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§1. Introduction

In this article we consider the following Cauchy problem in (0,7) x R”,
Llu(t,x)] =f(t,x), (1,x)e(0,T)x R
u(0,x) = up(x), xeR",

where L{u] = du—v—1 > ik O{aw(x)Oku} — > b(t,x)0u — c(t,x)u and 0, = 9/dt and
0j =0/0x;. We assume that ay(x) belong to B* and b;(t,x),c(t,x) are in
CO([0, T]; B®), where B® stands for the set of complex valued functions defined in R”
whose all derivatives are bounded in R". For a topological space X, a non negative
integer k and an interval I in R' we denote by C*(I;X) the set of functions k times
continuously differentiable with respect to t € /I in the topology of X. Moreover we
assume that ay(x) = ay;(x) are real valued and there is ¢y > 0 such that

(1.2) 3" @& = colel’, x,EeR".

Jk

(1.1)

Let 7T > 0 and X a topological space. We say that the Cauchy problem (1.1) is X-
well posed in (0, T), if for any 4y in X and any f in C°([0, T]; X) there exists a unique
solution u in C%([0, T]; X) of (1,1).

We shall prove that the Cauchy problem (1.1) is X-well posed in (0, 7) under some
assumptions, if we take X = L?>(R") the set of square integrable functions in R" or
X = H® the sobolev space in R".

We know a necessary condition in order that the Cauchy problem is L? (resp. H®)-
well posed in (0,7). To state this we need the classical orbit associated to L. Put

(1.3) @m(x,8) = ap(x)&¢
Jik
and let (X(¢,y,7m),Z(t,y,n)) be the solution of the following ordinary differential
equations
(L4 (d/d)X;(1) = (6/&)ar(X (1), £(1),  X;(0) =

(d/dE)(1) = —(0/0x))ax(X (2), E(1)),  E;(0) =,
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where j = 1,...,n. Then it follows from [7] and [5] that if the Cauchy problem (1.1) is
L? (resp. H®)-well posed in (0, T), the coefficients b; = b;(¢,x) satisfy

SUPy.n e R Jn|=1

(1.5) J: > Imb;(0, X(t,y,7))E;(t,y,n) dt
’ J

< C(resp. Clog(1 + p))
for p > 0.
Now we assume that there are C >0 and o > 1 such that the coefficients b;(¢, x)

satisfy
(1.6) [Im b;(¢,x)| < C(x)™°
for (t,x)€[0,T] x R"” and j=1,...,n, where (x) = (1+ Ix[*)'/2. Then we can see in

Lemma 2.3 later on that (1.6) implies (1.5). Furthermore we suppose there are ¢y > 0
and J > 0 such that a(x,¢) satisfies

(17) D {(05a2)(x, )& — (952 (x, &)} = colél’
j
for (x,£) € [0,T] x R" and the coefficients aj(x) of ay(x,&) satisfy

(1.8) 1(0/0%) ap(x)] < Cafx) ™™

for xe R",ae N"(a #0) and j,k=1,...,n.
Now we can state our main result.

THEOREM 1.1. Assume that the conditions (1.2), (1.6), (1.7) and (1.8) are fulfilled and
the coefficients bj(t,x), c(t,x) belong to C°([0, T]; B®). Then the Cauchy problem (1.1)
is L? (resp. H®)-well posed in (0,T) if ¢ > 1 (resp. o =1).

It should be remarked that when a,(x, &) = iflz /2, this problem is treated in [2, 4, 6,
9, 10, 11] and that when a(x,&) has variable coefficients, the case where {Im b;} is
integrable is considered in [8].

§2. Properties of classical orbits

Put a(x,¢) = {2ay(x, é)}l/ 2. We consider the classical orbits associated to the
Hamiltonian function a(x,¢) instead of ax(x,&). Let {x(t,y,7),&(¢,y,m)} be the
solution of the following Hamiltonian system

(d/dt)x;(r) = (9a/0¢;)(x(2), £(2)), x;(0) = ¥,
(d/d)E;(t) = —(da/0x;)(x(1),£(1)), &;(0) = 7

for j=1,...,n. Since a(x,¢) is homogenuous in ¢ of degree one, there exists globally
in ¢ the solution of (2.1) and x(¢,y,7) and &(¢,y,n) are homogenuous in # of degree zero

and one respectively.
To investigate the growth order of the solution of (2.1) tending ¢ to infinite we need

a following preliminary lemma.

(2.1)
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LemMa 2.1. Let p,(t), fi(t),i = 1,2 be positive functions such that p,(t), f>(t) are in
L'((0,00)) and fi(2) in L*((0,00)). Assume that p,(t) is differentiable and satisfies that
p5(t) <0 and p,(t) < M/2, where M > 1 and we write p5(t) = (d/dt)p,(t). If positive
and differentiable functions u;(t),i = 1,2 satisfy

- (1) < pr(D)ur () + Mus(t) + £i (1)
' () < po(0)m (1) + py (ua(2) +£o(0)

for t >0, then there is a positive contant C independent of p, such that
u (1) < C[ul (0) + ur(0) + exp{J; Mp,(s) ds}{tpz(O)ul (0) + 1u(0)
23 +1 [ G0A6) +AG) s} + [ (56 +A6) a5
0 0

() < Coxp{ [ 15,050} 200 0) + 1801+ [ (02109 + o))

for t > 0.

ProOOF. Set
t

(1) = wi(1) exp{— | 160 ds},

t

p1(s) dS}-

0

ai(t) = (1) exp{ -

(i=1,2). Then v; satisfies

v1(f) < Moy(1) + g1 (2)
(2.4)
oh(1) < pa(1)*01(1) + 92(2)
for t>0. Put wi(f) = Mvi(t) + v2(f) and wy(2) = po(H)v1(f) + v2(¢). Then we have
from (2.4)
Wi () < (M + py (1)) wa(0) + Mgr (1) + g2(1)

wy(t) < Mpy()wa(2) + py()g1(2) + 92(0)

for t > 0 and consequently

wa) < exp{ b1 [ pao)as P wa(0) + [ Mp:9015) + alon s}

0 0
t

wi(f) < wi(0) + (M? +3M/2) exp{] Po(s) ds}{th(O) +t J;(pz(s)gl(s) + 92(5)) ds}

0

+ Jt (Mg (s) + g2(s)) ds
0
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for t > 0. Therefore taking account of the following relation
vi(2) = (M = po(8)) ™ (w1() — w2 (1)) < 2M~'wi ()
va(1) = (M — (1))~ (Mwa(0) — py(1)wi (1)) < 2w2(2),
we obtain (2.3). Q.E.D.
If p,(f) belongs to L!((0,0)), then (2.3) gives

() < {1+ @m0 + 1+ 0(0) + sup fi)+ [ (o)) |

0<s<t 0

2.5) ,
() < c{pz(O)u1<O)+uz(o> + sup i)+ [ £ ds}
0<s<t 0
for t > 0.
We denote

n
r= {(t,y,n)eRxR" xR”;yn=Zyjnj=0,n;é0}.
=1

Lemma 2.2. Let {x(t,y,n),,(t,y,n)} be the solution of (2.1). Then there is C > 0
such that

(2.6) C ' x(t,y,m)| < |t| + |y| < Clx(t,y,n)|
(2.7) Clnl < 1€t y,m))| < Cly|

for (t,y,n) € I' and moreover

(2.8) Cllnl <) x5y, m)E(ty,m) < Cln|
=1

for (t,y,n) e, t+#0.

PROOF. Since a;(x,&) is bounded in R?", integrating the first equations of (2.1) we
get the first inequality of (2.6). Noting that (2.1) implies

(29) a(x(t’yaﬂ)’f(tayﬂ”) = a( 7’7)

for any ¢ and that from the assumption (1.2)
(2.10) C7 'l < a(y,n) < Clul
for any (y,7) € R¥", we obtain (2.7). Besides we have from (2.1)
(d/de){x(6)¢(0)} = a(x(2), &(2)),
where a(x,&) = 3_:(05a)(x,£)¢; — (0/0x,a)(x,&)x;. Integrating this equation we have

J

(2.11) X0 = Y 5 (6rm) = | (x(6),60) ds

0
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for (¢,y,n) e I'. The assumptions (1.7) and (1.8) yield
(2.12) CEl < a(x,¢) < Cie|

for (x,&) e R*. Hence we obtain (2.8) from (2.7), (2.11) and (2.12). Moreover it
follows from (2.11) that we have |x(£)&(¢)] = C7!|¢||y| and consequently Clx(f)| >
C'|t|. Hence we get the second inequality of (2.6) by integrating (2.1). Q.E.D.

LemMA 2.3. Let {X(t,y,n),Z(t,y,n)} be the solution of (1.4). Then we can express

(2.13) {(X(&y,n), E(t,y,n)} = {x(aly,n)t,y,1), S (a(ysm)t, y, M)},
where (x(t),&(t)) is the solution of (2.1). Moreover if the condition (1.6) is verified, then
(1.5) holds.

ProoF. Recalling (2.9) and a; = a?/2, we have

(d/d) X (2) = (dx/dt)(at, y,m)a(y,n)

= (0a/0%)(x(at),(ar))aly, n)

= (9a2/0¢)(x(at), S(ar))

= (0ay/08)(X (1), £(1)).
Similarly E(f) satisfies (dZ(f)/dt = —(0ay/0x)(X(t),Z(¢)). Therefore {X(t),Z(¢)}
satisfies (1.4). We next prove (1.5). Since (d/dt){X(1)Z(¢)} = ax(X(¢),Z(¢)), inte-
grating this equation we have
(2.14) X()E({) =yn+ Jo a (X (s), Z(s)) ds.
Hence taking account of the estimate C~! < |Z(¢)] < Cfor || = 1 and (¢,y) € R™"!, we
get

(X(t,y,m) = C"UX(t,y,m)E(t,p,7))
(2.15) ‘
- '1<yﬂ +[ awxe),56) ds>.

Hence noting that C~! < @ (X (), 5(t)) < C for |7| =1 and (¢,y) € R*"! we can see
from the condition (1.6) and (2.15)

n

p
Z JO Imbj(X(I,y,ﬂ))Ej(tayaﬂ) dt
=

<C J:<y77 + Jt a(X(s), Z(s)) ds>_(I dt

0
< ifo>1

¥
sC’J +5) %ds
o(y’7 ) {s C'log(l+p) ifo=1

for p>0, ye R"” and |g| = 1, where we write j = [§ a(X(s),Z(s))ds. QE.D.
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For {x(z),4(#)} the solution of (2.1) with (y,n) satisfying yn = 0, we denote

agx(x(1),¢(1))  age(x(2),£(1))

(2.16) A0 = | _aex0,60) —ae(x(0), £(2)

which is a 2n x 2n matrix.

LEMMA 2.4. Let w(t) = *(w1(f), wa(2)) be in C1([0,0); R?") and F(t) = '(F1(t), F2(t))
in C°([0,00); R*") and satisfy
(2.17) dw(t)/dt = A(t)w(t) + F(t)

for t >0. Then there is C >0 such that

wi(1)] < c{ 1+ 1)) w1 (0)] + In) w2 (0)| (1 + 1) + t sup |Fi(s)] + Inl™! jo |F2(s>|ds}
(2.18) o

IWz(t)IsC{< )1 O) 1l + waO)] + sup 1R+ [ |F2(S)|dS}

for t >0 and y,n e R" with yn =0.

ProOF.  Put u;(2) = |wi ()| |n], f1(5) = |F1(9)] |nl, ua(2) = [w2(2)| and fo(2) = |F>(e)].
Then the assumption (1.8) and (2.7) yield

Jaxe (x(2), £(0)] < Clx(2)) ™
(2.19) laze (x(1), £())] < Cln|”

| (x(0), £(0)] < Clx(8) ™l
for (t,y) e R™*' and neR"\0. It follows from (2.6) that (x(z)) >c0(t2+( )2,
Therefore u(z) = (u1(t),us(2)) satisfies (2.2) with p,(£) = cg!°C( + (»)*)” (14972,

po(t) = ¢ C (e + (p))"1HD/2 and M = 2max{C, C/%c;'/*}. Hence we obtaln
from (2.5)

()= {1+ 1) (0) + 1+ i) +1{ sup i) + [ Ato)as) }
(220) O<s<t
()< {01 (0) +100) + sup i)+ [ )}

0<s<rt

for t > 0.

LemMMA 2.5. Let I'; = {(t,y,n) € I';n; # 0}. There is C > 0 such that

(2.21) 3" 10idhx(t,y,m| < ClInd ™ Inl(1 + |~}
J+Bl=1
(2.22) S ik, y,ml < Clind ™ InP () T YA (x(0)

j+lBI=1
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(2.23) > 185ty < Cllml MY+ (D)) + Il 7Y
Jo|=1

(2.24) > lese vl < Cmil ™" Inl + 1)
|o]=1

for (t,yvﬂ)eri: where we write j}: (yla'-'ayi—layi+1a"',yn)~

Proor. It follows from (2.1) that d,x and 0,& satisfy (2.21) and (2.22) with
(j,B) = (1,0) respectively. For |B| =1 we put wy(r) = dx(t) and wy(r) = &¢(1). Then
w(t) = "(w1(2),w2(2)) satisfies (2.17) with F(f) =0. Therefore noting that |w;(0)| <
C(lm™"Inl +1) and wy(0) =0, we get (2.21) and (2.22) with (j,|B]) = (0,1) from
(2.18).  Analogously put wi(f) = 6,x(2) and w(t) = ;¢(#) for |of = 1. Since [w1(0)| <
C|r],»|_1|y| and |w,(0)| < C, we obtain (2.23) and (2.24) from (2.18). Q.E.D.

For simplicity we denote

Visx(t,y,m) = (0:x,0y,%, ..., 0y,_,X, 0y, X, ..., 0,,X)

(225) Vr/x(tay’ ’7) = (amx’ LR a'I,.x)
Vx(t,y,n) = (Vi3x,Vyx).

Set
_ __VﬂWﬂU
(2.26) T(t)=T(t,y,n) = (Vé(t,y, ")
Then differentiating (2.1) we have
(2.27) (d/dn)T(t) = A()T(2),

where A(?) is defined in (2.16). Besides, we see

(2.28) T(0) =
[ ay, 1 0 0 0 0 0 0
ay, 0 1 :
: : .. 0
0 () 1 0 () 0 o 0 ...0
ay, —ni'ng —ni'ny o —mitmy =ty o =t Sy o =y,
: 0 0 1 0 0 0
a, 0 0 1 0 0
~ay, 0 1 0
: : 0
L~ %, 0 0 0 1]
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for (t,y,n) € I'i. Moreover a simple calculation yields
(2.29) det T(0) = (=1)"'n;'a(y, n),
where

a(y,n) = i{m(@/ ony)a(y,n) — i(0/0y;)a(y,m)}
j=1

= (a2(y,m)”"? fj{rzj(a/an,-)az(y, 1) — ¥(8/8y;)a(v,m)}-
j=1

Therefore we obtain from the assumption (1.7)
(2.30) detT(0) #0 for (0,y,n) €T}

On the other hand it follows from the well known fact (for example see [1]) that the
equation (2.27) implies

(2.31) (d/dt) det T(t) = {trace A(¢)}det T(2).

Recalling (2.16) we have trace 4(f) =0. Hence we get

(2.32) detT(t,y,n) = detT(0,y,n7) #0 for(t,y,n)erI;.
Set
(2.33) S(t,y,n) = T(t,y,1)".
Then we can see easily from (2.28)
. 1S Sz
(2.34) S0, = )| ,
S S
C o m 2 3 M ]
b] —a"1 ’72 Y ... —aﬂ1 ”n
_aﬂzﬂl bZ _a’hn3 - . _arh”n
2.35 S = ) .
( ) 11 _a’h—lﬂl .. e bi—l — a’],'_1’7i e —a'],'_l"n
_a”i+1;71 e . _ a’7;’+1’7i bi+1
B —-aﬂn”l e PEEERY . e IR _a”"”n—l bn |
i N » Vn T
_a'hyl _a’hyz T _aq,yn
Sz = —Qy_ Y1 —ap_ Y2 -~y In
—anp Y1 —a4y,y2 0 —Gn Wn
L —a,,)1 —ayy2 —a,Vn
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ay My Ayt - Ayl
S21 — ah”l ay,My - GQyMy
aynﬂl aynﬂz e ayn”n
cl aylyz “ e PR aY1y"
aypyr G a4y)s3 o Gpdn
S = .
aynyl . " e aynyn__l. LI Cn

bx = a(y,n) — may, (y,n) and cx = yra, (v,n) +a(y,n).

Let us denote

S11(2) Slz(t)]
Szl(t) Szz(t) '

Since T'(f)S(¢) = I is the identity matrix, differentiating this with respect to ¢ we have

S(t) = [

(2.36) (d/dt)S(t) = —S(H)A(2),

where A(¢) is given by (2.16). Put u;(¢) = || |S12(¢)| and ux(z) = |S11(¢)|]. Then taking
account of (2.36) and (2.19) we can see that u(f) = (u1(f),u2(t)) satisfies (2.2) with
pi(8) = (B4 ()22 o1y = (R + () UD/2 and fi = f, =0 and consequently
u(?) satisfies (2.20) with fj = f, = 0. Since (2.34) and (2.35) yield that u;(0) < C|y| and
u(0) < C, (2.20) implies

IS <C
1S12()] < C((p) + e m| ™!

for (t,y,n) e I'.  Moreover noting that S5 (0)] < |7|(»)™" and |S»(0)| < C(»)™", we
get similarly

(2.37)

S (D)l < Clyl(y)~™,

(2.38)
1S02(8)| < C(1+ |2/ (») ™)

for (tayaﬂ) EF,'.

LEMMA 2.6. Assume that (1.2), (1.7) and (1.8) are valid and (x(t,y,n),&(¢,y,n)) be
the solution of (2.1). Then there are the functions t(x,&), y(x,&) e C*(R" x R"\0)
homogenuous in & of degree 0 and n(x,&) € C®(R" x R"\0) homogenuous in & of degree 1
such that (1(x,&),y(x, &), n(x,&)) belongs to I' = {(t,y,n)|yn = 0} for (x,&) € R" x R°\0
and satisfies

x(t(x, é)vy(xa 6)7’7()‘:7 é)) =X

(2.39)
é(t(x’ é),y(x, é)’ ?](X, f)) =¢
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for (x,&) € R" x R"\0 and moreover

Vt(x, )] + [Vap(x,&)| < €

Vet(x, &)| + Vey(x, &)| < C(|t(x, O)| + ((x, )1l
Van(x, &) < Cly(x, &)~ [¢]

Ven(x,&)| < C(1+ |t(x, O)l(»(x, &)™)

for (x,&) e R” x R"\0.

(2.40)

Proor. Since the Jacobian J(¢,y,n) =detT(¢,y,n) #0 for (t,y,n)el; and
Ir= U?:l I';, the local implicit function theorem of the mapping (3.39) holds evi-
dently. We can prove the global version of implicit function theorem of the mapping
(3.39) following the proof of Theorem 1.22 in [12]. To do so it suffices to show that for
any compact set K in R” x R"\O the set {(¢,y,n) € I'; (x(t,y,n),&(t,y,n)) = (x,&) for
(x,&) e K} is also compact in I'. In fact, it follows from Lemma 2.2 that we have

el < Inl < Clel,

(2.41) -
lt| < CIx¢|In|™ < C'|x].

Moreover the integration of (2.1) with respect to ¢ and (2.41) yield

I

(2.42) Yl < Ix] +j0 Vea(x(s), &(s))| ds < Clx].

Thus the invese image of K of the mapping (x(¢,y,7),&(¢,y,1)) = (x, &) is compact in
I'. Therefore (2.37) and (2.38) yield that |T(t,y,17)_l| <C if (t,y,n) varies in a
compact set in I'; and consequently we obtain the global implicit function theorem
applying Theorem 1.22 in [12]. We next prove the estimates (2.40). Let (#(x,¢&),
y(x,8),n(x,&)) be in I'; We note that the local implicit function theorem implies that
(t(x, &), y(x,&),n(x,n)) are in C*°(R" x R"\0). Differentiating (2.39) we have

Vit Vet
(2.43) [Vxﬁ chf] = S(t(x,£), y(x,¢),n(x,£)).
Vx” Vf”
Hence noting I" = Ui I';, we obtain (2.40) by virtue of (2.37) and (2.38). Q.E.D.

Tnw Tn
Iy T
are n x n matrices. Then Ty(t,y,n) are in C*(I';) and satisfy

1670505 1 (8, y,m)| < Cagi(1+111(3) ™) (x(®) 7 ()P}~
10705051 (1, y,m)| < Cagilnl ™™+ (x(2)) 7 () I~

1070503 Ta(1,,m)| < Cagy((9) + Dl ™ (x(0)) 7 ()
1010502 T (t, y,m)| < Cagyln| ™™ (x(2)) 7 (3) ¥

for (t,y,m) € [iN{n; ;| = In|2n) ™"/} and (j,a,B) € N*"

LemMmA 2.7. Let T(t,y,n) = [ ] be defined by (2.26), where Ty (j,k =1,2)

(2.44)

(2.45)
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Proor. Since x(t,y,n) and &(¢,y,7) are in C*(R x R" x R"\0), it is evident that
T(t,y,n) is in C®(I';). We next try to prove (2.44) and (2.45). Since T(¢,y,n) is
homogenous in 7, it siffices to prove (2.44) and (2.45) when || = 1. We prove these by
induction of j+ |a| + |8|. Lemma 2.5 implies (2.44) and (2.45) for j+ |a| + |B]| = 0.
Assume that (2.44) and (2.45) are valid for j + || + || < kK — 1, where k > 1. We first
prove (2.44) for j =0 and |«|+ |f| = k. For simplicity we write 0" = 656;. Differ-
entating (2.27) we get

(2.46) (d/dt)0"T (1) = A(1)0"T(¢t) + F,(2),
where

_ | P _ Vo =y
(2.47) F,(1) = [ iy Fzz] _0;;;;:( }/)a ANV T(1).

Then we have from (2.46)
0'Ty ' Ty |:F11:|
. =A .
(2.48) (d/dl)[ayTzl] (t)[ayTzl] * F

Then it follows from (2.18) in Lemma 2.4 that

¢

0

|5yT11(t)|SC{(l+Itl(y)_l)layTn(O)I+|5VT21,(0)|+|t! sup |F11(S)I+J Ile(S)IdS}

o<s<|t

(2.49)
|7
|07 T21(8)| < C{(J’)_llayTu(O)H|5yT21(0)|+ sup |F11(S)|+J |F21(S)|ds}-

0<s<|t 0

Moreover we can estimate Fj; and F,; as follow
(2.50) Fn ()l < G077, p=1,2.
In fact we have from (2.47)

Fu@ <G Y {107 ag(x(0), D) 17 Tia(0)] + 167 age(x(2), &(0))] 177 Tar (1)}

(2.51) s
Fn()) < C D {167 anx(x(0), €O 1077 Tua(1)] + |0 ae (x(0), E(2))] 107 T (1)]}.
0#£y <y

Here we need the following lemma.

LEMMA 2.8. Assume that (2.44) and (2.45) hold for j+ |o|+ |f| <k —1 and the
condition (1.8) are valid. Then there is Cy > 0 such that
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160802 agx(x(2), E(1))] < Ce(x(2)) ™ (y)y V1 Jy|
(2.52) 6] 0802 a,(x(1), E(1)] < Cic(x(2)) 27 () AT [y 1!
|6/ 0565ace(x(1), £(1))] < Ci(y) P [y~
for (t,y,1) € TiN{|n}] = 1nl(2n)™"/*} and j+ |a| + |B] = k.

The proof of this lemma will be given in the appendix.
We continue to prove (2.50). By the assumption of induction we get from (2.52)

167 Ty (1)] < C,(1 + |t (») ) () P!
1677 To1 ()] < Cy(y) " 7IFF!

for (t,y,n) € [iN{Jm| = In|(2n)"?}N{|n| =1} and 0#y = (j,&’,) <y. Hence it
follows from (2.51) and (2.53) that we get (2.50) taking account of the inequality
1] + () < C(x(¢)). Besides, (2.28) yields that |0"T1;(0)| < C,,(y)_lﬂ| and |0"T21(0)| <
Cy(y)*l’““jr | and consequently we obtain (2.44) for |y| = k by virtue of (2.49). We next
prove (2.44) in the case of j+ |a| + |f| =k and j # 0. In this case we get from (2.27)

(2.53)

AT (1) = 8771 {A(0) T (1)}

= (j ) 1) < y/)a{’au(z)a,f*-f’ay-?’ T(1),
J

I4
where y = (a,f). Therefore we get (2.44) by use of (2.52) and the assumption of
induction. We get (2.45) by the same way. Q.E.D.

Su(t,y,m) Sualt,y,n)

S21(t7y”7) S22(t7ya77)
Sk are n x n matrices. Then S(t,y,n) is in C*(I';) and satisfies

|6/0202811(1,y,m)| < Cagiln| ™ (y) 1~
|6/0502S12(2, y,m)| < Cagi(lt] + ()l ™ () V17

1010502821 (1,7, m)| < Cag (») ™" Inl* ¥ (y) A1
16/300;8n(t,y,m)] < Capy(1+ 111(3) ™) lnl ™M 45) 7P

for (taya”) erln{l”tl = |”|(2n)—1/2} and (j,d,ﬂ)ENzn, where j}= (yla-'-,yi~l,
Yit1y- - 7yn)-

Proor. Since S(#) satisfies (2.36), (2.37) and (2.38) and S(0) is given by (2.34),
repeating the same argument as one in Lemma 2.7 we can get (2.54) and
(2.55). Q.E.D.

LEMMA 2.9. Let S(t) = [ ] be the inverse of T(t,y,n), where

(2.54)

(2.55)

Lemma 2.10. The implicit function (t(x,¢),y(x,&),n(x,&)) of (2.39) is in
C®(R" x R"\0) and satisfies
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(2.56)  |08ak(x,&)| + |8ty (x, &)
< Cap (006, &) e (J2(x, &) + ((x, €)1 + [8(x, &) (w(x, &))" )+

2.57)  |B80%n(x, &)l < Cap(¥(x, ) PNE (1 + |1(x, )| (p(x, &)) 1)
Jor x, e R"(|¢| = 1) and a,f e N".

Proor. It is evident that the local implicit function theorem yields that (z,y,#)(x, &)
is in C*(R" x R"\0). We try to prove (2.56) and (2.57). Since I' = U?:l I';, we may
assume (¢, y,n)(x,¢) is in I'; for some i. Recalling (2.43) we have proved (2.56) and
(2.57) for (a,) =0 in Lemma 2.6. Let k> 1. Assume (2.56) and (2.57) are valid
for |a+p| <k—1. Noting that (Vit,V.J) = Su(#(x,$),»(x,8),n(x,8)), (Vet,Vey) =

S12(t(xa é)7y(x7 é)a”(xa é)), Vx” = S21 (t(x, 5)7y(x7 6)7’7()(’ é)) and Vf” = S22(t(xa é):
y(x,€), n(x,£)) hold, the following lemma implies (2.56) and (2.57).

LemMMA 2.11.  Assume (2.56) and (2.57) are valid for |a + | <k — 1. Then we have

2502811 (x, )| < Cap(y(x, &) P17 (1 + 11(x, &)y, &) ™)
(2.58) |050S12(x, &)
< Cop (o, ) NET T (12(x, )] + G0x, (L + [t(x, O (¥(x, €)™+
1902821 (x, )| < Cap((x, &)™ PN (1 + 1(x, ) (p(x, £)) !

(2.59)
50282, €)| < Cap(r(x, &) P (1 + [2(x, ) ((x, €))7+

Jor |a+ | < k and (x,&)(|€| = 1) in the inverse image of I'; of the mapping (2.39), where
we write Sj((xa é) = Sj{(t(x’ f),y(X, 5)7 ”(x’ 6))

The proof of this lemma will be given in the appendix.

§3. Proof of main Theorem

For f(x,¢£) a function in C*°(R" x R"\0) we denote the Hamilton vector field of
f by Hy=37 {0;f0y —0xf0;}. Let ax(x,{) be given by (1.3) and put
a(x,&) = (2ay(x, £))/?. In this section we assume (1.2), (1.7) and (1.8) are valid.
Let g(x, &) be a real valued function in C*°(R" x R"\0) and consider the following
equation
H,A(x,&) = a(x,&)g(x,&), (x,&) e R" x R"\0,

(3.1)
l'ro == 0,

where I'o = {(y,7) € R" x R"\0; yn =3, yjm; = 0}. Then we have
LeMMA 3.1. The solution A(x,&) of (3.1) is given as follows

t(x,8)
(3.2) A%, &) = j 9(x(s, ¥ (x, &), (%, €)), (s, y(x, &), m(x, &) ds

0
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where (x(t,y,n),&(t,y,n)) is the solution of (2.1) and (t(x,&),y(x,&),n(x,&)) is the
implicit function of (2.39).

Proor. Since H,, = aH,, the equation (3.1) is equivalent to

Gy Hi(x,8) = g(x,8),
Alp, = 0.
Solving this equation we obtain (3.2), noting that #(x,¢)|r, =0. Q.E.D.
Recalling (2.11) we can see
(3.3) H,x¢ =a(x,&) >0

0

i

for (x,&) e R" x R"\0. Take x(t) € C°(R) such that y(z) =1 when |f| <1, x(¢?)
when [7] >2,0 < x(f) <1 for all ¢ and /() <0 for all ¢. Put

g1(x,&) = My (x) "x(C¥(x)/a(x,£)),
g2(x,&) = My(Cx¢/a(x, &))" x((Cx¢/a(x, &)} /a(x, &))a(x, &) /a(x, &)
where (x) = (1 + |x[})"/%, (Cx¢/a(x,&)) = (1 + CY|xé*a(x, )32 and M; positive

constants determined later on and C is a positive constant such that
(Cx&/a(x,&)) < C*{x) and |t(x,&)| < C|x&/a(x,&)|.  Set

t(x,£)
Ja(x, &) = J 91 (x(5,7(x, ), 1(x, &), &(5, 9(3%, ), m(x,€)) ds

0

(3.4)

(3.5)

Cx¢/a(x,£)
j ()2 (s/a(x, &)) ds.

Aa(x,&) = M .

Then H,Ai(x,&) = gi(x,&)(i = 1,2) hold. Taking account of (Cx¢/a(x,&)) < C*(x) and
consequently y(C?(x)/a(x,¢)) < x({(Cx&/a(x,&))/a(x,&)) we can choose M; and M,
such that

(3.6) g1(x,¢) < g2(x,¢)

for (x,&) € R” x R*\0. Moreover since x¢ and #(x, ¢) have the same sign and |#(x, &)| <
(Cx¢/a(x,8)) and g1(x,&) < Ma(t(x, <)) "x((1(x, &)} /a(x,{)) are valid, we have from
(3.5) and from the fact #(x(s),&(s)) ==

(37) (xé){'ll (x7 é) - '12(x, ‘f)} <0
for (x,&) e R” x R"\0. For ¢ >0 we define
(3.8 Ax, &) = —Ai(x, Ox(xw/e(x)) — A2(x, {1 — x(xw/e(x))}

where xw =37 | x;0; and o =¢/|{|. Then we have

LemMMA 3.2. The function A(x,&) satisfies

(3.9) HaA(x, &) < —g1(x,¢)
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and

¢olog(l +min((x),|¢])), if o =1

(3.10) M&éﬂs{c if 0> 1

for (x,&) e R” x R"\0.
Proor. Noting that (xo)y'(xw/e(x)) <0 and H,(xw/e(x)) =& 1{x) " [a(x, w) +

(xw) 377 1{0xa(x, w)w; — 8 a(x, f)xj(x)_z}] > 0 on supp{y/(xw/e(x))} if ¢ >0 is small
enough, we obtain from (3.6) and (3.7)

HyA(x,8) = —(Hod1)x — Hado(1 = ) — (A1 — A2)Hax
=—g1+ (91 — 92)(1 = 1) — (& — L) (xo0/e(x)) Ha(x00/&{x))
< -9,
where we write y = y(xw/e(x)). This proves (3.9). To show (3.10) it is enough to
prove that A; and 4, satisfy (3.10) on supp{y(xw/e(x))} and on supp{l — y(xw/e(x))}
respectively. We see that (2.8) implies (x(s,y,7)) = co(1 + |s|). Moreover we have

Cls| < |x(s,y,m)| < C|¢] on  supp{x(x(s,y,n)/a(x,&))} and |5/ <C|é|] on
supp{x(s/a(x,&))} when y = y(x,¢&) and 5 = 5(x,£). Hence we have from (3.5)

min{(x),|¢[}

mugnscL (145 %ds (i=1,2).

This yields (3.10). Q.E.D.

LeMMA 3.3. For any o and f in N" with |a+ | # 0 there is Cyp > 0 such that

Cop(x) 1¢| ™ 1og{1 + min({x), &)} if o =1

3.11 ohozA(x, )| <
( ) |0% & (x,%)] {Cuﬂ(xrlﬁ”fl—lal if o> 1

for (x,&) e R" x R"\0.

Proor. Noting

(3.12) 18803 {x((x)/a(x, &)} < Cop(x) Pje 7,
we obtain
(3.13) 1020391 (x, &)| < Cup(x) P} .

Moreover integrating (2.1) with respect to ¢ we have

t(x,&)
Y6, &) = x - jo ag (x(5, 7 (x, €),1(x, €)), (s, y(%, &), (i, ) d.

This implies (y(x,&)) > (x) — C|t(x,&)|. On the other hand taking account of (2.8) we
have |#(x,&)| < C|xw|. Therefore we obtain

(3.14) (x) + t(x, &) < Cly(x, &)
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for (x,&) e supp{x(xw/e(x))} if ¢ > 0 is small enough. Therefore it follows from (2.56)
and (2.57) that

6.15) |080%t(x, &)| + |080%(x, &)] < Cag(x)' A&7
' 1050%n(x, &)| < Cup(x) P11

for (x,¢) e supp{x(xw/e(x))} and consequently we have from Lemma 2.7

6.16) |08%x(s, p(x, &), m(x, €))| < Cap(x)' ||
|0B32E(s, (x, ), m(x, &))] < Cop{x) Hl)&|!

for (x,¢) € supp{x(xw/e(x))}. Hence from (3.13) and (3.16) we get by use of Lemma
A.l in the appendix

(3.17) |080%{ g1 (x(s, y(x, &), (%, &), &(s, ¥(x, &), n(x, &)}
< Cap{x(s, y(x, &), m(x, &)~ (x) Hl|e| 71

for (x,¢) e supp{x(xw/e(x))}. Taking account of the following estimates

(3.18) ’5552{1(@(&}’()@ &), n(x,8))/a(x, &)} < Caﬁ(x)_|ﬂ||§|‘|“|
10832 {r(xeo /2 (%)) }| < Cap(x) 1|71

for (x,&) e supp{x(xw/e(x))}. We obtain from (3.17) and (3.5)

Ca(x) P log(1 +1¢]), o=1

(3.19) 0502 {21 (x, E)x(xw/e(x))}| < { Coptiy P, o> 1

for (x,&) e R" x R"\0. Noting that we have from (3.5)

Cx¢/a(x,6)

(3.20) Aa(x, &) = Jo (s) " "x(s/a(x,&)) ds,
we can see easily
(3.21) |080%02(x, &)| < Cop(x) Pl

for (x,&) € supp{l — y(xw/e(x))} and |a+ B| #0. Therefore we get from (3.18), (3.10)
and (3.21)

183 {Aa(x, &) (1 — x(xeo/e(x)))} < Cap() e log {1 + min((x), &)}, o =1
< Cpl) e, o> 1

for (x,&) e R" x R"\0. This together with (3.19) proves (3.11). Q.E.D.
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LemMa 3.4. Assume bi(t,x)(j=1,...,n) satisfy (1.6) with 6 > 1. Then there are
C>0,M;(i=1,2) >0 and ¢ > 0 such that A(x,) defined in (3.8) is verified with

(3.22) H, A(x,¢&) — i Im b;(¢,x)¢; < C
=1

for (x,&) e R" x R".
Proor. It follows from (3.4), (3.9) and (1.6) that

HoA(x,8) = Y Imby(1,x)&; < — Mi(x) a(x, E)x(C*(x)/a(x, &) + Mo(x)~|¢|
j=1
< — Mi(x)colé|x(C(x)/a(x,&)) + Mo(x)~°|¢|
< M|&|(x)7{1 — x(C*(x)/a(x, &)} < C
for x,£ e R", if we take My > My/co. Q.E.D.
For A > 1 we define
(3.23) A(x,8) = —A(x, &) (1 — x(|¢]/h).
Noting that A(x,¢) =0 for |£| < h and
(3.24) %(121/B)| < CulE),™
for ¢e R" and o e N", where (&), = (h* + I£%)/?, we have from (3.11)

Cop(x)P(&), 7 Tog(1 + min((x), (£),), o =1,

3.25 P2 A(x, &) <
( ) | xY¢& (X é)' < { Cal?(x)_lﬁl(é);'al, o> 1

for x,( e R",h > 1 and «, f € N", where C,4 are independent of h. Moreover (3.22) and
(3.23) yield

(3.26) HyA(x, &) + i Imb;(t,x)¢; > — C
=1

for x,£ e R". Moreover it follows from (3.25) that

—1Bl gy ~lal s
Bty < ) e ifo>1
x“¢ = Caﬂ<x>—lﬁ|(é)h—laleA(x,c)

x {log(1 +min({x), ()N}, ifo=1

for x,(eR",h>1 and a,f € N, where C,s are independent of A.
Denote by e?(x,D) the pseudodifferential operator with its symbol e4(®:<),

(3.27)

Lemma 3.5. Let p(x,&) be a symbol satisfying

(3.28) 10838p(x, £)| < Cop(&),™ ™
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for x,£eR" h>1 and o,f e N", where C,z are independent of h. Then p,(x,D) =
e~(x, D)p(x,D)e(x, D) is also a pseudodifferential operator of which symbol is given as
follows

pa(x,8) = Y wi(=4) Y of (4D p(x,&) + Y al™ (= A)Dip(x, &) +r(x,£)

lof <1 o <o |ot]=2

(3.29)

=(1+1i zn: Ay Ag)p(x, &) + i HyA(x,€) + Z ! 1 d(~A)Dp(x, &) + r(x, &)
=1 =2

where wf(A) = e 10;Dbe?, D, = i7'0,, HpAd = > 1{0gp0x, A — 0x,p0r, A} and r(x,¢)
satisfies

(3.30) 8003r(x, )| < Cop(Ey >

for x,leR",h > 1 and o, € N", where C,p are independent of h.

Proor. Since it follows from (3.10) and (3.23) that e*49 <
C(1 + min({x), (¢),)” if 6 = 1 and e*4 < C if ¢ > 1 from (3.10), from (3.27) we obtain

o(p(x, D)’ (x,D))(x,&) = > «7'6fp(x,E)D%e" ) +ri(x, &)

|ac| <2/p+2

(3.31) — eA{,, +i7h Y aEpaiA + pi(x, é)}

|ee}=1
= e®9p(x,¢)
where
|0%0gr (x, &)| < Cap(&)y ™"
and p1 =35 < uj <2042 ! 05pw(A) + e~y satisfies
(3.32) 108021 (x, )| < Cap(&)™ >~
for x,£ e R". Besides, we can see from (3.31)
a(e™(x, D)p(x, D)e’ (x, D)) (x,&) = Y al'w)(-A)DT¥p+r
,a,SZ(c

where p is defined in the right hand of (3.31) and ry(x, &) satisfied (3.32). Noting that
p=p+i" Y {0ep0yA — 0,pds A} + p1 and that (3.27) yields

. jd(—A)wk (4)] < Ca{log(1 + min((x), (£),))}*H11(&), 1 (x) 7
< Gu();”

if ¢/ >2 and o #0 or || >3 and o’ =0, we obtain (3.29) and (3.30). Q.E.D.
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Taking p(x,£) =1 we have from (3.29)

(e (x, D) (x, D))(x,&) =1+i Y _ O Adoxd+r
(3.34) j=1
where j(x, &) satisfies
026%(x,&)| < Cup(log(1 +min((x), (£),)))*(x) (&) ™
(3.35)
< Caﬂh—l <é>—|“|

for x,(e R" and h > 1. Hence we have the inverse of I + j(x, D) and consequently we
obtain

(3.36) (e’(x, D))" = (I +j(x,D)) " e 4(x, D)

if h is large enough. Moreover we can see that (e(x,D))”" becomes a pseudo dif-
ferential operator (c.f. [3]).

LeMMA 3.6. Let p(x,&) be a symbol satisfying (3.28). Then
(3.37) p(4;x, D) = (¢"(x, D)”'p(x, D)e" (x, D))

is a pseudodifferential operator of which symbol p(4;x,&) is given by

(3.38) P(A4;x,8) = p(x,&) + i HyA(x,&) + Y ol (= A)Dp + r(x,£)
o] =2

where r(x,&) satisfies (3.30).

Proor. It follows from Lemma 3.5 and (3.36) that
(3.39) p(4;x,D) = (I + j(x,D))"'pa(x, D).
Moreover noting that we have from (3.34)

o((I+j(x, D)™ )(x,&) =1—i Y Ag Ay +7(x,8)

where 7 satisfies (3.30) with m = 0, we obtain (3.38) by virtue of (3.39), (3.29) and
(3.35). Q.E.D.

If there is u > 0 such that p(x,¢) satisfies
(3.40) 0£03p(x, )] < Caplx) (23"

for x,£ € R” and «, f € N” with |f| > 2, the third term in the right side of (3.38) satisfies
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(3.30). Moreover if p(x,¢) satisfies (3.40) for |f| > 1 then we have

(3.41) (0802 H, A(x,¢)| < Cag(Oy "™
for x, e R" and a,f € N”. Hence we get
(3.42) P45 %, &) = p(x, &) + " HyA(x, &) + r(x, )

where r satisfies (3.30).
Since ay(x,&) = ap(x)E&, satisfies (3.40) with u=2+6 and m =2, applying
(3.41) to p = ay(x,&) we obtain

(3.43) ar(A;x,&) = ay(x, &) + i\ H, A(x, &) + r(x, &)
where r satisfies

(3.44) (046gr(x, )] < Cap(e)y™

for x,( e R" and a,f € N". Therefore we get

e!(x, D)7 Y 05 {ap(x)9x, (e’ (x, D)u(x))}
Jk

= —e(x, D) {az(x, D) + Xn:(Djajk(x)Dk}eA(x, D)u(x)

j=1

(3.45) )
= {—az(x, D) —i"'H, A(x,D) — Z(Djajk(x)Dk + r(x, D)}u(x)
j=1
=) Oy (au(x)0xu(x)) — i (Hgy A)(x, D)u(x) + r(x, D)u(x)

Jk
where r satisfies (3.44). Moreover we can see

e’(x, D)™ Y by(t,x)05,e"(x, D) = ie” (x, D) b(z, x, D)e” (x, D)
J

(3.46)
= I{Z b;Dy, + i ' HyA(x, D) + ri(x, D)},

J

where r, satisfies (3.44). We note that HyA =) {0b0xA — 0xb0; A} does not
necessarily satisfy (3.44) when o = 1. It follows from (3.25) that
(3.47) [Im(HpA(x,$)| = |HimpA(x, &)| < Clog{l + min((x), (£},)}
for x, e R" if 6 =1. Thus we get
(3.48) L(A;1,x,D) = e’(x, D) Le*(x, D)
= L+ H,,A(x, D) — HyA(x, D) + r(x, D)

where r satisfies (3.44).
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Since Im HA is not bounded when ¢ = 1, to eliminate this term we must transform
again the operator L(A;x,D). Put
(3.49) Ao(t,x, &) = tM3(1 — x(|¢]/h)) log(1 + a(x, &)),

2 Noting H,, log(1 +a) =0, we can take M3 > 0 such that

where a = (2a,)
(3.50) 01 40(t,x,&) + Hgy Ao(8,x, &) — Im HpA(x,&) = — C

for x,( e R" and t€([0,7T]. Moreover we can see from (3.49)
(3.51) 0508 Ao(1,x,&)| < Caplx) (&) log(1 + )

for x,£eR" and o,feN" with |a+ f] #0. Therefore we have the inverse
eo(t, x, D)_1 if h is large enough. Furthermore we note that HpAy(t,x,&) satisfies
(3.44). Repeating the same argment as above we can get
e’ (t,x, D) 'e!(x, D) "' Le? (x, D)e™ (1, x, D)
(3.52) = L+ H,, A(x, D) — HyA(x, D) + 8,4¢(t, x, D) + H,, Ao(t, x, D)
+r(ta X, D)’

where r satisfies (3.44).
Now we can prove our main theorem. Set

u(t,x) = e(x, D)e’ (t, x, D)w(t, x).
Then we get from (1.1) the following equation of w
{L + H,,A(x,D) + HyA(x,D) + 0,40(z,x, D) + HaAo(t,x, D) + r(t,x,D)}w
(3.53) = ¢ (1,x,D)"'e*(x, D)"'f (1, x) = g(1, %), (1,x) € (0, T) x R",
W(O, X) = er(O’ X, D)_leA(x7 D)—luO(X) = WO(X),X € Rn’

The Cauchy problem (3.53) is L2-well posed in [0, 7]. In fact it follows from (3.26) and
(3.50) that we can see

(1/2)(d/de)|[w(®)|7> = (1/2) Re(w' (1), w(1)) 12
(3.54) = ((—Imb(t,x,D) — HpyA — 0,49 — Hyy Ao + HpAd — r)w(t) — g(t), w(t)) 2

< Clw@)lIz + gl 2w ()]l 2
for w(t) e C'([0, T]; L*) N C°([0, T]; H'). This yields
t

(3.55) [w®l < C{IIW(O)Ile +J IIQ(S)HdeS}

0

for te [0, T]. Besides we can see similarly that for any g € R there is C; > 0 such that

(3.55) WOl e < Cq{“W(O)“m + JO g() | e dS}
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for #[0,T]. Therefore recalling u(z,x) = e(x, D)e®(x, D)w(t,x), we obtain

(3.56) ()l ge < Cq{“u(o)“Hﬁfo + JO [RAC] PP dS}

for t€[0,T]. This energy estimate shows that the Cauchy problem (1.1) is H®-well
posed in [0,7]. Thus we have completed the proof of our main theorem.

Appendix

Here we shall prove Lemma 2.8 and Lemma 2.11. We first estimate the derivatives
of composite functions. Let f(z,{) be a real valued function in C®(R™ x R™\0)
satisfying

(A1) 10802 £ (2,0)| < Capp(z,£){2) Plig| 7

for ze R",{ € R™ and o € N, € N™, where p(z,{) is a potive function, and let ¢(x, &)
and y(x,¢&) in C*°(R" x R"\0; R™) satisfying

(A2) 108020 (x, )| < Cappy (%, EVy (x, &) Py (x, &)™
(A3) 105029 (x,&)| < Cuppy (%, E)my (%, &) Py (x, &)™

for xe R",£e R"\0 and a e N",f e N" with |a+ ff| <k, where k is a positive integer
and p;(x,¢) and #;(x,&)(i = 1,2) are positive functions. Then we have

LemMMA A.l. For |a+ f| <k there are C,p > 0 such that

(A.4)
108021 (p(x, &), ¥ (x, &))| < Capp(o, W)L + p1/(0) + po/ CINY Py (x, &) Py (x, &)

for xe R",& e R"\O.

Proor. Denote
n n
X = Z 09;/0x;0/0z; + Z 0y;/0xj0/0(; + 0/0x;
i=1 i=1

n n
Y; =) 09,/050/0zi+ Y 0y,/0&0/0L; + 0/0¢;
i=1 i=1
forj=1,...,n. Then for g(x,¢,z,{) € C*(R" x {R"\0} x R™ x {R™\0}) we can write

(0/0x;){g(x,&, (%, &), ¥ (%, &)} = Xig |,—p r—y
(8/0E){g(x, &, (%, &), ¥ (%, &)} = Y,y 1=y

Therefore we obtain

oS (9%, (%O} = (XPY)|_pery
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where we write XﬁzXf‘ - XP and Yo = Y'-.. Y% To prove Lemma A.l it is
enough to show the following lemma.

LemMMA A.2. Assume (A.1), (A.2) and (A.3) are valid. Then we have

10802670} X (x,&, DY Y (x, ¢, D)*f (,0)]
(A.3) < Copuspp(@ Q401 (%, 8)/(2) + p2(x, /(0 +mi (6, &)Y
x n,(x, f)—lﬁl—lﬁlﬂz(x, é)—IaI—I&I <Z>—|7||C,—|ll
for ||+ B + Iy| + 1Al + |&] + |B] < k, (x,&) € R* x R*\0 and (z,{) € R™ x R™\0.

ProoF. We prove (A.5) by induction of |&] +Iﬂ~|. (A.1) implies (A.5) with
la| + || =0. Assume (A.5) are valid for |&| +|f|<¢—1<k. For simplicity we
denote 6§6§ =07 and g = (a,8). Then we have

107070 X, XP Yof (2,0)|

> ( “',) {2'":((6"—" 09,/ 9%))0;, + ‘Zj(aq—¢ aw,-/axj)ag,}
i=1

7<q\9 i=1
x 07 QO XPYOf (2,0) + 690

QXP Y (2,0) l

Xj¥z

= qu}.&B{pl (x’ é) (Z>_1 + p2(x, f) <C>_1 +m (x, 6)_1}/)(2’ C)”I_W—Vﬂ
x ,72—|“|—|0?| <Z>—|7||C|—|}’|{p1 <Z>~1 +,02|¢|_1 +’71—1}|&|+I/§1.

Analogously we can see that Y, X g Y%f satisfies the above estimate. Thus we have (A.5)
for |a| + || =¢. Q.E.D.

PROOF OF LEMMA 2.8 AND LEMMA 2.11. We prove (2.52) for ag. In this case we
take p=(2) "', py = () + ltl, p, = Inl, 0 = x(£), ¥ = (t),m, = (x) and 7, = |&|. Then
replacing (z,{) by (x,¢) and (x,¢) by (¢,y,7) in (A.1) respectively, we can obtain (2.52)
for a:, by use of Lemma A.l. By the similar way we obtain the other eatimates in
(2.52) and in Lemma 2.11.
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