \sup_{\alpha} f_{\alpha}$ on $\mathscr{P}(\mathfrak{N}_{\varphi})$ for some net $\{f_{\alpha}\}$ of positive linear functionals on \mathscr{M} , and φ is said to be singular if there doesn't exist any positive linear functional f on \mathscr{M} such that $f(X^{\dagger}X) \leq \varphi(X^{\dagger}X)$ for all $X \in \mathfrak{N}_{\varphi}$ and $f \neq 0$ on $\mathscr{P}(\mathfrak{N}_{\varphi})$. Let φ be a quasi-weight on $\mathscr{P}(\mathscr{M})$ such that π_{φ} is a self-adjoint. Considering the trio-commutant $T(\varphi)'_c$ defined by

$$T(\varphi)'_{c} = \{K = (\pi'(K), \lambda'(K), \lambda'_{*}(K)) \in \pi_{\varphi}(\mathscr{M})'_{w} \times \mathscr{D}(\pi_{\varphi}) \times \mathscr{D}(\pi_{\varphi}); \\ \pi'(K)\lambda_{\varphi}(X) = \pi_{\varphi}(X)\lambda'(K) \text{ and } \pi'(K)^{*}\lambda_{\varphi}(X) = \pi_{\varphi}(X)\lambda'_{*}(K), \forall X \in \mathfrak{N}_{\varphi}\},$$

where $\pi_{\varphi}(\mathcal{M})'_{w}$ is the weak commutant of the O^* -algebra $\pi_{\varphi}(\mathcal{M})$, we obtain that the following statements are equivalent:

$$(\mathbf{R})_1$$
 φ is regular.

$$(\mathsf{R})_2 \qquad \qquad \varphi = \sup_{\alpha} (\omega_{\zeta_{\alpha}} \circ \pi_{\varphi}) \quad \text{on } \mathscr{P}(\mathfrak{N}_{\varphi})$$

for some net $\{\xi_{\alpha}\}$ in $\mathcal{D}(\pi_{\varphi})$, where for $\xi \in \mathcal{D}(\pi_{\varphi})$ $\omega_{\xi} \circ \pi_{\varphi}$ is a positive linear functional on

 \mathcal{M} defined by $(\omega_{\xi} \circ \pi_{\varphi})(X) = (\pi_{\varphi}(X)\xi \mid \xi), X \in \mathcal{M}$.

(R)₃ There exists a net
$$\{K_{\alpha}\}$$
 in $T(\varphi)'_{c}$ such that $0 \le \pi'(K_{\alpha}) \le I$ for each α and $\pi'(K_{\alpha}) \longrightarrow I$ strongly.

Further, using this result, we show that φ is decomposed into $\varphi = \varphi_r + \varphi_s$, where φ_r is a regular quasi-weight on $\mathscr{P}(\mathscr{M})$ and φ_s is a singular quasi-weight on $\mathscr{P}(\mathscr{M})$.

Let φ be a weight on $\mathscr{P}(\mathscr{M})$. We shall consider when the above $(R)_1$ and $(R)_2$ hold for all $A \in \mathscr{P}(\mathscr{M})$, that is, when the following statements $(R)'_1$ and $(R)'_2$ hold:

$$(\mathbf{R})_1' \qquad \qquad \varphi = \text{is regular} \quad \left(\text{iff } \varphi = \sup_{\alpha} f_{\alpha} \text{ on } \mathscr{P}(\mathscr{M}) \right).$$

$$(\mathbf{R})_2' \qquad \qquad \varphi = \sup_{\alpha} \left(\omega_{\xi_{\alpha}} \circ \pi_{\varphi} \right) \quad \text{on } \mathscr{P}(\mathscr{M}).$$

For this purpose we define the notions of semifiniteness and normality of φ . Suppose φ is a normal semifinite weight on $\mathscr{P}(\mathscr{M})$ such that π_{φ} is self-adjoint and normal. Then we obtain the result that the above five statements $(R)_1, (R)_2, (R)_3, (R)'_1$ and $(R)'_2$ are equivalent. Using this result, we show that φ is decomposed into $\varphi = \varphi_r + \varphi_s$, where φ_r is a regular weight on $\mathscr{P}(\mathscr{M})$ and φ_s is a singular weight on $\mathscr{P}(\mathscr{M})$.

In Section 4 we shall define and study an important class in regular (quasi-)weights which is possible to develop the Tomita-Takesaki theory in O^* -algebras. Let φ be a faithful (quasi-)weight on $\mathscr{P}(\mathscr{M})$ such that $\pi_{\varphi}(\mathscr{M})'_{w}\mathscr{D}(\pi_{\varphi}) \subset \mathscr{D}(\pi_{\varphi})$. Then, the map $\Lambda_{\varphi}: \pi_{\varphi}(X) \to \lambda_{\varphi}(X)$, $X \in \mathfrak{N}_{\varphi}$ is a generalized vector for the O^* -algebra $\pi_{\varphi}(\mathscr{M})$, that is, it is a linear map of the left ideal $D(\Lambda_{\varphi}) \equiv \pi_{\varphi}(\mathfrak{N}_{\varphi})$ into $\mathscr{D}(\pi_{\varphi})$ satisfying $\Lambda_{\varphi}(\pi_{\varphi}(A)\pi_{\varphi}(X)) = \pi_{\varphi}(A)\Lambda_{\varphi}(\pi_{\varphi}(X))$ for all $A \in \mathscr{M}$ and $X \in \mathfrak{N}_{\varphi}$. Using (quasi)-standard generalized vectors defined and studied in [4,13~15], we define the notion of (quasi-) standardness of φ as follows: φ is said to be standard (resp. quasi-standard) if the generalized vector Λ_{φ} is standard (resp. quasi-standard). And we obtain that if φ is standard, then the modular automorphism group $\{\sigma_t^{\varphi}\}_{t \in \mathbb{R}}$ of $\mathfrak{N}_{\varphi} \cap \mathfrak{N}_{\varphi}^{\dagger}$ is defined and φ is a $\{\sigma_t^{\varphi}\}$ -KMS (quasi-)weights, and if φ is quasi-standard, then it is extended to a standard quasi-weight $\bar{\varphi}$ on the positive cone $\mathscr{P}(\pi_{\varphi}(\mathscr{M})''_{wc})$ of the generalized von Neumann algebra $\pi_{\varphi}(\mathscr{M})''_{wc}$.

In Section 5 we shall give some concrete examples of regular (quasi-) weights, singular (quasi-) weights and standard (quasi-) weights. We first investigate the quasi-weights ω_{ξ} on $\mathscr{P}(\mathscr{M})$ defined by elements ξ in the Hilbert space. When is ω_{ξ} extended to a weight $\widetilde{\omega_{\xi}}$ on $\mathscr{P}(\mathscr{M})$ such that $\mathfrak{N}_{\widetilde{\omega_{\xi}}} = \mathfrak{N}_{\omega_{\xi}}$? We show that if \mathscr{M} is commutative and integrable then the above question is affirmative. Further, we investigate the regularity, the singularity and the standardness of the quasi-weights ω_{ξ} . We next apply these results to three physical models, namely the unbounded CCR algebra, a class of interacting boson model in the Fock space and the BCS-Bogolubov model of superconductivity. And we give regular quasi-weights and standard quasi-weights for the relative models.

2. Weights and quasi-weights on O^* -algebras.

We first state some of definitions and the basic properties concerning O^* -algebras [7, 18, 22, 28] and define the notions of quasi-weights and weights on O^* -algebras.

Let \mathscr{D} be a dense subspace in a Hilbert space \mathscr{H} . We denote by $\mathscr{L}^{\dagger}(\mathscr{D})$ the set of all linear operators X from \mathscr{D} into \mathscr{D} such that $\mathscr{D}(X^*) \supset \mathscr{D}$ and $X^*\mathscr{D} \subset \mathscr{D}$. Then $\mathscr{L}^{\dagger}(\mathscr{D})$ is a *-algebra with the usual operations and the involution $X \to X^{\dagger} \equiv X^* \lceil \mathscr{D}$. A *-subalgebra of $\mathscr{L}^{\dagger}(\mathscr{D})$ is called an O^* -algebra on \mathscr{D} in \mathscr{H} according to the Schmüdgen book [28] though it is also called by an O_p^* -algebra in many papers. Throughout this paper we assume that an O^* -algebra has always an identity operator. Let \mathscr{M} be an O^* -algebra on \mathscr{D} . The locally convex topology on \mathscr{D} defined by the family $\{\|\cdot\|_X; X \in \mathscr{M}\}$ of seminorms: $\|\xi\|_X = \|X\xi\|$ ($\xi \in \mathscr{D}$) is called the *graph topology* on \mathscr{D} , which is denoted by $t_{\mathscr{M}}$. If the locally convex space $\mathscr{D}[t_{\mathscr{M}}]$ is complete, then \mathscr{M} is said to be *closed*. We put

$$\tilde{\mathscr{D}}(\mathscr{M}) = \bigcap_{X \in \mathscr{M}} \mathscr{D}(\overline{X}) \quad \text{and} \quad \tilde{X} = \overline{X} \lceil \tilde{\mathscr{D}}(\mathscr{M}) \ (X \in \mathscr{M}).$$

Then $\tilde{\mathscr{D}}(\mathscr{M})$ equals the completion of $\mathscr{D}[t_{\mathscr{M}}]$ and $\tilde{\mathscr{M}} \equiv \{\tilde{X}; X \in \mathscr{M}\}$ is a closed O^* -algebra on $\tilde{\mathscr{D}}(\mathscr{M})$ which is the smallest closed extension of \mathscr{M} and it is called the closure of \mathscr{M} . Hence \mathscr{M} is closed if and only if $\mathscr{D} = \tilde{\mathscr{D}}(\mathscr{M})$. If $\mathscr{D}^*(\mathscr{M}) \equiv \bigcap_{X \in \mathscr{M}} \mathscr{D}(X^*) = \tilde{\mathscr{D}}(\mathscr{M})$, then \mathscr{M} is said to be essentially self-adjoint, and if $\mathscr{D}^*(\mathscr{M}) = \mathscr{D}$, then \mathscr{M} is said to be self-adjoint. If $X^{\dagger *} = \overline{X}$ for each $X \in \mathscr{M}$, then \mathscr{M} is said to be integrable (or standard). Clearly, the integrability of \mathscr{M} implies the self-adjointness. We define the weak commutant \mathscr{M}'_{w} of a \dagger -invariant subset \mathscr{M} of $\mathscr{L}^{\dagger}(\mathscr{D})$ as follows:

$$\mathscr{M}_{\mathrm{w}}' = \{ C \in \mathscr{B}(\mathscr{H}); (CX\xi \mid \eta) = (C\xi \mid X^{\dagger}\eta) \text{ for each } \xi, \eta \in \mathscr{D} \text{ and } X \in \mathscr{M} \},$$

where $\mathscr{B}(\mathscr{H})$ is the set of all bounded linear operators on \mathscr{H} . Then \mathscr{M}'_w is a *-invariant weakly closed subspace of $\mathscr{B}(\mathscr{H})$, but it is not necessarily an algebra. Further, if \mathscr{M} is self-adjoint, then $\mathscr{M}'_w\mathscr{D}\subset\mathscr{D}$, and $\mathscr{M}'_w\mathscr{D}\subset\mathscr{D}$ if and only if \mathscr{M}'_w is a von Neumann algebra and \overline{X} is affiliated with $(\mathscr{M}'_w)'$ for each $X\in\mathscr{M}$. Let \mathscr{M} be an O^* -algebra on \mathscr{D} in \mathscr{H} . We call the locally convex topology defined by the family $\{P_{\xi,\eta};\xi,\eta\in\mathscr{D}\}$ (resp. $\{P_{\xi};\xi\in\mathscr{D}\}$; $\{P_{\xi}^*;\xi\in\mathscr{D}\}$) of seminorms;

$$P_{\xi,\eta}(X) = |(X\xi \mid \eta)| \text{ (resp. } P_{\xi}(X) = ||X\xi||; \ P_{\xi}^* = ||X\xi|| + ||X^{\dagger}\xi||), \quad X \in \mathcal{M}$$

the weak topology (resp. strong topology; strong* topology) on \mathcal{M} and denote it by t_w (resp. $t_s; t_s^*$). A closed O^* -algebra \mathcal{M} on \mathcal{D} in \mathcal{H} is said to be a generalized von Neumann algebra on \mathcal{D} if $\mathcal{M}'_w\mathcal{D} \subset \mathcal{D}$ and $\mathcal{M} = \mathcal{M}''_w \equiv \{X \in \mathcal{L}^{\dagger}(\mathcal{D}); CX \subset XC, \ ^{\forall}C \in \mathcal{M}'_w\}$. It is known that \mathcal{M} is a generalized von Neumann algebra on \mathcal{D} if and only if \mathcal{M} equals the strong*-closure of the O^* -algebra $(\mathcal{M}'_w)' \lceil \mathcal{D}$ on \mathcal{D} in $\mathcal{L}^{\dagger}(\mathcal{D})$ [14]. A (*-)homomorphism π of a *-algebra \mathcal{A} onto an O^* -algebra is said to a (*-)representation of \mathcal{A} . A *-representation π of \mathcal{A} is said to be closed (resp. self-adjoint) if the O^* -algebra $\pi(\mathcal{A})$ is closed (resp. self-adjoint). Let π be a *-representation

of \mathcal{A} . We put

$$\begin{split} \mathscr{D}(\tilde{\pi}) &= \bigcap_{x \in \mathscr{A}} \mathscr{D}(\overline{\pi(x)}), \quad \tilde{\pi}(x) = \overline{\pi(x)} \lceil \mathscr{D}(\tilde{\pi}), \\ \mathscr{D}(\pi^*) &= \bigcap_{x \in \mathscr{A}} \mathscr{D}(\pi(x)^*), \quad \pi^*(x) = \pi(x^*)^* \lceil \mathscr{D}(\pi^*), \quad x \in \mathscr{A}. \end{split}$$

Then $\tilde{\pi}$ is a closed *-representation of \mathscr{A} such that $\tilde{\pi}(\mathscr{A}) = \pi(\mathscr{A})$ and it is called the closure of π , and π^* is a closed representation of \mathscr{A} and it is called the adjoint of π . A *-representation π of an O^* -algebra \mathscr{M} is said to be weakly continuous (resp. strongly continuous) if it is continuous from the locally convex space $\mathscr{M}[t_w]$ (resp. $\mathscr{M}[t_s]$) onto the locally convex space $\pi(\mathscr{M})[t_w]$ (resp. $\pi(\mathscr{M})[t_s]$).

Throughout the rest of this section let \mathcal{M} be a closed O^* -algebra on \mathcal{D} in \mathcal{H} . For a subspace \mathcal{N} of \mathcal{M} we put

$$\mathscr{P}(\mathscr{N}) = \left\{ \sum_{k=1}^{n} X_{k}^{\dagger} X_{k}; X_{k} \in \mathscr{N} \ (k = 1, 2, \dots, n), \ n \in \mathbb{N} \right\}$$

and call it the positive cone generated by \mathcal{N} .

DEFINITION 2.1. A map φ of $\mathscr{P}(\mathscr{M})$ into $R_+ \cup \{+\infty\}$ is said to be a weight on $\mathscr{P}(\mathscr{M})$ if

(i)
$$\varphi(A+B) = \varphi(A) + \varphi(B), \quad A, B \in \mathscr{P}(\mathscr{M});$$

(ii)
$$\varphi(\alpha A) = \alpha \varphi(A), \quad A \in \mathscr{P}(\mathscr{M}), \quad \alpha \geq 0,$$

where $0 \cdot (+\infty) = 0$. A map φ of the positive cone $\mathscr{P}(\mathfrak{N}_{\varphi})$ generated by a left ideal \mathfrak{N}_{φ} of \mathscr{M} into R_+ is said to be a quasi-weight on $\mathscr{P}(\mathscr{M})$ if it satisfies the above conditions (i) and (ii) for $\mathscr{P}(\mathfrak{N}_{\varphi})$.

Let φ be a quasi-weight on $\mathscr{P}(\mathscr{M})$. We denote by $D(\varphi)$ the subspace of \mathscr{M} generated by $\{X^{\dagger}X; X \in \mathfrak{N}_{\varphi}\}$. Since \mathfrak{N}_{φ} is a left ideal of \mathscr{M} , we have

$$D(\varphi) = \text{the linear span of } \{\, Y^\dagger X; X, \, Y \in \mathfrak{N}_\varphi \},$$

and so each $\sum_k \alpha_k Y_k^{\dagger} X_k$ $(\alpha_k \in C, X_k, Y_k \in \mathfrak{N}_{\varphi})$ is represented as $\sum_j \beta_j Z_j^{\dagger} Z_j$ for some $\beta_j \in C$ and $Z_j \in \mathfrak{N}_{\varphi}$. Then we can define a linear functional on $D(\varphi)$ by

$$\sum_{k} \alpha_{k} Y_{k}^{\dagger} X_{k} \longrightarrow \sum_{j} \beta_{j} \varphi(Z_{j}^{\dagger} Z_{j})$$

and write it by the same φ . It is easily shown that

$$|\varphi(Y^{\dagger}X)|^{2} \leq \varphi(Y^{\dagger}Y)\varphi(X^{\dagger}X), \quad X, Y \in \mathfrak{N}_{\varphi}.$$

We put

$$N_{arphi}=\{X\in\mathfrak{N}_{arphi}; arphi(X^{\dagger}X)=0\}, \quad \lambda_{arphi}(X)=X+N_{arphi}\in\mathfrak{N}_{arphi}/N_{arphi}, \quad X\in\mathfrak{N}_{arphi}.$$

Then it follows from (2.1) that N_{φ} is a left ideal of \mathfrak{N}_{φ} and $\lambda_{\varphi}(\mathfrak{N}_{\varphi}) \equiv \mathfrak{N}_{\varphi}/N_{\varphi}$ is a pre-

Hilbert space with the inner product

$$(\lambda_{\varphi}(X)|\lambda_{\varphi}(Y))=arphi(Y^{\dagger}X), \quad X,Y\in \mathfrak{N}_{\varphi}.$$

We denote by \mathscr{H}_{φ} the Hilbert space obtained by the completion of the pre-Hilbert space $\lambda_{\varphi}(\mathfrak{N}_{\varphi})$. We define a *-representation π^0_{φ} of \mathscr{M} by

$$\pi_{\varphi}^0(A)\lambda_{\varphi}(X)=\lambda_{\varphi}(AX),\quad A\in\mathscr{M},\,X\in\mathfrak{N}_{\varphi},$$

and denote by π_{φ} the closure of π_{φ}^{0} . We call the triple $(\pi_{\varphi}, \lambda_{\varphi}, \mathcal{H}_{\varphi})$ the GNS-construction for φ . Let φ be a weight on $\mathscr{P}(\mathcal{M})$ and put

$$\mathfrak{N}_{\varphi} = \{X \in \mathcal{M}; \varphi((AX)^{\dagger}(AX)) < \infty \text{ for all } A \in \mathcal{M}\}.$$

Then \mathfrak{N}_{φ} is a left ideal of \mathscr{M} and the restriction $\varphi[\mathscr{P}(\mathfrak{N}_{\varphi})]$ of φ to the positive cone $\mathscr{P}(\mathfrak{N}_{\varphi})$ is a quasi-weight on $\mathscr{P}(\mathscr{M})$ and it is called the quasi-weight on $\mathscr{P}(\mathscr{M})$ generated by φ and is denoted by φ_q . We denote by $(\pi_{\varphi}, \lambda_{\varphi}, \mathscr{H}_{\varphi})$ the GNS-construction for the quasi-weight φ_q generated by φ . We remark that even if $\varphi \neq 0$ the case of $\varphi_q = 0$ arises (Example 5.1, A), and so the GNS-construction for such a weight is meaningless. We don't treat with such a weight. We next define a weight by another positive cone $\mathscr{M}_+ = \{X \in \mathscr{M}; X \geq 0\}$.

Definition 2.2. A map φ of \mathcal{M}_+ into $\mathbf{R}_+ \cup \{+\infty\}$ is said to be a weight on \mathcal{M}_+ if

(i)
$$\varphi(X+Y) = \varphi(X) + \varphi(Y), \quad X, Y \in \mathcal{M}_{+}$$

(ii)
$$\varphi(\alpha X) = \alpha \varphi(X), \quad X \in \mathcal{M}_+, \ \alpha \geq 0.$$

A map φ of a hereditary positive subcone $D(\varphi)_+$ of \mathcal{M}_+ into R_+ is said to be a quasi-weight on \mathcal{M}_+ if it satisfies the above conditions (i) and (ii) for $D(\varphi)_+$. A positive subcone \mathscr{P} of \mathcal{M}_+ is said to be hereditary if any element X of \mathcal{M}_+ majorized by some element Y of \mathscr{P} (that is, $X \leq Y$) belongs to \mathscr{P} .

It is clear that if φ is a weight on \mathcal{M}_+ then it is a weight on $\mathcal{P}(\mathcal{M})$. We denote by $\varphi \lceil \mathcal{P}(\mathcal{M})$ the restriction of φ to $\mathcal{P}(\mathcal{M})$. Suppose φ is a weight on \mathcal{M}_+ . We define the finite part φ_q of φ by

$$D(\varphi_q)_+ = \{X \in \mathcal{M}_+; \varphi(X) < \infty\},$$

$$\varphi_q\left(\sum_k \alpha_k X_k\right) = \sum_k \alpha_k \varphi(X_k), \quad X_k \in D(\varphi_q)_+, \ \alpha_k \ge 0.$$

Then $D(\varphi_q)_+$ is a hereditary positive subcone of \mathcal{M}_+ and φ_q is a quasi-weight on \mathcal{M}_+ . Suppose φ is a quasi-weight on \mathcal{M}_+ . We put

$$\mathfrak{N}_{\varphi} = \{X \in \mathcal{M}; (AX)^{\dagger}(AX) \in D(\varphi)_{+} \text{ for all } A \in \mathcal{M}\}.$$

Then \mathfrak{N}_{φ} is a left ideal of \mathscr{M} and the restriction of φ to $\mathscr{P}(\mathfrak{N}_{\varphi})$ is a quasi-weight on

 $\mathscr{P}(\mathscr{M})$. In fact, for each $X_1, X_2 \in \mathfrak{N}_{\varphi}$ and $A \in \mathscr{M}$ we have

$$(X_1 + X_2)^{\dagger} A^{\dagger} A (X_1 + X_2) + (X_1 - X_2)^{\dagger} A^{\dagger} A (X_1 - X_2)$$

= $2(X_1^{\dagger} A^{\dagger} A X_1 + X_2^{\dagger} A^{\dagger} A X_2) \in D(\varphi)_+,$

and since $D(\varphi)_+$ is a hereditary positive subcone of \mathcal{M}_+ , it follows that $(X_1+X_2)^\dagger A^\dagger A(X_1+X_2)\in D(\varphi)_+$, that is, $X_1+X_2\in\mathfrak{N}_\varphi$. It is clear that $\alpha X,AX\in\mathfrak{N}_\varphi$ for all $\alpha\in C$, $A\in\mathcal{M}$ and $X\in\mathfrak{N}_\varphi$. Thus, \mathfrak{N}_φ is a left ideal of \mathcal{M} . Further, since $\mathscr{P}(\mathfrak{N}_\varphi)\subset D(\varphi)_+$, the restriction of φ to $\mathscr{P}(\mathfrak{N}_\varphi)$ is a quasi-weight on $\mathscr{P}(\mathcal{M})$. We denote by $\varphi\lceil \mathscr{P}(\mathcal{M})$ the quasi-weight φ on \mathscr{M}_+ regarding it as the quasi-weight on $\mathscr{P}(\mathcal{M})$. The following diagram holds:

The above equality $\varphi_a[\mathscr{P}(\mathscr{M}) = (\varphi[\mathscr{P}(\mathscr{M}))_a$ follows from

$$\mathfrak{N}_{\varphi_q\lceil \mathscr{P}(\mathscr{M})}=\mathfrak{N}_{\varphi_q}=\mathfrak{N}_{\varphi}=\mathfrak{N}_{\varphi\lceil \mathscr{P}(\mathscr{M})}=\mathfrak{N}_{(\varphi\lceil \mathscr{P}(\mathscr{M}))_q}.$$

This means that the GNS-constructions of all these (quasi-)weights coincide.

We give two kinds of important examples of weights and quasi-weights on $\mathscr{P}(\mathscr{M})$ or \mathscr{M}_+ . We first give (quasi-)weights defined by vectors in \mathscr{H} . Let $\xi \in \mathscr{H} \setminus \mathscr{D}$. We put

$$\mathfrak{N}_{\omega_{\xi}} = \{X \in \mathscr{M}; \xi \in \mathscr{D}(X^{\dagger *}) \text{ and } X^{\dagger *} \xi \in \mathscr{D}\},$$

$$\omega_{\xi} \left(\sum_{k} X_{k}^{\dagger} X_{k}\right) = \sum_{k} \|X_{k}^{\dagger *} \xi\|^{2}, \quad X_{k} \in \mathfrak{N}_{\omega_{\xi}}.$$

Then ω_{ξ} is a quasi-weight on $\mathscr{P}(\mathscr{M})$. The following question arises: Is ω_{ξ} extended to a weight on $\mathscr{P}(\mathscr{M})$? In general, this question is inaffirmative, and so this is one of the reasons why we have to consider quasi-weights. In Section 5, we shall investigate such quasi-weights ω_{ξ} in more details.

We next give some (quasi-)weight defined by a net of positive linear functionals on \mathcal{M} . Let $\{f_{\alpha}\}$ be a net of positive linear functionals on \mathcal{M} . We put

$$\sup_{\alpha} f_{\alpha}: A \in \mathscr{P}(\mathscr{M}) \longrightarrow \sup_{\alpha} f_{\alpha}(A) \in [0, +\infty].$$

Then it is easily shown that

(2.2)
$$\max \left(\sup_{\alpha} f_{\alpha}(X^{\dagger}X), \sup_{\alpha} f_{\alpha}(Y^{\dagger}Y) \right) \leq \sup_{\alpha} f_{\alpha}(X^{\dagger}X + Y^{\dagger}Y) \\ \leq \sup_{\alpha} f_{\alpha}(X^{\dagger}X) + \sup_{\alpha} f_{\alpha}(Y^{\dagger}Y)$$

for all $X, Y \in \mathcal{M}$. We define the finite part of $\sup_{\alpha} f_{\alpha}$ by

$$\mathfrak{N}^0_{\sup_{\alpha} f_{\alpha}} \equiv \left\{ X \in \mathscr{M}; \sup_{\alpha} f_{\alpha}(X^{\dagger}X) < \infty \right\}.$$

Since

$$(X + Y)^{\dagger}(X + Y) + (X - Y)^{\dagger}(X - Y) = 2(X^{\dagger}X + Y^{\dagger}Y)$$

for each $X, Y \in \mathfrak{N}^0_{\sup_{\alpha} f_{\alpha}}$, it follows that $\mathfrak{N}^0_{\sup_{\alpha} f_{\alpha}}$ is a subspace of \mathcal{M} . But, $(\sup_{\alpha} f_{\alpha})(X^{\dagger}X + Y^{\dagger}Y) \neq \sup_{\alpha} f_{\alpha}(X^{\dagger}X) + \sup_{\alpha} f_{\alpha}(Y^{\dagger}Y)$ in general, and we have the following result:

Lemma 2.3. Let \mathcal{N} be a subspace of $\mathfrak{R}^0_{\sup_{\alpha} f_{\alpha}}$. The following statements are equivalent.

- $(1) \quad (\sup_{\alpha} f_{\alpha})(A+B) = (\sup_{\alpha} f_{\alpha})(A) + (\sup_{\alpha} f_{\alpha})(B) \text{ for all } A, B \in \mathscr{P}(\mathcal{N}).$
- (2) For each finite subset $\{X_1, \ldots, X_m\}$ of \mathcal{N} there exists a subsequence $\{\alpha_n\}$ of $\{\alpha\}$ such that

$$\lim_{n\to\infty} f_{\alpha_n}(X_k^{\dagger}X_k) = \left(\sup_{\alpha} f_{\alpha}\right)(X_k^{\dagger}X_k), \quad k=1,2,\ldots,m.$$

PROOF. (1) \Rightarrow (2) Take an arbitrary $\{X_1, \ldots, X_m\} \subset \mathcal{N}$. By (2.2), $(\sup_{\alpha} f_{\alpha})$ $\left(\sum_{k=1}^{m} X_k^{\dagger} X_k\right) < \infty$, and so there exists a subsequence $\{\alpha'_n\}$ of $\{\alpha\}$ such that

$$\lim_{n\to\infty} f_{\alpha'_n}\left(\sum_{k=1}^m X_k^{\dagger} X_k\right) = \left(\sup_{\alpha} f_{\alpha}\right) \left(\sum_{k=1}^m X_k^{\dagger} X_k\right).$$

Since $\sup_n f_{\alpha'_n}(X_1^{\dagger}X_1) \leq (\sup_{\alpha} f_{\alpha})(\sum_{k=1}^m X_k^{\dagger}X_k) < \infty$, there exists a subsequence $\{\alpha''_n\}$ of $\{\alpha'_n\}$ such that

$$\lim_{n\to\infty} f_{\alpha''_n}(X_1^{\dagger}X_1) = \sup_n f_{\alpha'_n}(X_1^{\dagger}X_1) \equiv \varphi(X_1^{\dagger}X_1).$$

Since $\{\alpha''_n\}$ is a subsequence of $\{\alpha'_n\}$, we have

$$\lim_{n\to\infty} f_{\alpha_n''}\left(\sum_{k=1}^m X_k^{\dagger} X_k\right) = \left(\sup_{\alpha} f_{\alpha}\right) \left(\sum_{k=1}^m X_k^{\dagger} X_k\right), \quad \lim_{n\to\infty} f_{\alpha_n''}(X_1^{\dagger} X_1) = \varphi(X_1^{\dagger} X_1).$$

Furthermore, since $\sup_n f_{\alpha''_n}(X_2^{\dagger}X_2) < \infty$, there exists a subsequence $f\{\alpha'''_n\}$ of $\{\alpha'''_n\}$ such that

$$\begin{split} &\lim_{n \to \infty} f_{\alpha_n'''} \Biggl(\sum_{k=1}^m X_k^{\dagger} X_k \Biggr) = \biggl(\sup_{\alpha} f_{\alpha} \biggr) \Biggl(\sum_{k=1}^m X_k^{\dagger} X_k \Biggr), \\ &\lim_{n \to \infty} f_{\alpha_n'''} (X_1^{\dagger} X_1) = \varphi(X_1^{\dagger} X_1), \\ &\lim_{n \to \infty} f_{\alpha_n'''} (X_2^{\dagger} X_2) = \biggl(\sup_{n} f_{\alpha_n''} \biggr) (X_2^{\dagger} X_2) \equiv \varphi(X_2^{\dagger} X_2). \end{split}$$

Repeating this argument, there exists a subsequence $\{\alpha_n\}$ of $\{\alpha\}$ such that

(2.3)
$$\lim_{n \to \infty} f_{\alpha_n} \left(\sum_{k=1}^m X_k^{\dagger} X_k \right) = \left(\sup_{\alpha} f_{\alpha} \right) \left(\sum_{k=1}^m X_k^{\dagger} X_k \right),$$

$$\lim_{n \to \infty} f_{\alpha_n} (X_k^{\dagger} X_k) = \varphi(X_k^{\dagger} X_k), \quad k = 1, 2, \dots, m,$$

which implies by the assumption (1) that

(2.4)
$$\sum_{k=1}^{m} \varphi(X_k^{\dagger} X_k) = \lim_{n \to \infty} \sum_{k=1}^{m} f_{\alpha_n}(X_k^{\dagger} X_k) = \lim_{n \to \infty} f_{\alpha_n} \left(\sum_{k=1}^{m} X_k^{\dagger} X_k \right)$$
$$= \left(\sup_{\alpha} f_{\alpha} \right) \left(\sum_{k=1}^{m} (X_k^{\dagger} X_k) \right)$$
$$= \sum_{k=1}^{m} \left(\sup_{\alpha} f_{\alpha} \right) (X_k^{\dagger} X_k).$$

Since $0 \le \varphi(X_k^{\dagger} X_k) \le (\sup_{\alpha} f_{\alpha})(X_k^{\dagger} X_k)$, k = 1, 2, ..., m, it follows from (2.4) that $\varphi(X_k^{\dagger} X_k) = (\sup_{\alpha} f_{\alpha})(X_k^{\dagger} X_k)$, k = 1, 2, ..., m. Therefore, we have by (2.3)

$$\lim_{n\to\infty} f_{\alpha_n}(X_k^{\dagger}X_k) = \left(\sup_{\alpha} f_{\alpha}\right)(X_k^{\dagger}X_k), \quad k=1,2,\ldots,m.$$

 $(2) \Rightarrow (1)$ Take an arbitrary subset $\{X_1, X_2, \dots, X_m\}$ of \mathcal{N} . By the assumption (2) there exists a subsequence $\{\alpha_n\}$ of $\{\alpha\}$ such that

$$\lim_{n\to\infty} f_{\alpha_n}(X_k^{\dagger}X_k) = \left(\sup_{\alpha} f_{\alpha}\right)(X_k^{\dagger}X_k), \quad k=1,2,\ldots,m.$$

The statement (1) follows from

$$\left(\sup_{\alpha} f_{\alpha}\right) \left(\sum_{k=1}^{m} X_{k}^{\dagger} X_{k}\right) \leq \sum_{k=1}^{m} \left(\sup_{\alpha} f_{\alpha}\right) \left(X_{k}^{\dagger} X_{k}\right) = \lim_{n \to \infty} \sum_{k=1}^{m} f_{\alpha_{n}} \left(X_{k}^{\dagger} X_{k}\right) \\
= \lim_{n \to \infty} f_{\alpha_{n}} \left(\sum_{k=1}^{m} X_{k}^{\dagger} X_{k}\right) \\
\leq \left(\sup_{\alpha} f_{\alpha}\right) \left(\sum_{k=1}^{m} X_{k}^{\dagger} X_{k}\right).$$

When $\{f_{\alpha}\}$ satisfies the condition of Lemma 2.3, (2) we say that $\{f_{\alpha}\}$ has the net property for $\mathscr{P}(\mathcal{N})$ and then denote the restriction of the map $\sup_{\alpha} f_{\alpha}$ to $\mathscr{P}(\mathcal{N})$ by $\sup_{\alpha} f_{\alpha} \lceil \mathscr{P}(\mathcal{N})$. In particular, when $\{f_{\alpha}\}$ has the net property for $\mathscr{P}(\mathfrak{N}^{0}_{\sup_{\alpha} f_{\alpha}})$, we simply say that $\{f_{\alpha}\}$ has the net property and then denote the map $\sup_{\alpha} f_{\alpha}$ by $\sup_{\alpha} f_{\alpha}$. By Lemma 2.3 and (2.2) we have the following

PROPOSITION 2.4. Let $\{f_{\alpha}\}$ be a net of positive linear functionals on \mathcal{M} . Suppose $\{f_{\alpha}\}$ has the net property for $\mathcal{P}(\mathcal{I})$, where \mathcal{I} is a left ideal of \mathcal{M} which is contained in

 $\mathfrak{N}^0_{\sup_{\alpha} f_{\alpha}}$. Then $\sup_{\alpha} f_{\alpha} \lceil \mathscr{P}(\mathscr{I})$ is a quasi-weight on $\mathscr{P}(\mathscr{M})$. Suppose $\{f_{\alpha}\}$ has the net property. Then $\sup_{\alpha} f_{\alpha}$ is a weight on $\mathscr{P}(\mathscr{M})$.

Let $\{f_{\alpha}\}$ be a net of *strongly positive* linear functionals on \mathcal{M} . A linear functional f on \mathcal{M} is said to be *strongly positive* if $f(X) \geq 0$ for all $X \in \mathcal{M}_+$. We put

$$\sup_{\alpha} f_{\alpha} : X \in \mathcal{M}_{+} \longrightarrow \sup_{\alpha} f_{\alpha}(X) \in [0, +\infty],$$

$$D\left(\sup_{\alpha} f_{\alpha}\right)_{+} = \left\{X \in \mathcal{M}_{+}; \sup_{\alpha} f_{\alpha}(X) < \infty\right\}.$$

Then $D(\sup_{\alpha} f_{\alpha})_{+}$ is a hereditary positive subcone of \mathcal{M}_{+} . Let \mathscr{P} be a positive subcone of $D(\sup_{\alpha} f_{\alpha})_{+}$. When $\{f_{\alpha}\}$ satisfies the condition of Lemma 2.3, (2) for \mathscr{P} , we say that $\{f_{\alpha}\}$ has the net property for \mathscr{P} and then denote the restriction of the map $\sup_{\alpha} f_{\alpha}$ to \mathscr{P} by $\sup_{\alpha} f_{\alpha} [\mathscr{P}]$. In particular, when $\{f_{\alpha}\}$ has the net property for $D(\sup_{\alpha} f_{\alpha})_{+}$, we simply say that $\{f_{\alpha}\}$ has the net property and then denote the map $\sup_{\alpha} f_{\alpha}$ by $\sup_{\alpha} f_{\alpha}$. In similar to the proofs of Lemma 2.3 and Proposition 2.4 we can show the following result:

PROPOSITON 2.5. Let $\{f_{\alpha}\}$ be a net of strongly positive linear functionals on \mathcal{M} and \mathcal{P} a hereditary positive subcone of $D(\sup_{\alpha} f_{\alpha})_{+}$. Then $\{f_{\alpha}\}$ has the net property for \mathcal{P} if and only if $\sup_{\alpha} f_{\alpha} \lceil \mathcal{P}$ is a quasi-weight on \mathcal{M}_{+} . Further, $\{f_{\alpha}\}$ has the net property if and only if $\sup_{\alpha} f_{\alpha}$ is a weight on \mathcal{M}_{+} .

Throughout the rest of this paper we treat with only weights and quasi-weights on $\mathscr{P}(\mathscr{M})$.

3. The regularity of quasi-weights and weights.

In this section we define the notions of regularity and singularity of (quasi-)weights and give the decomposition theorem of (quasi-)weights into the regular part and the singular part. Let \mathcal{M} be a closed O^* -algebra on \mathcal{D} in \mathcal{H} .

DEFINITION 3.1. A quasi-weight φ on $\mathscr{P}(\mathscr{M})$ is said to be regular if $\varphi = \sup_{\alpha} f_{\alpha} [\mathscr{P}(\mathfrak{N}_{\varphi})(=\sup_{\alpha} f_{\alpha} \text{ on } \mathscr{P}(\mathfrak{N}_{\varphi}))$ by Lemma 2.3) for some net $\{f_{\alpha}\}$ of positive linear functionals on \mathscr{M} , and it is said to be singular if there doesn't exist any positive linear functional f on \mathscr{M} such that $f(X^{\dagger}X) \leq \varphi(X^{\dagger}X)$ for each $X \in \mathfrak{N}_{\varphi}$ and $f \neq 0$ on $\mathscr{P}(\mathfrak{M})$. A weight φ on $\mathscr{P}(\mathscr{M})$ is said to be regular if $\varphi = \sup_{\alpha} f_{\alpha} (=\sup_{\alpha} f_{\alpha} \text{ on } \mathscr{P}(\mathscr{M}))$ by Lemma 2.3) for some net $\{f_{\alpha}\}$ of positive linear functionals on \mathscr{M} , and φ is said to be quasi-regular if the quasi-weight φ_{q} on $\mathscr{P}(\mathscr{M})$ defined by φ is regular. If there doesn't exist any positive linear functional f on \mathscr{M} such that $f(X^{\dagger}X) \leq \varphi(X^{\dagger}X)$ for all $X \in \mathscr{M}$ and $f \neq 0$ on $\mathscr{P}(\mathscr{M})$, then φ is said to be singular.

We define trio-commutants $T(\varphi)'_{\delta}$ and $T(\varphi)'_{c}$ for a quasi-weight φ which play an important rule for the regularity of φ as follows:

$$T(\varphi)_{\delta}' = \{K = (C, \xi, \eta); C \in \pi_{\varphi}(\mathcal{M})_{w}', \xi, \eta \in \mathcal{D}(\pi_{\varphi}^{*}) \\ \text{s.t. } C\lambda_{\varphi}(X) = \pi_{\varphi}^{*}(X)\xi \text{ and } C^{*}\lambda_{\varphi}(X) = \pi_{\varphi}^{*}(X)\eta \text{ for all } X \in \mathfrak{N}_{\varphi}\}, \\ T(\varphi)_{c}' = \{K = (C, \xi, \eta) \in T(\varphi)_{\delta}'; \xi, \eta \in \mathcal{D}(\pi_{\varphi})\}.$$

For $K = (C, \xi, \eta) \in T(\varphi)'_{\delta}$ we put

$$\pi'(K) = C$$
, $\lambda'(K) = \xi$, $\lambda'_{\star}(K) = \eta$.

We have the following

LEMMA 3.2. (1) $T(\varphi)'_{\delta}$ is a *-invariant vector space under the following operations and the involution:

$$K_1 + K_2 = (C_1 + C_2, \xi_1 + \xi_2, \eta_1 + \eta_2), \quad \alpha K = (\alpha C, \alpha \xi, \overline{\alpha} \eta),$$

 $K^* = (C^*, \eta, \xi)$

for $K_1=(C_1,\xi_1,\eta_1),\ K_2=(C_2,\xi_2,\eta_2)$ and $K=(C,\xi,\eta)$ in $T(\varphi)'_{\delta}$ and $\alpha\in C.$

(2) $T(\varphi)'_c$ is a *-invariant subspace of $T(\varphi)'_\delta$. In particular, if $\pi_{\varphi}(\mathcal{M})'_{w}\mathcal{D}(\pi_{\varphi}) \subset \mathcal{D}(\pi_{\varphi})$, then $T(\varphi)'_c$ is a *-algebra under the following multiplication:

$$K_1K_2=(C_1C_2,C_1\xi_2,C_2^*\eta_1)$$

for $K_1 = (C_1, \xi_1, \eta_1)$, $K_2 = (C_2, \xi_2, \eta_2) \in T(\varphi)'_c$, and π' is a *-homomorphism of $T(\varphi)'_c$ into the von Neumann algebra $\pi_{\varphi}(\mathcal{M})'_{w}$ and λ' is a linear map of $T(\varphi)'_c$ into $\mathcal{D}(\pi_{\varphi})$ satisfying $\pi'(K_1)\lambda'(K_2) = \lambda'(K_1K_2)$ for all $K_1, K_2 \in T(\varphi)'_c$.

LEMMA 3.3. Let φ be a quasi-weight on $\mathscr{P}(\mathcal{M})$. Suppose a linear functional f on \mathfrak{N}_{φ} satisfies the following conditions (i) and (ii):

- (i) $0 \le f(X^{\dagger}X) \le \varphi(X^{\dagger}X)$ for each $X \in \mathfrak{N}_{\varphi}$.
- (ii) For any $A \in \mathcal{M}$ there exists $\gamma_A > 0$ such that $|f(A^{\dagger}X)|^2 \leq \gamma_A \varphi(X^{\dagger}X)$ for each $X \in \mathfrak{N}_{\varphi}$.

Then there exists an element $K \in T(\varphi)'_{\delta}$ such that $0 \le \pi'(K) \le I$ and $f(X) = (\lambda_{\varphi}(X)|\lambda'(K))$ for all $X \in \mathfrak{N}_{\varphi}$. Conversely, for each $K \in T(\varphi)'_{\delta}$ with $0 \le \pi'(K) \le I$ we put

$$f(X) = (\lambda_{\varphi}(X)|\lambda'(K)), \quad X \in \mathfrak{N}_{\varphi}.$$

Then f is a linear functional on \mathfrak{R}_{φ} satisfying the above (i) and (ii).

PROOF. Suppose f is a linear functional on \mathfrak{N}_{φ} satisfying the conditions (i) and (ii). In similar to the GNS-construction for quasi-weights, we can define the GNS-construction $(\pi_f, \lambda_f, \mathscr{H}_f)$ for f. By (i) there exists a bounded linear transform C from \mathscr{H}_{φ} to \mathscr{H}_f such that $C\lambda_{\varphi}(X) = \lambda_f(X)$ for all $X \in \mathfrak{N}_{\varphi}$. Further, we have

$$C^*C \in \pi_{\varphi}(\mathscr{M})'_{\mathbf{w}} \quad \text{and} \quad f(Y^{\dagger}X) = (C^*C\lambda_{\varphi}(X)|\lambda_{\varphi}(Y)) \quad {}^{\forall}X, Y \in \mathfrak{N}_{\varphi}.$$
 (3.1)

It follows from (ii) and the Riesz theorem that there exists an element ξ of $\mathcal{D}(\pi_{\omega}^*)$ such

that

$$f(X) = (\lambda_{\varphi}(X)|\xi), \quad \forall X \in \mathfrak{N}_{\varphi},$$

which implies by (3.1) that

$$(\lambda_{\varphi}(Y)|\pi_{\varphi}^*(X)\xi)=f(X^\dagger Y)=(\lambda_{\varphi}(Y)|C^*C\lambda_{\varphi}(X))$$

for all $X, Y \in \mathfrak{N}_{\varphi}$, and so $C^*C\lambda_{\varphi}(X) = \pi_{\varphi}^*(X)\xi$ for all $X \in \mathfrak{N}_{\varphi}$. Hence, $K = (C^*C, \xi, \xi) \in T(\varphi)'_{\delta}$, $0 \le \pi'(K) \le I$ and $f(X) = (\lambda_{\varphi}(X)|\lambda'(K))$ for all $X \in \mathfrak{N}_{\varphi}$.

We next show the converse. Take an arbitrary $K \in T(\varphi)'_{\delta}$ such that $0 \le \pi'(K) \le I$. Then it is clear that f is a linear functional on \mathfrak{R}_{φ} and further, since

$$f(X^{\dagger}X) = (\lambda_{\varphi}(X)|\pi_{\varphi}^{*}(X)\lambda'(K)) = (\lambda_{\varphi}(X)|\pi'(K)\lambda_{\varphi}(X)),$$

 $f(A^{\dagger}X) = (\lambda_{\varphi}(X)|\pi_{\varphi}^{*}(A)\lambda'(K))$

for all $X \in \mathfrak{N}_{\varphi}$ and $A \in \mathcal{M}$, it follows that f satisfies the conditions (i) and (ii).

Remark 3.4. For $K \in T(\varphi)'_{\delta}$ the linear functional $\omega_{\lambda'(K)} \circ \pi_{\varphi}^*$ on \mathscr{M} defined by

$$(\omega_{\lambda'(K)} \circ \pi_{\omega}^*)(X) = (\pi_{\omega}^*(X)\lambda'(K)|\lambda'(K)), \quad X \in \mathcal{M}$$

is not necessarily positive in case π_{φ}^* is not a *-representation of \mathcal{M} . When $K \in T(\varphi)'_c$ and $0 \le \pi'(K) \le I$, $\pi_{\lambda'(K)} \circ \pi_{\varphi}$ is a positive linear functional on \mathcal{M} satisfying

$$(\omega_{\lambda'(K)} \circ \pi_{\varphi})(X^{\dagger}X) \leq \varphi(X^{\dagger}X), \quad \forall X \in \mathfrak{N}_{\varphi}.$$

But, the above inequality does not hold for all $X \in \mathcal{M}$ because the equality $\pi_{\varphi}(X)\lambda'(K) = \pi'(K)\lambda_{\varphi}(X)$ holds for each $X \in \mathfrak{N}_{\varphi}$ but this doesn't hold for $X \in \mathcal{M} \setminus \mathfrak{N}_{\varphi}$ in general.

For the regularity and the singularity of quasi-weights we have the following

THEOREM 3.5. Let φ be a quasi-weight on $\mathcal{P}(\mathcal{M})$.

- I. Consider the following statements:
- (1) There exists a net $\{K_{\alpha}\}$ in $T(\varphi)'_{c}$ such that $0 \leq \pi'(K_{\alpha}) \leq I$ for each α and $\pi'(K_{\alpha}) \to I$ strongly.
 - $(2) \quad \varphi = Sup_{\alpha}(\omega_{\xi_{\alpha}} \circ \pi_{\varphi}) \lceil \mathscr{P}(\mathfrak{N}_{\varphi}) \ \ \textit{for some net} \ \ \{\xi_{\alpha}\} \ \ \textit{in} \ \ \mathscr{D}(\pi_{\varphi}).$
 - (3) φ is regular.
- (4) There exists a net $\{K_{\alpha}\}$ in $T(\varphi)'_{\delta}$ such that $0 \leq \pi'(K_{\alpha}) \leq I$ for each α and $\pi'(K_{\alpha}) \to I$ strongly.

Then the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ hold. In particular, suppose π_{φ} is self-adjoint, then the statements $(1) \sim (4)$ are equivalent.

II. Suppose π_{φ} is self-adjoint. Then φ is singular if and only if there doesn't exist any element K of $T(\varphi)'_c$ such that $\pi'(K) \geq 0$ and $\pi'(K) \neq 0$.

PROOF. I. (1) \Rightarrow (2) We put $\xi_{\alpha} = \lambda'(K_{\alpha})$. Since

$$(\omega_{\xi_lpha}\circ\pi_arphi)(X^\dagger X)=\|\pi'(K_lpha)\lambda_arphi(X)\|^2$$

for each $X \in \mathfrak{N}_{\varphi}$ and α , and $\pi'(K_{\alpha}) \to I$ strongly, it follows that the net $\{\omega_{\xi_{\alpha}} \circ \pi_{\varphi}\}$ of positive linear functionals on \mathscr{M} has the net property for $\mathscr{P}(\mathfrak{N}_{\varphi})$ and $\varphi = \operatorname{Sup}_{\alpha}(\omega_{\xi_{\alpha}} \circ \pi_{\varphi}) [\mathscr{P}(\mathfrak{N}_{\varphi})]$.

- $(2) \Rightarrow (3)$ This is trivial.
- $(3) \Rightarrow (4)$ This follows Lemma 3.3.

Suppose π_{φ} is self-adjoint. Then, $T(\varphi)'_{\delta} = T(\varphi)'_{c}$, and so the implication (4) \Rightarrow (1) and the statement II follow from Lemma 3.3.

Similarly we have the following result for the regularity of weights:

THEOREM 3.6. Let φ be a weight on $\mathcal{P}(\mathcal{M})$. Consider the following statements.

- (1) $\varphi = \operatorname{Sup}_{\alpha}(\omega_{\xi_{\alpha}} \circ \pi_{\varphi}) \text{ for some net } \{\xi_{\alpha}\} \text{ in } \mathscr{D}(\pi_{\varphi}).$
- (2) φ is regular.
- (3) φ is quasi-regular.
- (4) There exists a net $\{K_{\alpha}\}$ in $T(\varphi)'_{\delta}$ such that $0 \leq \pi'(K_{\alpha}) \leq I$ for each α and $\pi'(K_{\alpha}) \longrightarrow I$ strongly.

Then the following implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ hold.

Let φ be a weight on $\mathscr{P}(\mathscr{M})$. It follows from the definition of $T(\varphi)'_c$ that the equality

$$\pi_{\varphi}(X)\lambda'(K) = \pi'(K)\lambda_{\varphi}(X), \quad (X \in \mathfrak{N}_{\varphi}, K \in T(\varphi)'_{c})$$

holds, but it doesn't hold for all $X \in \mathcal{M}$. For this reason, even if π_{φ} is self-adjoint, the quasi-regularity of φ doesn't necessarily imply the regularity of φ . So, we define the notions of normality and semifiniteness of φ to show the equivalence of the regularity and the quasi-regularity as follows:

DEFINITION 3.7. The symbol $X_{\alpha}^{\dagger}X_{\alpha} \uparrow X^{\dagger}X$ means that a net $\{X_{\alpha}\}$ in \mathcal{M} and $X \in \mathcal{M}$ satisfy the following conditions:

- (a) $X_{\alpha}^{\dagger}X_{\alpha} \leq X_{\beta}^{\dagger}X_{\beta}$ (that is, $X_{\beta}^{\dagger}X_{\beta} X_{\alpha}^{\dagger}X_{\alpha} \in \mathscr{P}(\mathscr{M})$) whenever $\alpha \leq \beta$;
- (b) $X_{\alpha}^{\dagger}X_{\alpha} \leq X^{\dagger}X, \forall \alpha;$
- (c) $\{X_{\alpha}^{\dagger}X_{\alpha}\}$ converges weakly to $X^{\dagger}X$.

A weight φ on $\mathscr{P}(\mathscr{M})$ is said to be normal if $\varphi(X_{\alpha}^{\dagger}X_{\alpha}) \uparrow \varphi(X^{\dagger}X)$ whenever $X_{\alpha}^{\dagger}X_{\alpha} \uparrow X^{\dagger}X$ $(\{X_{\alpha}\} \subset \mathscr{M}, X \in \mathscr{M})$, and φ is said to be semifinite if for each $X \in \mathscr{M}$ there exists a net $\{X_{\alpha}\}$ in \mathfrak{N}_{φ} such that $X_{\alpha}^{\dagger}X_{\alpha} \uparrow X^{\dagger}X$.

A *-representation π of \mathcal{M} is said to be normal if $\pi(X_{\alpha}^{\dagger}X_{\alpha})$ converges weakly to $\pi(X^{\dagger}X)$ whenever $X_{\alpha}^{\dagger}X_{\alpha}\uparrow X^{\dagger}X(\{X_{\alpha}\}\subset\mathcal{M},X\in\mathcal{M})$.

THEOREM 3.8. Let φ be a semifinite normal weight on $\mathcal{P}(\mathcal{M})$. Suppose π_{φ} is self-adjoint and normal. Then the statements $(1) \sim (4)$ in Theorem 3.6 are equivalent.

PROOF. Suppose the statement (4) holds. Since π_{φ} is self-adjoint, we have $T(\varphi)'_{\delta} = T(\varphi)'_{c}$, and so $\lambda'(K_{\alpha}) \in \mathcal{D}(\pi_{\varphi})$ for each α . For each α we put

$$f_{\alpha}=\omega_{\lambda'(K_{\alpha})}\circ\pi_{\varphi}.$$

In similar to the proof of Theorem 3.5, we can show that f_{α} is a positive linear

functional on M such that

(3.2)
$$\sup_{\alpha} f_{\alpha} \lceil \mathscr{P}(\mathfrak{N}_{\varphi}) = \varphi \lceil \mathscr{P}(\mathfrak{N}_{\varphi}).$$

We show that the statement (3.2) holds on $\mathscr{P}(\mathscr{M})$. Take an arbitrary $X \in \mathscr{M}$. By the semifiniteness of φ there exists a net $\{X_{\lambda}\}$ in \mathfrak{N}_{φ} such that $X_{\lambda}^{\dagger}X_{\lambda} \uparrow X^{\dagger}X$, and since φ is normal and π_{φ} is normal, it follows that

$$f_{\alpha}(X^{\dagger}X) = \|\pi_{\varphi}(X)\lambda'(K_{\alpha})\|^{2} = \lim_{\lambda} \|\pi_{\varphi}(X_{\lambda})\lambda'(K_{\alpha})\|^{2}$$

$$= \lim_{\lambda} \|\pi'(K_{\alpha})\lambda_{\varphi}(X_{\lambda})\|^{2}$$

$$\leq \lim_{\lambda} \varphi(X_{\lambda}^{\dagger}X_{\lambda})$$

$$= \varphi(X^{\dagger}X).$$

Hence we have $\mathfrak{N}_{\varphi}^{0} \equiv \{X \in \mathcal{M}; \varphi(X^{\dagger}X) < \infty\} \subset \mathfrak{N}_{\sup_{\alpha} f_{\alpha}}^{0}$. We show the converse inclusion. Suppose $X \notin \mathfrak{N}_{\varphi}^{0}$. By the semifiniteness of φ there exists a net $\{X_{\lambda}\}$ in \mathfrak{N}_{φ} such that $X_{\lambda}^{\dagger}X_{\lambda} \uparrow X^{\dagger}X$, and it follows from the normality of φ and $\varphi(X^{\dagger}X) = +\infty$ that for each $\gamma > 0$ there exists an element λ_{0} of $\{\lambda\}$ such that $X_{\lambda_{0}}^{\dagger}X_{\lambda_{0}} \preceq X^{\dagger}X$ and $\varphi(X_{\lambda_{0}}^{\dagger}X_{\lambda_{0}}) > \gamma$. By (3.2) there exists an element α_{0} of $\{\alpha\}$ such that

$$\gamma < f_{\alpha_0}(X_{\lambda_0}^{\dagger} X_{\lambda_0}) \le f_{\alpha_0}(X^{\dagger} X),$$

which implies $\sup_{\alpha} f_{\alpha}(X^{\dagger}X) = +\infty$. Hence we have

$$\mathfrak{N}_{\varphi}^{0} = \mathfrak{N}_{\sup_{\alpha} f_{\alpha}.}^{0}$$

Take an arbitrary $\{X, Y\} \subset \mathfrak{N}^0_{\sup_x f_x}$. By the normality of φ we have

$$\varphi(X_{\downarrow}^{\dagger}X_{\lambda}) \uparrow \varphi(X^{\dagger}X)$$
 and $\varphi(Y_{\mu}^{\dagger}Y_{\mu}) \uparrow \varphi(Y^{\dagger}Y)$,

where $\{X_{\lambda}\}$ and $\{Y_{\mu}\}$ are nets in \mathfrak{N}_{φ} such that $X_{\lambda}^{\dagger}X_{\lambda}\uparrow X^{\dagger}X$ and $Y_{\mu}^{\dagger}Y_{\mu}\uparrow Y^{\dagger}Y$. Since $\varphi(X^{\dagger}X)<\infty$ and $\varphi(Y^{\dagger}Y)<\infty$ by (3.4), it follows that for each $\varepsilon>0$ there exist λ_0 and μ_0 such that

(3.5)
$$\varphi(X^{\dagger}X) - \varepsilon < \varphi(X_{\lambda_0}^{\dagger}X_{\lambda_0}), \quad \varphi(Y^{\dagger}Y) - \varepsilon < \varphi(Y_{\mu_0}^{\dagger}Y_{\mu_0}).$$

By (3.2), for X_{λ_0} and Y_{μ_0} there exists a subsequence $\{\alpha_n\}$ of $\{\alpha\}$ such that

$$\lim_{n\to\infty} f_{\alpha_n}(X_{\lambda_0}^{\dagger}X_{\lambda_0}) = \varphi(X_{\lambda_0}^{\dagger}X_{\lambda_0}), \quad \lim_{n\to\infty} f_{\alpha_n}(Y_{\mu_0}^{\dagger}Y_{\mu_0}) = \varphi(Y_{\mu_0}^{\dagger}Y_{\mu_0}).$$

Further, since $X_{\lambda_0}^{\dagger} X_{\lambda_0} \leq X^{\dagger} X$, it follows that

$$f_{\alpha_n}(X_{\lambda_0}^{\dagger}X_{\lambda_0}) \leq f_{\alpha_n}(X^{\dagger}X), \quad n \in \mathbb{N},$$

which implies by (3.3), (3.5) and (3.6) that

$$\varphi(X^{\dagger}X) - \varepsilon < \lim_{n \to \infty} f_{\alpha_n}(X_{\lambda_0}^{\dagger}X_{\lambda_0}) \le \lim_{n \to \infty} f_{\alpha_n}(X^{\dagger}X)$$

$$\le \overline{\lim}_{n \to \infty} f_{\alpha_n}(X^{\dagger}X)$$

$$\le \varphi(X^{\dagger}X).$$

Hence we have

(3.7)
$$\lim_{n\to\infty} f_{\alpha_n}(X^{\dagger}X) = \varphi(X^{\dagger}X).$$

Similarly we have

(3.8)
$$\lim_{n\to\infty} f_{\alpha_n}(Y^{\dagger}Y) = \varphi(Y^{\dagger}Y).$$

The same result as (3.7) and (3.8) holds for any finite subset $\{X_1, X_2, \ldots, X_m\}$ of $\mathfrak{N}^0_{\sup_{\alpha} f_{\alpha}}$. Hence it follows from (3.4) and Lemma 2.3 that $\varphi = \sup_{\alpha} f_{\alpha} = \sup_{\alpha} (\omega_{\lambda'(K_{\alpha})} \circ \pi_{\varphi})$, and so the statement (1) holds. This completes the proof.

As the decomposition theorem of (quasi-)weights we have the following

THEOREM 3.9. (1) Suppose φ is a quasi-weight on $\mathscr{P}(\mathcal{M})$ such that π_{φ} is self-adjoint. Then φ is decomposed into

$$\varphi = \varphi_r + \varphi_s$$

where φ_r is a regular quasi-weight on $\mathcal{P}(\mathcal{M})$ and φ_s is a singular quasi-weight on $\mathcal{P}(\mathcal{M})$ such that π_{φ_r} and π_{φ_s} are self-adjoint.

(2) Suppose φ is a normal semifinite weight on $\mathscr{P}(\mathscr{M})$ such that π_{φ} is self-adjoint and normal. Then φ is decomposed into

$$\varphi = \varphi_r + \varphi_s$$

where φ_r is a normal semifinite regular weight on $\mathcal{P}(\mathcal{M})$ and φ_s is a normal semifinite singular weight on $\mathcal{P}(\mathcal{M})$ such that π_{φ_r} and π_{φ_r} are self-adjoint and normal.

PROOF. (1) We denote by P'_{φ} the projection from \mathscr{H}_{φ} onto the closed subspace of \mathscr{H}_{φ} generated by $\pi'(T(\varphi)'_c)\mathscr{H}_{\varphi}$. Then, $P'_{\varphi} \in \pi_{\varphi}(\mathscr{M})'_w$ and there exists a net $\{K_{\alpha}\}$ in $T(\varphi)'_c$ such that $0 \leq \pi'(K_{\alpha}) \leq P'_{\varphi}$ for each α and $\pi'(K_{\alpha}) \to P'_{\varphi}$ strongly. It is clear that the net $\{f_{\alpha} \equiv \omega_{\lambda'(K_{\alpha})} \circ \pi_{\varphi}\}$ of positive linear functionals on \mathscr{M} has the net property for $\mathscr{P}(\mathfrak{N}_{\varphi})$, and so it follows from Lemma 2.3 that $\varphi_r \equiv \operatorname{Sup}_{\alpha} f_{\alpha} [\mathscr{P}(\mathfrak{N}_{\varphi})]$ is a regular quasi-weight on $\mathscr{P}(\mathscr{M})$ such that $\mathfrak{N}_{\varphi_r} = \mathfrak{N}_{\varphi}$ and

(3.9)
$$\varphi_r(X^{\dagger}X) = \|P'_{\varphi}\lambda_{\varphi}(X)\|^2 \quad \text{for each } X \in \mathfrak{N}_{\varphi}.$$

We put

$$\varphi_s = \varphi - \varphi_r$$
.

Then φ_s is a quasi-weight on $\mathscr{P}(\mathscr{M})$ with $\mathfrak{N}_{\varphi_s} = \mathfrak{N}_{\varphi}$. It follows from (3.9) that π_{φ_r} (resp. π_{φ_s}) is unitarily equivalent to the induced representation $(\pi_{\varphi})_{P_{\varphi}'}$ (resp. $(\pi_{\varphi})_{I-P_{\varphi}'}$) of π_{φ} , so

that π_{φ_r} and π_{φ_s} are self-adjoint. We show φ_s is singular. Suppose there exists a positive linear functional f on \mathcal{M} such that $f(X^{\dagger}X) \leq \varphi_s(X^{\dagger}X)$ for all $X \in \mathfrak{N}_{\varphi}$ and $f(X_0^{\dagger}X_0) \neq 0$ for some $X_0 \in \mathfrak{N}_{\varphi}$. Since $\varphi_s \leq \varphi$, it follows from Lemma 3.3 that there exists an element K of $T(\varphi)'_c$ such that $0 \leq \pi'(K)$, $\pi'(K) \neq 0$ and $f(X) = (\lambda_{\varphi}(X)|\lambda'(K))$ for all $X \in \mathfrak{N}_{\varphi}$. Then we have

$$|(\pi'(K)\lambda_{\varphi}(X)|\lambda_{\varphi}(Y))|^{2} = |f(Y^{\dagger}X)|^{2}$$

$$\leq \gamma_{Y}||(I - P_{\varphi}')\lambda_{\varphi}(X)||^{2}$$

for all $X, Y \in \mathfrak{N}_{\varphi}$, and so

$$\begin{aligned} |(\pi'(K)\lambda_{\varphi}(X)|\,\lambda_{\varphi}(Y))| &= |(P'_{\varphi}\lambda_{\varphi}(X)|\,\pi'(K)\lambda_{\varphi}(Y))| \\ &= \lim_{n \to \infty} |(\pi'(K)\lambda_{\varphi}(X_n)|\,\lambda_{\varphi}(Y))| \\ &\leq \gamma_Y \lim_{n \to \infty} \|(I - P'_{\varphi})\lambda_{\varphi}(X_n)\|^2 \\ &= 0 \end{aligned}$$

for all $X, Y \in \mathfrak{N}_{\varphi}$, where $\{X_n\}$ is a sequence in \mathfrak{N}_{φ} such that $\lim_{n\to\infty} \lambda_{\varphi}(X_n) = P'_{\varphi}\lambda_{\varphi}(X)$. Hence, $\pi'(K) = 0$, and so $f(X_0^{\dagger}X_0) = 0$. This is a contradiction. Hence, φ_s is singular.

(2) By the normality of π_{φ} , any $f_{\alpha} \equiv \omega_{\lambda'(K_{\alpha})} \circ \pi_{\varphi}$ is a normal positive linear functional on \mathscr{M} . We put

$$\varphi_r(A) = \sup_{\alpha} f_{\alpha}(A), \quad A \in \mathscr{P}(\mathscr{M}).$$

By the proof of the above statement (1) we have

(3.10)
$$\varphi_r \lceil \mathscr{P}(\mathfrak{N}_{\varphi}) = \sup_{\alpha} f_{\alpha} \lceil \mathscr{P}(\mathfrak{N}_{\varphi}),$$

$$(3.11) f_{\alpha}(X^{\dagger}X) \leq \varphi(X^{\dagger}X), \quad {}^{\forall}X \in \mathcal{M},$$

(3.12)
$$\varphi_r(X^{\dagger}X) = \|P_{\varphi}'\lambda_{\varphi}(X)\|^2, \quad \forall X \in \mathfrak{N}_{\varphi}.$$

Further, by the normality of each f_{α} we have

$$f_{\alpha}(X^{\dagger}X) = \lim_{\lambda} f_{\alpha}(X_{\lambda}^{\dagger}X_{\lambda}) \leq \lim_{\lambda} \varphi_{r}(X_{\lambda}^{\dagger}X_{\lambda})$$

whenever $X_{\lambda}^{\dagger}X_{\lambda}\uparrow X^{\dagger}X(\{X_{\lambda}\}\subset \mathcal{M},X\in \mathcal{M})$, which implies

(3.13)
$$\varphi_r(X_{\lambda}^{\dagger}X_{\lambda}) \uparrow \varphi_r(X^{\dagger}X).$$

The statements $(3.10) \sim (3.13)$ imply by the same proof as in Theorem 3.8 that $\varphi_r = \operatorname{Sup}_{\alpha} f_{\alpha}$ and it is a regular normal weight on $\mathscr{P}(\mathscr{M})$. By (3.11) we have

$$\varphi_r(X^{\dagger}X) \le \varphi(X^{\dagger}X), \quad \forall X \in \mathcal{M},$$

and so we put

$$\varphi_s(X^\dagger X) = \begin{cases} \varphi(X^\dagger X) - \varphi_r(X^\dagger X) & \text{if } X \in \mathfrak{R}_{\varphi}^0, \\ \infty & \text{if otherwise.} \end{cases}$$

Then φ_s is a weight on $\mathscr{P}(\mathscr{M})$ and $\varphi=\varphi_r+\varphi_s$. In similar to the proof of the singularity of φ_s in the statement (1), we can show that φ_s is singular. Since $\varphi_r\leq\varphi$ and $\varphi_s\leq\varphi$, it is easily shown that φ_r and φ_s are normal and semifinite. We finally show that π_{φ_r} and $(\pi_{\varphi})_{P'_{\varphi}}$ are unitarily equivalent, and π_{φ_s} and $(\pi_{\varphi})_{1-P'_{\varphi}}$ are unitarily equivalent. Since $\mathfrak{N}_{\varphi}\subset\mathfrak{N}_{\varphi_r}$, it follows from (3.12) that $(\pi_{\varphi})_{P'_{\varphi}}\subset\pi_{\varphi_r}$ unitarily, which implies by the self-adjointness of $(\pi_{\varphi})_{P'_{\varphi}}$ that $(\pi_{\varphi})_{P'_{\varphi}}\cong\pi_{\varphi_r}$. Similarly, we have $(\pi_{\varphi})_{1-P'_{\varphi}}\cong\pi_{\varphi_s}$. Hence, π_{φ_r} and π_{φ_s} are self-adjoint and normal. This completes the proof.

4. Standard weights.

In this section we define and study an important class in regular (quasi-)weights which is possible to develop the Tomita-Takesaki theory in O^* -algebras. Let \mathcal{M} be a closed O^* -algebra on \mathcal{D} in \mathcal{H} . A quasi-weight φ (resp. weight) on $\mathcal{P}(\mathcal{M})$ is said to be faithful if $\varphi(X^{\dagger}X) = 0, X \in \mathfrak{N}_{\varphi}$ (resp. $X \in \mathcal{M}$) implies X = 0, and φ is said to be semifinite if for each $A \in \mathcal{M}$ there exists a net $\{X_{\alpha}\}$ in \mathfrak{N}_{φ} such that $X_{\alpha}^{\dagger}X_{\alpha} \uparrow A^{\dagger}A$. It is easily shown that if a quasi-weight φ is faithful, then $\pi_{\varphi}(X) = 0, X \in \mathfrak{N}_{\varphi}$ implies X = 0, and if φ is faithful and semifinite, then π_{φ} is a *-isomorphism of the O^* -algebra \mathcal{M} onto the O^* -algebra $\pi_{\varphi}(\mathcal{M})$. Let φ be a faithful quasi-weight on $\mathcal{P}(\mathcal{M})$. We put

$$\Lambda_{\varphi}(\pi_{\varphi}(X)) = \lambda_{\varphi}(X), \quad X \in \mathfrak{N}_{\varphi}.$$

Then Λ_{φ} is a generalized vector for the O^* -algebra $\pi_{\varphi}(\mathcal{M})$, that is, it is a linear map of the left ideal $D(\Lambda_{\varphi}) = \pi_{\varphi}(\mathfrak{R}_{\varphi})$ into $\mathcal{D}(\pi_{\varphi})$ and

$$\Lambda_{\omega}(\pi_{\omega}(A)\pi_{\omega}(X)) = \pi_{\omega}(A)\Lambda_{\omega}(\pi_{\omega}(X))$$

for all $A \in \mathcal{M}$ and $X \in \mathfrak{N}_{\varphi}$. This Λ_{φ} is called the *generalized vector induced by* φ . Suppose

$$(S)_1 \qquad \pi_{\varphi}(\mathscr{M})'_{w}\mathscr{D}(\pi_{\varphi}) \subset \mathscr{D}(\pi_{\varphi}),$$

$$(S)_2 \qquad \qquad \varLambda_{\varphi}((D(\varLambda_{\varphi})\cap D(\varLambda_{\varphi})^{\dagger})^2) \ (= \lambda_{\varphi}((\mathfrak{N}_{\varphi}\cap \mathfrak{N}_{\varphi}^{\dagger})^2)) \quad \text{is total in } \mathscr{H}_{\varphi}.$$

Then we can define the commutant Λ_{φ}^{c} of Λ_{φ} which is a generalized vector for the von Neumann algebra $\pi_{\varphi}(\mathcal{M})'_{w}$ as follows:

$$D(\Lambda_{\varphi}^{c}) = \{ K \in \pi_{\varphi}(\mathcal{M})'_{\mathsf{w}}; \, {}^{\exists} \xi_{K} \in \mathcal{D}(\pi_{\varphi}) \text{ s.t. } K\Lambda_{\varphi}(X) = X\xi_{K} \text{ for all } X \in D(\Lambda_{\varphi}) \},$$
$$\Lambda_{\varphi}^{c}(K) = \xi_{K}, \quad K \in D(\Lambda_{\varphi}^{c}).$$

We have

$$(4.1) T(\varphi)'_c = \{(K, \Lambda^c_{\varphi}(K), \Lambda^c_{\varphi}(K^*)); K \in D(\Lambda^c_{\varphi}) \cap D(\Lambda^c_{\varphi})^*\}.$$

In general, $T(\varphi)'_c$ is always defined, but the commutant Λ^c_{φ} of the generalized vector Λ_{φ}

is not necessarily defined without the condition $(S)_2$. Further, suppose

$$(S)_3$$
 $\Lambda^c_{\varphi}((D(\Lambda^c_{\varphi}) \cap D(\Lambda^c_{\varphi})^*)^2)$ is total in \mathscr{H}_{φ} .

We remark that φ is regular by (4.1) and (S)₃. We put

$$D(\Lambda_{\varphi}^{cc}) = \{ A \in (\pi_{\varphi}(\mathcal{M})'_{\mathbf{w}})'; \, {}^{\exists} \xi_{A} \in \mathcal{H}_{\varphi} \text{ s.t. } A\Lambda_{\varphi}^{c}(K) = K\xi_{A} \text{ for all } K \in D(\Lambda_{\varphi}^{c}) \},$$
$$\Lambda_{\varphi}^{cc}(A) = \xi_{A}, \quad A \in D(\Lambda_{\varphi}^{cc}).$$

Then Λ_{φ}^{cc} is a generalized vector for the von Neumann algebra $(\pi_{\varphi}(\mathscr{M})'_{w})'$ such that $\Lambda_{\varphi}^{cc}((D(\Lambda_{\varphi}^{cc})\cap D(\Lambda_{\varphi}^{cc})^*)^2)$ is total in \mathscr{H}_{φ} , and so the maps $\Lambda_{\varphi}(X)\to \Lambda_{\varphi}(X^{\dagger})$, $X\in$ $D(\Lambda_{\varphi}) \cap D(\Lambda_{\varphi})^+ (= \pi_{\varphi}(\mathfrak{N}_{\varphi} \cap \mathfrak{N}_{\varphi}^{\dagger})) \quad \text{and} \quad \Lambda_{\varphi}^{cc}(A) \to \Lambda_{\varphi}^{cc}(A^*), \quad A \in D(\Lambda_{\varphi}^{cc}) \cap D(\Lambda_{\varphi}^{cc})^*$ closable in \mathscr{H}_{φ} and their closures are denoted by S_{φ} and $S_{A_{\varphi}^{cc}}$, respectively. $S_{\varphi} = J_{\varphi} \varDelta_{\varphi}^{1/2}$ and $S_{\mathcal{A}_{\varphi}^{cc}} = J_{\mathcal{A}_{\varphi}^{cc}} \varDelta_{\mathcal{A}_{\varphi}^{cc}}^{1/2}$ be the polar decompositions of S_{φ} and $S_{\mathcal{A}_{\varphi}^{cc}}$, respectively. Then we see that $S_{\varphi} \subset S_{\mathcal{A}_{\varphi}^{cc}}$, and $J_{\mathcal{A}_{\varphi}^{cc}}(\pi_{\varphi}(\mathscr{M})_{\mathbf{w}}')' J_{\mathcal{A}_{\varphi}^{cc}} = \pi_{\varphi}(\mathscr{M})_{\mathbf{w}}'$ and $\Delta_{A_{\varphi}^{ic}}^{it}(\pi_{\varphi}(\mathcal{M})'_{\mathbf{w}})'\Delta_{A_{\varphi}^{ic}}^{-it}=(\pi_{\varphi}(\mathcal{M})'_{\mathbf{w}})'$ for all $t\in \mathbf{R}$ by the Tomita fundamental theorem. But, we don't know how the unitary group $\{\Delta_{A^{cc}}^{it}\}_{t\in \mathbb{R}}$ acts on the O^* -algebra $\pi_{\varphi}(\mathcal{M})$, and so we define a system which has the best condition:

DEFINITION 4.1. A faithful (quasi-)weight φ on $\mathcal{P}(\mathcal{M})$ is said to be quasi-standard if the following conditions (i) and (ii) hold:

- (i) The above conditions $(S)_1$, $(S)_2$ and $(S)_3$ hold.
- (ii) $\Delta_{\Lambda_{\sigma}^{cc}}^{it} \mathscr{D}(\pi_{\varphi}) \subset \mathscr{D}(\pi_{\varphi})$ for each $t \in \mathbf{R}$.

Further, if

- $\begin{array}{ll} \text{(iii)} & \varDelta_{\varLambda_{\varphi}^{it}}^{it} \pi_{\varphi}(\mathscr{M}) \varDelta_{\varLambda_{\varphi}^{ct}}^{-it} = \pi_{\varphi}(\mathscr{M}) \text{ for each } t \in \pmb{R}, \\ \text{(iv)} & \varDelta_{\varLambda_{\varphi}^{it}}^{it}(D(\varLambda_{\varphi}) \cap D(\varLambda_{\varphi})^{\dagger}) \varDelta_{\varLambda_{\varphi}^{ct}}^{-it} = D(\varLambda_{\varphi}) \cap D(\varLambda_{\varphi})^{\dagger} \text{ for each } t \in \pmb{R}, \\ \end{array}$ then φ is said to be standard.

Theorem 4.2. Let φ be a faithful (quasi-)weight on $\mathscr{P}(\mathscr{M})$. Suppose φ is a standard. Then the following statements hold:

- (1) $S_{\varphi} = S_{A_{\varphi}^{cc}}$, and so $J_{\varphi} = J_{A_{\varphi}^{cc}}$ and $\Delta_{\varphi} = \Delta_{A_{\varphi}^{cc}}$.
- (2) These exists a one-parameter group $\{\sigma_t^{\varphi}\}_{t\in \mathbf{R}}$ of *-automorphisms of $\mathfrak{N}_{\varphi}\cap\mathfrak{N}_{\varphi}^{\dagger}$ such that $\pi_{\varphi}(\sigma_t^{\varphi}(X)) = \Delta_{\varphi}^{it}\pi_{\varphi}(X)\Delta_{\varphi}^{-it}$ for all $X \in \mathfrak{N}_{\varphi} \cap \mathfrak{N}_{\varphi}^{\dagger}$ and $t \in \mathbb{R}$.

Suppose π_{φ} is a *-isomorphism of \mathcal{M} (for example, φ is semifinite). Then $\{\sigma_t^{\varphi}\}_{t\in \mathbf{R}}$ is a one-parameter group of *-automorphisms of \mathcal{M} .

(3) φ is a $\{\sigma_t^{\varphi}\}$ -KMS (quasi-)weight, that is, for each $X, Y \in \mathfrak{N}_{\varphi} \cap \mathfrak{N}_{\varphi}^{\dagger}$ there exists an element $f_{X,Y}$ of A(0.1) such that

$$f_{X,Y}(t) = \varphi(Y\sigma_t^{\varphi}(X)) \equiv (\lambda_{\varphi}(\sigma_t^{\varphi}(X))|\lambda_{\varphi}(Y^{\dagger}))$$
 and $f_{X,Y}(t+i) = \varphi(\sigma_t^{\varphi}(X)Y)$

for all $t \in \mathbb{R}$, where A(0,1) is the set of all complex-valued functions, bounded and continous on $0 \le I_m z \le 1$ and analytic in the interior.

PROOF. The standardness of φ implies that of the generalized vector Λ_{φ} . Hence, this theorem follows from ([14] Theorem 2.5).

We next consider quasi-standard (quasi-)weights. We first need a natural extension of a regular quasi-weight φ to the generalized von Neumann algebra $\pi_{\varphi}(\mathcal{M})_{wc}''$. Let φ be a faithful regular (quasi-)weight on $\mathcal{P}(\mathcal{M})$ satisfying the conditions $(S)_1$, and $(S)_2$. We put

$$D(\overline{\Lambda_{\varphi}}) = \{ A \in \pi_{\varphi}(\mathcal{M})_{\mathrm{wc}}''; \, {}^{\exists} \xi_{A} \in \mathcal{D}(\pi_{\varphi}) \text{ s.t. } A \Lambda_{\varphi}^{c}(K) = K \xi_{A} \text{ for all } K \in D(\Lambda_{\varphi}^{c}) \},$$

$$\overline{\Lambda_{\varphi}}(A) = \xi_{A}, \quad A \in D(\overline{\Lambda_{\varphi}}).$$

Then it is easily shown that $\overline{A_{\varphi}}$ is a generalized vector for $\pi_{\varphi}(\mathscr{M})_{\mathrm{wc}}''$ such that

$$(4.2) \Lambda_{\varphi} \subset \overline{\Lambda_{\varphi}} \quad \text{and} \quad {\Lambda_{\varphi}^{c}} = \overline{\Lambda_{\varphi}}^{c}.$$

We now put

$$\bar{\varphi}\left(\sum_{k}X_{k}^{\dagger}X_{k}\right)=\sum_{k}\|\overline{A_{\varphi}}(X_{k})\|^{2},\quad \{X_{k}\}\subset D(\overline{A_{\varphi}}).$$

Then $\bar{\varphi}$ is a faithful regular quasi-weight on $\mathscr{P}(\pi_{\varphi}(\mathscr{M})''_{\mathrm{wc}})$ such that

(4.3)
$$(\pi_{\bar{\varphi}}(\pi_{\varphi}(\mathcal{M})''_{wc}), \lambda_{\bar{\varphi}})$$
 is unitarily equivalent to $(\pi_{\varphi}(\mathcal{M})''_{wc}, \overline{\Lambda_{\varphi}}),$

that is, there exists a unitary operator U on \mathscr{H}_{φ} onto $\mathscr{H}_{\bar{\varphi}}$ such that $UD(\overline{\Lambda_{\varphi}}) = \mathfrak{N}_{\bar{\varphi}}, U\overline{\Lambda_{\varphi}}(X) = \lambda_{\bar{\varphi}}(X)$ for each $X \in D(\overline{\Lambda_{\varphi}})$ and $\pi_{\bar{\varphi}}(A) = UAU^*$ for each $A \in \pi_{\varphi}(\mathscr{M})_{\mathrm{wc}}''$. The above $\bar{\varphi}$ is said to be the *quasi-weight on* $\mathscr{P}(\pi_{\varphi}(\mathscr{M})_{\mathrm{wc}}'')$ induced by φ . By (4.2), (4.3) and Theorem 4.2 we have the following

THEOREM 4.3. Suppose φ is a faithful quasi-standard (quasi-)weight on $\mathscr{P}(\mathscr{M})$. Then the quasi-weight $\bar{\varphi}$ on $\mathscr{P}(\pi_{\varphi}(\mathscr{M})_{\mathrm{wc}}'')$ induced by φ is standard, and so it is a $\{\sigma_t^{\bar{\varphi}}\}_{t\in \mathbb{R}}$ -KMS quasi-weight on $\mathscr{P}(\pi_{\varphi}(\mathscr{M})_{\mathrm{wc}}'')$, where $\sigma_t^{\bar{\varphi}}(A) = \Delta_{\Lambda_{\varphi}}^{\mathrm{it}} A \Delta_{\Lambda_{\varphi}}^{-\mathrm{it}}$, $A \in \pi_{\varphi}(\mathscr{M})_{\mathrm{wc}}''$, $t \in \mathbb{R}$.

In [14] we have defined and studied standard generalized vectors which are possible to generalize the Tomita-Takesaki theory (in particular, the Connes cocycle theorem and the Pedersen-Takesaki Radon-Nikodym theorem etc.) to generalized von Neumann algebras. As the notion of generalized vectors is spatial, such a generalization is possible to a certain extent, but the notion of (quasi-)weights is purely algebraic and not spatial and the algebraic properties don't reflect to the topological properties in general (for example, $\pi_{\varphi}(\mathcal{M})$ is not necessarily a generalized von Neumann algebra when \mathcal{M} is a generalized von Neumann algebra), and so the generalizations of the Tomita-Takesaki theory for standard (quasi-)weights have some difficult problems.

5. Examples.

In this section we give some examples of regular (quasi-)weights, singular (quasi-) weights and standard (quasi-)weights. We first investigate the regularity, the singularity and the standardness of the quasi-weights ω_{ξ} defined by elements ξ of the Hilbert space.

Example 5.1. Let \mathcal{M} be a closed O^* -algebra on \mathcal{D} in \mathcal{H} and put

$$\mathscr{D}^*(\mathscr{M}) = \bigcap_{X \in \mathscr{M}} \mathscr{D}(X^*) \quad \text{and} \quad \mathscr{D}^{**}(\mathscr{M}) = \bigcap_{X \in \mathscr{M}} \mathscr{D}((X^* \lceil \mathscr{D}^*(\mathscr{M}))^*).$$

Suppose $\xi \in \mathcal{D}^{**}(\mathcal{M})$ and put

$$\omega_{\xi}(X) = (X^{\dagger *} \xi \mid \xi), \quad X \in \mathcal{M}.$$

Then ω_{ξ} is a positive linear functional on \mathscr{M} . If $\xi \in \mathscr{D}^*(\mathscr{M}) - \mathscr{D}^{**}(\mathscr{M})$, then ω_{ξ} is a linear functional on \mathscr{M} , but it is not necessarily positive. If $\xi \notin \mathscr{D}^*(\mathscr{M})$, then ω_{ξ} is not defined, and so we regard ω_{ξ} as the quasi-weight on $\mathscr{P}(\mathscr{M})$ as follows:

$$\mathfrak{N}_{\omega_{\xi}} = \{X \in \mathscr{M}; \xi \in \mathscr{D}(X^{\dagger *}) \text{ and } X^{\dagger *}\xi \in \mathscr{D}\},$$

$$\omega_{\xi}(X^{\dagger}X) = \|X^{\dagger *}\xi\|^{2}, \quad X \in \mathfrak{N}_{\omega_{\xi}}.$$

We here investigate such quasi-weights ω_{ξ} ($\xi \notin \mathcal{D}^{*}(\mathcal{M})$) on $\mathcal{P}(\mathcal{M})$ in details.

A. The extension of ω_{ξ} to a weight

Let \mathscr{M} be a commutative integrable O^* -algebra on \mathscr{D} in \mathscr{H} and $\xi \in \mathscr{H} - \mathscr{D}$. We put

$$\widetilde{\omega_{\xi}}\left(\sum_{k}X_{k}^{\dagger}X_{k}\right) = \begin{cases} \left(\overline{\sum_{k}X_{k}^{\dagger}X_{k}}\xi \mid \xi\right) & \text{if } \xi \in \mathscr{D}\left(\overline{\sum_{k}X_{k}^{\dagger}X_{k}}\right) \\ \infty & \text{if otherwise.} \end{cases}$$

Then $\widetilde{\omega_{\xi}}$ is a weight on $\mathscr{P}(\mathscr{M})$ such that

$$\begin{split} \mathfrak{N}^0_{\widetilde{\omega_{\xi}}} &\equiv \{X \in \mathcal{M}; \widetilde{\omega_{\xi}}(X^{\dagger}X) < \infty\} = \{X \in \mathcal{M}; \xi \in \mathcal{D}(X^*\overline{X})\}, \\ \mathfrak{N}_{\widetilde{\omega_{\xi}}} &\equiv \{X \in \mathcal{M}; AX \in \mathfrak{N}^0_{\widetilde{\omega_{\xi}}}, {}^{\forall}A \in \mathcal{M}\} \\ &= \mathfrak{N}_{\omega_{\varepsilon}} \end{split}$$

and it is an extension of ω_{ξ} . In fact, since \mathscr{M} is commutative and integrable, it follows that $\xi \in \mathscr{D}\left(\overline{\sum_k X_k^{\dagger} X_k}\right)$ if and only if there exists a sequence $\{\xi_n\}$ in \mathscr{D} such that $\xi_n \to \xi$ and $\{X_k \xi_n\}$ and $\{X_k^{\dagger} X_k \xi_n\}$ are Cauchy sequences in \mathscr{H} for each k if and only if $\xi \in \mathscr{D}(\overline{X_k^{\dagger} X_k}) = \mathscr{D}(X_k^* \overline{X_k})$ for each k, and then $\overline{\sum_k X_k^{\dagger} X_k} \xi = \sum_k X_k^* \overline{X_k} \xi$, which implies that $\widetilde{\omega_{\xi}}$ is a weight on $\mathscr{P}(\mathscr{M})$. It is easy to show that $\mathfrak{N}_{\widetilde{\omega_{\xi}}} = \mathfrak{N}_{\omega_{\xi}}$ and $\widetilde{\omega_{\xi}}$ is an extension of ω_{ξ} . We give a concrete example. Let H be a positive self-adjoint unbounded operator in $\mathscr{H}, \mathscr{D}^{\infty}(H) \equiv \bigcap_{n \in \mathbb{N}} \mathscr{D}(H^n)$ and $H_0 \equiv H \lceil \mathscr{D}^{\infty}(H)$. Then the polynomial algebra $\mathscr{P}(H_0)$ is a commutative integrable O^* -algebra on $\mathscr{D}^{\infty}(H)$ in \mathscr{H} and the following statements hold:

(i) If
$$\xi \notin \mathscr{D}(H^2)$$
, then $\mathfrak{N}_{\widetilde{\omega_{\xi}}}^0 = CI$ and $\mathfrak{N}_{\widetilde{\omega_{\xi}}} = \mathfrak{N}_{\omega_{\xi}} = \{0\}$.

(ii) If
$$\xi \in \mathcal{D}(H^{2n}) - \mathcal{D}(H^{2n+2})$$
 $(n \in \mathbb{N})$, then

$$\mathfrak{N}^0_{\widetilde{\omega_{\xi}}}=\{P(H_0); P \text{ is a polynomial with the degree} \leq n\},$$
 $\mathfrak{N}_{\widetilde{\omega_{\xi}}}=\mathfrak{N}_{\omega_{\xi}}=\{0\}.$

- B. The regularity and the singularity of ω_{ξ}
- (1) Suppose that $\mathcal{M}'_{w} = CI$, $\mathfrak{N}^{\dagger}_{\omega_{\xi}} \mathcal{D}$ is dense in \mathcal{H} and $\mathfrak{N}^{\dagger *}_{\omega_{\xi}} \xi$ is dense in $\mathcal{D}[t_{\mathscr{M}}]$. Then ω_{ξ} is singular. In fact, since $\mathfrak{N}^{\dagger *}_{\omega_{\xi}} \xi$ is dense in $\mathcal{D}[t_{\mathscr{M}}]$, $\pi_{\omega_{\xi}}(\mathscr{M})$ is unitarily equivalent to \mathscr{M} , that is, there exists a unitary operator U of $\mathcal{H}_{\omega_{\xi}}$ onto \mathscr{H} such that $U\lambda_{\omega_{\xi}}(X) = X^{\dagger *}\xi$ for all $X \in \mathfrak{N}_{\omega_{\xi}}$ and $U\pi_{\omega_{\xi}}(A)U^{*} = A$ for all $A \in \mathscr{M}$. Take an arbitrary $K \in T(\omega_{\xi})'_{\delta}$. Then there is a constant $\alpha \in C$ such that $\alpha X^{\dagger *}\xi = X^{\dagger *}U\lambda'(K)$ for all $X \in \mathfrak{N}_{\omega_{\xi}}$. Since $\mathfrak{N}^{\dagger}_{\omega_{\xi}} \mathcal{D}$ is dense in \mathscr{H} , we have $\alpha \xi = U\lambda'(K) \in \mathcal{D}^{*}(\mathscr{M})$, and so $\alpha = 0$. Hence K = 0, which implies by Lemma 3.3 that ω_{ξ} is singular.
- (2) In case $\mathcal{M} = \mathcal{L}^{\dagger}(\mathcal{D})$, ω_{ξ} is a singular quasi-weight on $\mathscr{P}(\mathcal{L}^{\dagger}(\mathcal{D}))$. In fact, this follows since $\mathcal{L}^{\dagger}(\mathcal{D})$ satisfies all conditions of the above (1).
 - (3) Suppose \mathcal{M} is self-adjoint and $\mathfrak{N}_{\omega_{\varepsilon}}^{\dagger *} \xi$ is dense in $\mathscr{D}[t_{\mathscr{M}}]$. We put

$$\mathscr{C}_{\xi} = \{ C \in \mathscr{M}'_{\mathbf{w}}; C\xi, C^*\xi \in \mathscr{D} \}, \quad P'_{\xi} = \operatorname{proj} \overline{\mathscr{C}_{\xi}\mathscr{H}}.$$

Then ξ is decomposed into $\xi = \xi_r + \xi_s$, where $\xi_r = P'_{\xi}\xi$ and $\xi_s = (I - P'_{\xi})\xi$. On the other hand, by Theorem 3.9, the quasi-weight ω_{ξ} on $\mathscr{P}(\mathscr{M})$ is decomposed into $\omega_{\xi} = \omega_{\xi}^{(r)} + \omega_{\xi}^{(s)}$, where $\omega_{\xi}^{(r)}$ is a regular quasi-weight on $\mathscr{P}(\mathscr{M})$ and $\omega_{\xi}^{(s)}$ is a singular quasi-weight on $\mathscr{P}(\mathscr{M})$ with $\mathfrak{R}_{\omega_{\xi}^{(r)}} = \mathfrak{R}_{\omega_{\xi}^{(s)}} = \mathfrak{R}_{\omega_{\xi}}$ defined by

$$\omega_{arepsilon}^{(r)}(X^{\dagger}X) = \|P_{arepsilon}'X^{\dagger*}\xi\|^2, \quad \omega_{arepsilon}^{(s)}(X^{\dagger}X) = \|(I-P_{arepsilon}')X^{\dagger*}\xi\|^2, \quad X \in \mathfrak{R}_{\omega_{arepsilon}}.$$

We have the relation that the quasi-weights ω_{ξ_r} and $\omega_{\xi}^{(r)}$ are equivalent $(\omega_{\xi_r} \sim \omega_{\xi}^{(r)})$, that is, $\pi_{\omega_{\xi_r}}$ and $\pi_{\omega_{\xi_r}^{(r)}}$ are unitarily equivalent. In fact, it is clear that $\omega_{\xi}^{(r)} \subset \omega_{\xi_r}$, that is, $\mathfrak{N}_{\omega_{\xi}^{(r)}} (= \mathfrak{N}_{\omega_{\xi}}) \subset \mathfrak{N}_{\omega_{\xi_r}}$ and $\omega_{\xi}^{(r)} (X^{\dagger}X) = \omega_{\xi_r}(X^{\dagger}X)$ for all $X \in \mathfrak{N}_{\omega_{\xi_r}^{(r)}}$, and so $\pi_{\omega_{\xi_r}^{(r)}} \subset \pi_{\omega_{\xi_r}}$ unitarily and $\pi_{\omega_{\xi_r}^{(r)}}$ is self-adjoint. Hence $\pi_{\omega_{\xi_r}^{(r)}}$ is unitarily equivalent to $\pi_{\omega_{\xi_r}}$. Similarly, we have $\omega_{\xi^{(s)}} \sim \omega_{\xi_s}$. Thus, ω_{ξ_r} is a regular quasi-weight on $\mathscr{P}(\mathscr{M})$ and ω_{ξ_s} is a singular quasi-weight on $\mathscr{P}(\mathscr{M})$ and ω_{ξ_s} is a singular quasi-weight on $\mathscr{P}(\mathscr{M})$.

Hence, we call ξ_r and ξ_s the regular part and the singular part of ξ , respectively. We have the following results:

- (a) ω_{ξ} is singular if and only if $\mathscr{C}_{\xi} = \{0\}$ if and only if $\xi_{r} = 0$.
- (b) ω_{ξ} is regular if and only if \mathscr{C}_{ξ} is a nondegenerate *-subalgebra of \mathscr{M}'_{w} if and only if $\xi_{s} = 0$.
 - (c) Suppose $0 \le P'_{\xi} \le I$. Then ω_{ξ} is not regular and not singular.
 - (4) Suppose \mathcal{M} is an O^* -algebra on $\mathscr{D}^{\infty}(H) = \bigcap_{n=1}^{\infty} \mathscr{D}(H^n)$ containing

$$\{f(H)|\mathcal{D}^{\infty}(H); f \text{ is a measurable function on } \mathbf{R}_{+} \text{ such that } |f(t)| \leq p(t), t \in \mathbf{R}_{+} \text{ for some polynomial } p\},$$

where H is a positive self-adjoint operator in \mathcal{H} and $\mathfrak{N}_{\omega_{\xi}}^{\dagger *} \xi$ is dense in \mathcal{H} . Then it is easily shown that \mathcal{M} is self-adjoint and $\mathfrak{N}_{\omega_{\xi}}^{\dagger *} \xi$ is dense in $\mathscr{D}^{\infty}(H)[t_{\mathcal{M}}]$ using the spectral decomposition theorem of H. Hence, the same results as the above (3) hold.

(5) Let $S(\mathbf{R})$ be the Schwartz space of infinitely differentiable rapidly decreasing functions and $\{f_n\}_{n=0,1,\ldots} \subset S(\mathbf{R})$ an orthonormal basis in the Hilbert space $L^2(\mathbf{R})$ of

normalized Hermite functions. We define a number operator N in $L^2(\mathbf{R})$ by

$$N=\sum_{n=0}^{\infty}(n+1)f_n\otimes\overline{f_n}.$$

Let \mathscr{A} be the unbounded CCR-algebra for one degree of freedom and π_0 the Schrödinger representation of \mathscr{A} . Then $\pi_0(\mathscr{A})$ is a self-adjoint O^* -algebra on S(R) satisfying $\pi_0(\mathscr{A}_w)' = CI$. Let \mathscr{M} be the O^* -algebra on S(R) generated by $\pi_0(\mathscr{A})$ and $\{f(N); f \text{ is a real-valued continuous function on } R_+ \text{ such that } |f(t)| \leq p(t)(t \in R_+) \text{ for some polynomial } p\}$. Then it is easily shown that \mathscr{M} is self-adjoint and $\mathfrak{N}_{\omega_{\xi}}^{\dagger *} \xi$ is dense in S(R). Hence it follows from the above (3) and $\xi \notin S(R)$ that ω_{ξ} is singular.

C. The standardness of ω_{ξ} Suppose

$$\{YX^{\dagger *}\xi;X,\,Y\in\mathfrak{N}_{\omega_{\xi}}\cap\mathfrak{N}_{\omega_{\xi}}^{\dagger}\}\quad\text{is total in }\mathscr{H},$$

$$(S)_2$$
 $\mathscr{C}_{\xi}\xi$ is dense in \mathscr{H} .

Then ω_{ξ} is a faithful regular quasi-weight on $\mathscr{P}(\mathscr{M})$ and ξ is a cyclic and separating vector for the von Neumann algebra $(\mathscr{M}'_{w})'$ and denote by Δ''_{ξ} the modular operator for the left Hilbert algebra $(\mathscr{M}'_{w})'\xi$. We have the following results:

(1) ω_{ξ} is quasi-standard if and only if the following condition (S)₃ holds:

$$(S)_3$$
 $\Delta''_{\xi} \mathscr{D} \subset \mathscr{D}$ for each $t \in \mathbb{R}$.

(2) ω_{ξ} is standard if and only if the above condition $(S)_3$ and the following condition $(S)_4$ hold:

$$\Delta''_{\xi}^{it} \mathcal{M} \Delta''_{\xi}^{-it} = \mathcal{M} \quad \text{for each } t \in \mathbf{R}.$$

We next give some examples of regular quasi-weights, singular quasi-weights and standard quasi-weights defined in the Hilbert space of Hilbert-Schmidt operators, which are important for the quantum physics.

EXAMPLE 5.2. Let \mathscr{M} be a self-adjoint O^* -algebra on \mathscr{D} in \mathscr{H} such that $\mathscr{M}'_{\mathrm{w}}=CI$. We denote by $\mathscr{H}\otimes \overline{\mathscr{H}}$ the set of all Hilbert-Schmidt operators on \mathscr{H} , and then it is a Hilbert space with inner product $\langle S\,|\,T\rangle\equiv trT^*S$. We put

$$\sigma_2(\mathscr{M}) = \{ T \in \mathscr{H} \otimes \overline{\mathscr{H}}; T\mathscr{H} \subset \mathscr{D} \text{ and } XT \in \mathscr{H} \otimes \overline{\mathscr{H}}, \forall X \in \mathscr{M} \}, \\ \pi(X)T = XT, \quad X \in \mathscr{M}, \quad T \in \sigma_2(\mathscr{M}).$$

Then π is a self-adjoint representation of \mathscr{M} on $\sigma_2(\mathscr{M})$ in $\mathscr{H} \otimes \overline{\mathscr{H}}$ such that $\pi(\mathscr{M})'_{\mathrm{w}} = \pi'(\mathscr{B}(\mathscr{H}))$ and $(\pi(\mathscr{M})'_{\mathrm{w}})' = \pi''(\mathscr{B}(\mathscr{H}))$, where $\pi'(A)T = TA$ and $\pi''(A)T = AT$ for $A \in \mathscr{B}(\mathscr{H})$ and $T \in \mathscr{H} \otimes \overline{\mathscr{H}}$ [4,12].

A. Let $\Omega \in \mathcal{H} \otimes \overline{\mathcal{H}} \setminus \sigma_2(\mathcal{M})$ and $\Omega \geq 0$. Then,

$$\mathfrak{N}_{\omega_{\Omega}} = \{\pi(X); X \in \mathcal{M}, \Omega \mathcal{H} \subset \mathcal{D}(X^{\dagger *}) \text{ and } X^{\dagger *}\Omega \in \sigma_{2}(\mathcal{M})\}.$$

(1) Suppose $\mathfrak{N}_{\omega_{\Omega}}^{\dagger *}\Omega$ is dense in $\sigma_{2}(\mathcal{M})[t_{\pi(\mathcal{M})}]$. We define the quasi-weight φ_{Ω} on $\mathscr{P}(\mathcal{M})$ by

$$\begin{split} \mathfrak{N}_{\varphi_{\Omega}} &= \{X \in \mathscr{M}; \pi(X) \in \mathfrak{N}_{\varphi_{\Omega}}\}, \\ \varphi_{\Omega}(X^{\dagger}X) &= \operatorname{tr}(X^{\dagger*}\Omega)^{*}(X^{\dagger*}\Omega) = \omega_{\Omega}(\pi(X)^{\dagger}\pi(X)), \quad X \in \mathfrak{N}_{\varphi_{\Omega}}. \end{split}$$

By Example 5.1, B, (3) we have the following:

(a) φ_{Ω} is singular if and only if

$$\mathscr{C}_{\Omega} \equiv \{\pi'(K); K \in \mathscr{B}(\mathscr{H}) \text{ and } \Omega K, \Omega K^* \in \sigma_2(\mathscr{M})\} = \{0\}.$$

- (b) φ_{Ω} is regular if and only if \mathscr{C}_{Ω} is a nondegenerate *-subalgebra of $\pi'(\mathscr{B}(\mathscr{H}))$.
- (c) Ω is decomposed into $\Omega = \Omega_r + \Omega_s$, where Ω_r is the regular part of Ω and Ω_s is the singular part of Ω . Hence, φ_{Ω_r} is a regular quasi-weight on $\mathscr{P}(\mathscr{M})$, φ_{Ω_s} is a singular quasi-weight on $\mathscr{P}(\mathscr{M})$ and $\varphi_{\Omega} = \varphi_{\Omega_r} + \varphi_{\Omega_s}$ on $\mathscr{P}(\mathfrak{N}_{\varphi_{\Omega}})$.
 - (2) Suppose there exists a dense subspace \mathscr{E} in $\mathscr{D}[t_{\mathscr{M}}]$ such that
 - (i) $\mathcal{M} \supset \{\xi \otimes \overline{\eta}; \xi, \eta \in \mathscr{E}\},\$
 - (ii) $\Omega\mathscr{E} \subset \mathscr{D}$ and $\Omega\mathscr{E}$ is dense in \mathscr{H} .

Then φ_{Ω} is regular. In fact, it is easily shown that $\mathfrak{N}_{\varphi_{\Omega}} \supset \{\pi(\xi \otimes \overline{\eta}); \xi, \eta \in \mathscr{E}\}$, and $\mathfrak{N}_{\omega_{\Omega}}^{\dagger *} \Omega$ is dense in $\sigma_{2}(\mathscr{M})[t_{\pi(\mathscr{M})}]$, and further $\mathscr{C}_{\Omega} \supset \{\pi'(\xi \otimes \overline{\eta}); \xi, \eta \in \mathscr{E}\}$, and so $\mathscr{C}_{\Omega}\mathscr{H} \otimes \overline{\mathscr{H}}$ is dense in $\mathscr{H} \otimes \overline{\mathscr{H}}$. Hence, φ_{Ω} is regular by the above (1).

Further, suppose

- (iii) Ω^{-1} is densely defined,
- (iv) $\Omega^{it}\mathscr{D} \subset \mathscr{D}$ and $\Omega^{it}\mathscr{M}\Omega^{-it} = \mathscr{M}$ for each $t \in \mathbb{R}$.

Then φ_{Ω} is a standard quasi-weight on $\mathscr{P}(\mathscr{M})$ ([4] Theorem 3.6).

- B. Let Ω be a positive self-adjoint unbounded operator in \mathscr{H} . Suppose there exists a subspace \mathscr{E} of $\mathcal{D} \cap \mathcal{D}(\Omega)$ such that
 - (i) \mathscr{E} is dense in $\mathscr{D}[t_{\mathscr{M}}]$,
 - (ii) $\mathcal{M} \supset \{\xi \otimes \overline{\eta}; \xi, \eta \in \mathscr{E}\},\$
 - (iii) $\Omega\mathscr{E} \subset \mathscr{D}$ and $\Omega\mathscr{E}$ is dense in \mathscr{H} .

We put

$$\mathfrak{N}_{\varphi_{\Omega}} = \{ X \in \mathcal{M}; \overline{X^{\dagger * \Omega}} \in \sigma_{2}(\mathcal{M}) \},$$
$$\varphi_{\Omega}(X^{\dagger}X) = tr(X^{\dagger * \Omega})^{*}(\overline{X^{\dagger * \Omega}}), \quad X \in \mathfrak{N}_{\varphi_{\Omega}}.$$

Then φ_{Ω} is a regular quasi-weight on $\mathscr{P}(\mathscr{M})$. In fact, this is shown in similar to the proof of the above A, (2).

Further, suppose

(iv) Ω^{-1} is densely defined and $\mathscr{D} \cap \mathscr{D}(\Omega^{-1})$ is a core for Ω^{-1} .

Then by ([4] Theorem 4.2) we have the following results:

- $(iv)_1$ Suppose $\Omega^{it}\mathcal{D} \subset \mathcal{D}$ for all $t \in \mathbf{R}$. Then φ_{Ω} is a quasi-standard quasi-weight on $\mathscr{P}(\mathcal{M})$.
- $(iv)_2$ Suppose $\Omega^{it}\mathcal{D} \subset \mathcal{D}$ and $\Omega^{it}\mathcal{M}\Omega^{-it} = \mathcal{M}$ for all $t \in \mathbf{R}$. Then φ_{Ω} is a standard quasi-weight on $\mathcal{P}(\mathcal{M})$.

Example 5.3. A. We adopt the notations in Example 5.1, B, (5). We put

$$s_+ = \{\{\alpha_n\}_{n=0,1,\ldots}; \alpha_n > 0, n = 0,1,\ldots\},\$$

$$\Omega_{\{\alpha_n\}} = \sum_{n=0}^{\infty} \alpha_n f_n \otimes \overline{f_n}, \quad \{\alpha_n\}_{n=0,1,\dots} \in s_+,$$

and

$$\begin{split} \mathfrak{N}_{\varphi_{\Omega_{\{\alpha_n\}}}} &= \{X \in \mathscr{M}; \overline{X^{\dagger *}\Omega} \in \sigma_2(\mathscr{M})\}, \\ \varphi_{\Omega_{\{\alpha_n\}}}(X^{\dagger}X) &= tr(X^{\dagger *}\Omega)^*(\overline{X^{\dagger *}\Omega}), \quad X \in \mathfrak{N}_{\varphi_{\Omega_{\{\alpha_n\}}}}. \end{split}$$

Since the linear span of $\{f_n; n=0,1,\ldots\}$ satisfies the conditions (i), (ii) and (iii) in Example 5.2, B, it follows that $\varphi_{\Omega_{\{\alpha_n\}}}$ is a regular quasi-weight on $\mathscr{P}(\mathscr{M})$. Further since $\Omega_{\{\alpha_n\}}$ satisfies the conditions (iv) and (iv)₁ in Example 5.2, B, it follows that $\varphi_{\Omega_{\{\alpha_n\}}}$ is a quasi-standard quasi-weight on $\mathscr{P}(\mathscr{M})$.

B. We adopt the notations in ([4], Example 5.2). The total Hamiltonian of the interacting boson model with a two-body potential is given by a self-adjoint operator H in \mathcal{F}

$$H=\bigoplus_{n=0}^{\infty}H_n,$$

where $H_n = d\Gamma_n(h) + V^{(n)}$. We put

$$\Omega = e^{-H/2}.$$

and

$$\mathfrak{N}_{\varphi_{\Omega}} = \{ X \in \mathcal{M}; \overline{X^{\dagger *}\Omega} \in \sigma_{2}(\mathcal{M}) \},$$

$$\varphi_{\Omega}(X^{\dagger}X) = tr(X^{\dagger *}\Omega)^{*}(\overline{X^{\dagger *}\Omega}), \quad X \in \mathfrak{N}_{\varphi_{\Omega}}.$$

Then it is shown in similar to the above A that φ_{Ω} is a regular quasi-standard quasi-weight on $\mathscr{P}(\mathscr{M})$.

C. We adopt the notations in ([4], Example 5.1). The total Hamiltonian of the BCS-model is given by a self-adjoint operator H_B in $\mathcal{H}_{\{N\}}$

$$H_B = \alpha \sum_{p=1}^{\infty} \{ \varepsilon_p - (\sigma_p N) \}.$$

We put

$$\Omega=e^{-H_B/2}$$

and

$$\mathfrak{N}_{\varphi_{\Omega}} = \{X \in \mathscr{M}; \overline{X^{\dagger *}\Omega} \in \sigma_{2}(\mathscr{M})\},$$

$$\varphi_{\Omega}(X^{\dagger}X) = tr(X^{\dagger *}\Omega)^{*}(\overline{X^{\dagger *}\Omega}), \quad X \in \mathfrak{N}_{\varphi_{\Omega}}.$$

Then it is shown in similar to the proof of the above A that φ_{Ω} is a regular quasi-weight on $\mathscr{P}(\mathscr{M})$. Further since Ω satisfies the conditions (iv) and (iv)₂ in Example 5.2, B, it follows that φ_{Ω} is a standard quasi-weight $\mathscr{P}(\mathscr{M})$.

References

- [1] J. P. Antoine and A. Inoue, Representability of invariant positive sesquilinear forms on partial *-algebras, Math. Proc. Camb. Phil. Soc., 108 (1990), 337-353.
- [2] J. P. Antoine and A. Inoue, Normal forms on partial O*-algebras, J. Math. Phys., 32 (1991), 2074–2081.
- [3] J. P. Antoine, Y. Soulet and C. Trapani, Weights on partial *-algebras, J. Math. Anal. Appl., (to appear).
- [4] J. P. Antoine, A. Inoue, H. Ogi and C. Trapani, Standard generalized vectors in the space of Hilbert-Schmidt operators, Ann. Inst. H. Poincaré (to appear).
- [5] H. J. Borchers, Algebraic aspects of Wightman field theory, In Statistical Mechanics and Field Theory, Lecture, 1971; Haifa Summer School, New York-Jerusalem-London (1972), 31-79.
- [6] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, II, Springer Verlag, New York, Heidelberg, Berlin, 1979, 1981.
- [7] S. P. Gudder and W. Scruggs, Unbounded representations of *-algebras, Pacific J. Math., 70 (1977), 369-382.
- [8] S. P. Gudder and R. L. Hudson, A noncommutative probability theory, Trans. Amer. Math. Soc., 245 (1978), 1-41.
- [9] U. Haagerup, Normal weights on W*-algebras, J. Functional Anal. 19 (1975), 305-317.
- [10] A. Inoue, Regularity of positive linear functionals, Japanese J. Math., 9 (1983), 247-275.
- [11] A. Inoue, Modular structure of algebras of unbounded operators, Math. Proc. Camb. Phil. Soc., 111 (1992), 369-386.
- [12] A. Inoue, Modular systems induced by trace functionals on algebras of unbounded operators, J. Math. Phys., 35 (1994), 435-442.
- [13] A. Inoue, O*-algebras in standard system, Math. Nachr., 172 (1995), 171-190.
- [14] A. Inoue, Standard generalized vectors for algebras of unbounded operators, J. Math. Soc. Japan., 47 (1995), 329-347.
- [15] A. Inoue and W. Karwowski, Cyclic generalized vectors for algebras of unbounded operators, Publ. RIMS, Kyoto Univ., 30 (1994), 577-601.
- [16] P. E. T. Jorgensen, Operators and Representation Theory, North-Holland, Amsterdam, 1988.
- [17] K. Katavolos and I. Koch, Extension of Tomita-Takesaki theory to the unbounded algebra of the canonical commutation relation, Rep. Math. Phys., 16 (1979), 335-352.
- [18] G. Lassner, Topological algebras of operators, Rep. Math. Phys., 3 (1972), 279-293.
- [19] G. Lassner, Algebras of unbounded operators and quantum dynamics, Physica, 124 A (1984), 471–480.
- [20] G. Lassner, Topological algebras and their applications in quantum statistics, Wiss. Z. Karl-Marx-Univ. Leipzig, Math. Naturwiss. R., 30 (1981), 572-595.
- [21] G. Lassner and W. Timmermann, Normal states on algebras of unbounded operators, Rep. Math. Phys., 3 (1972), 295-305.
- [22] R. T. Powers, Self-adjoint algebras of unbounded operators, Commun. Math. Phys., 21, (1971), 85–124.
- [23] R. T. Powers, Algebras of unbounded operators, Proc. Sym. Pure Math., 38 (1982), 389-406.
- [24] K. Schmüdgen, The order structure of topological *-algebras of unbounded operators, Rep. Math. Phys., 7 (1975), 215-227.
- [25] K. Schmüdgen, An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional, Math. Nachr., 88 (1979), 385-390.
- [26] K. Schmüdgen, On trace representation of linear functionals on unbounded operator algebras, Commun. Math. Phys., 63 (1978), 113-130.
- [27] K. Schmüdgen, A proof of a theorem on trace representation of strongly positive linear functionals on O_p^* -algebras, J. Operator Theory, 2 (1979), 39-47.
- [28] K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag Berlin, 1990.

- [29] T. Scherman, Positive linear functionals on *-algebras of unbounded operators, J. Math. Anal. Appl., 22 (1968), 285-318.
- [30] S. Stratila and L. Zsido, Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells, 1979.
- [31] S. Stratila, Modular Theory in Operator Algebras, Abacus Press, Tunbridge Wells, 1981.
- [32] W. Thirring and A. Wehrl, On the mathematical structure of the B.S.C.-model, Commun. Math. Phys., 4 (1967), 303-314.
- [33] W. Thirring, On the mathematical stucture of the B.S.C.-model. II, Commun. Math. Phys., 7 (1968), 181–189.
- [34] S. L. Woronowicz, The quantum problem of moments I, Rep. Math. Phys., I (1970), 135-145; II, Rep. Math. Phys., I (1971), 175-183.

Atsushi INOUE and Hidekazu OGI Department of Applied Mathematics Fukuoka University Fukuoka Japan