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Introduction.

In [15], following a Cantor completion process, the authors give a complete,
non-Archimedean metric (or ultrametric) on the set of shape morphisms between
two unpointed compacta (compact metric spaces) X, Y, written SA(X, Y). The
ultrametric spaces so constructed allow to rediscover some of the more important
invariants in shape theory and to introduce many others. It is clear that the
construction given in can be translated to the pointed case, consequently,
as a particular case, we obtain a complete ultrametric that induces a norm on
the shape groups of a compactum Y.

Let (X, xo) and (Y, y,) be pointed compacta. We will assume Y to be
embedded in the Hilbert cube Q. Let i.: Y— B(Y, ¢) be the inclusion. For any
pair f, g: (X, xo)—(Q, v,) of maps, take F(f, g)=inf{e>0: f=g in B, ¢)=Y}
(= means the pointed homotopy relation).

It is clear that (pointed) approximative maps (see [3]) {fs} : (X, x0)— (¥, yo)
correspond with F-Cauchy sequences and that (pointed) homotopic approximative
maps are equivalent F-Cauchy sequences.

Given a, BSh((X, xo), (Y, v,) and F-Cauchy sequences {f:}, {g:} in the
classes of a, B respectively, the formula d(a, 8)=lims... F(fs, gs) produces a
well defined complete, non-Archimedean metric in SA((X, x,), (Y, y,)) such that
the composition of pointed shape morphisms induces uniformly continuous maps
between the spaces involved. This fact provides many new pointed shape
invariants (see for details in the unpointed case).

PROPOSITION 1 ([15]). Given a, B=Sh((X, xo), (Y, yo)), d(a, B)<e if and only
if SGE)ea=S3.)°B, as pointed morphisms (S denotes the shape functor).

In order to simplify notation we suppress base points consistently until section 2.
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When we consider the special cases X=S", n<N, we obtain an ultrametric
on the shape groups ﬁn(Y) of a pointed compactum Y. If, for any acIL,),
we define ||a||=d(a, 1) we have a norm such that

) llaBa|=|gl for any a, BEII.(Y).

if) Jajj=lla"!| for any acTI.(Y).

iii) |-l gives rise to a left and right invariant complete ultrametric in
I1.(Y) given by d(a, g)=lap™’|.

If X, Y are arbitrary topological spaces, let p: X—X=(X;, p1, A) and
q:Y—=Y=(Y,, quu, M) be HPol-expansions of X and Y respectively.

Take Sh(Z, X)=(SKZ, X;), pfx, A) and SK(Z, Y)=(Sh(Z, Y ,), ¢fp', M), for
any space Z. In we generalize the construction for arbitrary spaces, by
giving to Sh(X,Y) the inverse limit topology as inverse limit in Top of
{Sh(X, Y)} 1e4 where Sh(X, Y;) is assumed to have the discrete topology for
any AcA. Using these spaces, we will show in section 2 a generalization of
a theorem of Kato ([11], [12]). We prove that any c-refinable map f: X —YV
is a shape equivalence provided the induced morphism S(f) < SA(X,Y) is
isolated. It is not difficult to see that S(f) is isolated if ¥ is calm or AWNR

(because Sh(X, Y) is discrete) see [4], [2] and [27].

Returning to the compact framework, it is well known that out of pointed
(compact) connected polyhedra there is a countable set {P,:n&N} containing
one of each pointed homotopy type. Consider the inverse system {P,, p., n€N}
where p,: P,,;— P, is the constant (pointed) map. Let (W, %) be the pointed
internally movable connected space obtained by applying the star-construction,
see or [207] page 185, to the above inverse sequence.

The space W is useful because the uniform topological type of Sh(W, X)
characterizes the shape of X, provided X is pointed movable. More precisely,
in [18] it is shown that a shape morphism F: X —Y between connected pointed
compacta is a shape equivalence if and only if the induced map F*: Sh(W, X)
—Sh(W, Y) is a bi-uniform homeomorphism. Similar results can be obtained,
in the unpointed case, by using the spaces introduced in [17].

Above considerations raise naturally what we are going to study here. The
reader is referred to the text of and for information about shape theory.

1. Spaces of discrete shape.

DEFINITION 1. A pointed compactum X has discrete shape if Sh(W, X) is
uniformly discrete, i.e. there is ¢>0 such that if a, B&SA(W, X) and d(a, B<e
then a=4.
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PRrROPOSITION 2. Let X, Y be pointed compacta. If SK(X)ZSh(Y) and Y has
discrete shape then X has discrete shape. Consequently, the property of having
discrete shape is a shape invariant.

PROOF. It is a consequence of the fact that if SA(X)<Sh(Y) then Sh(W, X)
is a uniform retract of Sa(W, Y). O

PROPOSITION 3. Let X be a pointed compactum, then X has discrete shape
provided X is calm or X AWNR.

PROPOSITION 4. Let X be a pointed movable compactum. X is a pointed
FANR if and only if X has discrete shape.

Proor. It suffices to show that any pointed movable compactum X having
discrete shape is calm. Take any 6>0. Let 0<e<d as in Definition 1. For
any 0<e;<e we consider ¢,<<e, such that S(iscx.ep.Bx.ep)=S(x Bx.cp)or for
some shape morphism 7»: B(X, &) — X.

Let K be any polyhedron and let f, g: K— B(X, &,) be pointed H-maps such

that S(Z'B(X,52),3()(,5))°f:S(iB(X_52),B(X,5))°g. Consider H-maps a: K—W and 19:
W — K such that ﬁva:11<.
We have that

S(imx.el),B<X.s))°S(iB<X.52>.B(X.el))°f°/9

= S(Esx.¢p. Bx,0)°SEBx, 52).B(X.el))°g°ﬁ'
Then,

S, ep, Bx. o) S(x, Bx,ep)orefof
= S@px.ep.Bx.0)°SUx, Bx,ep)orogef.

Consequently, d(reofef, regeB)<<e and refof=rogef.
It follows that ref=recfeBea=rogoBoa=rog.
Therefore,

S(Epx.ep. Bx ep)of = S(iX,B(X,s,))°7’°f = S(ix.B(x.s,>)°7°g

= S(iBx.ep.B(x,ep)° & - O

REMARKS. Sh(W, X) contains isometric copies of all shape groups fIn(X),
neN. Then if X has discrete shape it follows that ﬁ,,(X), n& N are uniformly
discrete topological groups such that ¢>0 as in does not depend on
neN. Using Baire’s Theorem and the homogeneity of these groups we have
that they are discrete if and only if they are countable. Therefore, if sd(X)< oo,
the assumption of SA(W, X) to be discrete is very strong and can be much

weakened ([20]).
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Since Sh(X, Y) is separable we have that if Sh(X, Y) is discrete then it is
countable. As we said before, the converse is also true for the shape groups.
A natural question is whether Sh(X, Y) countable implies Sh(X, Y) discrete. In
the unpointed case there are very easy examples showing that this implication
does not hold. In fact Sh(x, X)=[X, the space of components of X, ([15]).
Then, if X={1/n:neN}U{0}, Sh(W, X) is countable but it is not discrete.
However, in the pointed case, it seems more difficult to find examples. Anyway,
will provide one of them. It will be given a pointed movable com-
pactum X such that SA(W, X) is countable but X has not discrete shape.

THEOREM 1. Let T be the Taylor’s compactum, [26]. It follows that
Sh(W, T)=x, In particular T has discrete shape.

The proof of above theorem depends on two previous results.

THEOREM 2. Let F:X—Y be a shape morphism that is a weak shape
equivalence ; then, for any compact connected pointed polyhedron P, F induces an
isomorphism Sh(P, X)— Sh(P, Y) in pro-Top (pro-Set).

Proor. We assume F to be represented by a level preserving morphism (f).

Let P be a compact connected polyhedron, dim P=m<n. Using Lemma 1.4
in [10], see also [14], for any A there exists §(4, n)=n and a map A& making
the following diagram commutative, up to pointed homotopy (M(f) denotes the
reduced mapping cylinder of f)

h 7
Xy «— M(fou.»)"UXsa,n <— Xpa.w

fnl ]'j( fa(,z,n)l
k

q
Vi «<—— M(foi. ) < Yoan).

By the cellular approximation theorem,

J¥:Sh(P, M(foa.m)"IXo. ) —> Sh(P, M(fo1,m))
is bijective.
Then, we have a map g¥:Sh(P, Yy, »)—Sh(P, X;) such that the diagram

Pha.w
Sh(P, X;) <—— Sh(P, Xgu.m)

gf
ff \ f;t(l,n)
qfou,n)
Sh(P, Y;) «<———— Sh(P, Yoa.n)

commutes.



Spaces of discrete shape and c-refinable maps 717

Now, from Morita’s characterization of isomorphisms in pro-categories, [14],
we have that F induces an isomorphism Sh(P, X)— Sh(P, Y). O

PROPOSITION 5. Let F: X —Y be a shape morphism between connected pointed
compacta such that F*:Sh(P, X)—Sh(P, Y) in injective, for every connected com-
pact pointed polyhedron P; then, F*:Sh(W, X)— Sh(W, Y) is injective.

PrOOF. Given >0, using the local contractibility of B(X, ¢), it is easy to
check that if a, b: W— X are shape morphism such that Fea=F-b then d(a, b)
<e. O

PrOOF OF THEOREM 1. Using [26], we have a CE-map f:7T— Q. Con-

sequently, S(f) is a weak shape equivalence. From [Theorem 2 and [Proposition
5, we have that S(f) induces an injective map

S(f)ys: SKW, T) — Sh(W, Q) = *. O
Next corollaries point out that even though SA(W, X) is uniformly discrete
X does not need being an AWNR neither a calm space.

COROLLARY 1. Let T be the Taylor's compactum. T is not AWNR but
Sh(W, T)=s.

COROLLARY 2. Consider {T;, j&N} to be a family of copies of the Taylor's
compactum. Then, I1en T; s a non calm compactum such that Sh(W, Tlen T j)=x.

also allows to state the next corollary.

COROLLARY 3. There exists a pointed movable compactum T’ such that
Sh(W, T’) is countable but T’ has not discrete shape.

Proor. It suffices to take the space 7' obtained by applying the star-
construction of Overton-Segal to the inverse sequence associated with 7. []

Note that from [[heorem 2 and [Proposition 5 we have,

COROLLARY 4. For any pointed compactum X, pro-I1x(X)=x for every k<N,
implies Sh(W, X)=x.

2. c-refinable maps that induce shape equivalences.

In this section we will work with (unpointed) arbitrary topological spaces.
In ([12]) H. Kato proved that any refinable map r: X —Y between
compacta induces a shape equivalence S(): X —Y provided YeFANR (V is
calm) (S denotes the shape functor). Recently J.M.R. Sanjurjo [22], gave an
intrinsic description of the shape category of compacta by using upper-semicon-
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tinuous multivalued maps. This approach allowed him to give an alternative
proof of the result of Kato. The authors in extended the upper-semicon-
tinuous multivalued maps approach to shape to the class of paracompacta by
means of resolutions theory. Simultaneously Z. Cerin has given, see [4], by
using the cofinite Cech expansion and non-upper-semicontinuous multivalued
maps, an intrinsic description of the shape category for arbitrary topological
spaces. In this paper, we apply later useful description to prove in a short
way, by general topology methods, a rather general result in the realm of
arbitrary topological spaces dealing with ¢-refinable maps (see [13]).

In order to do this section as self-contained as possible we point out some
of the notions we will handle.

A normal covering of a topological space Y is an open covering @ which
admits a partition of the unity subordinated to w. Normal coverixgkgs c*an aﬂ}so be
characterized as th(ise admitting a sequence of open coverings @ =@, SW; <@, -
where the symbol < stands for the star-refinement relation [1].

Two open coverings of Y are said to be equivalent if they refine each other.
Y will denote the collection of all normal coverings classes of a topological
space Y. By ¥ we shall mean the family of all finite subsets ccCY having,
respect the refinement relation, a maximal element ¢< Y.

Let X, Y be topological spaces and acs X, Be Y. A multivalued map
F:X—Y is said to be (a, B)-small if for any Uca there is a V& such that
FU)cV. We will say that F is B-small if there exists ac=X such that F is
(a, B)-small.

Two multivalued maps F, G: X—Y are said to be j-homotopic, written
F= G if there isa g- smgll map H: X§1—>Y such that FcCH(-, 0)and GCH(-, 1).
Note that F 2G and G=T imply F=T provided 181>,8

A multinet F: X—Y is a collection F={F,.p of multivalued functions
F.: X—Y such that for every yeY there is ce ¥ with Fczr*F,z for any d>c.
Two multinets F —{F }, G=1{G.} : X—Y are homotopic if for every ycY there
is a ceY with Fd~Gd for any d>c.

In [5], Cerin defined the composition of homotopy classes of multinets
producing a category isomorphic to the shape category.

Given [F]ESh(X Y) and 7€Y let B([F], r)=1{[G1&Sh(X, Y): there exists
ce? with Fd~Gd for any d>c}. It is readily seen that the family
{B([F1, 1)},er is a neighborhood system for the shape morphism [F]: X—Y.
We will consider SA(X, Y) endowed with the induced topology. This topology
coincide with the topology obtained by giving to Sh(X, Y) the inverse limit
topology as inverse limit in Top of {SA(X, YV.)}ica where {Y3, a2/, A} is
any HPol-expansion of Y and Sh(X, Y;) is assumed to have the discrete topology
for any A€ A, see [16].
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Before of stating our result we recall that a surjective map »: X—Y is
said to be c-refinable if for any normal coverings a, § of X and Y respectively,
there is a closed and onto (a, B)-refinement s: X—Y, of r; ie. s and r are
B-near and for any y&Y there is U,<a such that s™'(y)CU,.

THEOREM 3. Let X, Y be topological spaces and let v : X—Y be a c-refinable
map. Then S(r) is a shape equivalence provided S(r) is an isolated point in
Sh(X, Y).

PROOF. Let poY such that B(S(), 7o)={S#)}. Take y,€Y such that
7’127’0- . R L

Let c&X and ¢=X. Consider d=X to be a 3-star-refinement of ¢. More
precisely, choose normal coverings d i&éaéc’. Take s:X—Y be any
(d, r-refinement of ». We define F.: Y —X by F(y)=s"'(y). Since s is closed
{(Y\s(X\U)}yeg is a normal covering of Y ; hence F, is a d-small multivalued
map.

The base of the proof is the following fact:

CLAIM. If we start from different (d, ro)-refinements of » we obtain
¢-homotopic multivalued maps.

Indeed, let s;, s,: X—Y be two (d, r.)-refinements of » and denote by Fi
and F? the corresponding d-small multivalued maps obtained from s, and s,
respectively.

Since B(S(r), y0)=1{S(»)} we have that for any (singl_e-valued) map f: X—-Y
yi-near to 7, réf for every pe Y. Consequently, Féog’éF,{.osljldX. A similar
argument shows that F%oréF%oszDIdX. Then, Féorf?F%or.

Let H: XxXI—X be a (a, dy)-small homotopy connecting Fler and FZor.
Choose a normal covering @a=.X such that there is a stacking function, in/ge
sense of (page 358), @—{1, 2, 3, ---} producing a refinement of acXX/I.
Let ﬁe? be a reﬁnfment of both {Y'\s;(X\U)}yeq and {Y'\s:(X\U)}yes and take
B1€Y such that §,=8.

Let s": X—VY any (@, SB,)-refinement of ». Define a @-small map G:Y—X
by G(y)=s""i(y). It follows that reGZIdy. Therefore, Fi22FlersG2F2ore
G2F 2. Consequently, F}éF 2, This proves the claim.

Now it is a routine to check that F={F;} :Y— X is a multinet such that
S(r)e[F1=Idy and [F]-S(r)=Idy. 0

REMARKS. The assumption of » to be isolated in SA(X, Y) holds, in par-
ticular, when Sh(X,Y) is discrete. For example, if Y is stable, for every
topological space X one has that Sh(X, V) is discrete. In the non necessarily
movable context the same follows if YV is calm.
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Note that it is easy to produce examples showing that c-refinable maps
can not be substituted by refinable maps in above theorem. In fact, if ¥ is
any infinite trivial shape space and we denote by X the set Y endowed with
the discrete topology, it is clear that Id: X—Y is a refinable map that fails to
be a shape equivalence.
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