Totally geodesic boundaries are dense in the moduli space

By Michihiko Fujil and Teruhiko Soma

(Received June 29, 1995)

Let F be a closed, oriented surface such that the genus of each component of F is greater than 1 . In this paper, we will study the subset $\mathcal{R}(F)$ of the moduli space $\mathscr{M}(F)$ such that a hyperbolic structure $s \in \mathscr{M}(F)$ is an element of $\mathscr{R}(F)$ if there exists a compact, connected, oriented hyperbolic 3-manifold M with totally geodesic boundary and admitting an orientation-preserving isometry $\varphi: \partial M \rightarrow F(s)$, where ∂M is assumed to have the orientation induced naturally from that on M. Note that $\mathscr{R}(F)$ is a countable subset of $\mathscr{M}(F)$.

First, consider the special case where F consists of two components each of which is homeomorphic to a given closed surface Σ of genus >1. In Fujii [3], it is implicitly seen that, for any $s \in \mathscr{M}(\Sigma)$, one can construct a compact, connected, oriented, hyperbolic 3 -manifold M with totally geodesic, two-component boundary such that one component is arbitrarily close to $\Sigma(s)$ in $\mathscr{M}(\Sigma)$ and the other is to $\Sigma(\tilde{s})$ (see Lemma 1 in $\S 2$ for the explicit proof based on the circle-packing argument in Brooks [2]). Here, $\bar{s} \in \mathscr{M}(\Sigma)$ denotes the hyperbolic structure on Σ admitting an orientation-reversing isometry $\varphi: \Sigma(s) \rightarrow \Sigma(\bar{s})$. This implies that the closure of $\mathcal{R}(F)$ in $\mathscr{M}(F)$ contains the skew diagonal $\Delta_{\text {skew }}(\Sigma)=\{(s, \bar{s}) ; s \in \mathscr{M}(\Sigma)\}$ of $\mathscr{M}(F)=\mathscr{M}(\Sigma) \times \mathscr{M}(\Sigma)$.

In this paper, we will consider a more general case and prove the following theorem.

Theorem. Suppose that $F=\Sigma_{1} \sqcup \cdots \sqcup \Sigma_{t}$ is any closed, oriented surface such that the genus of each component Σ_{i} is greater than 1 . Then, $\mathcal{R}(F)$ is dense in $\mathscr{M}(F)=\mathscr{M}\left(\Sigma_{1}\right) \times \cdots \times \mathscr{M}\left(\Sigma_{t}\right)$.

McMullen's results in [9], [10] play important roles in our proof of Theorem. Especially, the argument in [10] for skinning maps is well applicable to construct a compact, connected, hyperbolic 3 -manifold M by joining "long" hyperbolic 3 -manifolds associated to any $s_{i} \in \mathscr{M}\left(\Sigma_{i}\right)(i=1, \cdots, t)$ so that ∂M is totally geodesic and arbitrarily close to $\Sigma_{1}\left(s_{1}\right) \sqcup \cdots \sqcup \Sigma_{t}\left(s_{t}\right)$ in $\mathscr{M}(F)$.

We would like to thank W . Thurston for his suggestion which directs our attention to McMullen's works.

§ 1. Preliminaries.

In this section, we will review the fundamental notation and definitions needed in later sections, and refer to Hempel [5], Jaco [7] for more details on 3 -manifold topology and to Gardiner [4], Imayoshi-Taniguchi [6] on Teichmüller spaces.

A Haken manifold is a compact, connected, irreducible, oriented 3-manifold containing an incompressible surface. A Haken manifold M with incompressible boundary ∂M is called boundary-irreducible. A Haken manifold M is atoroidal (resp. acylindrical) if any π_{1}-injective map $\varphi: T^{2} \rightarrow M$ is homotopic (resp. any π_{1}-injective, proper map $\varphi:(A, \partial A) \rightarrow(M, \partial M)$ is homotopic rel. ∂A) into ∂M, where T^{2} is a torus and A is an annulus.

Orientation-preserving (resp. orientation-reversing) homeomorphisms are, for short, called o.p.-(resp. o.r.-)homeomorphisms. For any oriented surface or 3 -manifold N, an orientation-reversed copy of N is denoted by \bar{N}. Let M be an oriented 3 -manifold whose boundary consists of two components which are o.p.-homeomorphic to each other. If Σ is one component of ∂M, then the other is denoted by $\Sigma_{\text {_ }}$. We always assume that Σ_{-}has a marking induced from that on Σ by an o.p.-homeomorphism $\varphi: \Sigma \rightarrow \Sigma_{-}$(do not confuse Σ_{-}with $\bar{\Sigma}$).

Let $F=\Sigma_{1} \sqcup \cdots \sqcup \Sigma_{t}$ be a closed, oriented surface such that the genus of each component Σ_{i} is greater than 1 . The Teichmüller space $\subseteq(F)$ of F is the set of equivalence classes of hyperbolic structures on F, where two hyperbolic structures s_{1}, s_{2} on F are equivalent to each other if there exists an o.p.-isometry $\varphi: F\left(s_{1}\right)$ $\rightarrow F\left(s_{2}\right)$ homotopic to the identity $\operatorname{id}_{F}: F \rightarrow F$. We denote by [$F(s)$] (or simply by s) the element of $\subseteq(F)$ represented by $F(s)$. The Teichmüller distance $d_{F}\left(s_{1}, s_{2}\right)$ between two elements s_{1}, s_{2} of $\mathscr{G}(F)$ is given by

$$
d_{F}\left(s_{1}, s_{2}\right)=\frac{1}{2} \inf _{f}\left\{\log K_{f}\left(s_{1}, s_{2}\right)\right\},
$$

where f ranges over all quasiconformal homeomorphisms from $F\left(s_{1}\right)$ to $F\left(s_{2}\right)$ homotopic to the identity id_{F}, and $K_{f}\left(s_{1}, s_{2}\right)$ is the maximal dilatation of f. It is well known that the i-th factor $\mathscr{T}\left(\Sigma_{i}\right)$ of the metric space $\subseteq(F)$ is homeomorphic to $\boldsymbol{R}^{\boldsymbol{s}_{i}{ }^{-6}}$, where $g_{i}=\operatorname{genus}\left(\Sigma_{i}\right)$. So, $q(F)$ is homeomorphic to the $6\left(g_{1}+\cdots+g_{t}-t\right)$-dimensional Euclidean space. For an $s \in \mathscr{G}(F)$ and $r>0$, we denote by $B_{F}(s, r)$ the closed r-neighborhood of s in $\mathscr{G}(F)$, that is,

$$
B_{F}(s, r)=\left\{s^{\prime} \in \mathscr{G}(F) ; d_{F}\left(s, s^{\prime}\right) \leqq r\right\} .
$$

The moduli space $\mathscr{M}(F)$ of F is the quotient space of $\mathscr{T}(F)$ such that two elements s_{1}, s_{2} of $\mathscr{G}(F)$ represent the same element of $\mathscr{M}(F)$ if there exists an o.p.-isometry $\varphi: F\left(s_{1}\right) \rightarrow F\left(s_{2}\right)$ with $\varphi\left(\Sigma_{i}\right)=\Sigma_{i}$ for $i=1, \cdots, t$. Roughly, an element
of $\mathcal{G}(F)$ is a hyperbolic structure on F respecting markings and an element of $\mathscr{M}(F)$ is one neglecting markings.

A Kleinian group Γ is a discrete subgroup of $\operatorname{PSL}_{2}(\boldsymbol{C})$, the group of all o.p.-isometries on the hyperbolic 3 -space \boldsymbol{H}^{3}. This group Γ acts conformally on the sphere $S_{\infty}^{2}=\boldsymbol{C} \cup\{\infty\}$ at infinity. We denote the region of discontinuity and the limit set of Γ respectively by $\Omega(\Gamma)$ and $\Lambda(\Gamma)$. A Kleinian group Γ is elementary if Γ contains an abelian group of finite index. In this paper, we only consider the case where Γ is finitely generated, torsion free, and nonelementary. We fix an orientation on \boldsymbol{H}^{3}. Then, $N=\boldsymbol{H}^{3} / \Gamma$ is an oriented hyperbolic 3 -manifold and the quotient map $p: \boldsymbol{H}^{3} \rightarrow N$ is the universal covering. Furthermore, the convex hull $H(\Gamma)$ of $\Lambda(\Gamma)$ in \boldsymbol{H}^{3} is non-empty, and the image $C(\Gamma)=p(H(\Gamma))$ is the smallest closed, convex core of N. The Kleinian manifold for Γ is $O(\Gamma)=\left(\boldsymbol{H}^{3} \cup \Omega(\Gamma)\right) / \Gamma$, see [14, Definition 8.3.5]. We have obviously $\partial O(\Gamma)=\Omega(\Gamma) / \Gamma$ and $\operatorname{int} O(\Gamma)=N$. A Kleinian group Γ is called geometrically finite if the volume of the ε-neighborhood $C_{\varepsilon}(\Gamma)$ of $C(\Gamma)$ in N is finite for some $\varepsilon>0$. According to Thurston's Uniformization Theorem [15] (a special case), for any boundary-irreducible, atoroidal Haken manifold M containing a closed, incompressible surface of genus >1, there exists a geometrically finite Kleinian group Γ such that $C_{\varepsilon}(\Gamma)$ is homeomorphic to $M-\partial_{T} M$, where $\partial_{T} M$ is the union of torus components of ∂M.

Let M be a boundary-irreducible, atoroidal, Haken manifold with nonempty boundary and such that the genus of each component of ∂M is greater than 1. Let $Q H_{0}(M)$ be the set of equivalence classes of pairs (N, φ) such that $N=\boldsymbol{H}^{3} / \Gamma$ is an oriented hyperbolic 3-manifold and $\varphi: M \rightarrow O(\Gamma)$ is an o.p.-homeomorphism. Here, two elements (N_{1}, φ_{1}), (N_{2}, φ_{2}) with $N_{1}=\boldsymbol{H}^{3} / \Gamma_{1}, N_{2}=\boldsymbol{H}^{3} / \Gamma_{2}$ are equivalent to each other if there exists an o.p.-homeomorphism $\psi: O\left(\Gamma_{1}\right) \rightarrow O\left(\Gamma_{2}\right)$ isotopic to $\varphi_{2} \circ \varphi_{1}^{-1}$ such that the restriction $\left.\psi\right|_{N_{1}}: N_{1} \rightarrow N_{2}$ is isometric. Since M is compact, Γ is geometrically finite. We endow $Q H_{0}(M)$ with the quasi-isometric topology so that $\left(N_{1}, \varphi_{1}\right)$ and $\left(N_{2}, \varphi_{2}\right)$ are close to each other if there exists an o.p.-homeomorphism $\psi^{\prime}: O\left(\Gamma_{1}\right) \rightarrow O\left(\Gamma_{2}\right)$ isotopic to $\varphi_{2}{ }^{\circ} \varphi_{1}^{-1}$ such that the derivative of $\left.\psi^{\prime}\right|_{N_{1}}: N_{1} \rightarrow N_{2}$ is uniformly close to being an o.p.-isometry. Consider the correspondence

$$
\begin{equation*}
\operatorname{conf}: Q H_{0}(M) \longrightarrow \mathscr{T}(\partial M) \tag{1.1}
\end{equation*}
$$

such that $\operatorname{conf}\left(\boldsymbol{H}^{3} / \Gamma, \varphi\right)$ is the element of $\subsetneq(\partial M)$ conformally equivalent to $\varphi^{*}([\partial O(\Gamma)])$. By works of several people including Ahlfors, Bers, Kra and Marden, it is shown that this correspondence is a well-defined homeomorphism.

We suppose further that M is not a deformation retract of a closed surface, and $\sum_{i}(i=1, \cdots, t)$ are the components of ∂M. For any $\left(\boldsymbol{H}^{3} / \Gamma, \varphi\right)=$ $\operatorname{conf}^{-1}\left(s_{1}, \cdots, s_{t}\right) \in Q H_{0}(M)$, let $\left.p_{i}: \widetilde{O(\Gamma}\right)_{i} \rightarrow O(\Gamma)$ be the covering associated to
$\Gamma_{i}=\varphi_{*}\left(\pi_{1}\left(\Sigma_{i}\right)\right) \subset \pi_{1}(O(\Gamma))=\Gamma$. Since the Kleinian manifold $O\left(\Gamma_{i}\right)$ is homeomorphic to $\Sigma_{i} \times[0,1], \partial O\left(\Gamma_{i}\right)$ consists of two components each of which is homeomorphic to Σ_{i}. One of them coincides with the compact component of $\partial \widetilde{O(\Gamma)})_{i}$. We can regard the conformal structure on the other component as representing the element on $\mathscr{G}\left(\bar{\Sigma}_{i}\right)$, denoted by $\sigma_{i}\left(s_{1}, \cdots, s_{t}\right)$. Then, the skinning map $\sigma_{M}: \Im(\partial M) \rightarrow \Im(\overline{\partial M})$ is defined by

$$
\sigma_{M}\left(s_{1}, \cdots, s_{t}\right)=\left(\sigma_{1}\left(s_{1}, \cdots, s_{t}\right), \cdots, \sigma_{t}\left(s_{1}, \cdots, s_{t}\right)\right)
$$

Let $W=M_{1} \sqcup \cdots \sqcup M_{n}$ be the disjoint union of the M_{j} 's each of which satisfies the same conditions as the above M does. Then, the skinning map

$$
\sigma_{W}: \Im(\partial W)=\Im\left(\partial M_{1}\right) \times \cdots \times \subseteq\left(\partial M_{n}\right) \longrightarrow \subseteq(\overline{\partial W})=\subseteq\left(\overline{\partial M_{1}}\right) \times \cdots \times \subseteq\left(\overline{\partial M_{n}}\right)
$$

is given by $\sigma_{W}=\left(\sigma_{M_{1}}, \cdots, \sigma_{M_{n}}\right)$. Consider the case where W is divided into two families W_{1}, W_{2} admitting an o.r.-homeomorphism $\gamma: \partial W_{2} \rightarrow \partial W_{1}$. Then, γ and its inverse $\gamma^{-1}: \partial W_{1} \rightarrow \partial W_{2}$ determine the o.r.-involution $\tau: \partial W \rightarrow \partial W$. The map $\tau_{*}: \Im(\overline{\partial W}) \rightarrow \subseteq(\partial W)$ induced by τ is an isometry. By Maskit's Combination Theorem [8], a fixed point $\left.\left(s_{1}, s_{2}\right) \in \mathscr{(} \partial W\right)=\Im\left(\partial W_{1}\right) \times \Im\left(\partial W_{2}\right)$ of the composition

$$
\tau_{*} \cdot \sigma_{W}: \mathscr{T}(\partial W) \longrightarrow \mathscr{} \longrightarrow(\partial W),
$$

called a solution to the gluing problem for (W_{1}, W_{2}), determines a hyperbolic structure on $W_{1} \cup_{T} W_{2}$. This is just Thurston's formulation for the proof of his Uniformization Theorem, see [11] for more details.

§ 2. Construction of manifolds with totally geodesic boundary.

Let Σ be a closed, connected, oriented surface with genus >1, and let s be a hyperbolic structure on Σ. A circle on $\Sigma(s)$ is a simple, closed curve which bounds a metric disk in $\Sigma(s)$. A configuration of circles on $\Sigma(s)$ is a collection \mathcal{C} of a finite number of circles on $\Sigma(s)$, such that the interiors of all disks bounded by them are mutually disjoint. A configuration of circles on $\Sigma(s)$ is said to be a circle packing, if the complement of the interiors of the disks consists only of curvilinear triangles. Such a curvilinear triangle is bounded by three mutually tangent circles. Then, there exists a unique circle on $\Sigma(s)$, called the perpendicular circle for the curvilinear triangle, which meets each of the three circles perpendicularly, see Figure 1. A point s in the Teichmüller space $\mathscr{G}(\Sigma)$ is said to be a circle packing point, if there exists a circle packing on the hyperbolic surface $\Sigma(s)$.

First of all, we will prove the following lemma.
Lemma 1. For any $s \in \mathscr{T}(\Sigma)$ and $\varepsilon>0$, there exists an $s^{\prime} \in \mathscr{G}(\Sigma)$ with $d_{\Sigma}\left(s, s^{\prime}\right)$ $<\varepsilon$ and a compact, connected, oriented, hyperbolic 3-manifold M with totally

The shaded area is a curvilinear triangle.
Fig. 1.
geodesic, two-component boundary o.p.-isometric to $\Sigma\left(s^{\prime}\right) \cup \Sigma\left(\bar{s}^{\prime}\right)$. Moreover, M admits an isometric o.r.-involution exchanging the components of ∂M.

To prove Lemma 1, we need the following result due to Brooks [2] (see also Bowers-Stephenson [1]).

Theorem [(Brooks)]. The set of circle packing points forms a dense subset of $\mathscr{T}(\Sigma)$.

Proof of Lemma 1. By Brooks' theorem, there exists a circle packing point $s_{0} \in \mathscr{I}(\Sigma)$ with $d_{\Sigma}\left(s, s_{0}\right)<\varepsilon / 2$. First, we will construct a cusped hyperbolic 3 -manifold N with totally geodesic boundary ∂N o.p.-isometric to $\Sigma\left(s_{0}\right) \sqcup \Sigma\left(\bar{s}_{0}\right)$. In order to explain this construction, we will use the Poincare model of the hyperbolic 3 -space \boldsymbol{H}^{3}. Namely, let \boldsymbol{H}^{3} be the space $\left\{\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \boldsymbol{R}^{3} ;|\boldsymbol{x}|<1\right\}$ endowed with the Riemannian metric $d s$ given by $d s=2|d \boldsymbol{x}| /\left(1-|\boldsymbol{x}|^{2}\right)$, and let \boldsymbol{H}^{2} be the totally geodesic plane $\left\{\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \boldsymbol{H}^{3} ; x_{3}=0\right\}$ in \boldsymbol{H}^{3}. We set $\boldsymbol{H}_{+}^{3}=\left\{\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \boldsymbol{H}^{3} ; x_{3} \geqq 0\right\}$ and $U_{\infty}=\left\{\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \in S_{\infty}^{2} ; x_{3}>0\right\}$. Consider the orthogonal projection proj: $\boldsymbol{H}^{2} \rightarrow U_{\infty}$ along geodesics in \boldsymbol{H}_{+}^{3} each of which starts from \boldsymbol{H}^{2} in the orthogonal direction, see Figure 2. Let Γ_{0} be a Fuchsian group corresponding to $\Sigma\left(s_{0}\right)$, i.e., $\boldsymbol{H}^{2} / \Gamma_{0}=\Sigma\left(s_{0}\right)$, and let $p: \boldsymbol{H}^{2} \rightarrow \Sigma\left(s_{0}\right)$ be the universal covering. Since s_{0} is a circle packing point, we have a circle packing \mathcal{C} on $\Sigma\left(s_{0}\right)$. Let \mathscr{P} be the set of perpendicular circles for all curvilinear triangles which are complementary to \mathcal{C}. The hyperbolic 2 -space \boldsymbol{H}^{2} is packed by the set \tilde{C} of circles C in \boldsymbol{H}^{2} with $p(C) \in \mathcal{C}$. The set $\tilde{\mathscr{P}}$ of circles C^{\prime} in \boldsymbol{H}^{2} with $p\left(C^{\prime}\right) \in \mathscr{P}$ consists of circles perpendicular to curvilinear triangles complementary to \tilde{C}. The projection proj: $\boldsymbol{H}^{2} \rightarrow U_{\infty}$ maps $\tilde{C}, \tilde{\mathscr{P}}$ to sets of circles in U_{∞}, denoted

Fig. 2.
respectively by $\hat{\mathcal{C}}, \hat{\mathscr{P}}$. Let \tilde{L} be the subspace of \boldsymbol{H}_{+}^{3} obtained as follows: consider the regions interior to the hemispheres in \boldsymbol{H}_{+}^{3} lying on circles in $\hat{C} \sqcup \hat{\mathscr{P}}$, and then, obtain \widetilde{L} by removing these regions from \boldsymbol{H}_{+}^{3}. The space \widetilde{L} is a geodesic polyhedron with ideal vertices and has two boundary components $\partial_{1} \widetilde{L}$, $\partial_{2} \widetilde{L}$, where $\partial_{1} \widetilde{L}=\boldsymbol{H}^{2}$ and $\partial_{2} \widetilde{L}$ is the face obtained by carving \boldsymbol{H}_{+}^{3} along these hemispheres. Thus, $\partial_{2} \widetilde{L}$ consists of infinitely many ideal, totally geodesic polygons which meet each other at the right-angle. Note that, for any hemisphere H lying on a circle in $\hat{\mathcal{P}}, H \cap \widetilde{L}=H \cap \partial_{2} \widetilde{L}$ is an ideal triangle in $\partial_{2} \widetilde{L}$. We denote the union of such triangular faces of $\partial_{2} \widetilde{L}$ by \hat{T}, see Figure 3. The Fuchsian group Γ_{0} acts on U_{∞} conformally, and both $\hat{\mathcal{C}}, \hat{\mathscr{P}}$ are invariant under the Γ_{0}-action. The quotient map $q: \widetilde{L} \rightarrow L=\widetilde{L} / \Gamma_{0}$ is the universal covering which is an extension of $p: \boldsymbol{H}^{2} \rightarrow \Sigma\left(s_{0}\right)$ with $\Sigma\left(s_{0}\right)=q\left(\partial_{1} \tilde{L}\right)$. Set $\partial_{2} L=q\left(\partial_{2} \widetilde{L}\right)$ and $T=q(\hat{T})$.

Now, take the double $d(L)$ of L along T. Then, $\partial d(L)$ contains a closed, two-component surface A o.p.-isometric to $\Sigma\left(s_{0}\right) \sqcup \Sigma\left(\bar{s}_{0}\right)$. Since every component Δ of $B=\partial_{2} L$-int T intersects T along the edges of Δ at the right-angle in L and since $\Delta \cap(B-\Delta)=\varnothing$, each component of $\partial d(L)-A$ is a totally geodesic, punctured surface which is the double of some component Δ of B. Again, take the double $d d(L)$ of $d(L)$ along $\partial d(L)-A$. Then, the boundary $\partial d d(L)$ of $d d(L)$ consists of four components. Denote by $\partial_{1} d d(L)$ and $\partial_{3} d d(L)$ the components each of which is o.p.-isometric to $\Sigma\left(s_{0}\right)$, and by $\partial_{2} d d(L)$ and $\partial_{4} d d(L)$ the components each of which is o.p.-isometric to $\Sigma\left(\bar{s}_{0}\right)$. It is easily seen that each end of $d d(L)$ is a torus cusp. Let N be the hyperbolic 3 -manifold obtained from $d d(L)$ by identifying $\partial_{3} d d(L)$ with $\partial_{4} d d(L)$ via an o.r.-isometry. In this way, we have obtained a connected, oriented, cusped hyperbolic 3 -manifold N with totally geodesic boundary $\partial_{1} d d(L) \sqcup \partial_{2} d d(L)$ o.p.-isometric $\Sigma\left(s_{0}\right) \sqcup \Sigma\left(\bar{s}_{0}\right)$.

The union of shaded areas is \hat{T}.
Fig. 3.
To construct a manifold M satisfying the conditions of Lemma 1, we will double N two more times. The first doubling is done so that there is an isometric o.r.-involution of M. The second is a temporary doubling to show that the compactified manifold M by Dehn surgery still has a totally geodesic boundary. Let $d(N)$ be the double of N along $\partial_{2} d d(L)$, and let $d d(N)$ be the double of $d(N)$ along $\partial d(N)$. The resulting manifold $d d(N)$ is a complete, connected, hyperbolic 3 -manifold without boundary such that each end of $d d(N)$ is a torus cusp, and $d d(N)$ admits the isometric o.r.-involutions Φ_{1}, Φ_{2} with $\operatorname{Fix}\left(\Phi_{1}\right)=$ $\partial d(N), \operatorname{Fix}\left(\left.\Phi_{2}\right|_{d(N)}\right)=\partial_{2} d d(L)$. These involutions generate the isometric $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}-$ action on $d d(N)$. By Hyperbolic-Dehn-Surgery Theorem [14, Theorem 5.9], there exists a compact hyperbolic 3 -manifold M^{\prime} obtained by a $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$-equivariant Dehn surgery along the torus cusps of $d d(N)$. Then, Φ_{1}, Φ_{2} are naturally extended to involutions of M^{\prime}, still denoted by Φ_{1}, Φ_{2}. By Mostow's Rigidity Theorem [12], Φ_{1}, Φ_{2} can be assumed to be isometric also in the new hyperbolic 3 -manifold M^{\prime}. This shows that $\operatorname{Fix}\left(\Phi_{1}\right)=\partial d(N)$ is totally geodesic in M^{\prime}. Let M be the half of M^{\prime} with $\partial M=\operatorname{Fix}\left(\Phi_{1}\right)$ and containing $d(N)$. The restriction $\Phi=\left.\Phi_{2}\right|_{M}$ is an isometric o.r.-involution of M exchanging the components of ∂M. Let $\varphi: \partial M=\partial d(N) \rightarrow \Sigma \sqcup \Sigma_{-}$be an o.p.-diffeomorphism with $\varphi_{*}([\partial d(N)])$ $=\left(s_{0}, \bar{s}_{0}\right) \in \mathscr{I}\left(\Sigma \sqcup \Sigma_{-}\right)$, where Σ_{-}is a copy of Σ. Set $\varphi_{*}([\partial M])=\left(s^{\prime}, \bar{s}^{\prime}\right)$. According to the proof of [14, Theorem 5.9], we can choose our Dehn surgery so that the inclusion $d(N) \subset M$ is nearly isometric except in small neighborhoods of cusps. So, we may assume that $d_{\Sigma}\left(s^{\prime}, s_{0}\right)<\varepsilon / 2$, and so that

$$
d_{\Sigma}\left(s, s^{\prime}\right) \leqq d_{\Sigma}\left(s, s_{0}\right)+d_{\Sigma}\left(s_{0}, s^{\prime}\right)<\varepsilon .
$$

Thus, M is our desired manifold.
Lemma 2. Suppose that F is a closed, oriented surface such that the genus of each component of F is greater than 1. Then, there exists a compact, connected, oriented, hyperbolic 3-manifold M_{0} with totally geodesic boundary o.r.-homeomorphic to F.

Proof. Let M be any compact, connected, oriented 3 -manifold such that ∂M is o.r.-homeomorphic to F. We set $\partial M=\bar{F}$. By Myers [13, Theorem 6.1], M contains a knot K such that $R=M$-int $\mathscr{I}(K)$ is a boundary-irreducible, atoroidal and acylindrical, Haken manifold, where $\Re(K)$ is a tubular neighborhood of K in M. Consider the double $d(R)$ of R along \bar{F}. The manifold $d(R)$ is an atoroidal, Haken manifold admitting an o.r.-involution $\Phi: d(R) \rightarrow d(R)$ with $\operatorname{Fix}(\Phi)=\bar{F}$. Note that $\partial(d(R))$ consists of two tori. By Thurston's Uniformization Theorem, int $d(R)$ has a complete hyperbolic structure of finite volume. Again, by Hyperbolic-Dehn-Surgery Theorem and Mostow's Rigidity Theorem, there exists a compact, hyperbolic 3-manifold M_{0}^{\prime} obtained from $d(R)$ by a Φ-equivariant Dehn surgery along $\partial(d(R))$ so that \bar{F} is totally geodesic in M_{0}^{\prime}. Cut M_{0}^{\prime} along \bar{F} into two parts, and let M_{0} be one of the parts which includes R. $\quad M_{0}$ is our desired manifold.

§ 3. Proof of Theorem.

For any $s \in \mathscr{G}(F)$, let $Q(F(s))$ be the Banach space of integrable, holomorphic, quadratic differentials $\varphi=\varphi(z) d z^{2}$ on $F(s)$ with the norm

$$
\|\varphi\|=\int_{F}|\varphi(z)| d x d y
$$

where we regard $F(s)$ as a Riemann surface conformally equivalent to the hyperbolic surface $F(s)$. Note that $Q(F(s))$ is naturally identified with the cotangent space $T_{s}(G(F)) *$ of $\mathscr{G}(F)$ at s, see [4], [10]. For a covering $p: Y \rightarrow X$ over a closed, connected, oriented surface X of genus >1, let $p^{*}: \mathscr{(}(X) \rightarrow \mathscr{I}(Y)$ be the induced map so that, for any $s \in \mathscr{G}(X), \tilde{s}=p^{*}(s)$ is the pull-backed metric on Y. As was pointed out in [10], the dual of the derivative $d p^{*}$ of p^{*} at $s \in \mathscr{T}(X)$;

$$
\left(\left.d p^{*}\right|_{s}\right)^{*}: T_{\tilde{s}}(\mathscr{T}(Y))^{*} \longrightarrow T_{s}(\mathscr{I}(X))^{*},
$$

coincides with the Poincaré series (or the push-forward operation)

$$
\Theta_{Y / X}: Q(Y(\tilde{s})) \longrightarrow Q(X(s))
$$

Proof of Theorem. Let $F=\Sigma_{1} \sqcup \cdots \sqcup \Sigma_{t}$ be a closed, oriented surface with $\operatorname{genus}\left(\Sigma_{i}\right)>1(i=1, \cdots, t)$. Take an arbitrary element $s_{F}=\left(s_{1}, \cdots, s_{t}\right)$ of $\mathscr{M}(F)=\mathscr{M}\left(\Sigma_{1}\right) \times \cdots \times \mathscr{M}\left(\Sigma_{t}\right)$. For convenience, fix markings on $\Sigma_{1}, \cdots, \Sigma_{t}$ and regard s_{F} as an element of the Teichmüller space $\mathscr{G}(F)=\mathscr{G}\left(\Sigma_{1}\right) \times \cdots \times \mathscr{G}\left(\Sigma_{t}\right)$. Similarly, $\bar{s}_{F}=\left(\bar{s}_{1}, \cdots, \bar{s}_{t}\right)$ can be regarded as an element of $\mathscr{I}\left(F_{-}\right)=\mathscr{T}\left(\Sigma_{1,-}\right) \times \cdots$ $\times \mathscr{}\left(\Sigma_{t,-}\right)$, where each $\Sigma_{i,-}$ is a copy of Σ_{i} and $F_{-}=\Sigma_{1,-} \sqcup \cdots \sqcup \Sigma_{t,-}$. By Lemma 1, for any $\varepsilon>0$, there exist compact, connected, oriented, hyperbolic 3-manifolds $M_{i}(i=1, \cdots, t)$ with totally geodesic, two-component boundary o.p.homeomorphic to $\Sigma_{i} \sqcup \Sigma_{i,-}$ and with $d_{\Sigma_{i}}\left(s_{i}, s_{i}^{\prime}\right)<\varepsilon, d_{\Sigma_{i,-}}\left(\bar{s}_{i}, \bar{s}_{i}^{\prime}\right)<\varepsilon$, where $\left(s_{i}^{\prime}, \bar{s}_{i}^{\prime}\right)$ $=\left[\partial M_{i}\right] \in \mathscr{G}\left(\Sigma_{i} \sqcup \Sigma_{i,-}\right)=\mathscr{T}\left(\Sigma_{i}\right) \times \mathscr{G}\left(\Sigma_{i,-}\right)$ under a suitable identification ∂M_{i} with $\Sigma_{i} \sqcup \Sigma_{i,-}$. This implies that

$$
\begin{equation*}
d_{F}\left(s_{F}, s_{F}^{\prime}\right)<\varepsilon, \quad d_{F_{-}}\left(\bar{s}_{F}, \bar{s}_{F}^{\prime}\right)<\varepsilon, \tag{3.1}
\end{equation*}
$$

for $s_{F}^{\prime}=\left(s_{1}^{\prime}, \cdots, s_{t}^{\prime}\right) \in \mathscr{T}(F), \bar{s}_{F}^{\prime}=\left(\bar{s}_{1}^{\prime}, \cdots, \bar{s}_{t}^{\prime}\right) \in \mathscr{G}\left(F_{-}\right)$. Let Φ_{i} be the isometric o.r.involution of M_{i} given in Lemma 1 exchanging Σ_{i} with $\Sigma_{i, \ldots}$. For any $n \in \boldsymbol{N}$, let $M_{i}^{(1)}, \cdots, M_{i}^{(2 n)}$ be $2 n$ copies of M_{i} with identification maps $h_{i}^{(j)}: M_{i} \rightarrow M_{i}^{(j)}$ ($j=1, \cdots, 2 n$). Consider the hyperbolic 3-manifold $M_{i, 2 n}$ obtained from $M_{i}^{(1)}$, $\cdots, M_{i}^{(2 n)}$ by connecting $M_{i}^{(j)}$ with $M_{i}^{(j+1)}$ via the o.r.-isometry $h_{i}^{(j+1)} 。 \Phi_{i}$ 。 $\left.\left(h_{i}^{(j)}\right)^{-1}\right|_{\Sigma_{i}^{(j)}}: \sum_{i,-}^{(j)} \rightarrow \sum_{i}^{(j+1)}(j=1,2, \cdots, 2 n-1)$, where $\Sigma_{i}^{(j)}, \Sigma_{i,-}^{(j)}$ are the components of $\partial M_{i}^{(j)}$ corresponding to $\Sigma_{i}, \Sigma_{i,-}$ of ∂M_{i}. Note that $M_{i, 2 n}$ admits the o.r.-isometric involution $\Phi_{i, 2 n}$ exchanging the two components $\sum_{i}^{(1)}, \Sigma_{i,-}^{(2 n)}$ of $\partial M_{i, 2 n}$ and with $\operatorname{Fix}\left(\Phi_{i, 2 n}\right)=\sum_{i,-}^{(n)}=\sum_{i}^{(n+1)}$.

For any $j=1, \cdots, n$, consider the compact submanifold $M_{i, 2 j}$ of $M_{i, 2 n}$ with $\partial M_{i, 2 j}=\Sigma_{i}^{(n-j+1)} \sqcup \Sigma_{i,-}^{(n+j)}$. From now on, we identify $\partial M_{i, 2 j}$ with $\Sigma_{i} \sqcup \Sigma_{i,-}$ via the o.p.-isometries $\left.h_{i}^{(n-j+1)}\right|_{\Sigma_{i}}: \Sigma_{i} \rightarrow \Sigma_{i}^{(n-j+1)},\left.h_{i}^{(n+j)}\right|_{\Sigma_{i,-}}: \Sigma_{i,-} \rightarrow \Sigma_{i}^{(n+j)}$. Then, $\left[\partial M_{i, 2 j}\right] \in \mathscr{T}\left(\partial M_{i, 2 j}\right)$ coincides with $\left(s_{i}^{\prime}, \bar{s}_{i}^{\prime}\right) \in \mathscr{G}\left(\Sigma_{i} \sqcup \Sigma_{i,-}\right)$. Suppose that

$$
\beta_{i, 2 j}=\mathrm{conf}: Q H_{0}\left(M_{i, 2 j}\right) \longrightarrow \mathscr{(\Sigma _ { i } \sqcup \Sigma _ { i , - })}
$$

is the homeomorphism for $M_{i, 2 j}$ given in (1.1). For $j=1, \cdots, n$, let $N_{i, 2 j}=$ $\boldsymbol{H}^{3} / \Gamma_{i, 2 j}$ be the hyperbolic 3-manifold containing $M_{i, 2 j}$ as a convex core. Since $\partial M_{i, 2 j}=\sum_{i} \sqcup \Sigma_{i,-}$ is totally geodesic in $N_{i, 2 j}$, the subgroups $\pi_{1}\left(\sum_{i}\right), \pi_{1}\left(\sum_{i,-}\right)$ of $\Gamma_{i, 2 j}$ are Fuchsian. This implies that $\beta_{i, 2 j}\left(\left[N_{i, 2 j}\right]\right)=\left(s_{i}^{\prime}, \bar{s}_{i}^{\prime}\right)$. By Lemma 2, there exists a compact, connected, oriented, hyperbolic 3-manifold M_{0} with totally geodesic boundary admitting an o.r.-homeomorphism $g: \partial M_{0} \rightarrow F$. Fixing an o.r.-isometry $\alpha: M_{0} \rightarrow \bar{M}_{0}$, the o.r.-homeomorphism $g_{-}: \partial \bar{M}_{0} \rightarrow F_{-}$is given by $\Phi_{i} \circ g \circ \alpha^{-1}(x)$ if $x \in \alpha\left(g^{-1}\left(\sum_{i}\right)\right)$. Set $W_{0}=M_{0} \sqcup \bar{M}_{0}, \quad Y_{2 n}=M_{1,2 n} \sqcup \cdots \sqcup M_{t, 2 n}$ and define the o.r.-homeomorphism $\gamma_{2 n}: \partial W_{0} \rightarrow \partial Y_{2 n}=F \sqcup F_{-}$by $\gamma_{2 n}(x)=\left(\left.h_{i}^{(1)}\right|_{\Sigma_{i}}\right) \circ g(x)$ if $x \in \partial M_{0}, g(x) \in \Sigma_{i}$, and $\gamma_{2 n}(x)=\left(\left.h_{i}^{(2 n)}\right|_{\Sigma_{i,}}\right) \circ g_{-}(x)$ if $x \in \partial \bar{M}_{0}, g_{-}(x) \in \Sigma_{i,-}$, see Figure 4.

Fig. 4.
Since $\left[\partial M_{i, 2 j}\right]=\left(s_{i}^{\prime}, \bar{s}_{i}^{\prime}\right)$ for any $i \in\{1, \cdots, t\}$,

$$
\begin{equation*}
\left[\partial Y_{2 j}\right]=\left(s_{1}^{\prime}, \cdots, s_{t}^{\prime}, \bar{s}_{1}^{\prime}, \cdots, \bar{s}_{t}^{\prime}\right)=\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right) \in \mathscr{T}\left(F \sqcup F_{-}\right) . \tag{3.2}
\end{equation*}
$$

Since $Y_{2 n}$ and W_{0} are atoroidal, acylindrical and Haken, $Y_{2 n} \cup_{r_{2 n}} W_{0}$ is a closed, atoroidal, Haken manifold. Then, by Thurston's Uniformization Theorem, it has a hyperbolic structure. The o.r.-homeomorphisms $\alpha, \alpha^{-1}, \Phi_{1,2 n}, \cdots, \Phi_{t, 2 n}$ determine the involution Φ on $Y_{2 n} \cup_{r_{2 n}} W_{0}$ with $\operatorname{Fix}(\Phi)=F^{(n+1)}=\Sigma_{1}^{(n+1)} \sqcup \cdots \sqcup \Sigma_{i}^{(n+1)}$. By Mostow's Rigidity Theorem, we may assume that $F^{(n+1)}$ is totally geodesic also in the new hyperbolic 3-manifold $Y_{2 n} \cup_{\gamma_{2 n}} W_{0}$. The o.r.-involution $\tau_{2 n}$: $\partial\left(Y_{2 n} \sqcup W_{0}\right) \rightarrow \partial\left(Y_{2 n} \sqcup W_{0}\right)$ determined by $\gamma_{2 n}: \partial W_{0} \rightarrow F \sqcup F_{-}$and $\left(\gamma_{2 n}\right)^{-1}: F \sqcup F_{-} \rightarrow$ ∂W_{0} induces an isometry

$$
\left(\tau_{2 n}\right)_{*}: \mathscr{T}\left(\bar{F} \sqcup \bar{F}_{-}\right) \times \mathscr{}\left(\overline{\partial W_{0}}\right) \longrightarrow \mathscr{}\left(F \sqcup F_{-}\right) \times \mathscr{(\partial W _ { 0 }) .}
$$

Under our identification of $F^{(1)}=F, F_{-}^{(2 n)}=F_{-}$, we have $\gamma_{\mathbf{2 n}}(x)=g(x)$ if $x \in \partial M_{0}$ and $\gamma_{2 n}(x)=g_{-}(x)$ if $x \in \partial \bar{M}_{0}$. Thus, $\left(\tau_{2 n}\right)_{*}$ is independent of n. We set $\left[\partial W_{0}\right]$ $\left.=s_{W} \in \mathscr{(} \partial W_{0}\right)$. Since the topological type of $Y_{2 n}$ depends on n, the skinning map

$$
\sigma_{2 n}: \mathscr{T}\left(F \sqcup F_{-}\right) \times \mathscr{(\partial W _ { 0 }) \longrightarrow \mathscr { F } (\overline { F } \sqcup \overline { F } _ { - }) \times \mathscr { (\partial W _ { 0 } }) , ~}
$$

also does. However, for the $s^{\prime}=\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}, s_{W}\right) \in \mathscr{T}\left(F \sqcup F_{-}\right) \times \mathscr{I}\left(\partial W_{0}\right), \sigma_{2 n}\left(s^{\prime}\right)$ is independent of n. In fact, each component X of $\partial M_{i, 2 n}=\Sigma_{i} \sqcup \Sigma_{i,-}$ is totally geodesic in $N_{i, 2 n}$, the covering of $N_{i, 2 n}$ corresponding to $\pi_{1}(X) \subset \Gamma_{i, 2 n}$ is determined only
by the hyperbolic structure on X and independent of the topological type of $M_{i, 2 n}$. Since the similar fact holds on each component of ∂W_{0}, we have the desired independence. In particular, the Teichmüller distance $d\left(s^{\prime},\left(\tau_{2 n}\right) *^{\circ} \sigma_{2 n}\left(s^{\prime}\right)\right)$ $=L$ in $\mathscr{G}\left(F \sqcup F_{-}\right) \times \mathscr{G}\left(\partial W_{0}\right)$ is independent of n. According to McMullen [10], the solution $s_{2 n}^{\prime \prime} \in \mathscr{G}\left(F \sqcup F_{-}\right) \times \mathscr{G}\left(\partial W_{0}\right)$ to the gluing problem for $\left(Y_{2 n}, W_{0}\right)$ is contained in $B_{F \sqcup F_{-}\left\llcorner\partial W_{0}\right.}\left(s^{\prime}, L /\left(1-c_{0}\right)\right)$, where $c_{0}, 0<c_{0}<1$, is the constant depending only on the topological type of $F \sqcup F_{-} \sqcup \partial W_{0}$ and hence independent of n. The $\left(F \sqcup F_{-}\right)$-entry $\left(s^{\prime \prime}(\mathbf{1}), \bar{s}^{\prime \prime}(2 n)\right) \in \mathscr{I}\left(F \sqcup F_{-}\right)$of $s_{2 n}^{\prime \prime}$ is contained in $B_{F \sqcup F-}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right)\right.$, $\left.L /\left(1-c_{0}\right)\right)$. Let $p_{i, 2 j}: N_{i, 2 j-2} \rightarrow N_{i, 2 j}(j=2, \cdots, n)$ (resp. $\left.p_{i, 2}: N_{i, 0} \rightarrow N_{i, 2}\right)$ be the covering associated to $\pi_{1}\left(M_{i, 2 j-2}\right) \subset \pi_{1}\left(M_{i, 2 j}\right)=\pi_{1}\left(N_{i, 2 j}\right)\left(\right.$ resp. $\pi_{1}\left(\sum_{i}^{(n+1)}\right) \subset \pi_{1}\left(M_{i, 2}\right)$ $\left.=\pi_{1}\left(N_{i, 2}\right)\right)$. Each $p_{i, 2 j}$ induces the pull-back $\delta_{i, 2 j}: Q H_{0}\left(M_{i, 2 j}\right) \rightarrow Q H_{0}\left(M_{i, 2 j-2}\right)$, where $M_{i, 0}=\sum_{i}^{(n+1)} \times[0,1]$. Consider the map

$$
\eta_{2 j}: \Im\left(F \sqcup F_{-}\right) \longrightarrow \Im\left(F \sqcup F_{-}\right)
$$

defined by

$$
\begin{aligned}
& \eta_{2 j}{\mid \mathscr{I (\Sigma _ { i } \sqcup \Sigma _ { i , - })}}: \mathscr{\mathscr { L } (\Sigma _ { i } \sqcup \Sigma _ { i , - }) \xrightarrow { (\beta _ { i , 2 j }) ^ { - 1 } } Q H _ { 0 } (M _ { i , 2 j }) \xrightarrow { \delta _ { i , 2 j } }} \begin{array}{l}
Q H_{0}\left(M_{i, 2 j-2}\right) \xrightarrow{\beta_{i, 2 j-2}} \mathscr{P}\left(\Sigma_{i} \sqcup \Sigma_{i,-}\right) .
\end{array} .
\end{aligned}
$$

By (3.2), for any $j \in\{1, \cdots, n\}$, we have $\eta_{2 j}\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right)=\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right)$. We set inductively

$$
\begin{aligned}
& \eta_{2 n}\left(s^{\prime \prime(1)}, \bar{s}^{\prime \prime(2 n)}\right)=\left(s^{\prime \prime}(2), \bar{s}^{\prime \prime}(2 n-1)\right), \eta_{2 n-2}\left(s^{\prime \prime(2)}, \bar{s}^{\prime \prime}(2 n-1)\right. \\
& \eta_{2}\left(s^{\prime \prime}(n), \bar{s}^{\prime \prime}(n+1)\right)=\left(s^{\prime \prime}(3), \bar{s}^{\prime \prime(2 n-2)}\right), \cdots, \\
& \bar{s}^{\prime(n+1)},
\end{aligned}
$$

Let $O_{i, 2 n}=\left(\boldsymbol{H}^{3} \cup \Omega\left(\Gamma_{i, 2 n}\right)\right) / \Gamma_{i, 2 n}$ be the Kleinian manifold, and let $q_{i, 2 n}: \tilde{O}_{i, 2 n} \rightarrow$ $O_{i, 2 n}$ be the covering associated to $\pi_{1}\left(M_{i, 2 n-2}\right) \subset \pi_{1}\left(O_{i, 2 n}\right)$. Note that $N_{i, 2 n-2} \subset$ $\tilde{O}_{i, 2 n} \subset O_{i, 2 n-2},\left.q_{i, 2 n}\right|_{N_{i, 2 n-2}}=p_{i, 2 n}$ and $\partial\left(\tilde{O}_{i, 2 n}\right)$ is a full-measure, open subset of $\partial\left(O_{i, 2 n-2}\right)$ such that each component U of $\partial\left(\tilde{O}_{i, 2 n}\right)$, called a spot by McMullen [10], is homeomorphic to an open disk.

It is easily seen that McMullen's argument [10] for skinning maps is applicable also to $\eta_{2 n}$. We will review that briefly. The dual of the derivative $d \eta_{2 n}$ of $\eta_{2 n}$ at $v \in \mathscr{G}\left(F \sqcup F_{-}\right)$is given by

$$
\left(\left.d \eta_{2 n}\right|_{v}\right)^{*}=\sum_{\boldsymbol{V}} \Theta_{U / X}: Q\left(F(\hat{v}) \sqcup F_{-}(\hat{v})\right) \longrightarrow Q\left(F(v) \sqcup F_{-}(v)\right),
$$

where U ranges over all spots in $\partial\left(\tilde{O}_{1,2 n}\right) \sqcup \cdots \sqcup \partial\left(\tilde{O}_{t, 2 n}\right), X=q_{i, 2 n}(U) \subset \partial\left(O_{i, 2 n}\right)$ and $\hat{v}=\eta_{2 n}(v)$. Here, we set $\Theta_{U / X}(\varphi)=\Theta_{U / X}\left(\left.\varphi\right|_{U}\right)$ for $\varphi \in Q\left(F(\hat{v}) \sqcup F_{-}(\hat{v})\right)$. By [9, TheOrem 10.3], there exists a continuous map $c: \mathscr{M}(X) \rightarrow \boldsymbol{R}$ with $\left\|\Theta_{U / X}\right\| \leqq$ $c([X])<1$. Since $B_{F \sqcup F_{-}}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), L /\left(1-c_{0}\right)\right)$ is compact, there exists a positive constant $c_{1}<1$, depending only on $\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right)$ and $L /\left(1-c_{0}\right)$, such that, for any $v \in B_{F \sqcup F_{-}}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), L /\left(1-c_{0}\right)\right)$ and all spots $U,\left\|\Theta_{U / X}\right\| \leqq c_{1}$. Thus, we have

$$
\begin{equation*}
\left\|\left.d \eta_{2 n}\right|_{v}\right\|=\left\|\left(\left.d \eta_{2 n}\right|_{v}\right)^{*}\right\| \leqq \sup _{U}\left\|\Theta_{U / X}\right\| \leqq c_{1} . \tag{3.3}
\end{equation*}
$$

Now, since $\eta_{2 n}\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right)=\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right)$, the inequality (3.3) implies that

$$
\eta_{2 n}\left(B_{F \sqcup F_{-}-}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), \frac{L}{1-c_{0}}\right)\right) \subset B_{F \sqcup F_{-}-}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), \frac{L c_{1}}{1-c_{0}}\right) .
$$

Since $B_{F \sqcup F_{-}}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), L c_{1} /\left(1-c_{0}\right)\right) \subset B_{F \sqcup F_{-}}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), L /\left(1-c_{0}\right)\right)$, the same constant c_{1} works for

$$
\left.\left.\eta_{2 n-2}: \mathscr{T}\left(F \sqcup F_{-}\right) \longrightarrow \mathscr{(}\right) \sqcup F_{-}\right)
$$

in $B_{F \backslash F_{-}}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), L c_{1} /\left(1-c_{0}\right)\right)$. This shows that

$$
\eta_{2 n-2}\left(B_{F \sqcup F_{-}}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), \frac{L c_{1}}{1-c_{0}}\right)\right) \subset B_{F \sqcup F_{-}}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), \frac{L c_{1}^{2}}{1-c_{0}}\right) .
$$

Since $\left(s^{\prime \prime}(1), \bar{s}^{\prime \prime}(2 n)\right) \in B_{F \sqcup F_{-}}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), L /\left(1-c_{0}\right)\right)$, by repeating the same process n times, we have

$$
\begin{equation*}
\left(s^{\prime \prime}(n+1), \bar{s}^{\prime \prime(n)}\right) \in B_{F \sqcup F_{-}}\left(\left(s_{F}^{\prime}, \bar{s}_{F}^{\prime}\right), \frac{L c_{1}^{n}}{1-c_{0}}\right) . \tag{3.4}
\end{equation*}
$$

Let $Z_{2 n}$ be the half of $Y_{2 n} \cup_{\gamma_{2 n}} W_{0}$ with $\partial Z_{2 n}=F^{(n+1)}$ and $Z_{2 n} \supset \bar{M}_{0}$. Since $\partial Z_{2 n}=F^{(n+1)}$ is totally geodesic in $Y_{2 n} \cup_{\gamma_{2 n}} W_{0}$, we have $\left[\partial Z_{2 n}\right]=s^{\prime \prime}(n+1)$. Since $Z_{2 n}$ is a compact, connected, oriented, hyperbolic 3-manifold with totally geodesic boundary, $\partial Z_{2 n}$ represents an element of $\mathcal{R}(F)$. If we choose $n \in \boldsymbol{N}$ so large that $L c_{1}^{n} /\left(1-c_{0}\right)<\varepsilon$, then by (3.1) and (3.4),

$$
d_{F}\left(s_{F},\left[\partial Z_{2 n}\right]\right) \leqq d_{F}\left(s_{F}, s_{F}^{\prime}\right)+d_{F}\left(s_{F}^{\prime}, s^{\prime \prime}(n+1)\right)<2 \varepsilon .
$$

Thus, $\mathscr{R}(F)$ is dense in $\mathscr{M}(F)$.

References

[1] P. Bowers and K. Stephenson, The set of circle packing points in the Teichmüller space of a surface of finite conformal type is dense, Math. Proc. Camb. Phil. Soc., 111 (1992), 487-513.
[2] R. Brooks, Circle packings and co-compact extensions of Kleinian groups, Invent. Math., 86 (1986), 461-469.
[3] M. Fujii, Deformations of a hyperbolic 3-manifold not affecting its totally geodesic boundary, Kodai Math. J., 16 (1993), 441-454.
[4] F. Gardiner, Teichmüller theory and quadratic differentials, Wiley Interscience, New York, 1987.
[5] J. Hempel, 3-manifolds, Ann. of Math. Studies no. 86, Princeton Univ. Press, Princeton N. J., 1976.
[6] Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller spaces, SpringerVerlag, Tokyo, 1992.
[7] W. Jaco, Lectures on three-manifold topology, C.B.M.S. Regional Conf. Ser. in Math. no. 43, Amer. Math. Soc., Providence R.I., 1980.
[8] B. Maskit, On Klein's combination theorem III, Advances in the theory of Riemann surfaces (eds. L. Ahlfors et al.), Ann. of Math. Studies no. 66, Princeton Univ. Press, Princeton N. J., 1971, pp. 297-316.
[9] C. McMullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math., 97 (1989), 95-127.
[10] C. McMullen, Iteration on Teichmüller space, Invent. Math., 99 (1990), 425-454.
[11] J. Morgan, On Thurston's uniformization theorem for three-dimensional manifolds, The Smith conjecture (eds. J. Morgan, H. Bass), Academic Press, New York, London, 1984, pp. 37-125.
[12] G. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. I.H.E.S., 34 (1968), 53-104.
[13] R. Myers, Simple knots in compact, orientable 3-manifolds, Trans. Amer. Math. Soc., 273 (1982), 75-91.
[14] W. Thurston, The geometry and topology of 3-manifolds, Lect. Notes, Princeton Univ., 1978.
[15] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381.

Michihiko FUJII	Teruhiko SoMA
Department of Mathematics	Department of Mathematical Sciences
Yokohama City University	College of Science and Engineering
22-2 Seto, Kanazawa-ku, Yokohama	Tokyo Denki University
Kanagawa-ken 236	Hatoyama-machi
Japan	Saitama-ken 350-03
	Japan

