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1. Introduction

Let R and R, be the set of all real numbers and all positive real numbers,
respectively. The boundary and the closure of a set S in the n-dimensional Euclidean
space R"(n > 2) are denoted by dS and S, respectively. We also introduce the spherical
coordinates (r,0),0 = (6,,0,,...,6,_1), in R" which are related to the cartesian
coordinates (X,y), X = (x1,x2,...,X,—1) by the formulas

n—1
X = r(H sinej) (n>=2), y=rcosb,
j=1

and if n > 3,

k-1
Xnilk = r(H sian) cosby (2<k<n-1),

j=1
where
0<r<w,0<f<n(l<j<n-2;n>3), 27'n< 6,1 <27'3x.

The wunit sphere (the unit circle, if n=2) and the upper half unit sphere
{(1,64,6,,...,0,.)) e R";0 < 0; <n/2} (the upper half unit circle {(1,6,) e R%
—n/2 < 61 < m/2}, if n=2) in R" are denoted by S"' and S"~', respectively. The
half-space (the half-plane, if n = 2)

{(X,y) eRXeR",y>0}={(r,0)eR";0eS8"",0<r<w}

is denoted by T,.

Given a domain D < R" and a continuous function g on 0D, we say that 4 is a
solution of the (classical) Dirichlet problem on D with g, if A is harmonic in D and
 lim h(P) = g(Q)
for every Q € éD. 1If D is a smooth bounded domain, then the existence of a solution of
the Dirichlet problem and its uniqueness is completely known (see e.g. [11, Theorem

5.21]). When D is the typical unbounded domain T,, Helms [13, p.42 and p.158] states
that even if g(x) is a bounded continuous function on dT,, the solution of the Dirichlet
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problem on T, with g is not unique and to obtain the unique solution H(P)(P =
(X,y) e T,) we must specify the behavior of H(P) as y — +o0.

With respect to particular solutions of the Dirichlet problem on T,, the following
results are known. Let g(X) be a continuous function on 4T, = R"! satisfying (1.1)
with a non-negative integer /:

(w1) ]
R 1+ X
Then Armitage [1, Theorem 2] gave a solution of the Dirichlet problem on T, with g in
an explicit form, which is denoted by H(T,,/;g)(P) in the following (also see Siegel [16,
p.l and p.7]}. Further, for any continuous function g(X) on 0T, Finkelstein and
Scheinberg (8] showed the existence of a solution of the Dirichlet problem on T, with g
and Gardiner [9] gave the solution explicitly. These results of the case n =2 had

X < 0.

already been obtained by Nevanlinna [15].
About general solutions of the Dirichlet problem on T,, Nevanlinna [15] also
proved the following result of the case n = 2.

Let g(x) be a continuous function on R satisfying

lg(x)]

——=—dx < ©
JR 14 |x|*"

with a non-negative integer I. If h(P) is a solution of the Dirichlet problem on T, with g
such that

liminf V() =0, u(r)= sup |h(r,6:)|cosb),
r—o0 —n/2<0<n/2

then h(P) = H(T3,l;9)(P) + x(P)(P = (r,61) € T), where
Sk o Awr®*sin2k0, + Y h_, Ay 17 ' cos(2k — )8, (I =2I')
X(P) = q Y420 Apr®*sin2k0, + Y4, Ay_i”* ' cos(2k — 10, (I=2I'—1)
0 (1=0)
(I' is a positive integer and all Ay, A, ...,A; are constants).

To answer a question of Siegel [16, p.8] Yoshida [19] recently proved

THEOREM A [19, Theorems 1 and 2]. Let g(Q) be a continuous function on
0T, (n > 2) satisfying (1.1) with a non-negative integer I. Then the solution H(T,,l;g)(P)
of the Dirichlet problem with g satisfies

lim r~/-1 J H(T,,I;g9)(r,0)cosb,dog =0 (P=(r,0)eT,,0 = (01,0,,...,0,_1)),
Sn——l

r—o0
+

where dag is the surface element of S™!.
If h(P) is a solution of the Dirichlet problem on T, with g satisfying

lim r~-! J h*(r,@)cos b doe =0,
s

r—aoo
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then

yir(p) (Iz1)

h(P) = H(Tn,1;9)(P) + I1(P), ”(P):{o (I=0)

for every P= (X,y) € Ty, where IT*(P) is a polynomial of P = (x1,X2,...,Xn—1,y) € R"
of degree at most 1 —1(1 > 1) and even with respect to the variable y.

A half-space is a special one of more general unbounded domains
C(R)={(r,®) eR";(1,0)e2,reR,} (Risa domain ou ")

which are called cones (angular domains, if n =2), ie. T, = C(S:'L_l), Because of the
speciality, it has many advantageous merits which a cone C(£2) lacks, e.g., it has a
simple Green function and the mirror image to which a harmonic function vanishing on
the boundary can be extended, etc.

In this paper, to generalize Theorem A to the conical case and extend Yoshida’s
results we shall give particular solutions (Theorem 1) and a type of general solutions
(Theorem 3) of the Dirichlet problem on a cone by introducing conical generalized
Poisson kernels and Poisson integrals. We also generalize the results of Finkelstein and
Scheinberg [8] and Gardinar [9] to the conical case (Theorem 2). Finally a result of
Yoshida [19, Theorem 3] will be generalized in the conical form (Theorem 4).

2. Preliminaries

Let 4,(n > 2) be the Laplace operator and A, the spherical part of the spherical
coordinates of 4,:

n—16+62+1
r or orr 27"

Given a domain Q on $" !(n > 2), consider the Dirichlet problem

An:

(2.1) (Ap+A)F =0in Q
F =0o0ndR

We denote the non-decreasing sequence of positive eigenvalues of (2.1) by
{A(2,k)}r-;- In this expression we write A(€2,k) the same number of times as the
dimension of the corresponding eigenspace. When the normalized eigenfunction
corresponding A(€2,k) is denoted by f#(@), the set of sequential eigenfunctions
corresponding to the same value of A(2,k) in the sequence {f(©)};.; makes an
orthonormal basis for the eigenspace of the eigenvalue A(€,k). Hence for each
Q = 8™ there is a sequence {k;} of positive integers such that k; =1, A(Q,k;) <
M2, kit1)
MR ki) =AQ,ki+1)=A4Q2,ki+2)=--- = AQ,kis1 — 1)

and { fk? , fk?+1> ey ﬁcﬁ ._1} is an orthonormal basis for the eigenspace of the eigenvalue
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AMR,k)(i=1,2,3,...). TItis well known that k, =2 and f;?(®) > 0 for any O € Q (see
Courant and Hilbert [5, p.451 and p.458]). With respect to {k;}, the following Remark
shows that even in the case Q2 = Si‘l(n =2,3,4,...), not only the simplest case
ki=i(i=1,2,3,...), but also complicated cases can appear.

If 2 is an (n — 1)-dimensional compact Riemannian manifold with its boundary to
be sufficiently regular, we know that

AMR2,k) ~ A(Q,nk¥" V) (k — o0)
(see e.g. Cheng and Li [4]) and
Y {6 ~B@,mx"I? (x— o)
AR2,k) < x

uniformly with respect to @ (e.g. Minakshisundaram and Pleijel [14], and also Essen and
Lewis [7 p.120 and pp.126-128]), where A(2,n) and B(Q,n) are both constants
depending on Q and n. Hence there exist two positive constants M, M, such that

(2.2) MK < (2,k) (k=1,2,3,...)
and
(2.3) If2(0) < Muk'? (©eR,k=1,2,3,..)).

If we denote a positive solution of the equation

(2.4) P+(n—2t—AR,k)=0

by a(,k), then we also have

(2.5) a(R,k) > Mk (k=1,2,...)

from (2.2), where M3 is a positive constant independent of k.

In the following we put the strong assumption relative to Q on $" ' if n>3,Qis a
C**-domain (0 <a < 1) on S$"! surrounded by a finite number of mutually disjoint
closed hypersurfaces (see e.g. [10, pp.88—89] for the definition of C?“-domain). We
remark that

@R ©) (k=1,2,...)

is harmonic on C(£2) and vanish continuously on dC(2). For a domain £ and the
sequence {k;} mentioned above, by I(Q,k;) we denote the set of all positive integers less
that k;(/ =1,2,3,...). In spite of the fact I(,k;) = &, the summation over I(Q,k;)
of a function S(k) of a variable £ will be used by promising

> S(k)=0.

ke I(Q,kl)

Let Gc)((r1,61),(r2,02))((r1,01),(r2,02) € C(2)) be the Green function of a cone
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C(Q) and let s, denote the surface area 27%/2{I'(n/2)}"" of $""!. The function
0 2n (n=2)

L G P7 ) n = {

¢ 3, Gc(PQ), ¢ (n—2)s (n23)

of QedC(Q)— {0} (O is the origin of R") for any fixed Pe C(Q) is an ordinary
Poisson kernel, where d/0v denotes the differentiation at Q along the inward normal into
C(Q).

REMARK 1. Suppose 2 = S_";‘(n >2). Then
-1 0 — -1 > 'Jc+1 —k—n
(2.6) < 3y Gr,((r,2),(t,5)) = 2s, Z Chnp2l” T 7" cos 01 Ly pi2(cos p)
—0

for any (X,y) =(r,0)e T, and any (Z,0) = (¢,5) € 0T, satisfying r < t, where

(k+n—1)
Ckny2 = k y

Li nio is the (n+ 2)-dimensional Legendre polynomial of degree k and y is the angle
between M = (X,0) and N = (Z,0) defined by

cosy = (M, N)
7T MV

(see Armitage [1, Theorem E]). On the other hand, Remark 3 in Section 5 applied to
Q= Sj'r‘l gives the Fourier series expansion of the function
0
-1 e
n G
of ® with respect to the sequence of eigenfunctions of (2.1). Hence, in comparison with
(2.6) we obtain

Gr,((r,0),(,5)) (r<y)

(2.7) a(S" k) =i, (i=1,2,3,...;n=2,3,4,...).

Consider the simplest case n =2 ie. Q = Si. For (r,6)) € T, and (|t|,Z) =t€ R, we
see cosy = || '#sin6; and hence

ki=i (i=1,2,3,...)
F2(61) = pycosOLy_y 4(sin€) (k=1,2,...),

where p, is a constant such that

t'/4

/2
J {f£(6,)}*do, = 1.
/2

Next, suppose n=3 ie. @=S2. Then for (r,0)=(X,y)e T3,0 = (6,,0,) and
(t,E) e 0T; = R*, 5 = (27!n,&,), we see

cos y = sin @ sin 8, sin &, + sin 6, cos 6, cos &,.
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If we put
Los =Py =1

and
Li 5(sin 6, sin 6 sin &, + sin 6 cos 6, cos &,)
= Dy (01, 02) cos® & + Dy 1 (01, 02) cos* 2 &, + -+ + By 121 (61, 02)cos* /A ¢,
+ Yr0(61, t92)cosk‘1 &ysinéy + Wi 1(01, Hz)cosk"3 Ersinéy, + - - -
+ i (k)2 (61, 02)cos* 1 AED g, sin g, (k=1,2,3,...),

then
k,~=1+(i_21)i (=123,
and
)
B PritjPic1,j(61,02)cos 6, (j=01,...,[5;i=12,...)
- {/’ki+jyli—1,1—[(i—1)/2]—1(91’ O)cosr (j=[F]+1,...,[F]+[F] +Li=23,..),

where p..; is a constant such that

[RGICITES

3. Existence and properties of particular solutions

The Fourier coefficient
| F©)£2(6)do0
Q

of a function F(®) on Q with respect to the orthonormal sequence {f?(@)} is denoted
by ¢(F,k), if it exists. We also denote the set JC(2) — {O} by S(22). Now we shall
define generalized Poisson kernels of the conical type. For a non-negative integer / and
two points P = (r,0) € C(Q),0 = (t,E) € S(2), we put

(3.1) V(C(R),H(P,Q) = Z 2a(!),k)+n—lc((HE)l ’ k)t-—at(.Q,k)—n+lra(.(),k)fkﬂ(@),
kel(,ki1)

where

(H=),(6) = ;' < Gew((1,6), (2, ).

We introduce another function of Pe C(2) and Q = (¢,Z) € S(Q)

wic@, e ={, VY =1



Dirichlet problem on a cone 77

The generalized Poisson kernel K(C(R),)(P,Q)(Pe C(R2),Q e S(22)) with respect to
C(Q) is defined by

K(C(2),1)(P, Q) = 0,71% Gew)(P, Q) - W(C(Q),)(P,Q) (PeC(Q),QeS(R)).

In fact
L 0
K(C(2),0)(P, 0) = &;" = Geia)(P, Q).
REMARK 2. We shall show that the kernel X(T,,/)(P, Q)(! = 1) coincides with ones

in Armitage (1], Siegel [16] and Yoshida [19]. Put Q = S""! and r, = 1 in Remark 3 of
Section 5. Then from (2.7) we have

0 i Y &
¢ 5 Gr,((r,©), (1, 8) =Y _ 21t ( > C((Ha)l,k)fkn(@)>
i=1 k=k;
for any (r,0) € T, and any (¢,&) € 0T,(r < t), which is (2.6). Hence we obtain
(ki1
2”“( Z c((HE)l,k)ka(@)) = 2571¢; 1200801 L; nya(cosy) (i=0,1,2,...).
k= i+1
Since
kiya—1
V(T D)(P,Q) = Z ol e e '( > C((Hs)l,k)ﬁfz(@))
k=ki+1
from (2.7), we finally have

-1
V(Tw,)(P, Q) = 25" > cimsar™ 7" c0s 01 Ly pia(cosy).
=0

Let F(P) = F(r,®) be a function on C(£2) and put
N(F)(r) = J F(r,0)f2(0) doe.
Q
For a non-negative integer p we write

1y(F) = lim @k N(F)(r),
r—oo

if it exists.
The following theorem is a generalization of the first part of Yoshida [18, Theorem
3] and Yoshida [18, Lemma 3] which are the case / =0 of Theorem 1.

THEOREM 1. Let | be a non-negative integer and let g(Q) = g(t, =) be a continuous
function on 0C(R2) satisfying

o0
(3.2) J A Dkii1)=1 (J ]g(t,E)Idag) dt < .
1 o2
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Then
H(C(Q),1;9)(P) = Lm) g(Q)K(C(2),1)(P, 0)dog

is a solution of the classical Dirichlet problem on C(Q) with g and satisfies

(3.3) m([H(C(2),5;9)]) = 0.
By taking Q = S""!, we obtain from (2.6) and Remark 2
CoroLLARY 1 (Yoshida [19], Theorem 1]). Let g(X) be a continuous function on
0T, = R™! satisfying (1.1) with a non-negative integer . Then H(T,,Il;g)(P) is a
solution of the Dirichlet problem on T, with g such that
t(|H (T 1 9)]) = 0.

To solve the Dirichlet problem on C() with any continuous function g(Q), we
shall define another Poisson kernel. Let ¢(¢) be a positive continuous function of ¢ > 1
satisfying

¢(1) — 2—0((9,1).
Denote the set

{1 > 1;—a(Q, ki) = (log2) ™ (log(*""9(1)))}
by S(2,¢,i). Then 1eS5(2,9,1). When there is an integer N such that
S(Q2,p,N) # & and S(2,¢9,N + 1) = J, denote the set {i;1 <i< N} of integers by
J(Q,9). Otherwise, denote the set of all positive integers by J(€2,¢). Let t(i) =
(R, p,i) be the minimum of elements ¢ in S(2, ¢, i) for each i € J(2,9). In the former
case, we put #(N+1)=o00. Then #(1) =1. We define W(C(Q),9)(P,Q)(P e C(RQ),
0= (1,5) e S(2)) by
0 0<t<1)
V(C(®),)(P,Q) (i) <t<u(i+1)iel(29).

The Poisson kernel K(C(£2),9)(P,Q)(Pe C(R),Q e S(RQ)) is defined by

W(C(Q),0)(P, Q) = {

K(C(2),0)(P,Q) = ' 2 Gea(P.0) - W(C(2),0)(P, ©).
Now we have

THEOREM 2. Let g(Q) be a continuous function on 0C(2). Then there is a positive
continuous function ¢,(t) of t > 1 depending on g such that

H(C(),0,)(P) = L@ 9(Q)K(C(),0,)(P, Q) dog

is a solution of the Dirichlet problem on C(£) with g.

If we take Q2 = S:’L_l in Theorem 2, Then we have
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CoroLLARY 2 (Finkelstein and Scheinberg [8] and Gardiner [9]). Let g(Q) be a
continuous function on 0T,.

Then there is a positive continuous function ¢ (t) of t > 1
depending on g such that

H(T,,0,)(P) = L 9(Q)K(Tn, 0,)(P, Q) dog

n

is a solution of the Dirichlet problem on T, with g.

4. A type of general solutions
To obtain a type of general solutions, the following is essential.

THEOREM B (Yoshida and Miyamoto [20, Theorem 3]). Let h(r,®) be a harmonic

function in C(L2) vanishing continuously on 0C(L2) and let p be a positive integer. If h
satisfies

Hp(H") =0,
then

h(r,@)= > 4w @Rgl(e)

kEI(Q,kp+|)
for every (r,0) e C(8), where Ay(k=1,2,3,...,k,11 — 1) is a constant.

By using Theorem 1 and Theorem B, we can prove the following Theorem 3.

THEOREM 3. Let | be a non-negative integer and p be a positive integer satisfying

p=>1. Let g(t,E) be a continuous function on 0C(Q) satisfying (3.2) with I. If h(r,®)
is a solution of the Dirichlet problem on C(Q) with g satisfying

(“.1) () =0,

then

h(r,0) =H(C(Q),;9)(P)+ Y Ar®Rfl(e)
kel(R,kp11)

for every P = (r,0) e C(Q), where Ax(k=1,2,... k11 — 1) is a constant.

If we take / =0 and p = 1 in Theorem 3, then we have the following result which is
the second part of Yoshida [18, Theorem 3].

COROLLARY 3. Let g(Q) be a continuous function on 0C(Q) satisfying

o0
J @)1 (J |g(t,E)|dag) dt < o.
1 Q2

If h(r,0) is a solution of the Dirichlet problem on C(Q) with g satisfying

M (h+) = 0,
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then

h(r,@)zc;IJ

0
9(0) 3, Gew)(P, Q) dag + u ()™ Vff(6)
S(2) v

for every P = (r,0) e C(RQ).

If we put Q:Sl‘l,lzp and p=p (resp. I=p—1 and p=p) (p is a positive
integer) in Theorem 3, we obtain

CoROLLARY 4 (Yoshida [19, Theorem 2 (resp. Corollary 2)]). Let p be a positive
integer and g(X) be a continuous function on 0T, = R"™ satisfying (1.1) with p (resp.
(1.1) with p—1). If h(P) is a solution of the Dirichlet problem on T, with g such that

; —(p+1) + —
lim PN () () = 0,

then
h(P) = H(Ty,p;g)(P) + yII(P)
(resp. h(P) = H(Ty,p — 1;9)(P) + yII(P)),

where II(P) is a harmonic polynomial (of P = (x1,X2,...,Xs—1,)) € R") of at most degree
p— 1 and even with respect to the variable y.

The following Theorem 4 also generalizes a result of Yoshida [19, Theorem 3].

THEOREM 4. If h(r,®) is a harmonic function on C() and is continuous on C(Q)
such that the restriction h = h|ycq) of h to 0C(Q) satisfies

o0
J t—ac(Q,kHl)_l (J |h(t, E)' dO’E) dt < ©
. 2Q

for some non-negative integer | and

+

)
r—00 logr

then for some positive integer p

h(r,0) = H(C(Q),;h)(P)+ Y A4 @Hfl(e)
kel(Q,kp11)

at every P = (r,0) e C(RQ), where Ax(k=1,2,...,kp11 — 1) is a constant.
5. Proof of Theorems 1,2,3,4, and Corollary 4
Given a domain 2 on S"' and an interval I c R,, the sets {(r,®)e R";

(1,0)e 2,rel} and {(¢,E) e R";(1,E) € 0Q2,t € I} are denoted by C(2;1) and S(2;1),
respectively.
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LemMA 1. Let h(r,®) be a harmonic function in C(£2;(a,b)),0 < a < b < o0, which
vanishes continuously on S(Q;(a,b)). For any fixed r(a <r <b), define the function
h(O®) on Q by h,(O)=h(r,0). Then

c(hr k) = {(rir™" YO Pl ) (2 = P29
+ (rar ™Y@ Ry, ) (PR — AP0 - B0
for any given r;,r(0 <a<r <rp<b<ow), where —f(2,k) is a negative solution of

(2.4) and 6(Q,k) = a(Q,k) + B(2,k).

Proor. First of all, we note that A(r,®) is continuously differentiable twice on
{(r,0);0 € Q,a < r < b} (see [10, pp.101-102]). Now, by differentiating twice under
the integral sign,

o%c(h,, k 3h(r, 0
=], 0 o

=—(n—1r! j g—}:fkﬂ dog — r'ZJ (4,h) £2 dag.
Q (o]

Hence, if we see from the formula of Green (see e.g. Helgason [12, p.387]) that

J (Ah) f2 dog — J h(Anf2) doe,
Q Q

we have that

2
5672 c(hr, k) + (n — 1)r™! % c(hy, k) — A(Q,k)r2c(hy, k) =0

for any r, a<r < b. This gives that

c(hy k) = Apr* @0 4 B PR (g <1 < b),

Ai and By being constants independent of r. Since c(h,, k) takes a value c(h,, k) at a
point r;(j = 1,2), the conclusion of Lemma 1 follows immediately.

LemMA 2. Let H(r,0) be a harmonic function in C(Q2;(0,2)) such that H(r,©)
vanishes continuously on S(Q;(0,2)) and is uniformly bounded as r — 0. Then for any
non-negative integer | we have

|H(r,®) — Z c(Hy, k)r'@R£2(9)| < Ly(H)r*@k=) (0 <r < 1),
kel(.Q,k[H)

where H)(©) = H(1,0) and L,(H) is a constant dependent only on H.

Proor. Put H,(@) = H(r,®). For any fixed r, 0 < r < 2, we see from Lemma 1
that
c(Hy, k) = {(nr Y @R e(H,, k) (@ — p@h)

+ (rzr_l)ﬂ(g’k)c(Hrz,k) (,ﬁ(ﬂ,k) _ r‘;(ﬂvk))}(rg(ﬂ»k) _ r51(9,k))—1
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for any r; and r,,0 <r; <r, <2. Since ¢(H,,k) is also uniformly bounded as r; — 0,
we obtain

(5.1) c(Hy k) = (r/r)* P e(H,, k) (0 <1 <2).
Now, take a number rj satisfying r <r5 <2. Then we have from (2.3) that

(5.2) |c(Hy, k)| < suMok'/* x max |H(r3, 6)).
€

It follows from (2.3), (2.5), (5.1) and (5.2) that

0

(53) 31l I AEO)] < 5,M x max (3, 0) x 3 k(r/rs) "
k=1 —

Hence we know from the completeness of the orthonormal sequence {f(©)} that

0

(5.4) > e(H, k) f£(8) = H(r,0)

k=1
for any @ € Q.
If we take r=1,r5 =3/2 in (5.3) and put

n(29)|

S le(H, )] [/2(O)] < Li(H).
k=1

Li(H) = s, M? x max

0 (2)M3k1/("‘1)

k=

then we obtain that

If 0 <r< 1, then by taking r, =1 in (5.1) we have from (5.3) and (5.4) that

e 0]
|H(r,0)— ) c(H,br @) < Y |e(H, k)| 1£2(6)|
kel(2,ki1) k=ki,1
= Y |c(Hy, k)| |fE(0)[r R < Ly (H)r k),
k=ki,)

which gives the conclusion.

LEMMA 3. For a non-negative integer | we have

C;l a_av. GC(Q) (P, Q) - V(C(.Q), l)(P, Q) < L2(Zr)a(g’k’“)t_“(g»klﬂ)—n+l

for any P = (r,0) € C(Q) and any Q = (t,Z5) € S(R) satisfying 0 < (2r/t) < 1, where L,
is a constant independent of P,Q and .

Proor. Take any P = (r,0) e C(Q) and any Q = (¢,5) € S(2). Put R, = (2r/t),
= (¢/2) and @; = O in

W' >Geg)((uRy, 01), (uR3,02)) = Ge)((R1, 01), (Re, 92))
((R],@l) € C(Q), (Rz,@z) € C(.Q),O <u< OO)
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When (R,,0;,) approaches to (2,%5) e S(22) along the inward normal, we obtain

1

63 (3 t)"_la% et ((1,6),(1.8) =5, Ge ((5+6). 2.5)) (= e00)

we remark that

4 0 -
HE(Ry @) = Cnla GC(Q)((R7 @)> (2,‘:’))

is a harmonic function of (R, ®) € C() such that Hz(R, ®) vanishes continuously on
0C(2) — {(2,&)} and tends uniformly to zero as R — 0 (see Azarin [2, Lemma 1]). If
we apply Lemma 2 to Hz(2r/t,0) and put '

L, =21 L(Hsz
2 =2 may L),

then we obtain the conclusion from (5.5).

ReMARK 3. Take any (r,0) € C(Q) and any (t,Z) € S(R2) satisfying r <¢. Then
the proof of Lemma 2 gives the expansion

) © o) a(£2,k)
n:(7.0) =3 ), 0 () A)

for any r,,0 <r, < 2. Hence it follows from (5.5) that

1 0 — - o n—1_—a(R,k o —n—o
2 5 Gow) (1 0),(1,5) = 3 2@ 1 0 (Hg) k@0 1= R £ 6)
k=1

0 ki1 —1
i -1, —o(R,k;) i) gl—n—a i
_ Z Ha(2,k)+n 1r2 ( )r (@) A (@.k) o ( Z C((Hs),z,k)fkg(@))-

k=k;

C

i=1
LEMMA 4. Let ¢(t) be a positive continuous function of t > 1 satisfying
o(1) = 274
Then

"2 Gea (P, Q) - W(C(2),9)(P, Q)| < Laol0)

for any P = (r,0) e C(Q) and any Q = (1, E5) € S(Q) satisfying
(5.6) t > max(1,4r).

ProorF. Take any P = (r,0)e C(Q) and any Q = (¢,5) € S(Q) satisfying (5.6).
Choose an integer i = i(P, Q) € J(£2,¢) such that

(5.7) ti—1) <t<ti).
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Then
Hence we have from Lemma 3, (5.6) and (5.7) that

9 )
¢, - Ge@ (P, Q) = W(C(Q),9)(P, Q)| < Ly27*@R ™ < Lag(1),

which is the conclusion.

LeEMMA 5. Let g(Q) be locally integrable and upper semicontinuous on 0C(R2). Let
W(P,Q) be a function of Pe C(RQ),Q e dC(RQ) such that for any fixed Pe C(82) the
Sfunction W(P,Q) of Qe dC(Q) is a locally integrable function on 0C(82). Put

K(P,Q) = &' 5 Ge@(P,Q) - W(P,0) (P C(@),0e0C(@).

Suppose that the following (1) and (11) are satisfied:
(I) For any Q* € 0C(R2) and any ¢ > 0, there exist a neighbourhood U(Q*) of Q* in
R" and a number R(0 < R < o0) such that

j 9(Q)K(P, Q)| dog < ¢
S(2;[R,0))

for any P= (r,0) e C(2)NU(Q*).
(II) For any Q* € 0C(RQ) and any number R(0 < R < 0),

lim sup

[ la@w®0lds=0.
P—Q*,PeC(R) JS(2;(0,R))

Then

lim sup J g(Q)K(P,Q)dog < g(Q")
P—or PeC(@) Js(@)

for any Q* € 0C(R2).
ProoF. Let Q* = (r*,0") be any fixed point of 0C(Q2) and let ¢ be any positive
number. From (I), we can choose a number R*(0 < R* < c0) such that

&

(5.8) lg(Q)K (P, Q)| dGQ < D)
)

J S(8;[R* 0

for any P= (r,0) e C(Q)NU(Q*). Let & be a continuous function on JC(2) such
that 0 < ® <1 and

& — {1 on S(£2; (0, R*)) U {0}
10 on S(2;(2R*,®)).

Let G{;(Q)(P, Q) be the Green function of C(£2;(0, j)) (j is a positive integer) and put
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I';(P,Q) = Ge)(P, Q) - Gé(g) (P,Q). Then we can find an integer j*, j* > 2R* such
that

€

dO’Q<4

59) o 1P| 5 120

for any P = (r,0) e C(2)NU(Q*). Thus we have from (5.8) and (5.9) that

(5.10) LC(Q) J(QK(P,Q)dog < ;' | 9(Q)4(0Q) 5 GLi)(P, Q) dog

S(£2;(0,2R*))

dG'Q

2(Q)g(0) 5 I+(P, 0)

+c;! J
S(2;(0,2R*))

9(Q)W (P, Q)| dog +2 j 9(Q)K (P, Q)| dog

|
S(82;(0,2R*)) S(82;(R*, 0))

-1
< <,

2 gr
JS(Q;(O,ZR*)) *(0)g(0) v GC(.Q)(P7 Q)daog

5
+| 9(Q)W (P, Q)] dog +3 ¢
S($2;,(0,2R*))

for any P = (r,0) e C(2)NU(Q*). Consider an upper semicontinuous function

V(Q) = {fI’(Q)g(Q) on S(€; (0,2R*]) U {0}
o on 9C(£; (0, j*)) — S(£2; (0,2R3]) - {0}

on 0C(£;[0, j*)) and denote the Perron-Wiener-Brelot solution of the Dirichlet problem
on C(£;(0,;*)) by Hy(P;C(£;(0,*))) (see, e.g., [13]). We know that

0

(5.11) 2(Q)9(Q) 5> Goa)(P, Q) dog = Hy(P; C(&;(0, /)))

¢, IJ

5(€2;(0,2R*))
(see Dahlberg [6, Theorem 3]). If C(£2;(0,*)) is not a Lipschitz domain at O, we can
prove (5.11) by considering a sequence of the Lipschitz domains C(€;(1/m, j*)) which
converges to C(R;(0,5*)) as m — co. We also have that

limsup Hy(P;C(2;(0,;%)) < limsup V(Q)=g(Q"
PeC(Q),P-Q Qe S(2),0-0"

(see, e.g., Helms [13, Lemma 8.20]). Hence we obtain

0

lim sup ?(Q)9(Q) 5> G q)(P, Q) dog < 9(2").

1
c
PeC(Q),P—Q JS(Q;(O,ZR"))
With (5.10) and (II) this gives the conclusion.

ProoF OoF THEOREM 1. First of all, we shall show that H(C(f),/;9)(P) is a
harmonic function on C(2). For any fixed P = (r,0)e C(Q), take a number R
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satisfying R > max(1,2r). Then

(5.12) j 19(0) K(C(Q), 1)(P, Q)| dag
S(2;(R,0))

4 0
[ Wl 5 Gaa(P,0) - V(C@),1)(P, 0)| o
S(@(R,)) ov
< Lz(zr)a(ﬂ,k1+1)J t—d(ﬂ,kHl)“l (J. Ig(l, E),ddg) dt < o
R 002

from Lemma 3 and (3.2). Thus H(C(R),/;g)(P) is finite for any P e C(2). Since
K(C(£22),))(P, Q) is a harmonic function of P € C(Q) for any Q € S(R2), H(C(RQ),1;9)(P)
is also a harmonic function of Pe C(Q).

To prove that

ey o HO@)EOP) =0(0)

for any Q* € 0C(Q), apply Lemma 5 to g(Q) and —g(Q) by putting
W(P,Q) = W(C(Q),))(P,Q),

which is locally integrable on 0C(£2) for any fixed P € C(£2). Then we shall see that (I)
and (II) hold. Take any Q* = (¢*,5*) € 0C(Q) and any ¢ > 0. Let 0 be a positive
number. Then from (3.2) and (5.12) we can choose a number R, R > max{1,2(t* +9)}
such that for any Pe C(2)N Us(Q*), Us(Q*) = {X e R";|X — Q| < J},

| @K@, Qoo <,

S(42;[R, 0))

which is (I) in Lemma 5. To see (II), we only need to observe from (3.1) that for any
Q* € 0C(R2) and any Qe S(Q)

PeC(gl)‘flP—bQ* W(C(Q)7 l)(P7 Q) = 0’

because
eliﬁl*fk(@) =0 (k=1,2,..)
as P=(r,0) - Q" = (t*,2*) e S(Q).
We shall prove (3.3). To simplify expression in the proceeding part, we use the

following notation. When I(r) is a function on R, and / is a non-negative integer, we
denote

lim r~*&@ke0 ] (r)
r—oo

by u;(I), if it exists. Hence for a function F(r,®) on C(£2), we see

w(F) = i (N(F).
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Consider the inequality

(5.13) NH(C@),1: ))() < () + B,
where

=], ( Jqo ., € @IKC@LDE,O) dag) £2(6) da
and

B = (js(g;m’m) 7" (QIK(C(@),)(P, Q)| dag) £8(8) dos,

(P=(r,0),0<r< o).

Let ¢ be any positive number. From (3.2) we can take a sufficiently large number rg
such that

00
—a(2,k141)—1 = - __ &
[ (| lote®ldos) < gzt > 10),

where L, is the constant in Lemma 3 and

L= J 12(8) dos.
Q

Then from Lemma 3 we have

Q0

0<Li(r) < LLz(Zr)a(g’k’“)J
2r

ki)l (J gt(t, E) d05> dt
R

< % P@k)  (r > pg),
which gives
(5.14) 4 () = 0.
To estimate I,(r), we use the inequality
(5.15) L(r) < Li(r) + Ls(r),
where

_ -1 0 Q2
a0 =" | (JS(Q;M 7°(Q) 5. Gew)(P, Q) dag)ﬁ (6) doe
and

(J g (QIV(C(R),)(P, Q) dag) f(8)dog
S(8(0,27)

<P= (r,@),r>%).

Ly(r) = J

Q
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First we have from (2.3) and (3.1) that if / > 1, then

1

kel(Qki1)
where
B=c;' max 2 Geo)((1,0),(2,5))
6eR,5€0Q Ov
and

W, (r) = LZ (k-1 ( Lg g (¢, ) dc75> dr (r > %,k e I(Q,k1+1)>.
We shall later show that
(5.16) Wi (r) = o(F* k)220 (;  0) (1= 1,k el(R,kiyr)).
Hence we can conclude that if / > 1, then
(5.17) U () =0.
This also holds in the case / =0, because I;,(r) =0 then. Further we can obtain

(5.18) Ui (1) =0,

which will be proved at the end of this proof. We thus obtain from (5.15), (5.17) and
(5.18) that

(5.19) uj(B) = 0.
We can finally conclude from (5.13), (5.14) and (5.19) that
w(H(C(®),,g%)]) = 0.
In the completely same way applied to g~ we also have that
w(H(C(2),lg7)) = 0.
Since
|H(C(2),1;9)(P)| < |[H(C(R),1;97)(P)| + |H(C(R),;97)(P)],

these give the conclusion (3.3).
We shall prove (5.16). We note that ¥(r) is increasing,

Jw WI’( (r)r_“(gvkl-f-l )+d(g,k) dr
1

— @t [* @b (| g4(1,2) dos) a
2 o
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and
! 20
< L;2%@ki)-2(@.k) <r S %>,
where

Ly = J (ki) -1 (J g+(t, 5) ng) dt.
1 oQ

From these we see

(5.20) J Sl’k(r)r'"‘(g’k’“)+°‘(Q’k)“1 dr < oo
1

by integration by parts. Since
Wk (r) r—a(gka-H )+rx(g7k)

= (a(Q, kl+l) - a(g, k)) Tk(r) J t_a(g,k[+l)+a(g,k)—l dt

00
< (a(,kiy1) — a(R2,k)) J P (1) k)t @0-1 g (1 < k < kpyy),
(5.20) gives (5.16).
At the end we shall show (5.18). First we note that

521 0<5u0)= NEHC@LEGNO - FO+ 5200 (r>3),
where
Ii(r) = L (L(g;(m)) g (QK(C(@), (P, Q) dag) £(8)dos,
and
B = | (L(QM) ¢ (QV(C(@),)(P, Q) dag) r@)do (r>3).
Since

1
FOI<h0) ad (500 <ha) (r>3)
we easily see from (5.14) and (5.17) that

(5.22) m (1) = w(135]) = 0
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If we can show that

(5.23) lim sup r~ k) N(H(C(Q),1;9%))(r) <0,

r—oo

then we finally conclude from (5.21) and (5.22) that

lim sup r~*@*+)p, 1 (r) <0,

r—oo

which give (5.18). To prove (5.23), remember that —H(C(Q),/;4%)(P) is also a
harmonic function on C(Q) satisfying

: _ s — O
pochim, . ~H(C(),16")(P) = ~¢*(@) <0

for every Q* € 0C(£2). Hence from Yoshida [17, Theorem 3.3] we know that
—00 < po(=H(C(R2),5;97)) < 0

and hence
—00 < py(H(C(RQ),1;9™)) < o0.

Thus we obtain that if /> 1, then

(5.24) lim sup r~ @ ) N(H(C(R),1;9%))(r) < 0.

Since
Ho(H(C(R),0;47)) =0
(see [18, Lemma 3]), this and (5.24) also give (5.23) for any non-negative integer /.
Proor oF THEOREM 2. Take a positive continuous function ¢(#)(z > 1) such that
(5.25) p(1) = 274D

and
o) | 1o, B)ldos < La (1> 1),
Q

where

Ly = 2-““2’1)] lg(1,E)|das.
092

For any fixed P = (r,0) € C(R2), choose a number R, R > max(1l,4r). Then we see
from Lemma 4 that

(5.26) l9(Q)K(C(2), 9)(P, Q)| dog

L(Q;(R,OO))

00 o0
< LZJ (J lg(t, B)| d0'5> p()t" 2 dt < L2L4J 2dt < 0.
R 092 R
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It is evident that

| @K (@), p)(P, ) dog < .
5(€;(0,R))

These give that

[ la@Kc@),0P,0ldoo < .
5(@)

To see that H(C(R),¢;g)(P) is harmonic in C(RQ2), we remark that H(C(),¢;g)(P)
satisfies the locally mean-valued property by Fubini’s theorem.
Finally we shall show

(5.27) pecim, o H (C(RQ),9;9)(P) = g(Q")

for any Q* € 0C(22). Put
W(P,Q) = W(C(2),9)(P,Q)

in Lemma 5, which is a locally integrable function of 0C(Q2) for any fixed P € C(Q2).
Then we can see from (5.26) in the same way as in the proof of Theorem 1 that both (I)
and (II) are satisfied. Thus Lemma 5 applied to g(Q) and —g(Q) gives (5.27).

ProoF oF THEOREM 3. From Theorem 1, we have the solution H(C(Q),/;g)(P)
of the Dirichlet problem on C(2) with g satisfying (3.3). Consider the function
h—-H(C(R2),l;9). Then it follows that this is harmonic in C(£2) and vanishes con-
tinuously on 0C(R2). Since

0 < {h-H(C(Q),5;9)}"(P) < h*(P) +{H(C(Q),1;9)}"(P)
for any Pe C(2) and
m({H(C(Q),5;9)}) =0
from (3.3), (4.1) gives that
w({h — H(C(®),1;9)}") = 0.
From Theorem B we sece that

h(P) - H(C(Q),g)(P)= Y  A4r@hge(6)
kel(,kpy1)

for every P=(r,0) € Q, where Ax(k=1,2,3,...,k,y1 — 1) is a constant. Thus we
obtain the conclusion of Theorem 3.

PrROOF OF COROLLARY 4. From Theorem 3, we obtain

h(P) = H(Ty,p;g)(P) (resp. H(Tp,p — 1;9)(P)) +[1,(r,0) (P =(r,0)¢€ T,),
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where
[1i(r,0) = Zkél(g,kpﬂ) Akra(g’k)ﬁcﬂ(@) (2= S:l__l).
If we extend [][; to a harmonic function [], on R" by defining

o [TL06)  ((nO)eT)
[l €)= {—m(r, ) ((r6) e - To={(X,~y) e R (X,y) € T,})

and observe
r—p—lM(H;)(r) — 0(r — o0), M(Hj)(r) = L,._x ]_[;“(r, O)dog,

from (2.7), we know from a result of Brelot [3, Appendix, § 26] that [[, is a harmonic
polynomial on R" of degree less than p+ 1. From the fact [[,(r,0) = —[[,(r,—0), we
can write [[, = y[], where [] is a polynomial of degree less than p and even with

respect to y.
Proor oF THEOREM 4. Put

+
lim sup% =7

Take a positive integer po satisfying a(£2, ky,+1) >y and put p = max(/,pp). Since
0 < {h—H(C(Q),5; 1)} (P) < h*(P)+ {H(C(Q),];h)}"(P),
we have u,({h — H(C(Q),1;h)}") =0, which with Theorem 3 gives the conclusion.
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