Totally geodesic boundaries are dense in the moduli space

By Michihiko FUJII and Teruhiko SOMA

(Received June 29, 1995)

Let F be a closed, oriented surface such that the genus of each component of F is greater than 1. In this paper, we will study the subset $\Re(F)$ of the moduli space $\mathscr{M}(F)$ such that a hyperbolic structure $s \in \mathscr{M}(F)$ is an element of $\Re(F)$ if there exists a compact, connected, oriented hyperbolic 3-manifold Mwith totally geodesic boundary and admitting an orientation-preserving isometry $\varphi: \partial M \to F(s)$, where ∂M is assumed to have the orientation induced naturally from that on M. Note that $\Re(F)$ is a countable subset of $\mathscr{M}(F)$.

First, consider the special case where F consists of two components each of which is homeomorphic to a given closed surface Σ of genus >1. In Fujii [3], it is implicitly seen that, for any $s \in \mathcal{M}(\Sigma)$, one can construct a compact, connected, oriented, hyperbolic 3-manifold M with totally geodesic, two-component boundary such that one component is arbitrarily close to $\Sigma(s)$ in $\mathcal{M}(\Sigma)$ and the other is to $\Sigma(\bar{s})$ (see Lemma 1 in §2 for the explicit proof based on the circle-packing argument in Brooks [2]). Here, $\bar{s} \in \mathcal{M}(\Sigma)$ denotes the hyperbolic structure on Σ admitting an orientation-reversing isometry $\varphi: \Sigma(s) \to \Sigma(\bar{s})$. This implies that the closure of $\mathcal{R}(F)$ in $\mathcal{M}(F)$ contains the skew diagonal $\Delta_{\text{skew}}(\Sigma) = \{(s, \bar{s}); s \in \mathcal{M}(\Sigma)\}$ of $\mathcal{M}(F) = \mathcal{M}(\Sigma) \times \mathcal{M}(\Sigma)$.

In this paper, we will consider a more general case and prove the following theorem.

THEOREM. Suppose that $F = \Sigma_1 \sqcup \cdots \sqcup \Sigma_t$ is any closed, oriented surface such that the genus of each component Σ_i is greater than 1. Then, $\Re(F)$ is dense in $\mathcal{M}(F) = \mathcal{M}(\Sigma_1) \times \cdots \times \mathcal{M}(\Sigma_t)$.

McMullen's results in [9], [10] play important roles in our proof of Theorem. Especially, the argument in [10] for skinning maps is well applicable to construct a compact, connected, hyperbolic 3-manifold M by joining "long" hyperbolic 3-manifolds associated to any $s_i \in \mathcal{M}(\Sigma_i)$ $(i=1, \dots, t)$ so that ∂M is totally geodesic and arbitrarily close to $\Sigma_1(s_1) \sqcup \cdots \sqcup \Sigma_t(s_t)$ in $\mathcal{M}(F)$.

We would like to thank W. Thurston for his suggestion which directs our attention to McMullen's works.

§1. Preliminaries.

In this section, we will review the fundamental notation and definitions needed in later sections, and refer to Hempel [5], Jaco [7] for more details on 3-manifold topology and to Gardiner [4], Imayoshi-Taniguchi [6] on Teichmüller spaces.

A Haken manifold is a compact, connected, irreducible, oriented 3-manifold containing an incompressible surface. A Haken manifold M with incompressible boundary ∂M is called *boundary-irreducible*. A Haken manifold M is *atoroidal* (resp. *acylindrical*) if any π_1 -injective map $\varphi: T^2 \to M$ is homotopic (resp. any π_1 -injective, proper map $\varphi: (A, \partial A) \to (M, \partial M)$ is homotopic rel. ∂A) into ∂M , where T^2 is a torus and A is an annulus.

Orientation-preserving (resp. orientation-reversing) homeomorphisms are, for short, called o.p.-(resp. o.r.-)homeomorphisms. For any oriented surface or 3-manifold N, an orientation-reversed copy of N is denoted by \overline{N} . Let M be an oriented 3-manifold whose boundary consists of two components which are o.p.-homeomorphic to each other. If Σ is one component of ∂M , then the other is denoted by Σ_- . We always assume that Σ_- has a marking induced from that on Σ by an o.p.-homeomorphism $\varphi: \Sigma \to \Sigma_-$ (do not confuse Σ_- with $\overline{\Sigma}$).

Let $F = \Sigma_1 \sqcup \cdots \sqcup \Sigma_t$ be a closed, oriented surface such that the genus of each component Σ_i is greater than 1. The *Teichmüller space* $\mathcal{I}(F)$ of F is the set of equivalence classes of hyperbolic structures on F, where two hyperbolic structures s_1, s_2 on F are *equivalent* to each other if there exists an o.p.-isometry $\varphi: F(s_1)$ $\rightarrow F(s_2)$ homotopic to the identity $\mathrm{id}_F: F \rightarrow F$. We denote by [F(s)] (or simply by s) the element of $\mathcal{I}(F)$ represented by F(s). The *Teichmüller distance* $d_F(s_1, s_2)$ between two elements s_1, s_2 of $\mathcal{I}(F)$ is given by

$$d_F(s_1, s_2) = \frac{1}{2} \inf_{f} \{ \log K_f(s_1, s_2) \},\$$

where f ranges over all quasiconformal homeomorphisms from $F(s_1)$ to $F(s_2)$ homotopic to the identity id_F , and $K_f(s_1, s_2)$ is the maximal dilatation of f. It is well known that the *i*-th factor $\mathcal{I}(\Sigma_i)$ of the metric space $\mathcal{I}(F)$ is homeomorphic to $\mathbf{R}^{\mathfrak{e}g_i-\mathfrak{e}}$, where $g_i=\mathrm{genus}(\Sigma_i)$. So, $\mathcal{I}(F)$ is homeomorphic to the $6(g_1+\cdots+g_t-t)$ -dimensional Euclidean space. For an $s \in \mathcal{I}(F)$ and r>0, we denote by $B_F(s, r)$ the closed r-neighborhood of s in $\mathcal{I}(F)$, that is,

$$B_F(s, r) = \{s' \in \mathcal{T}(F); d_F(s, s') \leq r\}.$$

The moduli space $\mathcal{M}(F)$ of F is the quotient space of $\mathcal{I}(F)$ such that two elements s_1, s_2 of $\mathcal{I}(F)$ represent the same element of $\mathcal{M}(F)$ if there exists an o.p.-isometry $\varphi: F(s_1) \to F(s_2)$ with $\varphi(\Sigma_i) = \Sigma_i$ for $i=1, \dots, t$. Roughly, an element of $\mathcal{I}(F)$ is a hyperbolic structure on F respecting markings and an element of $\mathcal{M}(F)$ is one neglecting markings.

A Kleinian group Γ is a discrete subgroup of $PSL_2(C)$, the group of all o.p.-isometries on the hyperbolic 3-space H^{3} . This group Γ acts conformally on the sphere $S_{\infty}^2 = C \cup \{\infty\}$ at infinity. We denote the region of discontinuity and the limit set of Γ respectively by $\mathcal{Q}(\Gamma)$ and $\Lambda(\Gamma)$. A Kleinian group Γ is elementary if Γ contains an abelian group of finite index. In this paper, we only consider the case where Γ is finitely generated, torsion free, and nonelementary. We fix an orientation on H^3 . Then, $N=H^3/\Gamma$ is an oriented hyperbolic 3-manifold and the quotient map $p: H^3 \rightarrow N$ is the universal covering. Furthermore, the convex hull $H(\Gamma)$ of $\Lambda(\Gamma)$ in H^3 is non-empty, and the image $C(\Gamma) = p(H(\Gamma))$ is the smallest closed, convex core of N. The Kleinian manifold for Γ is $O(\Gamma) = (H^3 \cup \Omega(\Gamma)) / \Gamma$, see [14, DEFINITION 8.3.5]. We have obviously $\partial O(\Gamma) = \Omega(\Gamma)/\Gamma$ and int $O(\Gamma) = N$. A Kleinian group Γ is called geometrically finite if the volume of the ε -neighborhood $C_{\varepsilon}(\Gamma)$ of $C(\Gamma)$ in N is finite for some $\varepsilon > 0$. According to Thurston's Uniformization Theorem [15] (a special case), for any boundary-irreducible, atoroidal Haken manifold M containing a closed, incompressible surface of genus >1, there exists a geometrically finite Kleinian group Γ such that $C_{\epsilon}(\Gamma)$ is homeomorphic to $M - \partial_T M$, where $\partial_T M$ is the union of torus components of ∂M .

Let M be a boundary-irreducible, atoroidal, Haken manifold with nonempty boundary and such that the genus of each component of ∂M is greater than 1. Let $QH_0(M)$ be the set of equivalence classes of pairs (N, φ) such that $N = H^3/\Gamma$ is an oriented hyperbolic 3-manifold and $\varphi: M \to O(\Gamma)$ is an o.p.-homeomorphism. Here, two elements (N_1, φ_1) , (N_2, φ_2) with $N_1 = H^3/\Gamma_1$, $N_2 = H^3/\Gamma_2$ are equivalent to each other if there exists an o.p.-homeomorphism $\psi: O(\Gamma_1) \to O(\Gamma_2)$ isotopic to $\varphi_2 \circ \varphi_1^{-1}$ such that the restriction $\psi|_{N_1}: N_1 \to N_2$ is isometric. Since M is compact, Γ is geometrically finite. We endow $QH_0(M)$ with the quasi-isometric topology so that (N_1, φ_1) and (N_2, φ_2) are close to each other if there exists an o.p.-homeomorphism $\psi': O(\Gamma_1) \to O(\Gamma_2)$ isotopic to $\varphi_2 \circ \varphi_1^{-1}$ such that the derivative of $\psi'|_{N_1}: N_1 \to N_2$ is uniformly close to being an o.p.-isometry. Consider the correspondence

(1.1)
$$\operatorname{conf}: QH_0(M) \longrightarrow \mathcal{I}(\partial M)$$

such that $\operatorname{conf}(H^{\mathfrak{s}}/\Gamma, \varphi)$ is the element of $\mathfrak{T}(\partial M)$ conformally equivalent to $\varphi^{*}([\partial O(\Gamma)])$. By works of several people including Ahlfors, Bers, Kra and Marden, it is shown that this correspondence is a well-defined homeomorphism.

We suppose further that M is not a deformation retract of a closed surface, and Σ_i $(i=1, \dots, t)$ are the components of ∂M . For any $(H^3/\Gamma, \varphi) = \text{conf}^{-1}(s_1, \dots, s_t) \in QH_0(M)$, let $p_i: \widetilde{O(\Gamma)}_i \to O(\Gamma)$ be the covering associated to $\Gamma_i = \varphi_*(\pi_1(\Sigma_i)) \subset \pi_1(O(\Gamma)) = \Gamma$. Since the Kleinian manifold $O(\Gamma_i)$ is homeomorphic to $\Sigma_i \times [0, 1]$, $\partial O(\Gamma_i)$ consists of two components each of which is homeomorphic to Σ_i . One of them coincides with the compact component of $\partial \widetilde{O(\Gamma)}_i$. We can regard the conformal structure on the other component as representing the element on $\mathcal{I}(\overline{\Sigma}_i)$, denoted by $\sigma_i(s_1, \dots, s_t)$. Then, the *skinning map* $\sigma_M : \mathcal{I}(\partial M) \to \mathcal{I}(\overline{\partial M})$ is defined by

$$\sigma_{\mathbf{M}}(s_1, \cdots, s_t) = (\sigma_1(s_1, \cdots, s_t), \cdots, \sigma_t(s_1, \cdots, s_t)).$$

Let $W = M_1 \sqcup \cdots \sqcup M_n$ be the disjoint union of the M_j 's each of which satisfies the same conditions as the above M does. Then, the skinning map

$$\sigma_W: \mathcal{I}(\partial W) = \mathcal{I}(\partial M_1) \times \cdots \times \mathcal{I}(\partial M_n) \longrightarrow \mathcal{I}(\overline{\partial W}) = \mathcal{I}(\overline{\partial M_1}) \times \cdots \times \mathcal{I}(\overline{\partial M_n})$$

is given by $\sigma_W = (\sigma_{M_1}, \dots, \sigma_{M_n})$. Consider the case where W is divided into two families W_1, W_2 admitting an o.r.-homeomorphism $\gamma: \partial W_2 \to \partial W_1$. Then, γ and its inverse $\gamma^{-1}: \partial W_1 \to \partial W_2$ determine the o.r.-involution $\tau: \partial W \to \partial W$. The map $\tau_*: \mathfrak{I}(\overline{\partial W}) \to \mathfrak{I}(\partial W)$ induced by τ is an isometry. By Maskit's Combination Theorem [8], a fixed point $(s_1, s_2) \in \mathfrak{I}(\partial W) = \mathfrak{I}(\partial W_1) \times \mathfrak{I}(\partial W_2)$ of the composition

 $\tau_* \circ \sigma_W : \mathcal{T}(\partial W) \longrightarrow \mathcal{T}(\partial W),$

called a solution to the *gluing problem* for (W_1, W_2) , determines a hyperbolic structure on $W_1 \cup_r W_2$. This is just Thurston's formulation for the proof of his Uniformization Theorem, see [11] for more details.

§2. Construction of manifolds with totally geodesic boundary.

Let Σ be a closed, connected, oriented surface with genus >1, and let s be a hyperbolic structure on Σ . A *circle* on $\Sigma(s)$ is a simple, closed curve which bounds a metric disk in $\Sigma(s)$. A configuration of circles on $\Sigma(s)$ is a collection C of a finite number of circles on $\Sigma(s)$, such that the interiors of all disks bounded by them are mutually disjoint. A configuration of circles on $\Sigma(s)$ is said to be a *circle packing*, if the complement of the interiors of the disks consists only of curvilinear triangles. Such a curvilinear triangle is bounded by three mutually tangent circles. Then, there exists a unique circle on $\Sigma(s)$, called the *perpendicular circle* for the curvilinear triangle, which meets each of the three circles perpendicularly, see Figure 1. A point s in the Teichmüller space $\mathcal{I}(\Sigma)$ is said to be a *circle packing point*, if there exists a circle packing on the hyperbolic surface $\Sigma(s)$.

First of all, we will prove the following lemma.

LEMMA 1. For any $s \in \mathfrak{T}(\Sigma)$ and $\varepsilon > 0$, there exists an $s' \in \mathfrak{T}(\Sigma)$ with $d_{\Sigma}(s, s') < \varepsilon$ and a compact, connected, oriented, hyperbolic 3-manifold M with totally

The shaded area is a curvilinear triangle.

geodesic, two-component boundary o.p.-isometric to $\Sigma(s') \sqcup \Sigma(\bar{s}')$. Moreover, M admits an isometric o.r.-involution exchanging the components of ∂M .

To prove Lemma 1, we need the following result due to Brooks [2] (see also Bowers-Stephenson [1]).

THEOREM [(**Brooks**)]. The set of circle packing points forms a dense subset of $\mathfrak{I}(\Sigma)$.

PROOF OF LEMMA 1. By Brooks' theorem, there exists a circle packing point $s_0 \in \mathcal{I}(\Sigma)$ with $d_{\Sigma}(s, s_0) < \varepsilon/2$. First, we will construct a cusped hyperbolic 3-manifold N with totally geodesic boundary ∂N o.p.-isometric to $\Sigma(s_0) \sqcup \Sigma(\bar{s}_0)$. In order to explain this construction, we will use the Poincaré model of the hyperbolic 3-space H^3 . Namely, let H^3 be the space $\{x = (x_1, x_2, x_3) \in \mathbb{R}^3; |x| < 1\}$ endowed with the Riemannian metric ds given by $ds=2|dx|/(1-|x|^2)$, and let H^2 be the totally geodesic plane $\{x = (x_1, x_2, x_3) \in H^3; x_3 = 0\}$ in H^3 . We set $H_{+}^{3} = \{x = (x_{1}, x_{2}, x_{3}) \in H^{3}; x_{3} \ge 0\}$ and $U_{\infty} = \{x = (x_{1}, x_{2}, x_{3}) \in S_{\infty}^{2}; x_{3} > 0\}$. Consider the orthogonal projection proj: $H^2 \rightarrow U_{\infty}$ along geodesics in H^3_+ each of which starts from H^2 in the orthogonal direction, see Figure 2. Let Γ_0 be a Fuchsian group corresponding to $\Sigma(s_0)$, i.e., $H^2/\Gamma_0 = \Sigma(s_0)$, and let $p: H^2 \to \Sigma(s_0)$ be the universal covering. Since s_0 is a circle packing point, we have a circle packing \mathcal{C} on $\Sigma(s_0)$. Let \mathcal{P} be the set of perpendicular circles for all curvilinear triangles which are complementary to C. The hyperbolic 2-space H^2 is packed by the set $\tilde{\mathcal{C}}$ of circles C in H^2 with $p(C) \in \mathcal{C}$. The set $\tilde{\mathcal{P}}$ of circles C' in H^2 with $p(C') \in \mathcal{P}$ consists of circles perpendicular to curvilinear triangles complementary to $\tilde{\mathcal{C}}$. The projection proj: $H^2 \to U_{\infty}$ maps $\tilde{\mathcal{C}}$, $\tilde{\mathcal{P}}$ to sets of circles in U_{∞} , denoted

Fig. 1.

M. FUJII and T. SOMA

respectively by $\hat{\mathcal{C}}$, $\hat{\mathcal{P}}$. Let $\tilde{\mathcal{L}}$ be the subspace of H_{+}^{3} obtained as follows: consider the regions interior to the hemispheres in H_{+}^{3} lying on circles in $\hat{\mathcal{C}} \sqcup \hat{\mathcal{P}}$, and then, obtain $\tilde{\mathcal{L}}$ by removing these regions from H_{+}^{3} . The space $\tilde{\mathcal{L}}$ is a geodesic polyhedron with ideal vertices and has two boundary components $\partial_{1}\tilde{\mathcal{L}}$, $\partial_{2}\tilde{\mathcal{L}}$, where $\partial_{1}\tilde{\mathcal{L}} = H^{2}$ and $\partial_{2}\tilde{\mathcal{L}}$ is the face obtained by carving H_{+}^{3} along these hemispheres. Thus, $\partial_{2}\tilde{\mathcal{L}}$ consists of infinitely many ideal, totally geodesic polygons which meet each other at the right-angle. Note that, for any hemisphere H lying on a circle in $\hat{\mathcal{P}}$, $H \cap \tilde{\mathcal{L}} = H \cap \partial_{2}\tilde{\mathcal{L}}$ is an ideal triangle in $\partial_{2}\tilde{\mathcal{L}}$. We denote the union of such triangular faces of $\partial_{2}\tilde{\mathcal{L}}$ by \hat{T} , see Figure 3. The Fuchsian group Γ_{0} acts on U_{∞} conformally, and both $\hat{\mathcal{C}}$, $\hat{\mathcal{P}}$ are invariant under the Γ_{0} -action. The quotient map $q: \tilde{\mathcal{L}} \to L = \tilde{\mathcal{L}}/\Gamma_{0}$ is the universal covering which is an extension of $p: H^{2} \to \Sigma(s_{0})$ with $\Sigma(s_{0}) = q(\partial_{1}\tilde{\mathcal{L}})$. Set $\partial_{2}L = q(\partial_{2}\tilde{\mathcal{L}})$ and $T = q(\hat{T})$.

Now, take the double d(L) of L along T. Then, $\partial d(L)$ contains a closed, two-component surface A o.p.-isometric to $\Sigma(s_0) \sqcup \Sigma(\bar{s}_0)$. Since every component Δ of $B = \partial_2 L$ —int T intersects T along the edges of Δ at the right-angle in Land since $\Delta \cap (B-\Delta) = \emptyset$, each component of $\partial d(L) - A$ is a totally geodesic, punctured surface which is the double of some component Δ of B. Again, take the double dd(L) of d(L) along $\partial d(L) - A$. Then, the boundary $\partial dd(L)$ of dd(L) consists of four components. Denote by $\partial_1 dd(L)$ and $\partial_3 dd(L)$ the components each of which is o.p.-isometric to $\Sigma(s_0)$, and by $\partial_2 dd(L)$ and $\partial_4 dd(L)$ the components each of which is o.p.-isometric to $\Sigma(\bar{s}_0)$. It is easily seen that each end of dd(L) is a torus cusp. Let N be the hyperbolic 3-manifold obtained from dd(L) by identifying $\partial_3 dd(L)$ with $\partial_4 dd(L)$ via an o.r.-isometry. In this way, we have obtained a connected, oriented, cusped hyperbolic 3-manifold N with totally geodesic boundary $\partial_1 dd(L) \sqcup \partial_2 dd(L)$ o.p.-isometric $\Sigma(s_0) \sqcup \Sigma(\bar{s}_0)$.

Fig. 3.

To construct a manifold M satisfying the conditions of Lemma 1, we will double N two more times. The first doubling is done so that there is an isometric o.r.-involution of M. The second is a temporary doubling to show that the compactified manifold M by Dehn surgery still has a totally geodesic boundary. Let d(N) be the double of N along $\partial_2 dd(L)$, and let dd(N) be the double of d(N) along $\partial d(N)$. The resulting manifold dd(N) is a complete, connected, hyperbolic 3-manifold without boundary such that each end of dd(N) is a torus cusp, and dd(N) admits the isometric o.r.-involutions Φ_1 , Φ_2 with Fix (Φ_1) = $\partial d(N)$, Fix $(\Phi_2|_{d(N)}) = \partial_2 dd(L)$. These involutions generate the isometric $Z_2 \times Z_2$ action on dd(N). By Hyperbolic-Dehn-Surgery Theorem [14, THEOREM 5.9], there exists a compact hyperbolic 3-manifold M' obtained by a $Z_2 \times Z_2$ -equivariant Dehn surgery along the torus cusps of dd(N). Then, Φ_1 , Φ_2 are naturally extended to involutions of M', still denoted by Φ_1 , Φ_2 . By Mostow's Rigidity Theorem [12], Φ_1 , Φ_2 can be assumed to be isometric also in the new hyperbolic 3-manifold M'. This shows that $Fix(\Phi_1) = \partial d(N)$ is totally geodesic in M'. Let M be the half of M' with $\partial M = \operatorname{Fix}(\Phi_1)$ and containing d(N). The restriction $\Phi = \Phi_2|_M$ is an isometric o.r.-involution of M exchanging the components of ∂M . Let $\varphi: \partial M = \partial d(N) \to \Sigma \sqcup \Sigma_{-}$ be an o.p.-diffeomorphism with $\varphi_{*}([\partial d(N)])$ $=(s_0, \bar{s}_0) \in \mathfrak{I}(\Sigma \sqcup \Sigma_{-})$, where Σ_{-} is a copy of Σ_{-} . Set $\varphi_*([\partial M]) = (s', \bar{s}')$. According to the proof of [14, THEOREM 5.9], we can choose our Dehn surgery so that the inclusion $d(N) \subset M$ is nearly isometric except in small neighborhoods of cusps. So, we may assume that $d_{\Sigma}(s', s_0) < \varepsilon/2$, and so that

M. FUJII and T. SOMA

$$d_{\Sigma}(s, s') \leq d_{\Sigma}(s, s_0) + d_{\Sigma}(s_0, s') < \varepsilon$$
.

Thus, M is our desired manifold.

LEMMA 2. Suppose that F is a closed, oriented surface such that the genus of each component of F is greater than 1. Then, there exists a compact, connected, oriented, hyperbolic 3-manifold M_0 with totally geodesic boundary o.r.-homeomorphic to F.

PROOF. Let M be any compact, connected, oriented 3-manifold such that ∂M is o.r.-homeomorphic to F. We set $\partial M = \overline{F}$. By Myers [13, THEOREM 6.1], M contains a knot K such that $R = M - \operatorname{int} \mathcal{N}(K)$ is a boundary-irreducible, atoroidal and acylindrical, Haken manifold, where $\mathcal{N}(K)$ is a tubular neighborhood of K in M. Consider the double d(R) of R along \overline{F} . The manifold d(R) is an atoroidal, Haken manifold admitting an o.r.-involution $\Phi: d(R) \to d(R)$ with $\operatorname{Fix}(\Phi) = \overline{F}$. Note that $\partial(d(R))$ consists of two tori. By Thurston's Uniformization Theorem, int d(R) has a complete hyperbolic structure of finite volume. Again, by Hyperbolic-Dehn-Surgery Theorem and Mostow's Rigidity Theorem, there exists a compact, hyperbolic 3-manifold M'_0 obtained from d(R) by a Φ -equivariant Dehn surgery along $\partial(d(R))$ so that \overline{F} is totally geodesic in M'_0 . Cut M'_0 along \overline{F} into two parts, and let M_0 be one of the parts which includes R. M_0 is our desired manifold.

§3. Proof of Theorem.

For any $s \in \mathcal{I}(F)$, let Q(F(s)) be the Banach space of integrable, holomorphic, quadratic differentials $\varphi = \varphi(z)dz^2$ on F(s) with the norm

$$\|\varphi\| = \int_F |\varphi(z)| dx dy$$
,

where we regard F(s) as a Riemann surface conformally equivalent to the hyperbolic surface F(s). Note that Q(F(s)) is naturally identified with the cotangent space $T_s(\mathcal{T}(F))^*$ of $\mathcal{T}(F)$ at s, see [4], [10]. For a covering $p: Y \to X$ over a closed, connected, oriented surface X of genus >1, let $p^*: \mathcal{T}(X) \to \mathcal{T}(Y)$ be the induced map so that, for any $s \in \mathcal{T}(X)$, $\tilde{s} = p^*(s)$ is the pull-backed metric on Y. As was pointed out in [10], the dual of the derivative dp^* of p^* at $s \in \mathcal{T}(X)$;

$$(dp^*|_{\mathfrak{s}})^*: T_{\mathfrak{s}}(\mathfrak{T}(Y))^* \longrightarrow T_{\mathfrak{s}}(\mathfrak{T}(X))^*,$$

coincides with the Poincaré series (or the push-forward operation)

$$\Theta_{Y/X}: Q(Y(\tilde{s})) \longrightarrow Q(X(s))$$

596

under the identifications of $T_{\mathfrak{s}}(\mathfrak{T}(Y))^* = Q(Y(\mathfrak{s})), T_{\mathfrak{s}}(\mathfrak{T}(X))^* = Q(X(\mathfrak{s})).$

PROOF OF THEOREM. Let $F = \Sigma_1 \sqcup \cdots \sqcup \Sigma_t$ be a closed, oriented surface with genus $(\Sigma_i) > 1$ $(i=1, \dots, t)$. Take an arbitrary element $s_F = (s_1, \dots, s_t)$ of $\mathcal{M}(F) = \mathcal{M}(\Sigma_1) \times \cdots \times \mathcal{M}(\Sigma_t)$. For convenience, fix markings on $\Sigma_1, \dots, \Sigma_t$ and regard s_F as an element of the Teichmüller space $\mathcal{I}(F) = \mathcal{I}(\Sigma_1) \times \cdots \times \mathcal{I}(\Sigma_t)$. Similarly, $\bar{s}_F = (\bar{s}_1, \dots, \bar{s}_t)$ can be regarded as an element of $\mathcal{I}(F_-) = \mathcal{I}(\Sigma_{1,-}) \times \cdots \times \mathcal{I}(\Sigma_{t,-})$, where each $\Sigma_{i,-}$ is a copy of Σ_i and $F_- = \Sigma_{1,-} \sqcup \cdots \sqcup \Sigma_{t,-}$. By Lemma 1, for any $\varepsilon > 0$, there exist compact, connected, oriented, hyperbolic 3-manifolds M_i $(i=1, \dots, t)$ with totally geodesic, two-component boundary o.p.homeomorphic to $\Sigma_i \sqcup \Sigma_{i,-}$ and with $d_{\Sigma_i}(s_i, s'_i) < \varepsilon$, $d_{\Sigma_{i,-}}(\bar{s}_i, \bar{s}'_i) < \varepsilon$, where $(s'_i, \bar{s}'_i) = [\partial M_i] \in \mathcal{I}(\Sigma_i \sqcup \Sigma_{i,-}) = \mathcal{I}(\Sigma_i) \times \mathcal{I}(\Sigma_{i,-})$ under a suitable identification ∂M_i with $\Sigma_i \sqcup \Sigma_{i,-}$. This implies that

$$(3.1) d_F(s_F, s'_F) < \varepsilon, \quad d_{F_-}(\bar{s}_F, \bar{s}'_F) < \varepsilon,$$

for $s'_F = (s'_1, \dots, s'_i) \in \mathcal{I}(F)$, $\bar{s}'_F = (\bar{s}'_1, \dots, \bar{s}'_i) \in \mathcal{I}(F_-)$. Let Φ_i be the isometric o.r.involution of M_i given in Lemma 1 exchanging Σ_i with $\Sigma_{i,-}$. For any $n \in \mathbb{N}$, let $M_i^{(1)}, \dots, M_i^{(2n)}$ be 2n copies of M_i with identification maps $h_i^{(j)} : M_i \to M_i^{(j)}$ $(j=1, \dots, 2n)$. Consider the hyperbolic 3-manifold $M_{i,2n}$ obtained from $M_i^{(1)}$, $\dots, M_i^{(2n)}$ by connecting $M_i^{(j)}$ with $M_i^{(j+1)}$ via the o.r.-isometry $h_i^{(j+1)} \circ \Phi_i \circ$ $(h_i^{(j)})^{-1}|_{\Sigma_{i,-}^{(j)}} : \Sigma_{i,-}^{(j)} \to \Sigma_i^{(j+1)}$ $(j=1, 2, \dots, 2n-1)$, where $\Sigma_i^{(j)}, \Sigma_{i,-}^{(j)}$ are the components of $\partial M_i^{(j)}$ corresponding to $\Sigma_i, \Sigma_{i,-}$ of ∂M_i . Note that $M_{i,2n}$ admits the o.r.-isometric involution $\Phi_{i,2n}$ exchanging the two components $\Sigma_i^{(1)}, \Sigma_{i,-}^{(2n)}$ of $\partial M_{i,2n}$ and with $\operatorname{Fix}(\Phi_{i,2n}) = \Sigma_{i,-}^{(n)} = \Sigma_i^{(n+1)}$.

For any $j=1, \dots, n$, consider the compact submanifold $M_{i,2j}$ of $M_{i,2n}$ with $\partial M_{i,2j} = \sum_{i=1}^{n-j+1} \bigsqcup \Sigma_{i,-}^{(n+j)}$. From now on, we identify $\partial M_{i,2j}$ with $\sum_{i} \bigsqcup \Sigma_{i,-}$ via the o.p.-isometries $h_i^{(n-j+1)}|_{\Sigma_i} : \Sigma_i \to \Sigma_i^{(n-j+1)}$, $h_i^{(n+j)}|_{\Sigma_{i,-}} : \Sigma_{i,-} \to \Sigma_i^{(n+j)}$. Then, $[\partial M_{i,2j}] \in \mathcal{I}(\partial M_{i,2j})$ coincides with $(s'_i, \bar{s}'_i) \in \mathcal{I}(\Sigma_i \sqcup \Sigma_{i,-})$. Suppose that

$$\beta_{i,2j} = \operatorname{conf} : QH_0(M_{i,2j}) \longrightarrow \mathcal{I}(\Sigma_i \sqcup \Sigma_{i,-})$$

is the homeomorphism for $M_{i,2j}$ given in (1.1). For $j=1, \dots, n$, let $N_{i,2j}=H^3/\Gamma_{i,2j}$ be the hyperbolic 3-manifold containing $M_{i,2j}$ as a convex core. Since $\partial M_{i,2j}=\Sigma_i\sqcup\Sigma_{i,-}$ is totally geodesic in $N_{i,2j}$, the subgroups $\pi_1(\Sigma_i), \pi_1(\Sigma_{i,-})$ of $\Gamma_{i,2j}$ are Fuchsian. This implies that $\beta_{i,2j}([N_{i,2j}])=(s'_i, s'_i)$. By Lemma 2, there exists a compact, connected, oriented, hyperbolic 3-manifold $M_0 \to F$. Fixing an o.r.-isometry $\alpha: M_0 \to \overline{M}_0$, the o.r.-homeomorphism $g_-:\partial \overline{M}_0 \to F_-$ is given by $\Phi_i \circ g \circ \alpha^{-1}(x)$ if $x \in \alpha(g^{-1}(\Sigma_i))$. Set $W_0 = M_0 \sqcup \overline{M}_0, Y_{2n} = M_{1,2n} \sqcup \cdots \sqcup M_{t,2n}$ and define the o.r.-homeomorphism $\gamma_{2n}: \partial W_0 \to \partial Y_{2n} = F \sqcup F_-$ by $\gamma_{2n}(x) = (h_i^{(1)}|_{\Sigma_i}) \circ g(x)$ if $x \in \partial M_0, g(x) \in \Sigma_i$, and $\gamma_{2n}(x) = (h_i^{(2n)}|_{\Sigma_{i,-}}) \circ g_-(x)$ if $x \in \partial \overline{M}_0, g_-(x) \in \Sigma_{i,-}$, see Figure 4.

Since $[\partial M_{i,2j}] = (s'_i, \bar{s}'_i)$ for any $i \in \{1, \dots, t\}$,

 $(3.2) \qquad [\partial Y_{2j}] = (s'_1, \cdots, s'_t, \bar{s}'_1, \cdots, \bar{s}'_t) = (s'_F, \bar{s}'_F) \in \mathcal{T}(F \sqcup F_-).$

Since Y_{2n} and W_0 are atoroidal, acylindrical and Haken, $Y_{2n} \bigcup_{\gamma_{2n}} W_0$ is a closed, atoroidal, Haken manifold. Then, by Thurston's Uniformization Theorem, it has a hyperbolic structure. The o.r.-homeomorphisms α , α^{-1} , $\Phi_{1,2n}$, \cdots , $\Phi_{t,2n}$ determine the involution Φ on $Y_{2n} \bigcup_{\gamma_{2n}} W_0$ with $\operatorname{Fix}(\Phi) = F^{(n+1)} = \sum_{1}^{(n+1)} \bigsqcup \cdots \bigsqcup \sum_{t}^{(n+1)}$. By Mostow's Rigidity Theorem, we may assume that $F^{(n+1)}$ is totally geodesic also in the new hyperbolic 3-manifold $Y_{2n} \bigcup_{\gamma_{2n}} W_0$. The o.r.-involution τ_{2n} : $\partial(Y_{2n} \bigsqcup W_0) \rightarrow \partial(Y_{2n} \bigsqcup W_0)$ determined by $\gamma_{2n} : \partial W_0 \rightarrow F \sqcup F_-$ and $(\gamma_{2n})^{-1} : F \sqcup F_- \rightarrow$ ∂W_0 induces an isometry

$$(\tau_{2n})_*: \mathcal{I}(\overline{F} \sqcup \overline{F}_{-}) \times \mathcal{I}(\overline{\partial W_0}) \longrightarrow \mathcal{I}(F \sqcup F_{-}) \times \mathcal{I}(\partial W_0).$$

Under our identification of $F^{(1)} = F$, $F_{-}^{(2n)} = F_{-}$, we have $\gamma_{2n}(x) = g(x)$ if $x \in \partial M_0$ and $\gamma_{2n}(x) = g_{-}(x)$ if $x \in \partial \overline{M}_0$. Thus, $(\tau_{2n})_*$ is independent of *n*. We set $[\partial W_0] = s_W \in \mathcal{I}(\partial W_0)$. Since the topological type of Y_{2n} depends on *n*, the skinning map

$$\sigma_{2n}: \mathcal{I}(F \sqcup F_{-}) \times \mathcal{I}(\partial W_{0}) \longrightarrow \mathcal{I}(\overline{F} \sqcup \overline{F}_{-}) \times \mathcal{I}(\partial W_{0})$$

also does. However, for the $s' = (s'_F, \bar{s}'_F, s_W) \in \mathcal{I}(F \sqcup F_-) \times \mathcal{I}(\partial W_0)$, $\sigma_{2n}(s')$ is independent of *n*. In fact, each component *X* of $\partial M_{i,2n} = \Sigma_i \sqcup \Sigma_{i,-}$ is totally geodesic in $N_{i,2n}$, the covering of $N_{i,2n}$ corresponding to $\pi_1(X) \subset \Gamma_{i,2n}$ is determined only

by the hyperbolic structure on X and independent of the topological type of $M_{i,2n}$. Since the similar fact holds on each component of ∂W_0 , we have the desired independence. In particular, the Teichmüller distance $d(s', (\tau_{2n})_* \circ \sigma_{2n}(s')) = L$ in $\mathcal{I}(F \sqcup F_-) \times \mathcal{I}(\partial W_0)$ is independent of n. According to McMullen [10], the solution $s_{2n}^{"} \in \mathcal{I}(F \sqcup F_-) \times \mathcal{I}(\partial W_0)$ to the gluing problem for (Y_{2n}, W_0) is contained in $B_{F \sqcup F_- \sqcup \partial W_0}(s', L/(1-c_0))$, where $c_0, 0 < c_0 < 1$, is the constant depending only on the topological type of $F \sqcup F_- \sqcup \partial W_0$ and hence independent of n. The $(F \sqcup F_-)$ -entry $(s''^{(1)}, \bar{s}''^{(2n)}) \in \mathcal{I}(F \sqcup F_-)$ of s_{2n}'' is contained in $B_{F \sqcup F_-}((s'_F, \bar{s}'_F), L/(1-c_0))$. Let $p_{i,2j}: N_{i,2j-2} \to N_{i,2j}$ $(j=2, \cdots, n)$ (resp. $p_{i,2}: N_{i,0} \to N_{i,2}$) be the covering associated to $\pi_1(M_{i,2j-2}) \subset \pi_1(M_{i,2j}) = \pi_1(N_{i,2j})$ (resp. $\pi_1(\Sigma_i^{(n+1)}) \subset \pi_1(M_{i,2j}) = \pi_1(N_{i,2j})$). Each $p_{i,2j}$ induces the pull-back $\delta_{i,2j}: QH_0(M_{i,2j}) \to QH_0(M_{i,2j-2})$, where $M_{i,0} = \Sigma_i^{(n+1)} \times [0, 1]$. Consider the map

$$\eta_{2j} \colon \mathcal{I}(F \sqcup F_{-}) \longrightarrow \mathcal{I}(F \sqcup F_{-})$$

defined by

$$\begin{split} \eta_{2j}|_{\mathfrak{T}(\Sigma_{i}\sqcup\Sigma_{i,-})} &: \mathfrak{T}(\Sigma_{i}\sqcup\Sigma_{i,-}) \xrightarrow{(\beta_{i,2j})^{-1}} QH_{0}(M_{i,2j}) \xrightarrow{\delta_{i,2j}} \\ QH_{0}(M_{i,2j-2}) \xrightarrow{\beta_{i,2j-2}} \mathfrak{T}(\Sigma_{i}\sqcup\Sigma_{i,-}) \,. \end{split}$$

By (3.2), for any $j \in \{1, \dots, n\}$, we have $\eta_{2j}(s'_F, \bar{s}'_F) = (s'_F, \bar{s}'_F)$. We set inductively

$$\eta_{2n}(s''^{(1)}, \bar{s}''^{(2n)}) = (s''^{(2)}, \bar{s}''^{(2n-1)}), \eta_{2n-2}(s''^{(2)}, \bar{s}''^{(2n-1)}) = (s''^{(3)}, \bar{s}''^{(2n-2)}), \cdots, \\\eta_{2}(s''^{(n)}, \bar{s}''^{(n+1)}) = (s''^{(n+1)}, \bar{s}''^{(n)}).$$

Let $O_{i,2n} = (\mathbf{H}^3 \cup \Omega(\Gamma_{i,2n})) / \Gamma_{i,2n}$ be the Kleinian manifold, and let $q_{i,2n} : \tilde{O}_{i,2n} \rightarrow O_{i,2n}$ be the covering associated to $\pi_1(M_{i,2n-2}) \subset \pi_1(O_{i,2n})$. Note that $N_{i,2n-2} \subset \tilde{O}_{i,2n-2}, q_{i,2n} |_{N_{i,2n-2}} = p_{i,2n}$ and $\partial(\tilde{O}_{i,2n})$ is a full-measure, open subset of $\partial(O_{i,2n-2})$ such that each component U of $\partial(\tilde{O}_{i,2n})$, called a *spot* by McMullen [10], is homeomorphic to an open disk.

It is easily seen that McMullen's argument [10] for skinning maps is applicable also to η_{2n} . We will review that briefly. The dual of the derivative $d\eta_{2n}$ of η_{2n} at $v \in \mathcal{I}(F \sqcup F_{-})$ is given by

$$(d\eta_{2n}|_{v})^{*} = \sum_{\pi} \Theta_{U/X} : Q(F(\hat{v}) \sqcup F_{-}(\hat{v})) \longrightarrow Q(F(v) \sqcup F_{-}(v)),$$

where U ranges over all spots in $\partial(\tilde{O}_{1,2n}) \sqcup \cdots \sqcup \partial(\tilde{O}_{t,2n})$, $X = q_{i,2n}(U) \subset \partial(O_{i,2n})$ and $\hat{v} = \eta_{2n}(v)$. Here, we set $\Theta_{U/X}(\varphi) = \Theta_{U/X}(\varphi|_U)$ for $\varphi \in Q(F(\hat{v}) \sqcup F_{-}(\hat{v}))$. By [9, THEOREM 10.3], there exists a continuous map $c: \mathcal{M}(X) \to \mathbf{R}$ with $||\Theta_{U/X}|| \leq c([X]) < 1$. Since $B_{F \sqcup F_{-}}((s'_F, \bar{s}'_F), L/(1-c_0))$ is compact, there exists a positive constant $c_1 < 1$, depending only on (s'_F, \bar{s}'_F) and $L/(1-c_0)$, such that, for any $v \in B_{F \sqcup F_{-}}((s'_F, \bar{s}'_F), L/(1-c_0))$ and all spots $U, ||\Theta_{U/X}|| \leq c_1$. Thus, we have M. FUJII and T. SOMA

(3.3)
$$\|d\eta_{2n}|_{v}\| = \|(d\eta_{2n}|_{v})^{*}\| \leq \sup_{u} \|\Theta_{U/X}\| \leq c_{1}.$$

Now, since $\eta_{2n}(s'_F, \bar{s}'_F) = (s'_F, \bar{s}'_F)$, the inequality (3.3) implies that

$$\eta_{2n}\Big(B_{F\sqcup F_{-}}\Big((s'_{F}, \bar{s}'_{F}), \frac{L}{1-c_{0}}\Big)\Big) \subset B_{F\sqcup F_{-}}\Big((s'_{F}, \bar{s}'_{F}), \frac{Lc_{1}}{1-c_{0}}\Big).$$

Since $B_{F \sqcup F_{-}}((s'_F, \bar{s}'_F), Lc_1/(1-c_0)) \subset B_{F \sqcup F_{-}}((s'_F, \bar{s}'_F), L/(1-c_0))$, the same constant c_1 works for

 $\eta_{2n-2} \colon \mathcal{I}(F \sqcup F_{-}) \longrightarrow \mathcal{I}(F \sqcup F_{-})$

in $B_{F \sqcup F_{-}}((s'_{F}, \bar{s}'_{F}), Lc_{1}/(1-c_{0}))$. This shows that

$$\eta_{2n-2}\Big(B_{F\sqcup F_{-}}\Big((s'_{F}, \bar{s}'_{F}), \frac{Lc_{1}}{1-c_{0}}\Big)\Big) \subset B_{F\sqcup F_{-}}\Big((s'_{F}, \bar{s}'_{F}), \frac{Lc_{1}^{2}}{1-c_{0}}\Big).$$

Since $(s''^{(1)}, \bar{s}''^{(2n)}) \in B_{F \sqcup F_{-}}((s'_{F}, \bar{s}'_{F}), L/(1-c_{0}))$, by repeating the same process n times, we have

(3.4)
$$(s''^{(n+1)}, \, \bar{s}''^{(n)}) \in B_{F \sqcup F_{-}} \Big((s'_F, \, \bar{s}'_F), \, \frac{Lc_1^n}{1 - c_0} \Big).$$

Let Z_{2n} be the half of $Y_{2n} \cup_{\tilde{r}_{2n}} W_0$ with $\partial Z_{2n} = F^{(n+1)}$ and $Z_{2n} \supset \overline{M}_0$. Since $\partial Z_{2n} = F^{(n+1)}$ is totally geodesic in $Y_{2n} \cup_{\tilde{r}_{2n}} W_0$, we have $[\partial Z_{2n}] = s''^{(n+1)}$. Since Z_{2n} is a compact, connected, oriented, hyperbolic 3-manifold with totally geodesic boundary, ∂Z_{2n} represents an element of $\mathcal{R}(F)$. If we choose $n \in \mathbb{N}$ so large that $Lc_1^n/(1-c_0) < \varepsilon$, then by (3.1) and (3.4),

$$d_F(s_F, [\partial Z_{2n}]) \leq d_F(s_F, s'_F) + d_F(s'_F, s''^{(n+1)}) < 2\varepsilon.$$

Thus, $\mathcal{R}(F)$ is dense in $\mathcal{M}(F)$.

References

- P. Bowers and K. Stephenson, The set of circle packing points in the Teichmüller space of a surface of finite conformal type is dense, Math. Proc. Camb. Phil. Soc., 111 (1992), 487-513.
- [2] R. Brooks, Circle packings and co-compact extensions of Kleinian groups, Invent. Math., 86 (1986), 461-469.
- [3] M. Fujii, Deformations of a hyperbolic 3-manifold not affecting its totally geodesic boundary, Kodai Math. J., 16 (1993), 441-454.
- [4] F. Gardiner, Teichmüller theory and quadratic differentials, Wiley Interscience, New York, 1987.
- [5] J. Hempel, 3-manifolds, Ann. of Math. Studies no. 86, Princeton Univ. Press, Princeton N. J., 1976.
- [6] Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992.

600

- [7] W. Jaco, Lectures on three-manifold topology, C.B.M.S. Regional Conf. Ser. in Math. no. 43, Amer. Math. Soc., Providence R.I., 1980.
- [8] B. Maskit, On Klein's combination theorem III, Advances in the theory of Riemann surfaces (eds. L. Ahlfors et al.), Ann. of Math. Studies no. 66, Princeton Univ. Press, Princeton N. J., 1971, pp. 297-316.
- [9] C. McMullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math., 97 (1989), 95-127.
- [10] C. McMullen, Iteration on Teichmüller space, Invent. Math., 99 (1990), 425-454.
- [11] J. Morgan, On Thurston's uniformization theorem for three-dimensional manifolds, The Smith conjecture (eds. J. Morgan, H. Bass), Academic Press, New York, London, 1984, pp. 37-125.
- [12] G. Mostow, Quasi-conformal mappings in *n*-space and the rigidity of hyperbolic space forms, Publ. Math. I.H.E.S., **34** (1968), 53-104.
- [13] R. Myers, Simple knots in compact, orientable 3-manifolds, Trans. Amer. Math. Soc., 273 (1982), 75-91.
- [14] W. Thurston, The geometry and topology of 3-manifolds, Lect. Notes, Princeton Univ., 1978.
- [15] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381.

Michihiko FUJII Department of Mathematics Yokohama City University 22-2 Seto, Kanazawa-ku, Yokohama Kanagawa-ken 236 Japan Teruhiko SOMA Department of Mathematical Sciences College of Science and Engineering Tokyo Denki University Hatoyama-machi Saitama-ken 350-03 Japan