Solutions of the Dirichlet problem on a cone with continuous data

Dedicated to Professor Yasuo Okuyama on his 60th birthday

By Hidenobu Yoshida and Ikuko Miyamoto

(Received Aug. 10, 1995) (Revised Dec. 25, 1995)

1. Introduction

Let R and R_+ be the set of all real numbers and all positive real numbers, respectively. The boundary and the closure of a set S in the n-dimensional Euclidean space $R^n (n \ge 2)$ are denoted by ∂S and \overline{S} , respectively. We also introduce the spherical coordinates $(r,\Theta), \Theta = (\theta_1,\theta_2,\ldots,\theta_{n-1})$, in R^n which are related to the cartesian coordinates $(X,y), X = (x_1,x_2,\ldots,x_{n-1})$ by the formulas

$$x_1 = r \left(\prod_{j=1}^{n-1} \sin \theta_j \right) \quad (n \ge 2), \quad y = r \cos \theta_1,$$

and if $n \geq 3$,

$$x_{n+1-k} = r \left(\prod_{j=1}^{k-1} \sin \theta_j \right) \cos \theta_k \quad (2 \le k \le n-1),$$

where

$$0 \le r < \infty, 0 \le \theta_j \le \pi (1 \le j \le n - 2; n \ge 3), -2^{-1}\pi < \theta_{n-1} \le 2^{-1}3\pi.$$

The unit sphere (the unit circle, if n=2) and the upper half unit sphere $\{(1,\theta_1,\theta_2,\ldots,\theta_{n-1})\in \mathbf{R}^n; 0\leq \theta_1<\pi/2\}$ (the upper half unit circle $\{(1,\theta_1)\in \mathbf{R}^2; -\pi/2<\theta_1<\pi/2\}$, if n=2) in \mathbf{R}^n are denoted by \mathbf{S}^{n-1} and \mathbf{S}^{n-1}_+ , respectively. The half-space (the half-plane, if n=2)

$$\{(X, y) \in \mathbb{R}^n; X \in \mathbb{R}^{n-1}, y > 0\} = \{(r, \Theta) \in \mathbb{R}^n; \Theta \in \mathbb{S}^{n-1}_{\perp}, 0 < r < \infty\}$$

is denoted by T_n .

Given a domain $D \subset \mathbb{R}^n$ and a continuous function g on ∂D , we say that h is a solution of the (classical) Dirichlet problem on D with g, if h is harmonic in D and

$$\lim_{P \in D, P \to Q} h(P) = g(Q)$$

for every $Q \in \partial D$. If D is a smooth bounded domain, then the existence of a solution of the Dirichlet problem and its uniqueness is completely known (see e.g. [11, Theorem 5.21]). When D is the typical unbounded domain T_n , Helms [13, p.42 and p.158] states that even if g(x) is a bounded continuous function on ∂T_n , the solution of the Dirichlet

problem on T_n with g is not unique and to obtain the unique solution $H(P)(P = (X, y) \in T_n)$ we must specify the behavior of H(P) as $y \to +\infty$.

With respect to particular solutions of the Dirichlet problem on T_n , the following results are known. Let g(X) be a continuous function on $\partial T_n = \mathbb{R}^{n-1}$ satisfying (1.1) with a non-negative integer l:

(1.1)
$$\int_{\mathbb{R}^{n-1}} \frac{|g(X)|}{1+|X|^{n+l}} dX < \infty.$$

Then Armitage [1, Theorem 2] gave a solution of the Dirichlet problem on T_n with g in an explicit form, which is denoted by $H(T_n, l; g)(P)$ in the following (also see Siegel [16, p.1 and p.7]}. Further, for any continuous function g(X) on ∂T_n Finkelstein and Scheinberg [8] showed the existence of a solution of the Dirichlet problem on T_n with g and Gardiner [9] gave the solution explicitly. These results of the case n = 2 had already been obtained by Nevanlinna [15].

About general solutions of the Dirichlet problem on T_n , Nevanlinna [15] also proved the following result of the case n = 2.

Let g(x) be a continuous function on **R** satisfying

$$\int_{R} \frac{|g(x)|}{1+|x|^{2+l}} \, dx < \infty$$

with a non-negative integer l. If h(P) is a solution of the Dirichlet problem on T_2 with g such that

$$\liminf_{r\to\infty} r^{-(l+1)}\mu(r) = 0, \quad \mu(r) = \sup_{-\pi/2<\theta_1<\pi/2} |h(r,\theta_1)|\cos\theta_1,$$

then
$$h(P) = H(T_2, l; g)(P) + \chi(P)(P = (r, \theta_1) \in T_2)$$
, where

$$\chi(P) = \begin{cases} \sum_{k=0}^{l'} A_{2k} r^{2k} \sin 2k\theta_1 + \sum_{k=1}^{l'} A_{2k-1} r^{2k-1} \cos(2k-1)\theta_1 & (l=2l') \\ \sum_{k=0}^{l'-1} A_{2k} r^{2k} \sin 2k\theta_1 + \sum_{k=1}^{l'} A_{2k-1} r^{2k-1} \cos(2k-1)\theta_1 & (l=2l'-1) \\ 0 & (l=0) \end{cases}$$

(l' is a positive integer and all A_0, A_1, \ldots, A_l are constants).

To answer a question of Siegel [16, p.8] Yoshida [19] recently proved

THEOREM A [19, Theorems 1 and 2]. Let g(Q) be a continuous function on $\partial T_n (n \geq 2)$ satisfying (1.1) with a non-negative integer l. Then the solution $H(T_n, l; g)(P)$ of the Dirichlet problem with g satisfies

$$\lim_{r\to\infty} r^{-l-1} \int_{\mathcal{S}_+^{n-1}} H(\mathbf{T}_n, l; g)(r, \boldsymbol{\Theta}) \cos \theta_1 d\sigma_{\boldsymbol{\Theta}} = 0 \quad (P = (r, \boldsymbol{\Theta}) \in \mathbf{T}_n, \boldsymbol{\Theta} = (\theta_1, \theta_2, \dots, \theta_{n-1})),$$

where $d\sigma_{\Theta}$ is the surface element of S^{n-1} .

If h(P) is a solution of the Dirichlet problem on T_n with g satisfying

$$\lim_{r\to\infty}\,r^{-l-1}\,\int_{S^{n-1}}\,h^+(r,\boldsymbol{\varTheta})\!\cos\theta_1\,d\sigma_{\boldsymbol{\varTheta}}=0,$$

then

$$h(P) = H(T_n, l; g)(P) + \Pi(P), \quad \Pi(P) = \begin{cases} y\Pi^*(P) & (l \ge 1) \\ 0 & (l = 0) \end{cases}$$

for every $P = (X, y) \in T_n$, where $\Pi^*(P)$ is a polynomial of $P = (x_1, x_2, ..., x_{n-1}, y) \in \mathbb{R}^n$ of degree at most $l - 1(l \ge 1)$ and even with respect to the variable y.

A half-space is a special one of more general unbounded domains

$$C(\Omega) = \{(r, \Theta) \in \mathbb{R}^n; (1, \Theta) \in \Omega, r \in \mathbb{R}_+\}$$
 (Ω is a domain on S^{n-1})

which are called cones (angular domains, if n = 2), i.e. $T_n = C(S_+^{n-1})$. Because of the speciality, it has many advantageous merits which a cone $C(\Omega)$ lacks, e.g., it has a simple Green function and the mirror image to which a harmonic function vanishing on the boundary can be extended, etc.

In this paper, to generalize Theorem A to the conical case and extend Yoshida's results we shall give particular solutions (Theorem 1) and a type of general solutions (Theorem 3) of the Dirichlet problem on a cone by introducing conical generalized Poisson kernels and Poisson integrals. We also generalize the results of Finkelstein and Scheinberg [8] and Gardinar [9] to the conical case (Theorem 2). Finally a result of Yoshida [19, Theorem 3] will be generalized in the conical form (Theorem 4).

2. Preliminaries

Let $\Delta_n (n \ge 2)$ be the Laplace operator and Λ_n the spherical part of the spherical coordinates of Δ_n :

$$\Delta_n = \frac{n-1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \Lambda_n.$$

Given a domain Ω on $S^{n-1}(n \ge 2)$, consider the Dirichlet problem

(2.1)
$$(\Lambda_n + \lambda)F = 0 \text{ in } \Omega$$

$$F = 0 \text{ on } \partial \Omega$$

We denote the non-decreasing sequence of positive eigenvalues of (2.1) by $\{\lambda(\Omega,k)\}_{k=1}^{\infty}$. In this expression we write $\lambda(\Omega,k)$ the same number of times as the dimension of the corresponding eigenspace. When the normalized eigenfunction corresponding $\lambda(\Omega,k)$ is denoted by $f_k^{\Omega}(\Theta)$, the set of sequential eigenfunctions corresponding to the same value of $\lambda(\Omega,k)$ in the sequence $\{f_k^{\Omega}(\Theta)\}_{k=1}^{\infty}$ makes an orthonormal basis for the eigenspace of the eigenvalue $\lambda(\Omega,k)$. Hence for each $\Omega \subset S^{n-1}$ there is a sequence $\{k_i\}$ of positive integers such that $k_1 = 1$, $\lambda(\Omega,k_i) < \lambda(\Omega,k_{i+1})$

$$\lambda(\Omega, k_i) = \lambda(\Omega, k_i + 1) = \lambda(\Omega, k_i + 2) = \cdots = \lambda(\Omega, k_{i+1} - 1)$$

and $\{f_{k_i}^{\Omega}, f_{k_i+1}^{\Omega}, \dots, f_{k_{i+1}-1}^{\Omega}\}$ is an orthonormal basis for the eigenspace of the eigenvalue

 $\lambda(\Omega, k_i) (i = 1, 2, 3, ...)$. It is well known that $k_2 = 2$ and $f_1^{\Omega}(\Theta) > 0$ for any $\Theta \in \Omega$ (see Courant and Hilbert [5, p.451 and p.458]). With respect to $\{k_i\}$, the following Remark shows that even in the case $\Omega = S_+^{n-1} (n = 2, 3, 4, ...)$, not only the simplest case $k_i = i (i = 1, 2, 3, ...)$, but also complicated cases can appear.

If Ω is an (n-1)-dimensional compact Riemannian manifold with its boundary to be sufficiently regular, we know that

$$\lambda(\Omega, k) \sim A(\Omega, n) k^{2/(n-1)} \quad (k \to \infty)$$

(see e.g. Cheng and Li [4]) and

$$\sum_{\lambda(\Omega,k) \le x} \{ f_k^{\Omega}(\Theta) \}^2 \sim B(\Omega,n) x^{(n-1)/2} \quad (x \to \infty)$$

uniformly with respect to Θ (e.g. Minakshisundaram and Pleijel [14], and also Essen and Lewis [7 p.120 and pp.126–128]), where $A(\Omega, n)$ and $B(\Omega, n)$ are both constants depending on Ω and n. Hence there exist two positive constants M_1, M_2 such that

(2.2)
$$M_1 k^{2/(n-1)} \le \lambda(\Omega, k) \quad (k = 1, 2, 3, \ldots)$$

and

(2.3)
$$|f_k^{\Omega}(\Theta)| \le M_2 k^{1/2} \quad (\Theta \in \Omega, k = 1, 2, 3, \ldots).$$

If we denote a positive solution of the equation

(2.4)
$$t^{2} + (n-2)t - \lambda(\Omega, k) = 0$$

by $\alpha(\Omega, k)$, then we also have

(2.5)
$$\alpha(\Omega, k) \ge M_3 k^{1/(n-1)} \quad (k = 1, 2, ...)$$

from (2.2), where M_3 is a positive constant independent of k.

In the following we put the strong assumption relative to Ω on S^{n-1} : if $n \ge 3$, Ω is a $C^{2,a}$ -domain (0 < a < 1) on S^{n-1} surrounded by a finite number of mutually disjoint closed hypersurfaces (see e.g. [10, pp.88-89] for the definition of $C^{2,a}$ -domain). We remark that

$$r^{\alpha(\Omega,k)}f_k^{\Omega}(\Theta)$$
 $(k=1,2,\ldots)$

is harmonic on $C(\Omega)$ and vanish continuously on $\partial C(\Omega)$. For a domain Ω and the sequence $\{k_i\}$ mentioned above, by $I(\Omega, k_l)$ we denote the set of all positive integers less that $k_l(l=1,2,3,\ldots)$. In spite of the fact $I(\Omega,k_1)=\emptyset$, the summation over $I(\Omega,k_1)$ of a function S(k) of a variable k will be used by promising

$$\sum_{k \in I(\Omega, k_1)} S(k) = 0.$$

Let $G_{C(\Omega)}((r_1, \Theta_1), (r_2, \Theta_2))((r_1, \Theta_1), (r_2, \Theta_2) \in C(\Omega))$ be the Green function of a cone

 $C(\Omega)$ and let s_n denote the surface area $2\pi^{n/2}\{\Gamma(n/2)\}^{-1}$ of S^{n-1} . The function

$$c_n^{-1} \frac{\partial}{\partial \nu} G_{C(\Omega)}(P, Q), \quad c_n = \begin{cases} 2\pi & (n=2) \\ (n-2)s_n & (n \geq 3) \end{cases}$$

of $Q \in \partial C(\Omega) - \{O\}$ (O is the origin of \mathbb{R}^n) for any fixed $P \in C(\Omega)$ is an ordinary Poisson kernel, where $\partial/\partial v$ denotes the differentiation at Q along the inward normal into $C(\Omega)$.

Remark 1. Suppose $\Omega = S_+^{n-1} (n \ge 2)$. Then

(2.6)
$$c_n^{-1} \frac{\partial}{\partial \nu} G_{T_n}((r,\Omega),(t,\Xi)) = 2s_n^{-1} \sum_{k=0}^{\infty} c_{k,n+2} r^{k+1} t^{-k-n} \cos \theta_1 L_{k,n+2}(\cos \gamma)$$

for any $(X, y) = (r, \Theta) \in T_n$ and any $(Z, 0) = (t, \Xi) \in \partial T_n$ satisfying r < t, where

$$c_{k,n+2} = \binom{k+n-1}{k},$$

 $L_{k,n+2}$ is the (n+2)-dimensional Legendre polynomial of degree k and γ is the angle between M=(X,0) and N=(Z,0) defined by

$$\cos \gamma = \frac{(M, N)}{|M| \, |N|}$$

(see Armitage [1, Theorem E]). On the other hand, Remark 3 in Section 5 applied to $\Omega = S_{+}^{n-1}$ gives the Fourier series expansion of the function

$$c_n^{-1} \frac{\partial}{\partial v} G_{T_n}((r, \boldsymbol{\Theta}), (t, \boldsymbol{\Xi})) \quad (r < t)$$

of Θ with respect to the sequence of eigenfunctions of (2.1). Hence, in comparison with (2.6) we obtain

(2.7)
$$\alpha(S_{+}^{n-1}, k_i) = i, \quad (i = 1, 2, 3, \dots; n = 2, 3, 4, \dots).$$

Consider the simplest case n = 2 i.e. $\Omega = S_+^1$. For $(r, \theta_1) \in T_2$ and $(|t|, \Xi) = t \in R$, we see $\cos \gamma = |t|^{-1} t \sin \theta_1$ and hence

$$k_i = i \quad (i = 1, 2, 3, \ldots)$$

$$f_k^{\Omega}(\theta_1) = \rho_k \cos \theta_1 L_{k-1,4} (\sin \theta_1) \quad (k = 1, 2, ...),$$

where ρ_k is a constant such that

$$\int_{-\pi/2}^{\pi/2} \{f_k^{\Omega}(\theta_1)\}^2 d\theta_1 = 1.$$

Next, suppose n=3 i.e. $\Omega = S_+^2$. Then for $(r, \Theta) = (X, y) \in T_3, \Theta = (\theta_1, \theta_2)$ and $(t, \Xi) \in \partial T_3 = \mathbb{R}^2, \Xi = (2^{-1}\pi, \xi_2)$, we see

$$\cos \gamma = \sin \theta_1 \sin \theta_2 \sin \xi_2 + \sin \theta_1 \cos \theta_2 \cos \xi_2.$$

If we put

$$L_{0.5} = \Phi_{0.0} = 1$$

and

$$\begin{split} L_{k,5}(\sin\theta_1\sin\theta_2\sin\xi_2 + \sin\theta_1\cos\theta_2\cos\xi_2) \\ &= \varPhi_{k,0}(\theta_1,\theta_2)\cos^k\xi_2 + \varPhi_{k,1}(\theta_1,\theta_2)\cos^{k-2}\xi_2 + \dots + \varPhi_{k,[k/2]}(\theta_1,\theta_2)\cos^{k-2[k/2]}\xi_2 \\ &+ \varPsi_{k,0}(\theta_1,\theta_2)\cos^{k-1}\xi_2\sin\xi_2 + \varPsi_{k,1}(\theta_1,\theta_2)\cos^{k-3}\xi_2\sin\xi_2 + \dots \\ &+ \varPsi_{k,[(k-1)/2]}(\theta_1,\theta_2)\cos^{k-1-2[(k-1)/2]}\xi_2\sin\xi_2 \quad (k=1,2,3,\ldots), \end{split}$$

then

$$k_i = 1 + \frac{(i-1)i}{2}$$
 $(i = 1, 2, 3, ...)$

and

$$\begin{split} f_{k_{i}+j}^{\Omega}(\Theta) \\ &= \begin{cases} \rho_{k_{i}+j} \Phi_{i-1,j}(\theta_{1},\theta_{2}) \cos \theta_{1} & (j=0,1,\ldots,\left[\frac{i-1}{2}\right]; i=1,2,\ldots) \\ \rho_{k_{i}+j} \Psi_{i-1,j-\left[(i-1)/2\right]-1}(\theta_{1},\theta_{2}) \cos \theta_{1} & (j=\left[\frac{i-1}{2}\right]+1,\ldots,\left[\frac{i-1}{2}\right]+\left[\frac{i-2}{2}\right]+1; i=2,3,\ldots), \end{cases} \end{split}$$

where ρ_{k_i+j} is a constant such that

$$\int_{\mathcal{S}_{+}^{2}} \left\{ f_{k_{i}+j}^{\Omega}(\boldsymbol{\Theta}) \right\}^{2} d\sigma_{\boldsymbol{\Theta}} = 1.$$

3. Existence and properties of particular solutions

The Fourier coefficient

$$\int_{\Omega} F(\boldsymbol{\Theta}) f_k^{\Omega}(\boldsymbol{\Theta}) d\sigma_{\boldsymbol{\Theta}}$$

of a function $F(\Theta)$ on Ω with respect to the orthonormal sequence $\{f_k^{\Omega}(\Theta)\}$ is denoted by c(F,k), if it exists. We also denote the set $\partial C(\Omega) - \{O\}$ by $S(\Omega)$. Now we shall define generalized Poisson kernels of the conical type. For a non-negative integer l and two points $P = (r, \Theta) \in C(\Omega)$, $Q = (t, \Xi) \in S(\Omega)$, we put

$$(3.1) V(C(\Omega),l)(P,Q) = \sum_{k \in I(\Omega,k_{l+1})} 2^{\alpha(\Omega,k)+n-1} c((H_{\Xi})_1,k) t^{-\alpha(\Omega,k)-n+1} r^{\alpha(\Omega,k)} f_k^{\Omega}(\Theta),$$

where

$$(H_{\Xi})_1(\boldsymbol{\Theta}) = c_n^{-1} \frac{\partial}{\partial \nu} G_{C(\Omega)}((1, \boldsymbol{\Theta}), (2, \boldsymbol{\Xi})).$$

We introduce another function of $P \in C(\Omega)$ and $Q = (t, \Xi) \in S(\Omega)$

$$W(C(\Omega),l)(P,Q) = \begin{cases} V(C(\Omega),l)(P,Q) & (1 \le t < \infty) \\ 0 & (0 < t < 1). \end{cases}$$

The generalized Poisson kernel $K(C(\Omega), l)(P, Q)(P \in C(\Omega), Q \in S(\Omega))$ with respect to $C(\Omega)$ is defined by

$$K(C(\Omega),l)(P,Q)=c_n^{-1}\frac{\partial}{\partial \nu}G_{C(\Omega)}(P,Q)-W(C(\Omega),l)(P,Q)\quad (P\in C(\Omega),Q\in S(\Omega)).$$

In fact

$$K(C(\Omega),0)(P,Q)=c_n^{-1}\frac{\partial}{\partial \nu} G_{C(\Omega)}(P,Q).$$

REMARK 2. We shall show that the kernel $K(T_n, l)(P, Q)(l \ge 1)$ coincides with ones in Armitage [1], Siegel [16] and Yoshida [19]. Put $\Omega = S_+^{n-1}$ and $r_2 = 1$ in Remark 3 of Section 5. Then from (2.7) we have

$$c_n^{-1} \frac{\partial}{\partial v} G_{T_n}((r, \Theta), (t, \Xi)) = \sum_{i=1}^{\infty} 2^{n-1+i} r^i t^{1-n-i} \left(\sum_{k=k_i}^{k_{i+1}-1} c((H_{\Xi})_1, k) f_k^{\Omega}(\Theta) \right)$$

for any $(r, \Theta) \in T_n$ and any $(t, \Xi) \in \partial T_n(r < t)$, which is (2.6). Hence we obtain

$$2^{n+i}\left(\sum_{k=k_{i+1}}^{k_{i+2}-1}c((H_{\Xi})_1,k)f_k^{\Omega}(\Theta)\right)=2s_n^{-1}c_{i,n+2}\cos\theta_1L_{i,n+2}(\cos\gamma)\quad (i=0,1,2,\ldots).$$

Since

$$V(T_n, l)(P, Q) = \sum_{i=0}^{l-1} 2^{n+i} r^{i+1} t^{-n-i} \left(\sum_{k=k-1}^{k_{i+2}-1} c((H_{\Xi})_1, k) f_k^{\Omega}(\Theta) \right)$$

from (2.7), we finally have

$$V(T_n, l)(P, Q) = 2s_n^{-1} \sum_{i=0}^{l-1} c_{i,n+2} r^{i+1} t^{-n-i} \cos \theta_1 L_{i,n+2}(\cos \gamma).$$

Let $F(P) = F(r, \Theta)$ be a function on $C(\Omega)$ and put

$$N(F)(r) = \int_{\Omega} F(r, \Theta) f_1^{\Omega}(\Theta) d\sigma_{\Theta}.$$

For a non-negative integer p we write

$$\mu_p(F) = \lim_{r \to \infty} r^{-\alpha(\Omega, k_{p+1})} N(F)(r),$$

if it exists.

The following theorem is a generalization of the first part of Yoshida [18, Theorem 3] and Yoshida [18, Lemma 3] which are the case l=0 of Theorem 1.

Theorem 1. Let l be a non-negative integer and let $g(Q)=g(t,\Xi)$ be a continuous function on $\partial C(\Omega)$ satisfying

(3.2)
$$\int_{1}^{\infty} t^{-\alpha(\Omega,k_{l+1})-1} \left(\int_{\partial\Omega} |g(t,\Xi)| \, d\sigma_{\Xi} \right) dt < \infty.$$

Then

$$H(C(\Omega), l; g)(P) = \int_{S(\Omega)} g(Q)K(C(\Omega), l)(P, Q)d\sigma_Q$$

is a solution of the classical Dirichlet problem on $C(\Omega)$ with g and satisfies

(3.3)
$$\mu_l(|H(C(\Omega), l; g)|) = 0.$$

By taking $\Omega = S_{+}^{n-1}$, we obtain from (2.6) and Remark 2

COROLLARY 1 (Yoshida [19], Theorem 1]). Let g(X) be a continuous function on $\partial T_n = \mathbb{R}^{n-1}$ satisfying (1.1) with a non-negative integer l. Then $H(T_n, l; g)(P)$ is a solution of the Dirichlet problem on T_n with g such that

$$\mu_l(|H(\boldsymbol{T}_n,l;g)|)=0.$$

To solve the Dirichlet problem on $C(\Omega)$ with any continuous function g(Q), we shall define another Poisson kernel. Let $\varphi(t)$ be a positive continuous function of $t \ge 1$ satisfying

$$\varphi(1)=2^{-\alpha(\Omega,1)}.$$

Denote the set

$$\{t \ge 1; -\alpha(\Omega, k_i) = (\log 2)^{-1}(\log(t^{n-1}\varphi(t)))\}$$

by $S(\Omega, \varphi, i)$. Then $1 \in S(\Omega, \varphi, 1)$. When there is an integer N such that $S(\Omega, \varphi, N) \neq \emptyset$ and $S(\Omega, \varphi, N+1) = \emptyset$, denote the set $\{i; 1 \leq i \leq N\}$ of integers by $J(\Omega, \varphi)$. Otherwise, denote the set of all positive integers by $J(\Omega, \varphi)$. Let $t(i) = t(\Omega, \varphi, i)$ be the minimum of elements t in $S(\Omega, \varphi, i)$ for each $i \in J(\Omega, \varphi)$. In the former case, we put $t(N+1) = \infty$. Then t(1) = 1. We define $W(C(\Omega), \varphi)(P, Q)(P \in C(\Omega), Q = (t, \Xi) \in S(\Omega))$ by

$$W(C(\Omega),\varphi)(P,Q) = \begin{cases} 0 & (0 < t < 1) \\ V(C(\Omega),i)(P,Q) & (t(i) \le t < t(i+1); i \in J(\Omega,\varphi)). \end{cases}$$

The Poisson kernel $K(C(\Omega), \varphi)(P, Q)(P \in C(\Omega), Q \in S(\Omega))$ is defined by

$$K(C(\Omega), \varphi)(P, Q) = c_n^{-1} \frac{\partial}{\partial \nu} G_{C(\Omega)}(P, Q) - W(C(\Omega), \varphi)(P, Q).$$

Now we have

THEOREM 2. Let g(Q) be a continuous function on $\partial C(\Omega)$. Then there is a positive continuous function $\varphi_g(t)$ of $t \geq 1$ depending on g such that

$$H(C(\Omega), \varphi_g)(P) = \int_{S(\Omega)} g(Q)K(C(\Omega), \varphi_g)(P, Q) d\sigma_Q$$

is a solution of the Dirichlet problem on $C(\Omega)$ with g.

If we take $\Omega = S_+^{n-1}$ in Theorem 2, Then we have

COROLLARY 2 (Finkelstein and Scheinberg [8] and Gardiner [9]). Let g(Q) be a continuous function on ∂T_n . Then there is a positive continuous function $\varphi_g(t)$ of $t \ge 1$ depending on g such that

$$H(T_n, \varphi_g)(P) = \int_{\partial T_n} g(Q) K(T_n, \varphi_g)(P, Q) d\sigma_Q$$

is a solution of the Dirichlet problem on T_n with g.

4. A type of general solutions

To obtain a type of general solutions, the following is essential.

THEOREM B (Yoshida and Miyamoto [20, Theorem 3]). Let $h(r, \Theta)$ be a harmonic function in $C(\Omega)$ vanishing continuously on $\partial C(\Omega)$ and let p be a positive integer. If h satisfies

$$\mu_n(h^+)=0,$$

then

$$h(r, \Theta) = \sum_{k \in I(\Omega, k_{n+1})} A_k r^{\alpha(\Omega, k)} f_k^{\Omega}(\Theta)$$

for every $(r, \Theta) \in C(\Omega)$, where $A_k(k = 1, 2, 3, ..., k_{p+1} - 1)$ is a constant.

By using Theorem 1 and Theorem B, we can prove the following Theorem 3.

THEOREM 3. Let l be a non-negative integer and p be a positive integer satisfying $p \ge 1$. Let $g(t, \Xi)$ be a continuous function on $\partial C(\Omega)$ satisfying (3.2) with l. If $h(r, \Theta)$ is a solution of the Dirichlet problem on $C(\Omega)$ with g satisfying

(4.1)
$$\mu_p(h^+) = 0$$
,

then

$$h(r,\Theta) = H(C(\Omega),l;g)(P) + \sum_{k \in I(\Omega,k_{n+1})} A_k r^{\alpha(\Omega,k)} f_k^{\Omega}(\Theta)$$

for every $P = (r, \Theta) \in C(\Omega)$, where $A_k(k = 1, 2, ..., k_{p+1} - 1)$ is a constant.

If we take l = 0 and p = 1 in Theorem 3, then we have the following result which is the second part of Yoshida [18, Theorem 3].

COROLLARY 3. Let g(Q) be a continuous function on $\partial C(\Omega)$ satisfying

$$\int_{1}^{\infty} t^{-\alpha(\Omega,1)-1} \left(\int_{\partial \Omega} \left| g(t,\Xi) \right| d\sigma_{\Xi} \right) dt < \infty.$$

If $h(r, \Theta)$ is a solution of the Dirichlet problem on $C(\Omega)$ with g satisfying

$$\mu_1(h^+)=0,$$

then

$$h(r, \boldsymbol{\varTheta}) = c_n^{-1} \int_{\mathcal{S}(\Omega)} \, g(Q) \, rac{\partial}{\partial
u} \, G_{C(\Omega)}(P,Q) \, d\sigma_Q + \mu_0(h) r^{lpha(\Omega,1)} f_1^{\Omega}(\boldsymbol{\varTheta})$$

for every $P = (r, \Theta) \in C(\Omega)$.

If we put $\Omega = S_+^{n-1}$, $l = \rho$ and $p = \rho$ (resp. $l = \rho - 1$ and $p = \rho$) (ρ is a positive integer) in Theorem 3, we obtain

COROLLARY 4 (Yoshida [19, Theorem 2 (resp. Corollary 2)]). Let ρ be a positive integer and g(X) be a continuous function on $\partial T_n = \mathbb{R}^{n-1}$ satisfying (1.1) with ρ (resp. (1.1) with $\rho - 1$). If h(P) is a solution of the Dirichlet problem on T_n with g such that

$$\lim_{r \to \infty} r^{-(\rho+1)} N(h^+)(r) = 0,$$

then

$$h(P) = H(T_n, \rho; g)(P) + y\Pi(P)$$

$$(resp. h(P) = H(T_n, \rho - 1; g)(P) + y\Pi(P)),$$

where $\Pi(P)$ is a harmonic polynomial (of $P = (x_1, x_2, ..., x_{n-1}, y) \in \mathbb{R}^n$) of at most degree $\rho - 1$ and even with respect to the variable y.

The following Theorem 4 also generalizes a result of Yoshida [19, Theorem 3].

THEOREM 4. If $h(r, \Theta)$ is a harmonic function on $C(\Omega)$ and is continuous on $\overline{C(\Omega)}$ such that the restriction $h = h|_{\partial C(\Omega)}$ of h to $\partial C(\Omega)$ satisfies

$$\int_{1}^{\infty} t^{-\alpha(\Omega,k_{l+1})-1} \Biggl(\int_{\partial\Omega} \left| h(t,\Xi) \right| d\sigma_{\Xi} \Biggr) dt < \infty$$

for some non-negative integer l and

$$\limsup_{r\to\infty}\frac{\log N(h^+)(r)}{\log r}<\infty,$$

then for some positive integer p

$$h(r,\Theta) = H(C(\Omega),l;h)(P) + \sum_{k \in I(\Omega,k_{n+1})} A_k r^{\alpha(\Omega,k)} f_k^{\Omega}(\Theta)$$

at every $P = (r, \Theta) \in C(\Omega)$, where $A_k(k = 1, 2, ..., k_{p+1} - 1)$ is a constant.

5. Proof of Theorems 1,2,3,4, and Corollary 4

Given a domain Ω on S^{n-1} and an interval $I \subset \mathbb{R}_+$, the sets $\{(r, \Theta) \in \mathbb{R}^n; (1, \Theta) \in \Omega, r \in I\}$ and $\{(t, \Xi) \in \mathbb{R}^n; (1, \Xi) \in \partial\Omega, t \in I\}$ are denoted by $C(\Omega; I)$ and $S(\Omega; I)$, respectively.

LEMMA 1. Let $h(r, \Theta)$ be a harmonic function in $C(\Omega; (a, b)), 0 \le a < b \le \infty$, which vanishes continuously on $S(\Omega; (a, b))$. For any fixed r(a < r < b), define the function $h_r(\Theta)$ on Ω by $h_r(\Theta) = h(r, \Theta)$. Then

$$c(h_r,k) = \{ (r_1 r^{-1})^{\beta(\Omega,k)} c(h_{r_1},k) (r_2^{\delta(\Omega,k)} - r^{\delta(\Omega,k)}) + (r_2 r^{-1})^{\beta(\Omega,k)} c(h_{r_2},k) (r^{\delta(\Omega,k)} - r_1^{\delta(\Omega,k)}) \} (r_2^{\delta(\Omega,k)} - r_1^{\delta(\Omega,k)})^{-1}$$

for any given $r_1, r_2(0 \le a < r_1 < r_2 < b \le \infty)$, where $-\beta(\Omega, k)$ is a negative solution of (2.4) and $\delta(\Omega, k) = \alpha(\Omega, k) + \beta(\Omega, k)$.

PROOF. First of all, we note that $h(r, \Theta)$ is continuously differentiable twice on $\{(r, \Theta); \Theta \in \overline{\Omega}, a < r < b\}$ (see [10, pp.101–102]). Now, by differentiating twice under the integral sign,

$$\frac{\partial^2 c(h_r, k)}{\partial r^2} = \int_{\Omega} \frac{\partial^2 h(r, \theta)}{\partial r^2} f_k^{\Omega}(\Theta) d\sigma_{\Theta}
= -(n-1)r^{-1} \int_{\Omega} \frac{\partial h}{\partial r} f_k^{\Omega} d\sigma_{\Theta} - r^{-2} \int_{\Omega} (\Lambda_n h) f_k^{\Omega} d\sigma_{\Theta}.$$

Hence, if we see from the formula of Green (see e.g. Helgason [12, p.387]) that

$$\int_{\Omega} (\Lambda_n h) f_k^{\Omega} d\sigma_{\Theta} = \int_{\Omega} h(\Lambda_n f_k^{\Omega}) d\sigma_{\Theta},$$

we have that

$$\frac{\partial^2}{\partial r^2} c(h_r, k) + (n-1)r^{-1} \frac{\partial}{\partial r} c(h_r, k) - \lambda(\Omega, k)r^{-2} c(h_r, k) = 0$$

for any r, a < r < b. This gives that

$$c(h_r,k) = A_k r^{\alpha(\Omega,k)} + B_k r^{-\beta(\Omega,k)} \quad (a < r < b),$$

 A_k and B_k being constants independent of r. Since $c(h_r, k)$ takes a value $c(h_{r_j}, k)$ at a point $r_i(j = 1, 2)$, the conclusion of Lemma 1 follows immediately.

LEMMA 2. Let $H(r,\Theta)$ be a harmonic function in $C(\Omega;(0,2))$ such that $H(r,\Theta)$ vanishes continuously on $S(\Omega;(0,2))$ and is uniformly bounded as $r \to 0$. Then for any non-negative integer l we have

$$|H(r,\Theta) - \sum_{k \in I(\Omega,k_{l+1})} c(H_1,k) r^{\alpha(\Omega,k)} f_k^{\Omega}(\Theta)| \le L_1(H) r^{\alpha(\Omega,k_{l+1})} \quad (0 < r < 1),$$

where $H_1(\Theta) = H(1, \Theta)$ and $L_1(H)$ is a constant dependent only on H.

PROOF. Put $H_r(\Theta) = H(r, \Theta)$. For any fixed r, 0 < r < 2, we see from Lemma 1 that

$$c(H_r,k) = \{ (r_1 r^{-1})^{\beta(\Omega,k)} c(H_{r_1},k) (r_2^{\delta(\Omega,k)} - r^{\delta(\Omega,k)})$$

+ $(r_2 r^{-1})^{\beta(\Omega,k)} c(H_{r_2},k) (r^{\delta(\Omega,k)} - r_1^{\delta(\Omega,k)}) \} (r_2^{\delta(\Omega,k)} - r_1^{\delta(\Omega,k)})^{-1}$

for any r_1 and r_2 , $0 < r_1 < r_2 < 2$. Since $c(H_{r_1}, k)$ is also uniformly bounded as $r_1 \to 0$, we obtain

(5.1)
$$c(H_r,k) = (r/r_2)^{\alpha(\Omega,k)}c(H_{r_2},k) \quad (0 < r_2 < 2).$$

Now, take a number r_2^* satisfying $r < r_2^* < 2$. Then we have from (2.3) that

$$|c(H_{r_2^*},k)| \le s_n M_2 k^{1/2} \times \max_{\Theta \in \Omega} |H(r_2^*,\Theta)|.$$

It follows from (2.3), (2.5), (5.1) and (5.2) that

(5.3)
$$\sum_{k=1}^{\infty} |c(H_r,k)| |f_k^{\Omega}(\Theta)| \le s_n M_2^2 \times \max_{\Theta \in \Omega} |H(r_2^*,\Theta)| \times \sum_{k=1}^{\infty} k(r/r_2^*)^{M_3 k^{1/(n-1)}}.$$

Hence we know from the completeness of the orthonormal sequence $\{f_k^{\Omega}(\Theta)\}$ that

(5.4)
$$\sum_{k=1}^{\infty} c(H_r, k) f_k^{\Omega}(\boldsymbol{\Theta}) = H(r, \boldsymbol{\Theta})$$

for any $\Theta \in \Omega$.

If we take $r = 1, r_2^* = 3/2$ in (5.3) and put

$$L_1(H) = s_n M_2^2 \times \max_{\boldsymbol{\Theta} \in \Omega} \left| H\left(\frac{3}{2}, \boldsymbol{\Theta}\right) \right| \times \sum_{k=1}^{\infty} k\left(\frac{2}{3}\right)^{M_3 k^{1/(n-1)}},$$

then we obtain that

$$\sum_{k=1}^{\infty} |c(H_1,k)| |f_k^{\Omega}(\Theta)| \le L_1(H).$$

If 0 < r < 1, then by taking $r_2 = 1$ in (5.1) we have from (5.3) and (5.4) that

$$\begin{aligned} |H(r,\Theta) - \sum_{k \in I(\Omega,k_{l+1})} c(H_1,k) r^{\alpha(\Omega,k)} f_k^{\Omega}(\Theta)| &\leq \sum_{k=k_{l+1}}^{\infty} |c(H_r,k)| |f_k^{\Omega}(\Theta)| \\ &= \sum_{k=k_{l+1}}^{\infty} |c(H_1,k)| |f_k^{\Omega}(\Theta)| r^{\alpha(\Omega,k)} \leq L_1(H) r^{\alpha(\Omega,k_{l+1})}, \end{aligned}$$

which gives the conclusion.

LEMMA 3. For a non-negative integer l we have

$$\left|c_n^{-1}\frac{\partial}{\partial v} G_{C(\Omega)}(P,Q) - V(C(\Omega),l)(P,Q)\right| \leq L_2(2r)^{\alpha(\Omega,k_{l+1})} t^{-\alpha(\Omega,k_{l+1})-n+1}$$

for any $P = (r, \Theta) \in C(\Omega)$ and any $Q = (t, \Xi) \in S(\Omega)$ satisfying 0 < (2r/t) < 1, where L_2 is a constant independent of P, Q and l.

PROOF. Take any $P=(r,\Theta)\in C(\Omega)$ and any $Q=(t,\Xi)\in S(\Omega)$. Put $R_1=(2r/t)$, u=(t/2) and $\Theta_1=\Theta$ in

$$u^{n-2}G_{C(\Omega)}((uR_1,\Theta_1),(uR_2,\Theta_2)) = G_{C(\Omega)}((R_1,\Theta_1),(R_2,\Theta_2))$$
$$((R_1,\Theta_1) \in C(\Omega),(R_2,\Theta_2) \in C(\Omega), 0 < u < \infty).$$

When (R_2, Θ_2) approaches to $(2, \Xi) \in S(\Omega)$ along the inward normal, we obtain

$$(5.5) \qquad \left(\frac{1}{2}t\right)^{n-1}\frac{\partial}{\partial \nu} G_{C(\Omega)}((r,\Theta),(t,\Xi)) = \frac{\partial}{\partial \nu} G_{C(\Omega)}\left(\left(\frac{2r}{t},\Theta\right),(2,\Xi)\right) \quad (\Xi \in \partial\Omega).$$

we remark that

$$H_{\mathcal{Z}}(R,\boldsymbol{\Theta}) = c_n^{-1} \frac{\partial}{\partial \nu} G_{C(\Omega)}((R,\boldsymbol{\Theta}),(2,\boldsymbol{\Xi}))$$

is a harmonic function of $(R, \Theta) \in C(\Omega)$ such that $H_{\Xi}(R, \Theta)$ vanishes continuously on $\partial C(\Omega) - \{(2, \Xi)\}$ and tends uniformly to zero as $R \to 0$ (see Azarin [2, Lemma 1]). If we apply Lemma 2 to $H_{\Xi}(2r/t, \Theta)$ and put

$$L_2=2^{n-1}\max_{\Xi\in\partial\Omega}L_1(H_\Xi),$$

then we obtain the conclusion from (5.5).

REMARK 3. Take any $(r, \Theta) \in C(\Omega)$ and any $(t, \Xi) \in S(\Omega)$ satisfying r < t. Then the proof of Lemma 2 gives the expansion

$$H_{\mathcal{Z}}\left(\frac{2r}{t},\Theta\right) = \sum_{k=1}^{\infty} c((H_{\mathcal{Z}})_{r_2},k) \left(\frac{2r}{tr_2}\right)^{\alpha(\Omega,k)} f_k^{\Omega}(\Theta)$$

for any r_2 , $0 < r_2 < 2$. Hence it follows from (5.5) that

$$c_n^{-1} \frac{\partial}{\partial v} G_{C(\Omega)}((r, \Theta), (t, \Xi)) = \sum_{k=1}^{\infty} 2^{\alpha(\Omega, k) + n - 1} r_2^{-\alpha(\Omega, k)} c((H_{\Xi})_{r_2}, k) r^{\alpha(\Omega, k)} l^{1 - n - \alpha(\Omega, k)} f_k^{\Omega}(\Theta)$$

$$= \sum_{i=1}^{\infty} 2^{\alpha(\Omega, k_i) + n - 1} r_2^{-\alpha(\Omega, k_i)} r^{\alpha(\Omega, k_i)} t^{1 - n - \alpha(\Omega, k_i)} \times \left(\sum_{k=k_i}^{k_{i+1} - 1} c((H_{\Xi})_{r_2}, k) f_k^{\Omega}(\Theta)\right).$$

LEMMA 4. Let $\varphi(t)$ be a positive continuous function of $t \ge 1$ satisfying

$$\varphi(1) = 2^{-\alpha(\Omega,1)}$$

Then

$$\left|c_n^{-1}\frac{\partial}{\partial \nu} G_{C(\Omega)}(P,Q) - W(C(\Omega),\varphi)(P,Q)\right| < L_2\varphi(t)$$

for any $P=(r,\Theta)\in C(\Omega)$ and any $Q=(t,\Xi)\in S(\Omega)$ satisfying

$$(5.6) t > \max(1, 4r).$$

PROOF. Take any $P = (r, \Theta) \in C(\Omega)$ and any $Q = (t, \Xi) \in S(\Omega)$ satisfying (5.6). Choose an integer $i = i(P, Q) \in J(\Omega, \varphi)$ such that

$$(5.7) t(i-1) \le t < t(i).$$

Then

$$W(C(\Omega), \varphi)(P, Q) = V(C(\Omega), i-1)(P, Q).$$

Hence we have from Lemma 3, (5.6) and (5.7) that

$$\left|c_n^{-1}\frac{\partial}{\partial \nu}G_{C(\Omega)}(P,Q)-W(C(\Omega),\varphi)(P,Q)\right|< L_2 2^{-\alpha(\Omega,k_i)}t^{-n+1}< L_2\varphi(t),$$

which is the conclusion.

LEMMA 5. Let g(Q) be locally integrable and upper semicontinuous on $\partial C(\Omega)$. Let W(P,Q) be a function of $P \in C(\Omega)$, $Q \in \partial C(\Omega)$ such that for any fixed $P \in C(\Omega)$ the function W(P,Q) of $Q \in \partial C(\Omega)$ is a locally integrable function on $\partial C(\Omega)$. Put

$$K(P,Q) = c_n^{-1} \frac{\partial}{\partial \nu} G_{C(\Omega)}(P,Q) - W(P,Q) \quad (P \in C(\Omega), Q \in \partial C(\Omega)).$$

Suppose that the following (I) and (II) are satisfied:

(I) For any $Q^* \in \partial C(\Omega)$ and any $\varepsilon > 0$, there exist a neighbourhood $U(Q^*)$ of Q^* in \mathbb{R}^n and a number $R(0 < R < \infty)$ such that

$$\int_{S(\Omega;[R,\infty))} |g(Q)K(P,Q)| \, d\sigma_Q < \varepsilon$$

for any $P = (r, \Theta) \in C(\Omega) \cap U(Q^*)$.

(II) For any $Q^* \in \partial C(\Omega)$ and any number $R(0 < R < \infty)$,

$$\lim_{P \to Q^*, P \in C(\Omega)} \sup_{S(\Omega; (0,R))} |g(Q)W(P,Q)| \, d\sigma_Q = 0.$$

Then

$$\lim_{P \to Q^*, P \in C(\Omega)} \int_{S(\Omega)} g(Q) K(P, Q) \, d\sigma_Q \le g(Q^*)$$

for any $Q^* \in \partial C(\Omega)$.

PROOF. Let $Q^* = (t^*, \Theta^*)$ be any fixed point of $\partial C(\Omega)$ and let ε be any positive number. From (I), we can choose a number $R^*(0 < R^* < \infty)$ such that

(5.8)
$$\int_{S(Q:[R^*,\infty))} |g(Q)K(P,Q)| \, d\sigma_Q < \frac{\varepsilon}{2}$$

for any $P = (r, \Theta) \in C(\Omega) \cap U(Q^*)$. Let Φ be a continuous function on $\partial C(\Omega)$ such that $0 \le \Phi \le 1$ and

$$\Phi = \begin{cases} 1 & \text{on } S(\Omega; (0, R^*]) \cup \{O\} \\ 0 & \text{on } S(\Omega; (2R^*, \infty)). \end{cases}$$

Let $G^{j}_{C(\Omega)}(P,Q)$ be the Green function of $C(\Omega;(0,j))$ (j is a positive integer) and put

 $\Gamma_j(P,Q) = G_{C(\Omega)}(P,Q) - G_{C(\Omega)}^j(P,Q)$. Then we can find an integer $j^*, j^* > 2R^*$ such that

(5.9)
$$c_n^{-1} \int_{S(\Omega;(0,2R^*))} |\Phi(Q)g(Q)| \left| \frac{\partial}{\partial \nu} \Gamma_{j^*}(P,Q) \right| d\sigma_Q < \frac{\varepsilon}{4}$$

for any $P = (r, \Theta) \in C(\Omega) \cap U(Q^*)$. Thus we have from (5.8) and (5.9) that

$$(5.10) \qquad \int_{\partial C(\Omega)} g(Q)K(P,Q) d\sigma_{Q} \leq c_{n}^{-1} \int_{S(\Omega;(0,2R^{*}))} \Phi(Q)g(Q) \frac{\partial}{\partial \nu} G_{C(\Omega)}^{j^{*}}(P,Q) d\sigma_{Q}$$

$$+ c_{n}^{-1} \int_{S(\Omega;(0,2R^{*}))} \left| \Phi(Q)g(Q) \frac{\partial}{\partial \nu} \Gamma_{j^{*}}(P,Q) \right| d\sigma_{Q}$$

$$+ \int_{S(\Omega;(0,2R^{*}))} \left| g(Q)W(P,Q) \right| d\sigma_{Q} + 2 \int_{S(\Omega;(R^{*},\infty))} \left| g(Q)K(P,Q) \right| d\sigma_{Q}$$

$$\leq c_{n}^{-1} \int_{S(\Omega;(0,2R^{*}))} \Phi(Q)g(Q) \frac{\partial}{\partial \nu} G_{C(\Omega)}^{j^{*}}(P,Q) d\sigma_{Q}$$

$$+ \int_{S(\Omega;(0,2R^{*}))} \left| g(Q)W(P,Q) \right| d\sigma_{Q} + \frac{5}{4} \varepsilon$$

for any $P = (r, \Theta) \in C(\Omega) \cap U(Q^*)$. Consider an upper semicontinuous function

$$V(Q) = \begin{cases} \Phi(Q)g(Q) & \text{on } S(\Omega; (0, 2R^*]) \cup \{O\} \\ 0 & \text{on } \partial C(\Omega; (0, j^*)) - S(\Omega; (0, 2R_2^*]) - \{O\} \end{cases}$$

on $\partial C(\Omega; [0, j^*))$ and denote the Perron-Wiener-Brelot solution of the Dirichlet problem on $C(\Omega; (0, j^*))$ by $H_V(P; C(\Omega; (0, j^*)))$ (see, e.g., [13]). We know that

(5.11)
$$c_n^{-1} \int_{S(\Omega;(0,2R^*))} \Phi(Q) g(Q) \frac{\partial}{\partial \nu} G_{C(\Omega)}^{j^*}(P,Q) d\sigma_Q = H_V(P; C(\Omega;(0,j^*)))$$

(see Dahlberg [6, Theorem 3]). If $C(\Omega; (0, j^*))$ is not a Lipschitz domain at O, we can prove (5.11) by considering a sequence of the Lipschitz domains $C(\Omega; (1/m, j^*))$ which converges to $C(\Omega; (0, j^*))$ as $m \to \infty$. We also have that

$$\lim_{P \in C(\Omega), P \to Q^*} H_V(P; C(\Omega; (0, j^*))) \le \lim_{Q \in S(\Omega), Q \to Q^*} V(Q) = g(Q^*)$$

(see, e.g., Helms [13, Lemma 8.20]). Hence we obtain

$$\lim_{P \in C(\Omega), P \to Q^*} c_n^{-1} \int_{S(\Omega; (0, 2R^*))} \Phi(Q) g(Q) \frac{\partial}{\partial \nu} G_{C(\Omega)}^{j^*}(P, Q) d\sigma_Q \leq g(Q^*).$$

With (5.10) and (II) this gives the conclusion.

PROOF OF THEOREM 1. First of all, we shall show that $H(C(\Omega), l; g)(P)$ is a harmonic function on $C(\Omega)$. For any fixed $P = (r, \Theta) \in C(\Omega)$, take a number R

satisfying $R > \max(1, 2r)$. Then

$$(5.12) \qquad \int_{S(\Omega;(R,\infty))} |g(Q)| |K(C(\Omega),l)(P,Q)| d\sigma_{Q}$$

$$= \int_{S(\Omega;(R,\infty))} |g(Q)| \left| c_{n}^{-1} \frac{\partial}{\partial \nu} G_{C(\Omega)}(P,Q) - V(C(\Omega),l)(P,Q) \right| d\sigma_{Q}$$

$$\leq L_{2}(2r)^{\alpha(\Omega,k_{l+1})} \int_{R}^{\infty} t^{-\alpha(\Omega,k_{l+1})-1} \left(\int_{\partial \Omega} |g(t,\Xi)| d\sigma_{\Xi} \right) dt < \infty$$

from Lemma 3 and (3.2). Thus $H(C(\Omega), l; g)(P)$ is finite for any $P \in C(\Omega)$. Since $K(C(\Omega), l)(P, Q)$ is a harmonic function of $P \in C(\Omega)$ for any $Q \in S(\Omega), H(C(\Omega), l; g)(P)$ is also a harmonic function of $P \in C(\Omega)$.

To prove that

$$\lim_{P \in C(\Omega), P \to Q^*} H(C(\Omega), l; g)(P) = g(Q^*)$$

for any $Q^* \in \partial C(\Omega)$, apply Lemma 5 to g(Q) and -g(Q) by putting

$$W(P,Q) = W(C(\Omega), l)(P,Q),$$

which is locally integrable on $\partial C(\Omega)$ for any fixed $P \in C(\Omega)$. Then we shall see that (I) and (II) hold. Take any $Q^* = (t^*, \Xi^*) \in \partial C(\Omega)$ and any $\varepsilon > 0$. Let δ be a positive number. Then from (3.2) and (5.12) we can choose a number $R, R > \max\{1, 2(t^* + \delta)\}$ such that for any $P \in C(\Omega) \cap U_{\delta}(Q^*)$, $U_{\delta}(Q^*) = \{X \in \mathbf{R}^n; |X - Q^*| < \delta\}$,

$$\int_{S(\Omega;[R,\infty))} |g(Q)K(C(\Omega),l)(P,Q)| d\sigma_Q < \varepsilon,$$

which is (I) in Lemma 5. To see (II), we only need to observe from (3.1) that for any $Q^* \in \partial C(\Omega)$ and any $Q \in S(\Omega)$

$$\lim_{P \in C(\Omega), P \to Q^*} W(C(\Omega), l)(P, Q) = 0,$$

because

$$\lim_{\boldsymbol{\Theta} \to \boldsymbol{\mathcal{E}}^*} f_k(\boldsymbol{\Theta}) = 0 \quad (k = 1, 2, \ldots)$$

as
$$P = (r, \Theta) \rightarrow Q^* = (t^*, \Xi^*) \in S(\Omega)$$
.

We shall prove (3.3). To simplify expression in the proceeding part, we use the following notation. When I(r) is a function on R_+ and l is a non-negative integer, we denote

$$\lim_{r\to\infty} r^{-\alpha(\Omega,k_{l+1})}I(r)$$

by $\mu_l^*(I)$, if it exists. Hence for a function $F(r,\Theta)$ on $C(\Omega)$, we see

$$\mu_l(F) = \mu_l^*(N(F)).$$

Consider the inequality

(5.13)
$$N(|H(C(\Omega), l:g^+)|)(r) \leq I_1(r) + I_2(r),$$

where

$$I_1(r) = \int_{\Omega} \left(\int_{S(\Omega;(2r,\infty))} g^+(Q) |K(C(\Omega),l)(P,Q)| \, d\sigma_Q \right) f_1^{\Omega}(\Theta) \, d\sigma_{\Theta}$$

and

$$I_2(r) = \int_{\Omega} \left(\int_{S(\Omega;(0,2r])} g^+(Q) |K(C(\Omega),l)(P,Q)| \, d\sigma_Q \right) f_1^{\Omega}(\Theta) \, d\sigma_{\Theta},$$

$$(P = (r,\Theta), 0 < r < \infty).$$

Let ε be any positive number. From (3.2) we can take a sufficiently large number r_0 such that

$$\int_{2r}^{\infty} t^{-\alpha(\Omega,k_{l+1})-1} \Biggl(\int_{\partial\Omega} \left| g(t,\Xi) \right| d\sigma_{\Xi} \Biggr) \, dt < \frac{\varepsilon}{2^{\alpha(\Omega,k_{l+1})+1} L L_2} \quad (r>r_0),$$

where L_2 is the constant in Lemma 3 and

$$L = \int_{\Omega} f_1^{\Omega}(\boldsymbol{\Theta}) \, d\sigma_{\boldsymbol{\Theta}}.$$

Then from Lemma 3 we have

$$0 \leq I_1(r) \leq LL_2(2r)^{\alpha(\Omega,k_{l+1})} \int_{2r}^{\infty} t^{-\alpha(\Omega,k_{l+1})-1} \left(\int_{\partial\Omega} g^+(t,\Xi) d\sigma_{\Xi} \right) dt$$
$$< \frac{\varepsilon}{2} r^{\alpha(\Omega,k_{l+1})} \quad (r > r_0),$$

which gives

$$\mu_I^*(I_1) = 0.$$

To estimate $I_2(r)$, we use the inequality

$$(5.15) I_2(r) \le I_{2.1}(r) + I_{2.2}(r),$$

where

$$I_{2,1}(r) = c_n^{-1} \int_{\Omega} \left(\int_{S(\Omega;(0,2r])} g^+(Q) \frac{\partial}{\partial \nu} G_{C(\Omega)}(P,Q) d\sigma_Q \right) f_1^{\Omega}(\Theta) d\sigma_{\Theta}$$

and

$$I_{2,2}(r) = \int_{\Omega} \left(\int_{S(\Omega;(0,2r])} g^+(Q) |V(C(\Omega),l)(P,Q)| d\sigma_Q \right) f_1^{\Omega}(\Theta) d\sigma_{\Theta} \ \left(P = (r,\Theta), r > \frac{1}{2} \right).$$

First we have from (2.3) and (3.1) that if $l \ge 1$, then

$$I_{2,2}(r) \leq s_n B L M_2^2 \sum_{k \in I(\Omega, k_{l+1})} k 2^{\alpha(\Omega, k) + n - 1} r^{\alpha(\Omega, k)} \Psi_k(r) \quad \left(r > \frac{1}{2}\right),$$

where

$$B = c_n^{-1} \max_{\boldsymbol{\Theta} \in \boldsymbol{\Omega}. \boldsymbol{\Xi} \in \partial \boldsymbol{\Omega}} \frac{\partial}{\partial \boldsymbol{v}} G_{C(\boldsymbol{\Omega})}((1, \boldsymbol{\Theta}), (2, \boldsymbol{\Xi}))$$

and

$$\Psi_k(r) = \int_1^{2r} t^{-\alpha(\Omega,k)-1} \left(\int_{\partial\Omega} g^+(t,\Xi) d\sigma_{\Xi} \right) dt \quad \left(r > \frac{1}{2}, k \in I(\Omega,k_{l+1}) \right).$$

We shall later show that

$$(5.16) \Psi_k(r) = o(r^{\alpha(\Omega, k_{l+1}) - \alpha(\Omega, k)}) (r \to \infty) (l \ge 1, k \in I(\Omega, k_{l+1})).$$

Hence we can conclude that if $l \ge 1$, then

$$\mu_l^*(I_{2,2}) = 0.$$

This also holds in the case l=0, because $I_{2,2}(r)\equiv 0$ then. Further we can obtain

$$\mu_l^*(I_{2,1}) = 0,$$

which will be proved at the end of this proof. We thus obtain from (5.15), (5.17) and (5.18) that

$$\mu_l^*(I_2) = 0.$$

We can finally conclude from (5.13), (5.14) and (5.19) that

$$\mu_l(|H(C(\Omega), l; g^+)|) = 0.$$

In the completely same way applied to g^- we also have that

$$\mu_l(|H(C(\Omega), l; g^-)|) = 0.$$

Since

$$|H(C(\Omega), l; q)(P)| \le |H(C(\Omega), l; q^+)(P)| + |H(C(\Omega), l; q^-)(P)|,$$

these give the conclusion (3.3).

We shall prove (5.16). We note that $\Psi_k(r)$ is increasing,

$$\int_{1}^{\infty} \Psi'_{k}(r) r^{-\alpha(\Omega, k_{l+1}) + \alpha(\Omega, k)} dr$$

$$= 2^{\alpha(\Omega, k_{l+1}) - \alpha(\Omega, k)} \int_{2}^{\infty} t^{-\alpha(\Omega, k_{l+1}) - 1} \left(\int_{\partial \Omega} g^{+}(t, \Xi) d\sigma_{\Xi} \right) dt$$

and

$$\begin{split} \Psi_k(r)r^{-\alpha(\Omega,k_{l+1})+\alpha(\Omega,k)} &\leq 2^{\alpha(\Omega,k_{l+1})-\alpha(\Omega,k)} \int_1^{2r} t^{-\alpha(\Omega,k_{l+1})-1} \left(\int_{\partial\Omega} g^+(t,\mathcal{Z}) \, d\sigma_{\mathcal{Z}} \right) dt \\ &\leq L_3 2^{\alpha(\Omega,k_{l+1})-\alpha(\Omega,k)} \quad \left(r > \frac{1}{2} \right), \end{split}$$

where

$$L_3 = \int_1^\infty \, t^{-lpha(arOmega, k_{l+1}) - 1} igg(\int_{\partial arOmega} g^+(t, arXeta) \, d\sigma_{arSeta} igg) \, dt.$$

From these we see

(5.20)
$$\int_{1}^{\infty} \Psi_{k}(r) r^{-\alpha(\Omega, k_{l+1}) + \alpha(\Omega, k) - 1} dr < \infty$$

by integration by parts. Since

$$\begin{split} \Psi_k(r)r^{-\alpha(\Omega,k_{l+1})+\alpha(\Omega,k)} \\ &= (\alpha(\Omega,k_{l+1})-\alpha(\Omega,k))\Psi_k(r)\int_r^\infty t^{-\alpha(\Omega,k_{l+1})+\alpha(\Omega,k)-1} dt \\ &\leq (\alpha(\Omega,k_{l+1})-\alpha(\Omega,k))\int_r^\infty \Psi_k(t)t^{-\alpha(\Omega,k_{l+1})+\alpha(\Omega,k)-1} dt \quad (1 \leq k < k_{l+1}), \end{split}$$

(5.20) gives (5.16).

At the end we shall show (5.18). First we note that

(5.21)
$$0 \le I_{2,1}(r) = N(H(C(\Omega), l; g^+))(r) - I_1^*(r) + I_{2,2}^*(r) \quad \left(r > \frac{1}{2}\right),$$

where

$$I_1^*(r) = \int_{\Omega} \left(\int_{S(\Omega;(2r,\infty))} g^+(Q) K(C(\Omega),l)(P,Q) \, d\sigma_Q \right) f_1^{\Omega}(\Theta) \, d\sigma_{\Theta},$$

and

$$I_{2,2}^*(r) = \int_{\Omega} \left(\int_{S(\Omega;(1,2r])} g^+(Q) V(C(\Omega),l)(P,Q) d\sigma_Q \right) f_1^{\Omega}(\Theta) d\sigma_{\Theta} \quad \left(r > \frac{1}{2} \right).$$

Since

$$|I_1^*(r)| \le I_1(r)$$
 and $|I_{2,2}^*(r)| \le I_{2,2}(r)$ $\left(r > \frac{1}{2}\right)$,

we easily see from (5.14) and (5.17) that

(5.22)
$$\mu_l^*(|I_1^*|) = \mu_l^*(|I_{2,2}^*|) = 0$$

If we can show that

(5.23)
$$\limsup_{r\to\infty} r^{-\alpha(\Omega,k_{l+1})} N(H(C(\Omega),l;g^+))(r) \leq 0,$$

then we finally conclude from (5.21) and (5.22) that

$$\limsup_{r\to\infty} r^{-\alpha(\Omega,k_{l+1})} I_{2,1}(r) \leq 0,$$

which give (5.18). To prove (5.23), remember that $-H(C(\Omega), l; g^+)(P)$ is also a harmonic function on $C(\Omega)$ satisfying

$$\lim_{P \in C(\Omega_{l}, P \to O^{*})} -H(C(\Omega), l; g^{+})(P) = -g^{+}(Q^{*}) \le 0$$

for every $Q^* \in \partial C(\Omega)$. Hence from Yoshida [17, Theorem 3.3] we know that

$$-\infty < \mu_0(-H(C(\Omega), l; g^+)) \le \infty$$

and hence

$$-\infty \leq \mu_0(H(C(\Omega), l; g^+)) < \infty.$$

Thus we obtain that if $l \ge 1$, then

(5.24)
$$\limsup_{r\to\infty} r^{-\alpha(\Omega,k_{l+1})} N(H(C(\Omega),l;g^+))(r) \leq 0.$$

Since

$$\mu_0(H(C(\Omega), 0; g^+)) = 0$$

(see [18, Lemma 3]), this and (5.24) also give (5.23) for any non-negative integer l.

PROOF OF THEOREM 2. Take a positive continuous function $\varphi(t)(t \ge 1)$ such that

$$\varphi(1) = 2^{-\alpha(\Omega,1)}$$

and

$$\varphi(t)\int_{\partial\Omega}|g(t,\Xi)|\,d\sigma_{\Xi}\leq L_4t^{-n}\quad (t>1),$$

where

$$L_4 = 2^{-lpha(\Omega,1)} \int_{\partial\Omega} |g(1,oldsymbol{arXi})| \, d\sigma_{oldsymbol{arZ}}.$$

For any fixed $P = (r, \Theta) \in C(\Omega)$, choose a number R, $R > \max(1, 4r)$. Then we see from Lemma 4 that

$$(5.26) \qquad \int_{S(\Omega;(R,\infty))} |g(Q)K(C(\Omega),\varphi)(P,Q)| d\sigma_{Q}$$

$$\leq L_{2} \int_{R}^{\infty} \left(\int_{\partial\Omega} |g(t,\Xi)| d\sigma_{\Xi} \right) \varphi(t) t^{n-2} dt < L_{2} L_{4} \int_{R}^{\infty} t^{-2} dt < \infty.$$

It is evident that

$$\int_{S(\Omega;(0,R))} |g(Q)K(C(\Omega),\varphi)(P,Q)| d\sigma_Q < \infty.$$

These give that

$$\int_{S(\Omega)} |g(Q)K(C(\Omega),\varphi)(P,Q)| \, d\sigma_Q < \infty.$$

To see that $H(C(\Omega), \varphi; g)(P)$ is harmonic in $C(\Omega)$, we remark that $H(C(\Omega), \varphi; g)(P)$ satisfies the locally mean-valued property by Fubini's theorem.

Finally we shall show

(5.27)
$$\lim_{P \in C(\Omega), P \to Q^*} H(C(\Omega), \varphi; g)(P) = g(Q^*)$$

for any $Q^* \in \partial C(\Omega)$. Put

$$W(P,Q) = W(C(\Omega), \varphi)(P,Q)$$

in Lemma 5, which is a locally integrable function of $\partial C(\Omega)$ for any fixed $P \in C(\Omega)$. Then we can see from (5.26) in the same way as in the proof of Theorem 1 that both (I) and (II) are satisfied. Thus Lemma 5 applied to g(Q) and -g(Q) gives (5.27).

PROOF OF THEOREM 3. From Theorem 1, we have the solution $H(C(\Omega), l; g)(P)$ of the Dirichlet problem on $C(\Omega)$ with g satisfying (3.3). Consider the function $h - H(C(\Omega), l; g)$. Then it follows that this is harmonic in $C(\Omega)$ and vanishes continuously on $\partial C(\Omega)$. Since

$$0 \le \{h - H(C(\Omega), l; g)\}^{+}(P) \le h^{+}(P) + \{H(C(\Omega), l; g)\}^{-}(P)$$

for any $P \in C(\Omega)$ and

$$\mu_l(\{H(C(\Omega), l; g)\}^-) = 0$$

from (3.3), (4.1) gives that

$$\mu_p(\{h - H(C(\Omega), l; g)\}^+) = 0.$$

From Theorem B we see that

$$h(P) - H(C(\Omega), l; g)(P) = \sum_{k \in I(\Omega, k_{p+1})} A_k r^{\alpha(\Omega, k)} f_k^{\Omega}(\Theta)$$

for every $P = (r, \Theta) \in \Omega$, where $A_k (k = 1, 2, 3, ..., k_{p+1} - 1)$ is a constant. Thus we obtain the conclusion of Theorem 3.

PROOF OF COROLLARY 4. From Theorem 3, we obtain

$$h(P) = H(T_n, \rho; g)(P)$$
 (resp. $H(T_n, \rho - 1; g)(P) + \prod_1 (r, \Theta)$ $(P = (r, \Theta) \in T_n)$,

where

$$\prod_{1}(r,\boldsymbol{\Theta}) = \sum_{k \in I(\Omega,k_{n+1})} A_k r^{\alpha(\Omega,k)} f_k^{\Omega}(\boldsymbol{\Theta}) \quad (\Omega = \boldsymbol{S}_+^{n-1}).$$

If we extend \prod_1 to a harmonic function \prod_2 on \mathbb{R}^n by defining

$$\prod_{2}(r,\Theta) = \begin{cases} \prod_{1}(r,\Theta) & ((r,\Theta) \in T_{n}) \\ -\prod_{1}(r,-\Theta) & ((r,\Theta) \in -T_{n} = \{(X,-y) \in \mathbb{R}^{n}; (X,y) \in T_{n}\}) \end{cases}$$

and observe

$$r^{-\rho-1}M(\prod_2^+)(r) \to 0 (r \to \infty), \quad M(\prod_2^+)(r) = \int_{\mathbb{S}^{n-1}} \prod_2^+(r, \Theta) d\sigma_{\Theta},$$

from (2.7), we know from a result of Brelot [3, Appendix, § 26] that \prod_2 is a harmonic polynomial on \mathbb{R}^n of degree less than $\rho + 1$. From the fact $\prod_2 (r, \Theta) = -\prod_2 (r, -\Theta)$, we can write $\prod_2 = y \prod$, where \prod is a polynomial of degree less than ρ and even with respect to y.

PROOF OF THEOREM 4. Put

$$\limsup_{r\to\infty}\frac{\log N(h^+)(r)}{\log r}=\gamma.$$

Take a positive integer p_0 satisfying $\alpha(\Omega, k_{p_0+1}) > \gamma$ and put $p = \max(l, p_0)$. Since

$$0 \le \{h - H(C(\Omega), l; h)\}^{+}(P) \le h^{+}(P) + \{H(C(\Omega), l; h)\}^{-}(P),$$

we have $\mu_p(\{h-H(C(\Omega),l;h)\}^+)=0$, which with Theorem 3 gives the conclusion.

References

- [1] D. H. Armitage, Representations of harmonic functions in half-spaces, Proc. London Math. Soc. (3) 38 (1979), 53-71.
- [2] V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an *m*-dimensional cone, Mat. Sb. 66 (108) (1965), 248-264; Amer. Math. Soc. Translation (2) 80 (1969), 119-138.
- [3] M. Brelot, Elements de la théorie classique du potentiel, Centre de Documentation Universitaire, Paris, 1965
- [4] S. Y. Cheng and P. Li, Heat kernel estimates and lower bound of eigenvalues, Comment. Math. Helvetici 56 (1981), 327-338.
- [5] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. 1 Interscience Publishers, New York, 1953.
- [6] B. E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 257-288.
- [7] M. Essén and J. L. Lewis, The generalized Ahlfors-Heins theorems in certain d-dimensional cones, Math. Scand. 33 (1973), 111-129.
- [8] M. Finkelstein and S. Scheinberg, Kernels for solving problems of Dirichlet type in a half-plane, Advances in Math. 18 (1975), 108–113.
- [9] S. J. Gardiner, The Dirichlet and Neumann problems for harmonic functions in half-spaces, J. London Math. Soc.(2) 24 (1981), 502-512.
- [10] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin, 1977.
- [11] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. 1 Academic Press, London, 1976.
- [12] S. Helgason, Differential geometry and symmetric spaces, Academic Press, London, 1962.
- [13] L. L. Helms, Introduction to Potential Theory, Wiley-Interscience, New York, 1969.

- [14] S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242-256.
- [15] R. Nevanlinna, Über eine Erweiterung des Poissonschen Integrals, Ann. Acad. Sci. Fenn. Ser. A 24 (4) (1925), 1-15.
- [16] D. Siegel, The Dirichlet problem in a half-spaces and a new Phragmén-Lindelöf principle, Maximum Principles and Eigenvalue Problems in Partial Differential Equations, e.d. P. W. Schaefer, Pitman, New York, 1988.
- [17] H. Yoshida, Nevanlinna norm of a subharmonic function on a cone or on a cylinder, Proc. London Math. Soc. (3) 54 (1987), 267-299.
- [18] H. Yoshida, Harmonic majorization of a subharmonic function on a cone or on a cylinder, Pacific J. Math. 148 (1991), 369-395.
- [19] H. Yoshida, A type of uniqueness for the Dirichlet problem on a half-space with continuous data, Pacific J. Math. 172 (1996), 591-609.
- [20] H. Yoshida and I. Miyamoto, Harmonic functions in a cone which vanish on the boundary, Math. Nachr. (to appear).

Hidenobu Yoshida and Ikuko Miyamoto

Department of Mathematics and Informatics Faculty of Science Chiba University Chiba 263 Japan