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Introduction.

Let 2 be a finite extension of the field @ of rational numbers and p a fixed
prime number. A Galois extension K of % is called a Z,-extension when the
Galois group Gal(K/k) is topologically isomorphic to the additive group Z, of
p-adic integers. Let K be a Z,-extension of k, 2,CK the unique cyclic exten-
sion over k£ of degree p" and A, the p-Sylow subgroup of the ideal class group
of 2,. We denote by #A the number of elements of a finite set A.

Iwasawa proved the following theorem (see [IZ2]).

THEOREM (Iwasawa). There exist three integers A=AK/k), p=p(K/k) and
v=u(K/k) such that

#An — p1n+ypn+»

for all sufficiently large n.

Every k has at least one Z,-extension called the cyclotomic Z,-extension.
We denote by k.. the cyclotomic Z,-extension of Z.

GREENBERG’S CONJECTURE. If k is a totally real number field, then

Akw/k) = plka/k) = 0.

In other words the maximal unramified abelian p-extension of k. is a finite
extension.

By [I1], this conjecture is true for /=@ and p arbitrary. As experimental
results, this conjecture has been verified for p=3 and many real quadratic fields
with small discriminants in [C], [GL], [FK], [FEKW], [F], [Kr], and [FT].

The main purpose of this paper is to give a “good” necessary and sufficient
condition for Greenberg’s conjecture. The condition is given in terms of some
p-ramified abelian p-extensions of k, and the Iwasawa polynomial associated to
k. Here a “good” condition means that it can be checked for n as little as
possible, To check it, we need a lot of data (an “approximate” Iwasawa poly-
nomial, basis of the ideal class group, that of the unit group and that of the
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semi-local unit group of %,).

Now, to explain our condition, we present a criterion for a special case. Let
k be a totally real number field and p an odd prime number. Fix a topological
generator 7, of I'=Gal(k./k). Let M be the maximal abelian p-extension of k.
unramified outside p, L the maximal unramified abelian p-extension of k. and
L’ the maximal unramified abelian p-extension of k. in which every prime
divisor of k. above p splits completely. Put Y =Gal(M/k.), I=Gal(M/L) and
D=Gal(M/L’). As usual, we may regard these /-modules Y, I and D as
A=Z,[[T]]-modules by the identification T=y,—1. Concerning the Galois
group Y, the following facts are known.

{ Y is a finitely generated /-torsion /-module (cf. [G1l, Theorem 3]).
Y has no non-trivial finite A-submodule (cf. [I4, Theorem 18]).

Assume that p-invariant of Y is zero, i.e., ¥ is a torsion-free Z,-module.
We denote by char(Y) the characteristic polynomial of the action of 7 on Y.
Further, let M,, L, and L, be the maximal abelian extension of %, in M, L
and L’ respectively. Then Gal(M,/L7) is isomorphic to (D+w,Y)/w,Y. We
can easily obtain the following more or less known criterion.

CRITERION (Special case). Assume that char(Y) is irreducible in Z,[ T]. Then
Y /D is finite if and only if (D4+w,Y)/w,Y is not trivial for some integer n=0,
where @, =1+T)?"—1.

This criterion is used mainly when char(Y) is of degree 1 by some authors
(e.g. T. Fukuda, J. Kraft, H.§Taya). Assume that Leopoldt’s conjecture (see, for
example, [W, Chl3]) is true for % and p, and that every prime ideal of %2 above
p is fully ramified in 2.. Then Y /D is finite if and only if Y /I is finite, i.e.
Greenberg’s conjecture is true for » and p (see [Proposition 6).

In this paper, we extend this criterion to general case. As is shown above,
when char(Y) is irreducible, we know a “good” condition. But, when char(})
is reducible, the matter becomes much more complicated. In order to obtain a
“good” one in general case, we need to study not only Gal(M,/L;) but also a
pair (Gal(M,/k.), Gal(M,/L7)). Moreover we need to compute an “approximate”
polynomial of char(Y) exactly. In § 3, we give the general criterion (Theorem 3).

As examples, we study real quadratic fields Q(~/m) (m: square-free, 1<m
<10%) in which p=3 splits. We explain how to check our criterion for these
fields. The total mimber of such fields is exactly 2279. T. Fukuda and H. Taya
verified the conjecture for 2227 fields among these fields by using some data of
the ideal class group and the p-unit group of k, (see [FT]). Further applying
our criterion to them, we verify the conjecture for at least 2236 fields. We can
give some examples for which the conjecture is true but was not verified before.
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An outline of this paper is as follows. In §1 we study some abelian
extensions of %k, in M and the Galois groups 7 and D. In §2 we prepare some
propositions concerning 4 and A-modules. In §3 we give a necessary and
sufficient condition for Greenberg’s conjecture in terms of /-module structures
of certain Galois groups studied in §1. In §4 we give numerical examples.
The main parts of this paper are § 3 and §4.

ACKNOWLEDGEMENTS. The author wishes to express his hearty thanks to
Professor Shoichi Nakajima, under whose guidance this work was done. He is
also grateful to other members of the Number Theory Seminar at Komaba,
Tokyo, especially to Professors Takashi Fukuda and Hisao Taya for the tables
of §4 and to Professors Humio Ichimura and Masakazu Yamagishi for valu-
able comments.

§1. Some abelian extensions of %, in M.

In this section we assume that p is an odd prime number and that every
prime ideal of £ above p is fully ramified in k..

Let M, L, L’, M,, L, and L, be the same as in Introduction. We fix a
non-negative integer n. Let K, be the maximal unramified abelian p-extension
of £, and K7 the maximal unramified abelian p-extension of %, in which every
prime ideal of %k, above p splits completely. Further, let S, be the set of all
prime ideals of %k, above p, D, the subgroup of A, consisting of classes con-
taining an ideal all of whose prime divisors are contained in S, and A,=A,/D,.
For a non-negative integer n and pES,, let p, =S, be the unique prime ideal
lying above p, k,,, the completion of k, at p, and U, the principal unit
group of 2, , . Here we define the following groups:

; - R/ Rn
U, = {(upn)e I1 Upnl 11 Yonr. wﬁe”) =1 for all mgn},

PRESH PnESy n

Vpn :anlV"m,pm/kn,anFm’ Vn = H Vpn’

rpESn

— A X —
Ivbn ﬂanNkm,pm/kn,pnkm,pmy Wn - H anl

PrESy

where ( g’—%&

ks CsIlp,es,Rn.p,, En the unit group of %2, and E; the p-unit group of 2,. We
denote by A the topological closure of A. Put

)is the norm residue symbol. Let u, be the diagonal map:

E,.=U.nu. ), EL=TU W EIW,).

Here note that
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e, bn/ka
L=
for any ¢’€E; and all m=n by the product formula.
PROPOSITION 1. There are isomovphisms:
(@) Gal(Kpkw/ks) = Gal(Kp/k,) = A7,
(b) Gal(Ly/Knke) = Gal(L3K,/Kuke) = Uy/ViEr,
(¢) Gal(L,K,/L7) = Gal(K,/K)=D,,
d) Gal(Ln/LiK,) = Vo Er/V,E,,
(€) GallM,/Ly) = V.E./E,.

PROOF. Since we assume that every prime ideal in S, is fully ramified in
k«, we have K,Nkwo=k, and Ny, s pn=0p, for m=n. Hence we immediately
obtain (a) and (c) by class field theory. By considering %, as a base field of
the cyclotomic Z,-extension, we will show the other isomorphisms. For m=0,
put

J. = (the idele group of k), ki, = {(xp)e]kifpl(x”’—;;’”&.) = 1},

I (g) =1,

1T ,,li”._’__Jn-/i) — 1} ,

vesSy p

(kim) = {(xe 11 ks

ves,

Utm = {@pe 11U,

PIS

Wp, (m) — Nkm,pm/kpk;,pm ’ Vp, (m) = Nkm‘pm/kpUpm .

Then we have

(k(m)) . U(m) - H Vp (m) 2 H U

resy res

tm?

i) DI Wy DIL Vy w DIT Up::-
veS, peSy vES)
For a finite (resp. infinite) prime divisor q + p of %, let U, be the unit group
(resp. multiplicative group) of %, the completion of 2 at q. Moreover, for an
abelian p-extension K of %k and a subgroup H of J., write M — H when Gal{(M/%)
is isomorphic to the maximal pro-p quotient of J./H. By class field theory, we
have ko k*kin, kKoo k™ (Uim XTies,Uo)s kKoo k*((kin ) XTlees, Us). Let
M, , be the abelian p-extension of % such that My < k™ (Ilyes, UL" XTies, Ue)-
It is easy to see that M, , is a finite extension of k,. Let Lo n=M, be the
maximal unramified extension of %, and L{ .&M, , the maximal unramified
extension of %, in which every prime ideal above p splits completely. Then
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we have

Lo (O B (1109 ) (U1 ) ps)

peSy WES

=k (pgov’)’ tm ququ> ’

b (o (i (I 055 L)t (i % JEV)

9#p pESy

pes:)
= k-x(pgow”' (m) X qgqu) .
Therefore we have

Gal(L4, /K k) = kX((k(m))’ququ> / kx(pgow,,, m xqgqu)

= (Ut xqgol)kx( I W, o xqgan) / k*(”gon, m xqgqu)

pES)
= (Utwr X T 1) / (Ut O(alED L Wi o)) X TT L.

Similarly we have

Gal(Lo, m/L(,), mKO)

(kx( W, o ququ)f\kx<U’<m> xqgqu»/kx( IV quoU“>

PES) pES,

it

N

(U (BT W) ¢ L) (TL Vi o JLU)
/k X(ngon' o X ngqu>

2 (Ut (D) T W, )% TL1/ (oD T Vo cm0) X TT 1
and

Gal(My, /Lo m) = & (pgon, <m>><qg0Uq)/kX(pgoU§’, quan)

= ((uﬂ(Eo)pQS:on- "",’ X H 1 kx(pgoU%mX H Uq)/kX I Ugqugqu)

a&Sy a&Sy pES)

2= (4B I Vi om)X TT 1) /(B T U)X IT 1).

PES, 9€8
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Since
Gal(Ly/K ko) = 1im Gal(Lg, n/Kokm),
Gal(Lo/ LK) = m Gal(Lo, m/ Lo, mKo)
and
Gal(M,/ Lo) = lim Gal(Mo, /Lo, n),
we obtain the isomorphisms (b), (d) and (e). O

The following theorem is not needed in the following sections, but is
interesting because it gives a relation between capitulation of ideals and the

Galois groups [ and D. See about a relation between Greenberg’s con-
jecture and capitulation. Put Hjp ,=Ker(i, »: An— An) and H, ,=Ker(, »:
A, — An) where 7, , is induced by the natural inclusion map %, &,,.

THEOREM 1. Let k be a totally real finite extension of Q and n a non-

negative integer. Assume that Leopoldt’s conjecture is valid for k., (in=n) and p.
Then

(Mn: Lan] =z #Hy n [Ma: L2l and [(Myp: Ln] = #Hy - [Ma: La],

In particular if Hy ,#0 for some m=n, then the group D=Gal(M/L’) is not
trivial.

Proor. We have the following commutative diagram with exact rows and
columns :

0

A

N

0 — GallMn/Knks) —> GaliMp/ke) —> A —> 0

XVn, m XVn.mT in,mT
0 — GallM,/Kik.) —> GallM,/ks.) —> A, —> 0

T T !

0 0 Ham

where v, n=wn/0,=(1+T)P"—1)/(1+T)*"—1). Commutativity i$ nothing but
[I4, Theorem 8]. The columns are exact by class field theory (cf.
1(@). To show the rows are exact, we need the assumption. Since k£, is
totally real, Leopoldt’s conjecture for %, and p implies that [M,, : k.] is finite
(see [I4, Theorem 2]). Hence w, and char(Gal(M/k.)) are relatively prime.
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On the other hand, Gal(M/k.) has no non-trivial finite 4-submodule (see [I4,
Theorem 18]) and Gal(M,/k.)=Gal(M/k.)/w, Gal(M/k.). Using these facts, we
easily see that the rows are exact. Applying the snake lemma to the above
diagram, we have an exact sequence:

00— Hp ,—> N.
By the below lemma, we have [L;,: Knkol<[Ly: Kpk.]. Therefore

, My Kpks] _ [M,: Ig_k_ml#m s
(M Ln] = TLh: Kk = [Lh:Khks] = Mz La]-#Ha

The second inequality can be proved in a similar way. O
LEMMA 1. Let the situation be the same as in Theorem 1. Then

[Ln:Knka] < [Ln:Kika] and [Ln:Knkol < [Ln: Kakel.

Proor. Let U,,< U,, be the natural inclusion map. Then

Norm

U,, = U,, 22U,

is a multiplication by p™ ", Put ke p,=\Uizek:p, for brevity. But local class
field theory, we have the following commutative diagram.

Gal(km,pm/k n,pn) = UPn/VPn

a

Gal(Ro, poo/ e m.p) = Up/ Vi -

Therefore i n: Un/V,—Un/V, induced by the above maps is an isomorphism.
By [Proposition 1|(b) and E,SE7, we have the first inequality. The second
inequality can be.proved in a similar way. 0O

§2. Some propositions concerning A.

Let © be the integer ring of a finite extension over the field @, of p-adic
numbers. In this section we give some propositions concerning A=0[[T]] which
are required in the following sections. Some of them seem to be known, but
we bring them up here for convenience. Let m be a generator of the maximal
ideal of © and P=(x, T) the unique maximal ideal of /1 The following prop-
osition is known as Hensel’s Lemma.

PROPOSITION 2. For f(T)= A, assume that there exist go(T), h(T)EA such
that

F(T) = gT)h(T) mod P*™ and (g«(T), hT)) 2 P*
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for m=e+1=1. Then there exist g(T), W(T)=A such that
(T = g(T)(T), g(T) = goT)mod P™ and h(T) = ho(T) mod P™,
When we use this proposition, it is convenient to know that (g,(T), h(T))
2P if (go(T), ho(T), P¢**)2P. In general for a finitely generated A-module L

and its submodule L’, we have L’'2P¢L if (L', P**'L)22P¢L by Nakayama’s
Lemma ((L’+P¢L)/L’=P({(L’+P¢L)/L’), see [W, Lemma 13.16]).

For f(TY=3%a;T' A\(n), by p-adic Weierstrass preparation theorem, we
can uniquely write f(T)=P(T)U(T), where P(T) is a distinguished, irreducible
polynomial in ©[T] and U(T)eA*. Put A(f(T))=min{j|a;&(x)}, then we have
Af(T))=deg(P(T)).

PROPOSITION 3. For f(T), fT)=A\(x), write fL(T)=P(T)U(T) and f«T)
=Py (TYUT), where P(T) and PXT) are distinguished polynomials and U,(T),
U (T)eA*. Assume that

{ AT = Af(TH =nzl, [u(D), f(T)E P for 1=1
fi(T) = fo(T) mod P¥**' for k=1,
Then P(T)=P,(T)mod P***,

PROOF. Let f;=3%.,a; ;77 and put R,=X}(a:;/7)T’€0[T] and V,=
%0y i T7EA* (=1, 2). We define an operation t=7,: 4 — A by (3%, b;T7)
=2%.b;T7"". Then we have

1 2 RN
-1 —1Vxil . =LY .
U=y Al 1yw(e V,) b

where, for h=, t-h operates on fA by (¢-h)-f=z(hf). (See [W, Proposition
7.21 and its proof. Under the notation there, we get the above formula from
the last one of [W, page 114] by taking f=f, and g=P;.) We have R,=
R;mod P**, Vi'=V;*mod P*"*'-" and ¢(P™)=P™ " for m=n. Since

igd(PAnHion) @ PAeDG--ntE for 1<j<k—1,
Ut'=U;'mod P*. Therefore we have
P —P, = f,(UT'—=Uz)+(f1—f)Uz! = 0 mod P**, O
For a finitely generated A-torsion /4-module N, there is a 4-homomorphism :

N =@ A/t @  A/(F(T))

whose kernel and cokernel are finite, where yg; and n; are non-negative integers
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and fy(T) a distinguished irreducible polynomial in O[T] (see, for example,
[W, Chi3]). Put

T l

char(N) = .II1 Thi _Hlfi(T)"i .
j= i=

For a power series f(T)=4, let M, be the set of A-isomorphism classes of

finitely generated A-torsion /4-modules N such that

{ (char(N)) = (f(T)),

N has no non-trivial finite /4-submodule.

For f(T)eA\(0), we say f(T) is square-free when there is no element g(T)e
A\A* such that f(T)/g(T)*eA. Further, we say f(T) is irreducible when there
is no element g(T)=A\A* such that f(T)/g(T)esA\A*.

THEOREM 2. For f(T)eA\(x), HMsa is a finite set if and only if f(T) is
square-free.

PrOOF. {Necessity} Assume f=h?II}., g;, where h, g, A\A* are irreduci-
ble elements. For £=0, let N, be the submodule (z*, h)/(h?) of A/(h?. The
isomorphism class of N, is contained in M2 Since w*&(x**, h),

[Ker(Xh:Ny— Ng):Im(Xh: N, —N)]
= [A/(h): (z*, h)/(h)] = [4:(z*, h)]

is strictly monotonically increasing for £. Therefore N, is not isomorphic to
Ny if k=+k’. Consider submodules N.D ®i-; 4/(g:) of A/(hHP DL, A/(gy).
Any two of them are not isomorphic.

{Sufficiency} Step 1: We first prove that #, is a finite set when g is an
irreducible element of 4. Put n=4(g). For every [N]€H,, fix a map:

$n: NG A/(g)

such that ¢n(N) is not included by (x, g)/(g). Then ¢x(N) contains an element
Sttay ;T mod g where ay ;€0 and ay, ,-1%(w). We may write

g = (;i‘.:: aN,jTj)QN+TN

for gy, ryveAd with Agy)=1 and Ary)<n—2. Assume that for any % there
exists an element [N,] in M, such that n* divides »»,. Then we have a
subsequence of {(X75' aw,,;T7, gwv,)} which converges to (Q, R)e(A\A*) X (A\A>).
Since 7y, —0 as k— o, g=QR. This contradicts the above assumption. Hence
there exists a non-negative integer ¢ such that ¢ is independent of the choice
of N and that z°*' does not divide ry. Therefore (»y mod g) (S¢y(N)) contains
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an element n° 37=2by ;T mod g where by ;€0 and by, ,-.%& (7). Next write
n-2 )
ng = 2 S bw. T/ )b +rh,

for gy, ryed with Agy)=2 and A(ry)<n—3. By the irreducibility of g we
can show that (z°#y mod g) contains an element = 37fcy ;77 mod g where
Cn.;E0, Cy n-s&(m) and ¢’ is independent of the choice of N. By continuing
this argument, we can show that ¢y(N) contains 7°“mod g where ¢” is inde-
pendent of the choice of N. Therefore ¥, is a finite set, in fact

# M, < # {A-submodules of a finite 4-module A/(g, =°")}.

Step 2: Let f=II{..f:, where f; is an irreducible element of 4. Assume
that f, and f; are relatively prime for /#;. Let L=}, 4/(f;) and
Pr,: Lo L xP - xieiPxiPxiey - Px;— 0P - 0Px,P - PO.
For every [N]e#,, fix a map
¢n: N L such that Pri¢x(N)) & (w, fi)L for all 4.

By step 1, Pri(¢~(N)) includes L; which is independent of N and is of finite
index in 0P --- 0DA/(f)PO --- P0. Since IT%-y,;-if; and f; are relatively prime,
Sie(ITb=r, j2e f5) Ly is of finite index in L. Here ¢@y(N) includes a submodule
S ei(TXb=r, jei f5)L: of L, which proves “if part” of this theorem. |

For A/(w,)-modules A2B and C2D, we say (A, B) is A/(w,)-isomorphic
to (C, D) when there exists a A/(w,)-isomorphism from A to C which maps B
onto D. We denote the A/(w,)-isomorphism class of (4, B) by [A, B],.

Fix a power series f(T)eA\(x). For [N]€M,;m, put Jy={N’|N'CN
with char(N’)#char(N)}. For a non-negative integer 7, define

If(T).n = {[N/a)nN: (N’+wnN)/wnN]nl[N]Eﬂf(m, N’E:'HN}.
In we assert that Ly« =L ;.. if f(T) is square-free and

F*(T) is sufficiently “close” to f(T). Here we define the “closeness” as follows.
If there exists u*(T)eA* such that f*(T)u*(T)=f(T)mod P™, then we write
(f*(M)=(f(T)) mod P™. Moreover define

m(f(T), n) =min{m| L ;. »=-L*q.n for all f¥(T)eA
with (F¥(T)=(f(T)) mod P™}.

By putting P~=(0), we have 0<m(f(T), n)<co. From the definition of m(f(T), n),
it is easily shown that

m(fX(T), n) =m(f(T), n), if (f¥T)) = (f(T))mod Pm/ @™,
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From now on, assume that f(T) is square-free. Before giving
4, we show that a factorization of f*(7T) is similar to that of f(T) if f*(7T) is
sufficiently “close” to (7). We fix a factorization of f(T)in A: f(T)=TI-.f«(T)
where f(T)e A\A* is irreducible.

For f(T) and a non-negative integer m, define

m;q(m) = min{m’|m’ satisfies the property (A)}
A { if (f¥T))=(f(T))mod P™, then there exist fH(T)ed (1<iL))
(A) 1
satistying (f(T)) = (f«(T)) mod P™ and fXT) = 11 fK(T).
By using repeatedly, we can show that there exists an integer m’

satisfying the above and hence m,)(m)<oco. It is easy to see that m,(m) is
independent of the choice of the factorization.

Further we want f¥(T) to be irreducible for all ;. For an irreducible
element g(T)e A\(x), define

mo(g(T)) = min {m’ |m’ satisfies the property (B)}
(B) if (g¥(1)) = (g(T)) mod P™" then g*(T) is irreducible.

Since A4 is compact, there exists such an integer m’ and my(g(T))<co. We
easily see that mq(g(T))>A(g(T)).
Put e; ;=min{e” |(fi(T), [(T)H2P*"}, e=max<;{e: s}
and M=maXsis: {mo(fi(T)), e+1}. Assume that (f¥(T)=(f(T)) mod P™s 0,
Then there exist fH(T)eA (1=<i<!) such that
{ FHT) is irreducible in A, fH(T) =TT /KT,
(FET), fHT) 2 P for i<j, AfHTD)) = A(f«(T)).

From the first three properties, f*(T) is square-free. Put

W= g’; A, F=0D - 0Bf(TIDO - BO)isizt,

F*= (0 - 0B fHT)DO --- PO)sss: .
Let Pri: W—W be the map defined by

%D - %41 Dx DX g41 - Bxy > 0D - 0Dx,HO -+ PO.

We define a finite set of some submodules of W associated to (7). In the proof
of [Theorem 2 (sufficiency), we show that there exists a non-negative integer c¢”
such that P“W<SZ+F for all submodule Z of W with PriZ&(x, f(T)W for
all 7. Let c=c(f(T)) be the minimum integer ¢” satisfying the above. Define
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Z=2(f(T) = {ZSW|Z2PW, PriZ)Z(x, f(THW for all i}.

PROPOSITION 4. Let f(T) be a square-free power series in A\(x).

@) If (fYT)=(f(T))mod P™s@ maxext- 30 thon for any [N*¥]&€Mpm,
there exists an element Z =% such that N*=(Z+-F*)/F*. In particular {# M x|
(fX(T)=(f(T)) mod Pms(rymaxic+l. ML Js hounded.

(b) Assume that w, and f(T) are relatively prime. Then there exist some
integers m, , and m, , (Zmax{c+1, M}) such that

@0, Z+F* 2 PruaW §f (f(T)) = (f¥T)) mod P™s (™2, n
for any Z<Z. Moreover the following inequality holds

m(f(T), n) < mym(max{m, », my a}).

PROOF. (a) Assume that (f*)=(f) mod P™s*_  For each [N*]e M+ fix
a map

O+ N*¥C, L* = QA/(ff) such that Pri(dy*(N*)) & (z, f¥)L* for all 7.

Moreover we choose a A-submodule Z y+ of W satisfying
P+ (N*) = (Z ys+F*)/F*

Since Pri(Z y )& (z, fHW=(x, f)W for all i, Z yx»+F2P'W. If (f,))=(f¥) mod Pc*!
for all 7, Zys+F*+ P W 22Z y«+F2P°W, By Nakayama’s lemma, this implies
Z v+ F*2PW. Hence, for any N*, we can choose Z y+ so that Z y+2P°W and
Pri(Z y9)%&(z, foW for all . Since Z is a finite set, (a) follows.

(b) First note that

0 Z+F* 2 308 -+ 0B(@, P, FHBO - B0
and that (w,P°, fH2P(w,, f¥). Since f; and w, are relatively prime, we can
take integers m, ,=m, ,(f) and m, ,=m, ,(f) (Zmax{c+1, M}) such that
W, Z+F* 2 P™uaW if (f;) = (ff) mod P™2.n

for any Z&2. This shows the first assertion. Next, let us prove L s ,=L, ,.
Put m’=max {m, », m, »} and assume that (f;)=(f¥) mod P™" for all 7. Let [N*]
be any element of #,+ and N” any element of Jiys. Then, by (a), there is an
element Z€2Z such that N*=(Z+F*)/F*. Put N=(Z+F)/F. Then [N]€%,.
We easily see that there is a submodule Z” of Z-+4F* such that

N" = (Z"+F*)/F*, Pry(Z")< ffW for some i.
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Fix ¢ such that Pri(Z”)S f¥W. Let ¢; be the isomorphism
i (fH—(fo) xff—>xfs.
Define a A-submodule Z’ of W by
Z' = {2 - xDt(x)Dx i1 - Bl D - i DX D x4y - B2 EZ7}.

Put N’=(Z’+F)/F. Then, as Pri(Z")sfW, N’cJly. Now let us prove
[N*/w,N*, N"+w,N*/w,N*],=[N/w,N, N +w,N/w,N],. We have

(ZA+F¥) /(@ Z +F*) = (Z+F*+PmuolW) (0, Z +F*4-P™1.rlY)
= (Z+F+Pmu2W) /(@ Z +F+Pm1.2W)
=(Z+F)/(0.Z+F).
On the other hand, we have
(Z"+@nZ+F*) /(@0 Z +F*) = (Z'+wnZ +F) /(0 Z +F).
Therefore L+ ,S L, ,. Similarly we can show that L ,2.Ly . O

REMARK 1. Here we give an upper bound for m(f(7T), n). Put

(LD, F(D)2P*}, o =maxie1isi-1).

e; = min{e”

Then max{m, ., ms ., ¢’ +1} +(izie;)—e;=ze;+1 for 1</;<[—1 (if [=1, put
¢’=0). Hence we have

M(F(T), 1) S My cry(max s, n, e, n}) S MAX s, a0, &1+ 3 €
by using repeatedly.
For a power series f(T)eA\(x) and [N]€M,m, define
n(f(T), N) = min {n|n satisfies the property (C)}
©) N/w,N # N’/w,N’ for all [N']e M,y with [N']#[N].

Put n(f(T))=max{n(f(T), N)I[N]e H;x}. By putting w.=0, we have
0=n(f(T), N)=n(f(T))=co.

PROPOSITION 5. Assume that f(T)eA\(x) is square-free. Then n(f(T)) is
finite.

PrROOF. Assume that for [N], [N'J€i, and all n there exist isomorphisms
én: N/oyNSN'Jo,N'. Let N=(n, n,, ---, n,). Since N’ is compact, there
exist nji, -+, nye N’ which satisfy the following property : for any n there exists
some integer m=n—1 such that ¢,(n;)=n;mod(p, T)"N’. Then the map
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¢: N— N’ (p(n)=nj) is a A-isomorphism. Therefore if Nz N’, then there
exists some integer n such that N/w,N#N’/w,N’. By we can
show that n(f) is finite. O

§3. A necessary and sufficient condition.

In this section we give a necessary and sufficient condition for Greenberg’s
conjecture in terms of /A-module structures of certain Galois groups. Let 2 be
a totally real number field and p an odd prime number. We use the same
notation as in the preceding sections. Put A=Z,[[T]].

PROPOSITION 6. Assume that every prime ideal of k above p is fully ramified
in ke and that Leopoldt’s conjecture is true for k and p. Then the following
statements are equivalent.

1) Y/I is finste.

(2) char(Y)=char(D).

This proposition is easily obtained by the following lemma.

LEMMA 2. Let the situation be the same as in Proposition 6. Then D/I is
finite.

PrRooF. We have D/I=lim._D,, where the projective limit is taken with
respect to relative norms. Leopoldt’s conjecture implies that the order of the
maximal [-invariant submodule AL of A, is bounded as n— oo (see [G1, Prop-

osition 1]). Since D,< AL, the assertion follows. N
The following theorem and give a necessary and sufficient

condition for Greenberg’s conjecture for 2 and p.

THEOREM 3. Assume that p does not divide char(Y). Then char(D)=char(Y)
if and only if there exist a non-negative integer n and a power series f*(T)e A\(w)
satisfying (1) and (2):

1) (FXT)=(char(Y)) mod Pm/ T m

(2) there is no pair (N*, N”) with [N*]e M xq), N" &Jly* such that

[Y/wnY; (D+wny)/wnyjn = [N*/wnN*; (N”‘f‘wnN*)/wnjV*]n .
PrOOF. By [I4, Theorem 18], ¥ has no non-trivial finite /A-submodule if
p+2. Using this fact, we can prove this theorem.

{Necessity} Assume that char(D)=char(Y) and that A(f*)=A(char(Y)). For
any [N*]€ M and N"EJly+, Z,-rank of N” is smaller than that of D. For
all sufficiently large n, Z,-rank of N” (resp. D) is equal to the minimum number
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of generators of Z,-module (N”+w,N*)/w,N* (resp. (D+®,Y)/w,Y). Therefore
the necessity follows.

{Sufficiency} Assume that (f*)=(char(Y))mod P"“*™. Then we have
m(f*, n)=m(char(Y), n). Therefore the sufficiency immediately follows from the
definition of m(char(Y), n). O

REMARK 2. As is easily seen, Y/w,Y =GallM,/k. and (D+4+w,Y)/w,Y =
Gal(M,/L7). Hence, by class field theory, we can obtain knowledge on the
isomorphism class [Y/0,Y, (D+w,Y)/w,Y ], from some data of £k, (cf. Prop-
osition 1). Next, assume & is abelian. Then we can calculate char(Y)mod P™
for any m from the Stickelberger elements by virtue of the Iwasawa main con-
jecture. Thus, we can obtain;information on [N*/w,N*, (N’ 4+w,N*)/w,N*],.
Further we have an upper bound for m(char(Y), n) when char(Y) is square-free
(see Remark 1). For numerical calculations, see §4.

For an abelian field %, let ¥ be an irreducible character of A=Gal(k/Q) over
Q. If p does not divide £ : @] we can replace Y, D by egY, eyD respectively
in where ey is the idempotent of ¥, i.e. ep=#A"" 3ca¥(a)o "

We explicitly write down this condition in some cases.
Since we assume that p#*2 and that p does not divide char(Y), there exists
an injective /-homomorphism with finite cokernel:

l
Yo 1@1 A/(f(T)™),
where n; is a positive integer and f;(T) a distinguished irreducible polynomial
in Z,[T]. Then char(Y)=TTi-, fi(T)".

{Case 0: Y /D is trivial.}
This is known as a trivial case (cf. [FK]).

PROPOSITION 7. Assume that Y /(D+w,Y)=0, then Y=D. In particular
char(D)=char(Y).

ProOF. In this case, we have (Y /D)/w,(Y/D)=0. This implies that (Y /D)
/(p, TYY /D) is trivial. By Nakayama’s Lemma, we have Y /D=0. O

{Case 1: char(Y) is distinguished irreducible in Z,[T7].}
{=1 and n,=1.

PROPOSITION 8. For any irreducible power series f(T)e A\(x) and [N]e
My, Nv=1{0)}.

PrOOF. Since N has no non-trivial finite /-submodule, this proposition
immediately follows. i
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THEOREM 3 (Case 1). Assume that p does not divide char(Y). Then char(D)
=char(Y) if and only if there exist a non-negative integer n and a power series
fHTeA\(r) satisfying (1) and (2):

1) (f¥T)) = (char(Y)) mod P™* @
2 (D+w.Y)/0,Y #0.

Proor. By [Proposition 8 and [Iheorem 3, the assertion easily follows. O

REMARK 3. In this case we need not study a pair (Y, D) to give a neces-
sary and sufficient condition. Hence we can replace m(f*(T), n) by m(f*(T))
i.e. all we have to know is the irreducibility of char(Y). In and [OT],
they explicitly give some procedures to check the non-triviality of Gal(M,/Lg)
in some case.

Let =1, fi(T)=T—a, acpZ, (a+#0) and n,=1. Put a=v,(a), where v,
is the normalized p-adic valuation.

PROPOSITION 9. HMr_.,={[N]IN=A/(T—a)}, TNy={0)}, n(T—a)=0 and
m(T—a, n)=max{a+n, at+1}.

Proor. We prove that m(T—a, n)=max {a+n, a+1} (the other assertions
can be easily proved). If (f*)=(T—a)mod P? then f*=(T—a*)u* for some
w*eA* and a*epZ, By if (f=(T—a)mod P**', T—a=
T—a*mod P**!, Note that vy(w,(a))=a+n, where w,(a)=(14+a)*"—1. Hence
if (T—a)=(T—a*)mod P=*!, then (T—a* w,)2P%*". We easily see that
max {¢+1, M} <max{a+1, 2} =a-+1. Therefore

m(T—a, n) £ max {m, ,=a+n, m; ,=a+1}

(see Remark 1). If n=0, max{a+n, a+1} =a+1. Put f*=T and N*=A/(f*).
Then f*=T—a mod P*. We can see N*/w,N*£EN/w,N. If n=1, max{a+n, a+1}
=a+n. Put f*=T—(a+p***') and N*=A4/(f*). Then f*=T-—a mod P**""!
and N*/w,N* is a cyclic group of order equal to or larger than p**™. Since
(T—a)(N*/w,N¥*) is not trivial, N*/w,N*#N/w,N. O

{Case 2: char(Y) is distinguished, square-free and reducible of degree 2.}
1=2, f{{(T)=T—a, f(T)=T-—b, a, bpZ, (a#b, ab+0) and n,=n,=1. Put
a=vpy(a), B=v,(b) and e=v,(a—b). Assume that a<p.

PROPOSITION 10. #Mr-o>r-n=e-+1 and
Hr-a)a-» = {{N:]INy=1P1, 0Dp*)S A/(T—a)PA/T—b), 05k=Ze},
where ¢Pd=c mod(T — a)Pd mod(T —b).
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PrOOF. For [N]E M- a-», there exists an injective A-homomorphism :
Ox: N—A/(T—a)YPA/(T—b). Any element in A/(T—a)PA/(T—b) can be
expressed as ¢Pd, where ¢, d=Z, Let m=min{i|p*Ddeed(N)} and n=
min {{|0Pp'=d(N)}. Then N is isomorphic to (p™Pd, 0Dp") for some d=Z,.
Since (T—a)(p™Pd)=0P(b—a)d, N=(p™P1, 0Pp*)=(1P1, 0Pp*)=N,, where
0<k<e. Since

[Ker(X(T—b): Ny — Np): Im(X(T—a): Ny — Np)] = pe%,

L]

#F M-y r-n=e+1.
PROPOSITION 11. 1y, ={(p'D0), i=k, (0Dp’), j=k, (0DO)}.

Proor. If ¢#£0mod(T—a) and d#0mod(T—b), then (¢cBd)&Ty,. Since
min {¢| p*PO= N} =k, the assertion follows. O

PrROPOSTITION 12. n((T—a)T—b))=e¢—a.
PROOF. For n=e¢—a,
Ker(X(T—b): Ny/@ Ny — N /0, Ny) = (p*(1PL), 0P p*)/w.N. .

Since [Ni/@,Ny:Ker(X(T—b)]=p*, we have n(T—a)T—b)<e—a. For
n=e—a—1=0,

¢: Noy/w,Ny— N,/w,N, 1Pl—1Pl, 0Pl— 0Dp

is a A/(w,)-isomorphism. (In this case a=pf<e. Since v,(@.(a)—w.(b)=e+n,
we have @,(a)1P1)+(@,(b)—w,(a))0Dp), w.(b)0Pp)=w,N,. Hence ¢ is an
isomorphism of abelian groups. Since T(1H1)—a(1Pl)+(a—b)0Dp), T(ODp)—
b(0Pp)=w.N,, ¢ is a A-isomorphism.) Therefore n((T—a)(T —b)=e—a. O

The following lemma is obtained by easy calculation.
LEMMA 3. Let N'=(p'®0)EJly,. Then

Z/pZDZ/ D Z if e—a<k, k<i<k+a+f—e
Z/prZDZ/pe L if e—a<k, iZk+a+p—e
Z/peZDZ/p L if e—a=k, k<i<k-+a+f—e
Z/p°ZDZ/pPZ if e—a=k, iZk+a+f—e.

Ni/(N'+@oNy) =

Let N'=(0Dp))&Ty,. Then

Z)p*ZPZ/p* L if e—ask, R<j<PB
Z/p R ZDZ/pr P L if e—ask, j=Zf
ZIpZDZ/pZ if e—az=k, R<j<PB
Z/pZBZ/pPZ if e—az=k, j=B.

Ny /(N"+woN,) =
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PROPOSITION 13. m((T —a)T—b), n)<2e+ S-+n.

PrROOF. If (T—a)=(f¥) mod P¢*' and (T—b)=(f¥) mod P***, then A(f¥)=
AfH=1 and (f¥, fH2P. Put x=max{e+l, f+1}. If T—a)=(H=
(T—a*)ymod P* and (T—-b={H=(T—-b*)modP*, then a*=a mod p~,
b*=bmod p* and

(@a (D), ©,(0Dusp*), T—a*®O0, 0BT —b¥) 2 P *(ADA)

for any wuy, u,, usA4*. We easily see that max{c+1, M} Smax{e+1, e-+1}=
e+1. Since

max {m; ,=e-+B+n, m, ,=x} = e+ p+n,
m((T—a)T—b), n)<e+(e+B+n)=2e¢-++n by Remark 1. 0

THEOREM 3 (Case 2). Assume that p does not divide char(Y). Then char(D)
=char(Y) if and only if there exist a non-negative integer n and a*, b*epZ,
(a*+b*, a*b*+0) satisfving (1) and (2):

(1) (T—a*(T—b*)=(char(Y)) mod Pm(T=eH @=thm
(2) there is no pair (N¥, N”) with [N}¥I€ Mq-o% -0, N"E Tz such that

Y/0.Y, (D+@.Y)/0,Y 1o = [N¥/0aN¥, (N"+0uN§)/0aN¥]a.

§4. Numerical examples.

In this section we give numerical examples. We follow the notation of the
preceding sections.

Let 2 be a real quadratic field, p an odd prime number and ¢ the non-
trivial primitive Dirichlet character which is associated to k. Let f, be the
least common multiple of p and the conductor of ¢. We identify Gal(k./k)
with Gal(k(pp=)/k(pp)), where p,» is the group of p*-th roots of unity and
tpe=\Unzottpr. We take a topological generator y, of Gal(k./k) such that
Lro=g**/o for all {&p,». Since there is no non-trivial abelian p-extension of
Q.. unramified outside p, we have Y =Gal(M/k.)=eyY, where ¢, is the idem-
potent of ¢. On the other hand, there exists an element G(T)eA=Z,[[T]]
such that L,(1—s, §)=G4((1+fo)*—1) for all se€Z, (see [I3]). By p-adic
Weierstrass preparation theorem, we can uniquely express G4(7) in the form
p#egs(TYU(T), where py is a non-negative integer, g,(T) a distinguished
polynomial in A and U4T)=A*. The Iwasawa main conjecture proved by
Mazur-Wiles asserts char(e,Y)=p#¢g,(T). Moreover Ferrero-Washington

[FW] proved p,=0.
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An “approximate” polynomial of G4(T) is obtained in the following way.
Let w be the Teichmiiller character. G4(T) satisfies the following congruence :
Gu(T) = 1 f§n ado " (a)1+T) 2@ mod((1+T)?"—1)

4 T 2fep™ a=1 (@ rp=t
for n=0, where 1+T)1+T)=1+f,, (14+Fo)»® =za mod p*** for some (p—1)-th
root of unity z€Z, and 0=y,(a)<p™ (see [I3, §6] and [G2]). Note that
(p, T*"'D(1+T)*"—1). For details about computation of Gu4(T), see, for
example, [EM].
Let k=Q(+~/m) in which p=3 splits, where m is a square-free integer
(1<m<<10*. The total number of such fields is exactly 2279.

ExampLE 0-1. If deg(g,(T))=0, we have M=L=k. Hence 1 and v
vanish. There are 1444 fields such that deg(g,(7T))=0 among 2279 fields.

ExampLE 0-2, If L{=k., then we have L’'=k. by Hence
2=0 by Including those in Example 0-1, there are 1444598
fields such that L{=Fk. among the above fields. Concerning y-invariants of

those 598 fields, see [FK].

ExamMpLE 1. If g4(T) is irreducible in Z,[T] and [M,: L3]>1, then we
have 1=0 by and (case 1). The index [M,: L;] is
computed in the following way. Assume that g,(T) is square-free. Then there
exists an injective map Y =Gal(M/k.)C> Z=2Z,[T]/(g4(T)) with finite cokernel.
Hence we have [M,: ko]l=#(Z/w,Z) (see [CL, §4]). By Proposition 1(a), (b),
#Gal(L, ko) =#AL-#U./V.EL). We have seen in the proof of that
to.n:Uo/Vo—U,/V, (=Z,) is an isomorphism. Hence we see that U,/V,—
(Us/Vo)P" induced by the relative norm map is an isomorphism. Thus we have
#Un/V o Ep)=#U,/V.Ny_+En)/p". Therefore we have

P #(Z /W, Z)-p"

Mot ] = UV N B

In [FT], they compute #A,=#A4,/D, and n{”=v,(p-#U/V Nk nE3r)) for
the above 2279 fields and n=0, 1.

Let k=Q(+v727), p=3 and ¢ generates Gal(2/Q). By computation, (G4T))
=(T?+3T+18) mod(p, T)®. Further we see that T%*+37T+18 is irreducible in
Z,[T] and m(T?4-3T+18)=3. Therefore g4(T) is irreducible in Z,[T]. We
get #2Z /w2 =D

On the other hand, we have

Ay=1, E,=<{—1, e=T28+2T/T27>, Ej=<{—1,¢, 3, ¢/=22+/727>.
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p=(3, ¢’?) is a prime ideal and p°=(e’?). Here since +/727=22 mod p*, ¢ is a
p-adic p:th power but not p*-th power and ¢ is a p-adic p-th power but not
p3th power.

From these data on Ej, we see that n{®=2 (see [FK] and [FT]). By these
facts, we have [M,: Li1=p. Therefore we have 1=0.

Here we explain how to obtain n{®»=2 from these data for convenience of
readers. Since p splits in k£, we have

Up= {(u, u)EQ+pZ) XA+ pZ,) luu'=1},
Veo=(1,1),
Wo= {(np®, y'p"la, beZ, p? i=y'?"'=1}.
Here we fix a topological generator x of U,. By the above data,
uo(e) = x?* and u4(e’) = x?¥'(1, p%)

for some u, w'€Zj; Hence Ei=U,N\(uo(E))W,)=<x?)>. Therefore we have
#U,/V,Ei=p and n{®=2.

In a similar way, we can show that the conjecture is true for m=27%4,
4279, 4741, 5533, 7429, 7465, 7642, 9691. For these quadratic fields, the conjec-
ture was not verified in [FT].

EXAMPLE 2. Let us deal with the case g, is reducible. Here we give an
example of case 2.

Let £=@Q(+/9634), p=3 and ¢ generates Gal(k/Q). By computation, (G,(T))
=(T—66)(T—27)) mod(p, T)'. Hence we have g, (T)=(T—a)T—0b) (a, bepZ,),
e=1, a=1 and §=3 by and Put FH(T)=
(T—66)(T—27). Moreover we have m(f*(T), 0)=m(g,(T), 0)<5 by
13. This implies that Lchara, 0=2L s*. 0

On the other hand, we have

Ay=Dy=Z/pZ, E,=<—1, e=8343+8549634)
E§=<—1, ¢, 3, &’ =2252785-+22304 /9634 .

p=(3, ¢’°) is a prime ideal and p*=(e’?). Here since +/9634=20 mod p®, ¢ is a
p-adic p3-th power but not p*th power and ¢’ is a p-adic p*>th power but not
p3-th power.

From these data, we obtain E,=<x?* and E;=<{x?®) in a similar way as
in Example 1. First, by [Proposition 1|(a), (b), Gal(L{/k)=Gal(L{/Kjk.)=
U,/ V,Ei=Z/p*Z. Next, let us compute Gal(M,/L;). By [Proposition 1(e) and
Ve={{, 1)}, we have M,=L,. Onthe other hand, Gal(L/L’) is a cyclic Z,-module,
since p,p% is principal for all n. Thus it suffices to know #Gal(L,/K,L;) and
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#Gal(K,L;/Ly). As E}/E.=Z/pZ, #Gal(L,/K,L;)=p by [Proposition 1/(d). By
D,=Z/pZ and [Proposition I|(c), we get #Gal(K,Li/Ls)=p. Therefore we
obtain Gal(M,/L)=Z/p*Z. As A,=D, we see that LiNKyk-=k. Hence
Gal(My/k.) is not a cyclic Z,-module. By (e=1), Msxq has
two elements [N#¥] and [N¥]. Now we prove char(D)=char(Y). By
3 (case 2), all we have to do is to show that there is no element N”&Jly% such
that [V /@,Y, (D+w,Y)/w,Y Jo=[N¥/w,N¥, (N"+w,N¥)/w,N¥], for £=0, 1. Prop-
osition 11 gives us all elements of Jly3. Then, using we have no
element N”&Jlys such that (N”+@oN¥)/wN§F=Gal(M,/Ly)=Z/p*Z and that
N¥/(N"4+w,NF)=Gal(L;/ ko)== Z/p*Z. On the other hind, N¥/w,N¥ is a cyclic
Z ,-module, but Y /@Y =Gal(M,/k.) is not cyclic. Therefore the above assertion
follows.

Of course, we can show char(D)=char(Y) by directly studying [Y/w,Y,
(D4w,Y)/w,Y],. In the above case, we have the following isomorphisms by

class field theory (cf. Proposition I).

Y/w,Y = Z/pZDZ/p*7Z
Ul Ul
(D+wY)/wY = (1Pp).

Using this fact, we can show that D&Jly by (case 2) and Proposi-
tion 11.

In the following tables, we write the number of quadratic fields satisfying
conditions concerning (1) deg(gy(T)), (2) reducibility of g,(T), (3) M, and L,
(4) L; and k. among 2279 fields. For example, 430(393) in Table 1 means that
there are 430 fields which satisfy the following conditions (1), (2), (3) and that
393 fields satisfy (4) further. (1) deg(gy(T)=1. (2) g4(T) is irreducible in
Z,T]. 3 My2L;. 4) Li=ke.

Table 1: The number of quadratic fields (n=0)

‘ Irreducible | Reducible
deg(gy(T) | M2Li (=ka) | My=L; | M,2L; My=L;
I 430393) 119 0 0
2  146(130) 41 17(14) 0
3 29( 28) 9 15(11) 2
s | 11 3 5( 3) 0
>5 5( 5) 0 2 2) 0
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Table 2: The number of quadratic fields (n=1)

] _

Irreducible Reducible
degg(T) | M,2Li | M=L| | M2L M,=L;
1 517 32 0 0
2 185 2 17 o

~~37 o l 7; 17

%

[92] > w
et

[$2 BN | J

[en] (o]

[\S] 93]

(e (o]

By Table 1, Example 0 and Example 2 Greenberg’s conjecture is true for at
least 2097 =1444-+430+146+29+12+4-5+144+11+43+2+1 fields among 2279 fields.
Moreover, by Table 2, the conjecture is true for at least 2234=14444-517+185
+37+15+5+14+11+3+2+1 fields. Further in [FT] the conjecture is verified
for Q(+/2659) and Q(~/8374) which are not contained by 2234 fields above.

ADDENDUM. Recently some authors obtained efficient criterions for the
validity of the conjecture for certain classes of real abelian fields (see [KS],

[Ku], and [IS2]). Using them, they add new examples with A,(k)=0. For
example, Greenberg’s conjecture is verified for p=3 and all quadratic fields

k=Q(~/m) with 1<m<10* (see [IS2]).
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