# Del Pezzo surfaces as hyperplane sections 

By Antonio Lanteri, Marino Palleschi<br>and Andrew J. Sommese

(Received Aug. 3, 1994)
(Revised June 13, 1995)

## Introduction.

Let $L$ be a very ample line bundle on an $n$-dimensional complex projective manifold $X$. In this article we classify pairs $(X, L)$ as above with some smooth $A \in|L|$ being del Pezzo, i.e., with a smooth $A \in|L|$ such that $-K_{A}=(n-2) H$ for some ample line bundle $H$ on $A$. We assume that $n \geqq 3$ since otherwise we are in the completely understood case when $A$ is an elliptic curve.

If $H=L_{A}$, then the problem reduces to the classification of del Pezzo manifolds, which has been done by Fujita [Fu] in the more general setting of ample divisors. However there are several examples (e.g., [LPS], [LPS1]) showing that $H \neq L_{A}$ can occur. This suggests the development of a detailed structure theory in which both Fujita's theory (in the very ample setting) and all known examples fit. This is exactly what we do in this paper.

If $n \geqq 4$, then the structure of pairs $(X, L)$ with $A \in|L|$ del Pezzo is simple: we work it out in the appendix. In particular this shows that, apart from few obvious exceptions, the situation $H \neq L_{A}$ can occur only when $n=3$, which we assume from here on in this introduction.

In section 0 we summarize background material. We also prove some very ampleness results (Theorems (0.3) and (0.5)) in order to show that a number of pairs coming up in the classification do really occur.

In section 2, by using adjunction theory, we prove a structure theorem Theorem (2.4)) giving a breakup of the possible pairs ( $X, L$ ) we are dealing with into 9 classes. Of these the most complicated are quadric fibrations over $\boldsymbol{P}^{1}$, Veronese bundles over $\boldsymbol{P}^{1}$ and scrolls over surfaces.

We study quadric fibrations over $\boldsymbol{P}^{1}$ in sections 1 and 4 . To do this we embed $X$ in $\boldsymbol{P}\left(\pi_{*} L\right)$ where $\pi: X \rightarrow \boldsymbol{P}^{1}$ is the quadric fibration map. The smoothness of $X$ imposes very strong restrictions on which vector bundles $\pi_{*} L$ are possible and on the homology class of $X$ in $\boldsymbol{P}\left(\pi_{*} L\right)$.

In section 3 we classify the Veronese bundles over $\boldsymbol{P}^{1}$ that arise in our structure theory.

In section 5 we give a precise description of the scrolls over surfaces appearing in the breakup result assuming $K_{A}{ }^{2} \geqq 2$. Actually, if $K_{A}{ }^{2} \geqq 2$, we have that $-\left(K_{X}+L\right)$ is nef, hence $X$ is a Fano bundle, this allowing us to apply classification results for such special manifolds, e.g. [SzW].

The first two authors would like to thank the M.U.R.S.T. of the Italian Government ( $40 \%$ Project Geometria Algebrica) for its support. The third author would like to thank the Max-Planck-Institut für Mathematik and the NSF (DMS 93-02121) for their support at different stages of this research. We thank the referee for useful remarks.

## 0. Background material.

We work over the complex number field. A projective $k$-fold is an irreducible imooth projective scheme of dimension $k$. Vector bundles are holomorphic ver ar bundles. We use standard notation from algebraic geometry. We also a lupt some current abuses. Everywhere we do not distinguish between line bundles and invertible sheaves. We freely shift from the multiplicative to the additive notation for line bundles; multiplicative notation with "." omitted is reserved for the intersection product in the Chow rings.

Let $V$ be a projective $k$-fold and let $\mathcal{L}$ be a line bundle on $V$. We let $\mathcal{L}^{r}=c_{1}(\mathcal{L})^{r} ; \mathcal{L}_{W}$ will denote the restriction of $\mathcal{L}$ to a subvariety $W$ of $V ; K_{V}$ will stand for the canonical bundle of $V$.

If $p_{X}, p_{Y}$ are the projections of a product $X \times Y$ onto the factors, we set $\mathcal{O}_{X \times Y}(m, n)=p_{X}{ }^{*} \Theta_{X}(m)+p_{Y}{ }^{*} \Theta_{Y}(n)$.

A line bundle $\mathcal{L}$ on $V$ is said to be numerically effective (nef, for short) if $\mathcal{L} C \geqq 0$ for all curves $C \subset V$. In addition $\mathcal{L}$ is said to be big if $\mathcal{L}^{k}>0$. We say that $\mathcal{L}$ is spanned if it is spanned at all points by $\Gamma(V, \mathcal{L})$.

For an ample line bundle $\mathcal{L}$ on $V$, the sectional genus $g(V, \mathcal{L})$ of $(V, \mathcal{L})$ is defined by

$$
2 g(V, \mathcal{L})-2=\left(K_{V}+(k-1) \mathcal{L}\right) \mathcal{L}^{k-1} .
$$

If $\mathcal{L}$ is also spanned, then $g(V, \mathcal{L})$ is simply the geometric genus of the smooth curve obtained by intersecting $k-1$ general elements of the complete linear system $|\mathcal{L}|$. We also set $d(V, \mathcal{L})=\mathcal{L}^{k}$.
(0.1) Special Varieties.

We denote by $\boldsymbol{Q}^{k}$ a smooth quadric hypersurface of $\boldsymbol{P}^{k+1}$. Let $V$ be a projective $k$-fold and let $\mathcal{L}$ be an ample line bundle on $V$. We say that $(V, \mathcal{L})$ is a Del Pezzo $k$-fold if $-K_{V}=(k-1) \mathcal{L}$. We say that $(V, \mathcal{L})$ is a scroll (respectively a quadric bundle) over a normal variety $W$ of dimension $h$, if there exists a surjective morphism with connected fibers $p: V \rightarrow W$ and an
ample line bundle $H$ on $W$ such that $K_{V}+(k-h+1) \mathcal{L}=p^{*} H$ (respectively $K_{V}+$ $\left.(k-h) \mathcal{L}=p^{*} H\right)$. In particular, if $(V, \mathcal{L})$ is a scroll over either a curve or a surface $W$ with $k-h>0$, then $W$ is smooth and $V$ is a $\boldsymbol{P}^{k-h}$-bundle over $W$ and $\mathcal{L}_{f}=\mathcal{O}_{P k-h(1)}$ for every fibre $f$ of $p$ [S2, (3.3)]. A projective 3 -fold $V$ is said to be Fano if $-K_{V}$ is ample.
(0.2) Reductions [S2, (0.5)].

Let $\mathcal{L}$ be an ample and spanned line bundle on a projective $k$-fold $V$. We say that a pair ( $V^{\prime}, \mathcal{L}^{\prime}$ ), consisting of a projective $k$-fold $V^{\prime}$ and an ample line bundle $\mathcal{L}^{\prime}$, is a reduction of $(V, \mathcal{L})$ if
(0.2.1) there exists a morphism $\rho: V \rightarrow V^{\prime}$ expressing $V$ as $V^{\prime}$ blown-up at a finite set $B$,
(0.2.2) $\mathcal{L}=\rho^{*} \mathcal{L}^{\prime}-\left[\rho^{-1}(B)\right]$ (equivalently $\left.K_{V}+(k-1) \mathcal{L}=\rho^{*}\left(K_{V^{\prime}}+(k-1) \mathcal{L}^{\prime}\right)\right)$.

Recall that if $K_{V}+(k-1) \mathcal{L}$ is nef and big, then there exists a reduction ( $V^{\prime}, \mathcal{L}^{\prime}$ ) of $(V, \mathcal{L})$ and $K_{V^{\prime}}+(k-1) \mathcal{L}^{\prime}$ is ample [S2, (4.5)]. Note that in this case such a reduction is unique up to isomorphisms and that the positive dimensional fibres of $\rho$ are precisely the linear $\boldsymbol{P}^{k-1} \subset V$ with normal bundle $\mathcal{O}_{P^{k-1}(-1)}$. Furthermore $\rho$ induces a bijection between the smooth elements of $|\mathcal{L}|$ and the smooth divisors of $\left|\mathcal{L}^{\prime}\right|$, passing through $B$.

In particular, in the special case of threefolds, we need to recall the following fact (e.g. see [SV, (0.3.3)]).
(0.2.3) Let $\left(V^{\prime}, \mathcal{L}^{\prime}\right)$ be the reduction of $(V, \mathcal{L})$, let $\rho: V \rightarrow V^{\prime}$ be the reduction morphism. Let $S$ be any smooth element of $|\mathcal{L}|$ and let $S^{\prime}=\rho(S)$. Then $\left(S^{\prime}, \mathcal{L}^{\prime} S^{\prime}\right)$ is the reduction of $\left(S, \mathcal{L}_{S}\right)$. In particular, if $\rho$ contracts $t(-1)$-planes of $(V, \mathcal{L})$, then

$$
K_{S^{\prime}}^{2}=K_{S}^{2}+t \geqq K_{S}^{2} .
$$

For all the results of adjunction theory we will need for pairs $(V, \mathcal{L})$ with $\mathcal{L}$ very ample, we refer to [SV], [S3] and especially [BS].

Now we prove a very ampleness result which we need in sec. 3 .
(0.3) Theorem. Let $P_{1}, \cdots, P_{r}$ be $r$ totally disjoint linear subspaces of $\boldsymbol{P}^{n}$ (i.e. the linear space they generate has dimension $a_{1}+\cdots+a_{r}+r-1$, where $\left.a_{i}=\operatorname{dim} P_{i}\right)$. Let $\pi: P_{\rightarrow} \boldsymbol{P}^{n}$ be the blowing-up of the union of the $P_{i}$ 's and let $E_{i}=\pi^{-1}\left(P_{i}\right)$. If $t \geqq r \geqq 3$, then the line bundle $L=\pi^{*} \Theta_{P} n(t)-\sum_{i} E_{i}$ is very ample.

Proof. Any two points or a point and a direction in $\boldsymbol{P}^{n}$ generate a line, say $\mathfrak{l}$.

Claim. At least one of the projections from $P_{i}$ maps $\mathfrak{l}$ to a line.
Proof. Assume otherwise. Then $\mathfrak{l}$ must meet every $P_{i}$ and thus $\mathfrak{l}$ is not contained in any of them, since they are totally disjoint. So there exists a point $x \in \mathfrak{l}$ not on any $P_{i}$. Project to $\boldsymbol{P}^{n-1}$ from $x$. Note that every $P_{i}$ maps isomorphically onto its image, say $Q_{i}$ since $x$ is in none of them. On the other hand in $P^{n-1}$ all the subspaces $Q_{i}$ meet since $\mathfrak{l}$ is a line through $x$ meeting all the $P_{i}$ 's. This implies that the $Q_{i}$ 's span a linear space of dimension $\leqq a_{1}+\cdots$ $+a_{r}$. Thus coming back to $\boldsymbol{P}^{n}$ we conclude that the $P_{i}$ 's span a linear space of dimension $\leqq a_{1}+\cdots+a_{r}+1$, which in view of our assumption implies $r \leqq 2$, a contradiction. This proves the claim.

Since $\pi^{*} \theta_{P} n(t-r)$ is spanned, it suffices to assume $t=r$. To prove the very ampleness of $L$, note that $L=\Sigma\left(\pi^{*} \mathcal{O}_{P} n(1)-E_{i}\right)$; so if two points or directions are separated by $\left|\pi^{*} \mathcal{O}_{P n}(1)-E_{i}\right|$ for some $i$, then they are also separated by $|L|$. Moreover note that the morphism associated with the $i$-th summand is induced by the projection of $\boldsymbol{P}^{n}$ from the linear space $P_{i}$.

Now consider two points $x, y$ on $P$. If they are not on the same $E_{i}$ with the same image in $P_{i}$, then they are separated by $\left|\pi^{*} \mathscr{O}_{P} n(1)-E_{j}\right|$ for some $j$, by the above claim. Therefore assume that $x, y$ are in the same $E_{i}$ with the same image, say $z$, in $P_{i}$. This means that $x, y$ correspond to two different normal directions to $P_{i}$ at $z$. But then, since the projection from $P_{i}$ separates normal directions we see that $\left|\pi^{*} \mathcal{O}_{P} n(1)-E_{i}\right|$ separates $x, y$.

Similarly, if $y$ is a tangent direction at $x$, by using the claim we reduce to the case when $x$ is in $E_{i}$ with image, say $z$, in $P_{i}$ and $y$ goes to zero at $z$. Then $\left|\pi^{*} \mathcal{O}_{P^{n}}(1)-E_{i}\right|$ maps the fibre $\pi^{-1}(z)$ biholomorphically onto its image.

The argument proving the above theorem does not work for $r=2$. In this case however we have the following weaker result.
(0.4) THEOREM ([LPS, (0.4)]). Let $P_{1}, P_{2}$ be two disjoint linear subspaces of $\boldsymbol{P}^{n}$. Let $\pi: P \rightarrow \boldsymbol{P}^{n}$ be the blow-up at $P_{1}$ and $P_{2}$ and let $L=\pi^{*} \mathcal{O}_{P} n(2)-\pi^{-1}\left(P_{1}\right)$ $-\pi^{-1}\left(P_{2}\right)$. Then $L$ is very ample outside the proper transform of $\left\langle P_{1}, P_{2}\right\rangle$, the linear span of $P_{1}$ and $P_{2}$.

By using this fact we now prove a very ampleness result we need in sec. 2 .
(0.5) Theorem. Let $\boldsymbol{Q}^{3} \subset \boldsymbol{P}^{4}$ be a smooth hyperquadric and let $x_{1}, x_{2}, x_{3} \in \boldsymbol{Q}^{3}$ be three points no two on a line contained in $\boldsymbol{Q}^{3}$. Let $\rho: X \rightarrow \boldsymbol{Q}^{3}$ be the blowing up at $x_{1}, x_{2}, x_{3}$ and let $E_{i}=\rho^{-1}\left(x_{i}\right)$. Then the line bundle $L:=\rho^{*} \mathcal{O}_{Q^{3}}(2)$ -$E_{1}-E_{2}-E_{3}$ is very ample on $X$.

Proof. Let $\theta_{i}: M_{i} \rightarrow \boldsymbol{P}^{4}$ be the blowing up of $\boldsymbol{P}^{4}$ along $x_{i}(i=1,2,3)$ and along the line $\left\langle x_{j}, x_{k}\right\rangle(i \neq j, k)$ and let $\mathcal{E}_{i}$ and $\mathcal{E}_{j k}$ denote the exceptional
divisors respectively. Look at the commutative diagram

$$
\begin{array}{ccccc}
\boldsymbol{P}^{3} & \stackrel{p}{\leftarrow} & M_{i} & \xrightarrow{q} & \boldsymbol{P}^{2} \\
p^{\prime} \uparrow & \boldsymbol{\sigma}^{\prime \prime} \swarrow & \downarrow \theta_{i} & \searrow \tau^{\prime \prime} & \uparrow q^{\prime} \\
P_{i} & \underset{\boldsymbol{\sigma}^{\prime}}{\rightarrow} & \boldsymbol{P}^{4} & \leftarrow & \leftarrow \boldsymbol{\tau}^{\prime}
\end{array} P_{j k} .
$$

where $p^{\prime}$ and $q^{\prime}$ are the morphisms obtained by resolving the indeterminacies of the projections of $\boldsymbol{P}^{4}$ from $x_{i}$ and from the line $\left\langle x_{j}, x_{k}\right\rangle$ respectively and $\sigma^{\prime \prime}\left(\tau^{\prime \prime}\right)$ denotes the blowing-up of $P_{i}\left(P_{j k}\right)$ along the proper transform of $\left\langle x_{j}, x_{k}\right\rangle$ via $\sigma^{\prime}$ (of $x_{i}$ via $\tau^{\prime}$ ). We have

$$
p^{\prime *} \mathscr{O}_{P_{3}}(1)=\sigma^{\prime *} \Theta_{P^{4}}(1)-\sigma^{\prime-1}\left(x_{i}\right) \quad \text { and } \quad q^{\prime *} \Theta_{P_{2}}(1)=\tau^{\prime *} \Theta_{P^{4}}(1)-\tau^{\prime-1}\left(\left\langle x_{j}, x_{k}\right\rangle\right) ;
$$

so that

$$
p^{*} \Theta_{P 3}(1)+\mathcal{E}_{i}=\theta_{i}^{*} \Theta_{P^{4} 4}(1)=q^{*} \mathcal{O}_{P 2}(1)+\mathcal{E}_{j k} .
$$

So, letting $g_{i}=(p, q): M_{i} \rightarrow \boldsymbol{P}^{3} \times \boldsymbol{P}^{2}$, we get

$$
\begin{equation*}
\theta_{i} * \Theta_{P^{4}( }(2)-\mathcal{E}_{i}-\mathcal{E}_{j k}=p^{*} \Theta_{P^{3}}(1)+q^{*} \Theta_{P^{2} 2}(1)=g_{i} * \Theta_{P^{3} \times P^{2} 2}(1,1) . \tag{0.5.1}
\end{equation*}
$$

Now come to our quadric. In view of the general position assumption, the plane $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ cuts $\boldsymbol{Q}^{3}$ along a smooth conic; call $C$ its proper transform on $X$. In particular since every line $\left\langle x_{j}, x_{k}\right\rangle$ is transverse to $\boldsymbol{Q}^{3}$ we get for every $i=1,2$, 3 a commutative diagram

$$
\begin{array}{ll}
M_{i} \xrightarrow{\theta_{i}} & \boldsymbol{P}^{4} \\
\cup & \\
X \underset{\rho}{\longrightarrow} & \boldsymbol{Q}^{3}
\end{array}
$$

and $\left[\mathcal{E}_{i}\right]_{X}=E_{i},\left[\mathcal{E}_{j k}\right]_{X}=E_{j}+E_{k}$. Thus restricting (0.5.1) to $X$ we see that

$$
L=\left(g_{i}{ }^{*} \mathcal{O}_{P_{3} \times P \mathbf{P}}(1,1)\right)_{X} \quad \text { for } i=1,2,3 .
$$

So, due to the very ampleness of $\mathcal{O}_{P_{3} \times P \mathbf{P 2}}(1,1)$, to show that sections of $L$ separate two points $x, y$ of $X$ (possibly $y$ being a tangent direction at $x$ ) it is enough to show that $g_{i}$ separates them for some $i$. Note that, according to the definition of $g_{i}$,
(0.5.2) the $p$ component of $g_{i}$ separates any couple of points (or point, direction) whose images in $\boldsymbol{P}^{4}$ are not collinear with $x_{i}$, while
(0.5.3) the $q$ component of $g_{i}$ separates any couple of points (or point, direction) not on the same fibre of $E_{j_{k}}$, i.e. whose images in $P^{4}$ are not coplanar with $x_{j}, x_{k}$.

Note also that the line bundle $\theta_{i}{ }^{*} \boldsymbol{O}_{P^{4}}(2)-\mathcal{E}_{i}-\mathcal{E}_{j k}$ is very ample on $M_{i}$ outside the proper transform of $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, by ( 0.4 ) ; hence $L$ is very ample on $X \backslash C$. Property ( 0.5 .2 ) will be enough to show that some $g_{i}$ separates $x$ and $y$ in the remaining cases. Actually, let $x \in X \backslash C$ and $y \in C$; then necessarily $y \neq x_{i}$ for some $i$, so that $g_{i}$ separates $x$ and $y$, by (0.5.2). Now suppose that $x \in C \backslash\left(E_{1}\right.$ $\cup E_{2} \cup E_{3}$ ) ; then $x$ and any point $y \in C$ (or tangent direction) are separated by some $g_{i}$ by ( 0.5 .2 ), since they cannot be collinear with all $x_{i}$ 's. Now let $x \in E_{i}$; if $y$ is a tangent direction or another point on the same $E_{i}$, then projecting from $x_{i}$ we get different images, hence $g_{i}$ separates $x$ and $y$, by (0.5.2). Finally assume that $x \in E_{1}$ and $y \in E_{2}$; then $g_{3}$ separates them, by (0.5.2), since $x_{3}$ and the images of $x, y$ in $\boldsymbol{P}^{4}$ are not collinear. This concludes the proof.

In sec. 4 we will have to decide whether a line bundle on a projective bundle has a smooth element in its linear system. The remainder of this section deals with preparatory material to this end. A key condition translating smoothness is the following
(0.6) Proposition. Let $\mathcal{L}$ be a line bundle on a compact complex manifold $X$. Let $Z$ be a compact complex submanifold of $X$. Let $|\mathcal{L}-Z|$ be the linear system of the zero sets of sections of $\mathcal{L}$ that vanish on $Z$. Let $N_{Z}^{*}$ be the conormal bundle of $Z$ in $X$ and let

$$
\begin{equation*}
d_{z}: \Gamma(\mathcal{L}) \longrightarrow \Gamma\left(N_{Z}^{*} \otimes \mathcal{L}\right) \tag{0.6.1}
\end{equation*}
$$

be the homomorphism locally given by the differential along $Z$. Then the linear system $|\mathcal{L}-Z|$ contains an element smooth except possibly on the set $B s|\mathcal{L}-Z|-Z$ if and only if there exists a section $s \in \Gamma(\mathcal{L}-Z)$ such that $d_{Z} s$ is nowhere zero on $Z$.

Proof. Let $s \in \Gamma(\mathcal{L}-Z)$. Since $s$ vanishes on $Z$, the zero locus of $s$ is smooth along $Z$ if and only if locally the differential of $s$ does not vanish on $Z$. Since this is an open condition, if satisfied, then the general element of $|\mathcal{L}-Z|$ is smooth along $Z$; on the other hand by the Bertini theorem the general element of $|\mathcal{L}-Z|$ is smooth outside $B s|\mathcal{L}-Z|$. This gives the existence of an element smooth outside $B s|\mathcal{L}-Z|-Z$. The converse is obvious.

We can explicitly describe $N_{Z}^{*}$ when $X$ is a $\boldsymbol{P}$-bundle and $Z$ is a $\boldsymbol{P}$-subbundle of it. First we recall the following general result.
(0.7) Lemma. Let $\mathcal{E} \rightarrow \mathscr{B} \rightarrow 0$ be a surjection of vector bundles over a smooth connected manifold $Y$. Then there is an inclusion $\boldsymbol{P}(\mathscr{B}) \cong \boldsymbol{P}(\mathcal{E})$ and the restriction of the tautological bundle $\xi_{\mathcal{E}}$ of $\mathcal{E}$ to $\boldsymbol{P}(\mathscr{B})$ is equal to the tautological bundle $\xi_{\mathscr{B}}$ of $\mathscr{B}$.

Proof. Let $\pi_{\mathcal{E}}: \boldsymbol{P}(\mathcal{E}) \rightarrow Y$ and $\pi_{\mathscr{A}}: \boldsymbol{P}(\mathscr{B}) \rightarrow Y$ denote the bundle projections. Since the inclusion $\boldsymbol{P}(\mathscr{B}) \cong \boldsymbol{P}(\mathcal{E})$ corresponds to an injection $0 \rightarrow \mathscr{B}^{*} \rightarrow \mathcal{E}^{*}$ between the dual bundles, it follows that $\pi_{\mathcal{E} \mid P(\mathcal{P})}=\pi_{\mathcal{B}}$. Note that $\left(\xi_{\mathcal{E}}\right)^{*}$ is the subbundle of $\pi_{\mathcal{E}} \mathcal{E}^{*}$ with each fibre over a point, $e$, of $\boldsymbol{P}(\mathcal{E})$ equal to the line through the origin of the fibre $\mathcal{E}^{*}{ }_{\pi(e)}$ corresponding to $e$. Similarly $\left(\xi_{\mathscr{Q}}\right)^{*}$ is the subbundle of $\pi_{\mathscr{B}^{*}} \mathscr{B}^{*}$ with each fibre over a point, $b$, of $\boldsymbol{P}(\mathscr{B})$ equal to the line through the origin of the fibre $\mathscr{B}^{*} \pi^{(b)}$ corresponding to $b$. Under the inclusion $\pi_{\mathcal{B}}^{*} \mathcal{B}^{*} \subseteq$ $\pi_{\mathcal{C}}^{*} \mathcal{E}^{*}$ induced by $\mathscr{B}^{*} \cong \mathcal{E}^{*}$ we have that $\left(\xi_{\mathscr{B}}\right)^{*}=\left(\left(\xi_{\mathcal{C}}\right)^{*}\right)_{P(\mathcal{B})}$.

In particular this implies
$\xi_{\mathcal{C}}{ }^{(\mathrm{rk} \mathscr{B}-1+\operatorname{dim} Y)} \boldsymbol{P}(\mathscr{B})=\boldsymbol{\xi}_{\mathscr{G}}(\mathrm{rk} \mathscr{B}-1+\operatorname{dim} Y)$, and if $\operatorname{dim} Y=1$, this last number is $\operatorname{deg} \mathscr{B}$.

Keeping notation as in (0.7), we have
(0.8) Lemma. Let $0 \rightarrow \mathcal{A} \rightarrow \mathcal{E} \rightarrow \mathcal{B} \rightarrow 0$ be an exact sequence of vector bundles over a connected manifold $Y$. Then the conormal bundle of $\boldsymbol{P}(\mathscr{B})$ inside $\boldsymbol{P}(\mathcal{E})$ is isomorphic to

$$
\pi_{\mathscr{G}}{ }^{*} \mathcal{A} \otimes \xi_{\mathscr{B}^{*}} .
$$

Proof. To see this let $V_{\mathcal{E}}, V_{\mathcal{B}}$ denote the vertical tangent bundles of $\boldsymbol{P}(\mathcal{E})$ and $\boldsymbol{P}(\mathscr{B})$, i.e., the subbundles with vectors going to zero under the differential $d \pi$. Let $Q$ denote the quotient of $\left(V_{\mathcal{E}}\right)_{\boldsymbol{P}(\mathcal{G})}$ by $V_{\mathscr{G}}$ under the natural inclusion. Considering the following diagram it follows that it suffices to show that $Q \cong \pi_{\mathscr{B}}{ }^{*} \mathcal{A}^{*} \otimes \xi_{\mathfrak{B}}$.


Recall that the bundle $V_{\mathcal{E}}$ fits into the Euler sequence

$$
0 \longrightarrow \mathcal{O}_{P(\varepsilon)} \longrightarrow \pi_{\varepsilon} \mathcal{\varepsilon}^{*} \otimes \otimes \xi_{\mathcal{E}} \longrightarrow V_{\mathcal{E}} \longrightarrow 0 .
$$

Note that the first term of this sequence tensored with $\xi_{\varepsilon}{ }^{*}$ gives the tautological inclusion of $\xi_{\varepsilon} \varepsilon^{*}$ in $\pi_{\varepsilon}{ }^{*} \mathcal{\varepsilon}^{*}$. Of course $V_{\mathscr{G}}$ fits into a similar sequence. Putting them together we get the following diagram


An inspection of it, noting that $\left(\pi_{\varepsilon^{*}} \mathcal{E}^{*} \otimes \xi_{\varepsilon}\right)_{P(\mathcal{B})} \cong \pi_{\mathcal{G}} \mathcal{E}^{*} \otimes \xi_{\mathscr{G}}$ by ( 0.7 ), concludes the proof.

## 1. Quadric fibrations over $P^{1}$ : general properties.

In this section we discuss some general properties of quadric fibrations over $\boldsymbol{P}^{1}$, which we will need in sec. 4. For the sake of completeness we start considering polarized $n$-folds ( $X, L$ ), $n \geqq 3$, where the line bundle $L$ is assumed to be very ample. Let $p: X \rightarrow \boldsymbol{P}^{1}$ be the morphism expressing $X$ as a quadric fibration. Then $K_{X}+(n-1) L=p^{*} H$, for some ample line bundle $H$ on $\boldsymbol{P}^{1}$. First of all note that all fibres of $p$ are irreducible. To see this note that all fibres of $p$ are embedded by $|L|$ as quadric hypersurfaces of $\boldsymbol{P}^{n}$. Assume that there is a reducible fibre $Q=A+B$ of $p$. Since

$$
\mathcal{O}_{A}=[Q]_{A}=[A]_{A}+[B]_{A}
$$

and $[B]_{A}=\mathcal{O}_{P^{n-1}}(1)$ we would get $[A]_{A}=\mathcal{O}_{P^{n-1}}(-1)$, so that $A$ could be contracted, hence also the hyperplane $B \cap A$ would be contractible, a contradiction. Moreover all fibres of $p$ are reduced. Otherwise, by cutting out ( $n-2$ ) general elements of $|L|$ we would get a smooth surface fibered in conics over $\boldsymbol{P}^{1}$ having a double line as a fibre, a contradiction.

Let $\mathcal{E}=p_{*} L$. For every fibre $Q$ of $p$ we have $h^{0}\left(L_{Q}\right)=n+1$, since $|L|$ embeds $Q$ as a quadric of $\boldsymbol{P}^{n}$. This implies that $\mathcal{E}$ is a rank- $(n+1)$ vector bundle on $\boldsymbol{P}^{1}$. Moreover $\mathcal{E}$ is spanned. To see this let $t \in \boldsymbol{P}^{1}$, consider the fibre $Q_{t}=p^{-1}(t)$ and look at the following diagram

where the vertical arrows are isomorphisms. Since $L$ is very ample and $|L|$ embeds $Q_{t}$ as a quadric of $\boldsymbol{P}^{n}$, the restriction homomorphism $\Gamma(L) \rightarrow \Gamma\left(L_{t}\right)$ is surjective and then so is also the homomorphism $\Gamma(\mathcal{E}) \rightarrow \Gamma\left(\mathcal{E}_{t}\right)$. So we have

$$
\begin{equation*}
\mathcal{E}=\oplus_{i=0, \ldots, n} \mathcal{O}_{P 1}\left(a_{i}\right), \quad \text { with } a_{n} \geqq a_{n-1} \geqq \cdots \geqq a_{1} \geqq a_{0} \geqq 0 . \tag{1.0.1}
\end{equation*}
$$

We let $\delta=\operatorname{deg} \mathcal{E}=\Sigma a_{i}$. Consider the projective bundle $P=\boldsymbol{P}(\mathcal{E})$, let $\pi: P \rightarrow \boldsymbol{P}^{1}$ be the projection and let $\xi$ be the tautological line bundle of $\mathcal{E}$ on $P$. Then, from the relation $\xi^{n+1}-\xi^{n} \pi^{*} c_{1}(\mathcal{E})=0$ we get

$$
\begin{equation*}
\xi^{n+1}=\delta \tag{1.0.2}
\end{equation*}
$$

Moreover since $\mathcal{E}=p_{*} L$ and $X$ embeds fibrewise inside $P$, we have that

$$
\begin{equation*}
\xi_{X}=L \quad \text { and } \quad X \in|2 \xi-b F| \tag{1.0.3}
\end{equation*}
$$

where $F$ stands for a fibre of $\pi$. We denote by $z_{j}$ the homogeneous coordinate on the general fibre of $P$ corresponding to the summand $\mathcal{O}_{P_{1}}\left(a_{j}\right)$; so the quadric $Q$ cut out by $X$ on $F$ is represented by a second degree homogeneous equation in the $z_{j}$ 's. By (1.0.3) and in view of the isomorphism

$$
\Gamma(\boldsymbol{P}(\mathcal{E}), 2 \xi-b F) \cong \Gamma\left(\boldsymbol{P}^{1}, \mathcal{E}^{(2)} \otimes \mathcal{O}_{\left.\boldsymbol{P}_{1}(-b)\right)}=\oplus_{i \leq j} \Gamma\left(\mathcal{O}_{\boldsymbol{P}_{1}( }\left(a_{i}+a_{j}-b\right)\right)\right.
$$

we have that
(1.0.4) every summand $z_{i} z_{j}$ appearing in the equation of $Q$ corresponds to a section of $\mathcal{O}_{P 1}\left(a_{i}+a_{j}-b\right)$.

A sort of converse to the above setting is the following situation
(1.0.5) Let $\mathcal{E}$ be as in (1.0.1), let $\pi: P=\boldsymbol{P}(\mathcal{E}) \rightarrow \boldsymbol{P}^{1}$ be the corresponding projective bundle and set $\delta=\Sigma a_{i}$. Let $\xi$ and $F$ denote the tautological bundle of $\mathcal{E}$ and a fibre of $\pi$ respectively.
(1.1) Lemma. Let things be as in (1.0.5) and assume that $|2 \xi-b F|$ contains a smooth element $Y$ and that $\xi_{Y}$ is very ample. Then either $b=0$ or -1 , or $\mathcal{E}$ is very ample.

Proof. We have that $\pi_{*}(-\xi+b F)=\pi_{*}(-\xi) \otimes \mathcal{O}_{P_{1}}(b)=0$, since $\pi_{*}(-\xi)=0$. Since also $R^{1} \pi_{*}(-\xi+b F)=0$ we get $h^{i}(-\xi+b F)=0$ for $i=0,1$. This implies that $h^{i}(\xi-Y)=0$ for $i=0,1$. So, looking at the exact cohomology sequence of

$$
0 \longrightarrow[\xi-Y] \longrightarrow \xi \longrightarrow \xi_{Y} \longrightarrow 0,
$$

we see that $H^{0}(P, \xi)=H^{0}\left(Y, \xi_{Y}\right)$. In view of the assumption we thus conclude that the map $\varphi_{\xi}: P \rightarrow \boldsymbol{P}\left(H^{0}(P, \xi)\right)$ embeds $Y$. Now assume that $\mathcal{E}$ is not ample, so $a_{0}=0$. Letting $\sigma$ denote the section of $\pi$ corresponding to the surjection $\mathcal{E} \rightarrow \mathcal{O}_{P_{1}}\left(a_{0}\right)=\mathcal{O}_{P_{1}}$, we have that $\varphi_{\xi}(\sigma)$ is a point, as $\xi_{\sigma}$ is trivial. This implies that $Y \sigma$ consists of one point at most. On the other hand

$$
Y \sigma=(2 \xi-b F) \sigma=-b
$$

This shows that $\mathcal{E}$ is ample, hence very ample, unless $b=0,-1$.
In sec. 4 we will make explicit the numerical conditions assuring the existence of a smooth element in $|2 \xi-b F|$, for $n=3$. Coming back to our pair $(X, L),(1.1)$ gives the following fact:
(1.2) Since $L$ is very ample, then either $b=0,-1$, or $\delta \geqq n+1$.

Let $S$ be the smooth surface obtained by intersecting $(n-2)$ general elements of $|L|$ and set $k=K_{s}{ }^{2}$.
(1.3) Lemma. Let $(X, L)$ be as at the beginning of this section. Then the integers $\delta, b, n$ and $k$ are related as follows:
i) $2 \delta=3 b+8-k$ (in particular $b-k$ is even);
ii) $b \geqq k-2$;
iii) $2 \delta \geqq(n+1) b$, with equality if and only if $X$ is a bundle (i.e. there are no singular fibres);
iv) $(n-2) b \leqq 8-k$;
v) $k \leqq 2+6 /(n-1)$.

Proof. By the canonical bundle formula we know that $K_{P}=-(n+1) \xi+$ $\left.\pi^{*} \Theta_{P_{1}( } \delta-2\right)$ and then, by adjunction,

$$
\begin{equation*}
K_{X}=\left(-(n-1) \xi+\pi^{*} \Theta_{\boldsymbol{O}_{1} 1}(\boldsymbol{\delta}-b-2)\right)_{X} \quad \text { and } \quad K_{S}=(-\xi+(\boldsymbol{\delta}-b-2) F)_{S} . \tag{1.3.1}
\end{equation*}
$$

Now since $k=K_{S}{ }^{2}$ we get by (1.0.2)

$$
\begin{aligned}
k=K_{s}^{2} & =(-\xi+(\delta-b-2) F)_{s}^{2}=(-\xi+(\delta-b-2) F)^{2} X \xi^{(n-2)} \\
& =(-\xi+(\delta-b-2) F)^{2}(2 \xi-b F) \xi^{(n-2)}=-2 \delta+3 b+8 .
\end{aligned}
$$

This proves i). To prove ii) note that by (1.3.1) we have $p^{*} H=K_{X}+(n-1) L=$ $p^{*} \Theta_{P 1}(\delta-b-2)$. Thus the ampleness of $H$ implies that $\delta-b-2=\operatorname{deg} H \geqq 1$, hence $\delta \geqq b+3$. Then the assertion follows by combining i) with this inequality. To prove iii) note that the singular fibres of $X$ correspond to the zeroes of the section representing the determinant of the matrix of the terms $z_{i} z_{j}$, which in view of (1.0.4) is an element of $\mathcal{O}_{P_{1}}(2 \delta-(n+1) b)$. Hence its degree must be $\geqq 0$ equality meaning that $X$ is a bundle. iv) simply follows by combining i) and
iii). Finally ii) and iv) give v).

We can also compute the numerical invariants of $(X, L)$ in terms of $b$ and $k$.
(1.4) Remark. $d=d(X, L)=2 b+8-k$ and $g=g(X, L)=3+(b-k) / 2$.

Proof. We have, recalling (1.0.2),

$$
d=L^{n}=\xi^{n} X=\xi^{n}(2 \xi-b F)=2 \xi^{(n+1)}-b \xi^{n} F=2 \delta-b,
$$

hence $(1.3 ;$ i) gives $d$. Genus formula, taking into account $(1.3 ; \mathbf{i})$, gives $g$.
(1.5) Theorem. Let $(X, L)$ be a quadric fibration over $\boldsymbol{P}^{1}$ as at the beginning of this section. Then $X$ embeds fibrewise in a projective bundle $\boldsymbol{P}(\mathcal{E})$, where $\mathcal{E}=$ $\oplus_{i=0, \cdots, n} \mathcal{O}_{P 1}\left(a_{i}\right)$, with $a_{n} \geqq a_{n-1} \geqq \cdots \geqq a_{1} \geqq a_{0} \geqq 0$, and

$$
X \in|2 \xi-b F|, \quad L=\xi_{x},
$$

where $\xi$ is the tautological bundle of $\mathcal{E}$ and $F$ is a fibre of $\boldsymbol{P}(\mathcal{E})$. Moreover, if $k \geqq 1$, then the possible values of the invariants $k, b, \delta=\Sigma a_{i}, d, g, n(\geqq 3)$ are those listed in the following table

| $k$ | $b$ | $\delta$ | $d$ | $g$ | $n$ |
| :---: | ---: | ---: | ---: | :---: | :---: |
| 5 | 3 | 6 | 9 | 2 | 3 |
| 4 | 2 | 5 | 8 | 2 | 3,4 |
|  | 4 | 8 | 12 | 3 | 3 |
| 3 | 1 | 4 | 7 | 2 | 3 |
|  | 3 | 7 | 11 | 3 | 3 |
|  | 5 | 10 | 15 | 4 | 3 |
| 2 | 0 | 3 | 6 | 2 | 3 |
|  | 2 | 6 | 10 | 3 | $3,4,5$ |
|  | 4 | 9 | 14 | 4 | 3 |
|  | 6 | 12 | 18 | 5 | 3 |
| 1 | -1 | 2 | 5 | 2 | 3 |
|  | 1 | 5 | 9 | 3 | 3,4 |
|  | 3 | 8 | 13 | 4 | 3,4 |
|  | 5 | 11 | 17 | 5 | 3 |
|  | 7 | 14 | 21 | 6 | 3. |

Proof. From ( 1.3 ; v) we have $k \leqq 5$, equality implying that $n=3$. Fix $k=1, \cdots, 5$ and note that ( 1.3 ; ii) provides a lower bound for $b$. By comparing it with the upper bound given by ( 1.3 ; iv) and recalling that $b-k$ is even we get an upper bound of $n$ for any admissible value of $b$, unless $b=-1$ or 0 , in which cases (1.4) shows that $g=2$. However in these cases it must be $n=3$, as
proven by Fujita [Fu1, (3.25), (3.26)]. Since $L$ is very ample, in the remaining cases (1.2) applies giving $n \leqq \delta-1$, where $\delta$ is determined by ( $1.3 ; \mathrm{i}$ ). By comparing these two upper bounds for $n$ we get the last column in the table. The values of $d$ and $g$ stem from (1.4).
(1.6) Remarks. i) As to the effectiveness of the list provided by (1.5) in case $g=2$ note that all cases do really occur and the explicit description of the vector bundle $\mathcal{E}$ is known [Fu1, (3.30), (3.31)] (where $L$ is simply assumed to be ample but is in fact very ample). We recall it in the following table for the convenience of the reader.

| $k$ | $b$ | $\delta$ | $\left(a_{0}, \cdots, a_{n}\right)$ | $d$ | $n$ |
| ---: | ---: | ---: | :---: | :---: | :---: |
| 5 | 3 | 6 | $(1,1,2,2)$ | 9 | 3 |
| 4 | 2 | 5 | $(1,1,1,2)$ | 8 | 3 |
| 3 | 1 | 4 | $(1,1,1,1)$ | 7 | 3 |
| 2 | 0 | 3 | $(0,1,1,1)$ | 6 | 3 |
| 1 | -1 | 2 | $(0,0,1,1)$ | 5 | 3 |
| 4 | 2 | 5 | $(1,1,1,1,1)$ | 8 | 4. |

For an alternative description of the pair ( $X, L$ ) see also [Io, Thm. 3.4].
ii) Note that in all the above cases the surface $S$ is $\boldsymbol{P}^{2}$ blown-up at 13-d points in general position ; this means that $S$ is a Del Pezzo surface with $K_{S}{ }^{2}=$ $d-4=k$.

## 2. The general result.

We first recall our set-up
(2.0) Let $A$ be a Del Pezzo surface contained as a smooth very ample divisor in a projective 3 -fold $X$ and set $L=[A]$.

In this section we prove a general result concerning our pairs ( $X, L$ ), while the next sections are devoted to special subcases. We set $k=K_{A}{ }^{2}$. Recall that $1 \leqq k \leqq 9$ and that $A$ is $\boldsymbol{P}^{2}$ blown-up at ( $9-k$ ) points for $1 \leqq k \leqq 7, A$ is either $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or $\boldsymbol{F}_{1}$ for $k=8$, while $A=\boldsymbol{P}^{2}$ for $k=9$.

By adjunction we know that there exists a line bundle $\mathscr{H} \in \operatorname{Pic}(X)$ such that $\mathscr{H}_{A}=-K_{A}$; of course

$$
K_{X}+L=-\mathscr{A} .
$$

(2.1) Proposition. Let $k \geqq 2$. If $K_{X}+2 L$ is nef and $\left(K_{X}+2 L\right)^{2} L>0$, then $\mathscr{H}$ is nef. In particular $X$ is Fano.

Proof. Let $E=K_{X}+2 L$ and look at the exact sequence

$$
0 \longrightarrow-E \longrightarrow \mathcal{H} \longrightarrow \mathcal{H}_{A} \longrightarrow 0 .
$$

Since $E$ is nef and $E^{2} L=\left(K_{X}+2 L\right)^{2} L>0$, [LPS, (0.7)] and Serre duality give $h^{1}(-E)=0$. As a consequence the restriction homomorphism

$$
H^{0}(X, \mathscr{H}) \longrightarrow H^{0}\left(A, \mathscr{H}_{A}\right)
$$

induced in cohomology by the above sequence is surjective. Assume that $\mathscr{H}$ is not nef. Then there exists a curve $Z$ in $X$ such that $\mathscr{H} Z<0$; such a curve $Z$, which is contained in the base locus of $|\mathscr{H}|$, has a nonempty intersection with $A$, which is ample, this producing base points for the trace on $A$ of $|\mathscr{H}|$, which is $\left|\mathscr{H}_{A}\right|=\left|-K_{A}\right|$. Since $-K_{A}$ is spanned for $k \geqq 2$, this implies $k=1$, contradiction. The last assertion follows from the fact that $-K_{X}=L+\mathscr{H}$.
(2.2) Remark. In case $k=1$, under the same assumptions as in (2.1), the same argument shows that $|\mathscr{H}|$ is a pencil whose base locus is a line $Z$ of $(X, L)$ with $\mathscr{H} Z=-1$. In this case $-K_{X}$ is nef and big, and ample off $Z$.

Before stating the main result of this section it is convenient to recall the following fact, which is an immediate consequence of the Nakai-Moishezon ampleness criterion.
(2.3) Remark. Let $S$ be a Del Pezzo surface. Every smooth surface $S^{\prime}$ dominated by $S$ via a birational morphism is a Del Pezzo surface too.
(2.4) Theorem. Let things be as in (2.0). Then the possible pairs ( $X, L$ ) and the corresponding values of $k$ are the following:
(2.4.a) $\left(\boldsymbol{P}^{3}, \mathcal{O}_{P s}(1)\right), k=9$;
(2.4.b) ( $\left.\boldsymbol{Q}^{3}, \mathcal{O}_{\boldsymbol{Q}^{3}}(1)\right), k=8$ and $A=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$;
(2.4.c) ( $X, L$ ) is a scroll over $\boldsymbol{P}^{\mathbf{1}}, k=8$ (for more information see (2.8)).
(2.4.d) $(X, L)$ is a Del Pezzo threefold of degree $k \geqq 3$ (see (2.9)).
(2.4.e) ( $X, L$ ) is a quadric fibration over $\boldsymbol{P}^{1}, k \leqq 8$ (for more information see sec. 4),
(2.4.f) $(X, L)$ is a scroll over a surface (for a precise description when $k \geqq 2$ see sec. 5),
(2.4.g) ( $X, L$ ) admits $\left(\boldsymbol{P}^{3}, \mathcal{O}_{P 3}(3)\right)$ as a reduction, the reduction morphism $X \rightarrow \boldsymbol{P}^{3}$ being the blow-up at $0 \leqq 3-k \leqq 2$ points,
(2.4.h) ( $X, L$ ) admits $\left(\boldsymbol{Q}^{3}, \mathcal{O}_{\mathbf{Q}^{3}}(2)\right.$ ) as a reduction, the reduction morphism $X \rightarrow \boldsymbol{Q}^{3}$ being the blow-up at $0 \leqq 4-k \leqq 3$ points no two of them lying on a line of $\boldsymbol{Q}^{\mathbf{3}}$,
(2.4.i) $(X, L)$ admits as reduction $\left(X^{\prime}, L^{\prime}\right)$ a Veronese bundle over $\boldsymbol{P}^{1}$, i.e. $X^{\prime}$ is a $\boldsymbol{P}^{2}$-bundle over $\boldsymbol{P}^{\mathbf{1}}$ and $2 K_{X^{\prime}}+3 L^{\prime}=\phi^{*} H$, where $\phi: X^{\prime} \rightarrow \boldsymbol{P}^{1}$ is the bundle projection and $H$ is an ample line bundle on $\boldsymbol{P}^{1}$ (for a precise description see sec. 3).

The proof of (2.4) takes the remainder of this section. The first step is the following
(2.5) Lemma. Let $(X, L)$ be as in (2.0). Then $K_{X}+2 L$ is nef and big unless in cases (2.4.a-f).

Proof. As a first thing assume that $K_{X}+2 L$ is not nef. Then by [SV], $(X, L)$ is either $\left(\boldsymbol{P}^{3}, \mathcal{O}_{\boldsymbol{P}^{3}}(1)\right),\left(\boldsymbol{Q}^{3}, \mathcal{O}_{\boldsymbol{Q}^{3}}(1)\right)$, or a scroll over a smooth curve $C$. In the last case $A$, which is a smooth element of $|L|$, is a $\boldsymbol{P}^{1}$-bundle over $C$ and then, since $A$ is rational, it follows that $C=\boldsymbol{P}^{1}$. Note that in all the above cases we have $K_{A}{ }^{2}=9$ or 8 . So, apart from cases (2.4.a-c), $K_{X}+2 L$ is nef. Assume that it is not big. Then, according to adjunction theory [S3, (0.3)], either ( $X, L$ ) is a quadric bundle over a smooth curve $C$ and $C=\boldsymbol{P}^{1}$, $k \leqq 8$, since $A$, which is rational, has to be a conic bundle over $C$ (case (2.4.e)), or ( $X, L$ ) is as in (2.4.f), or $K_{X}=-2 L$. In the last case ( $X, L$ ) is a Del Pezzo 3 -fold; moreover, since by adjunction $-K_{A}=L_{A}$, which is very ample, we have $k=d\left(A, L_{A}\right) \geqq 3$. This give (2.4.d).

In view of (2.5) we can proceed assuming that $K_{X}+2 L$ is nef and big. Let $\left(X^{\prime}, L^{\prime}\right)$ be the reduction of $(X, L)$ and let $\rho: X \rightarrow X^{\prime}$ be the corresponding reduction morphism.
(2.6) Remark. $K_{X^{\prime}}+L^{\prime}$ is not nef.

Proof. Let $S^{\prime}=\rho(A)$. Then $S^{\prime}$ is a smooth element of $\left|L^{\prime}\right|$ and by adjunction $\left(K_{X^{\prime}}+L^{\prime}\right)_{S^{\prime}}=K_{S^{\prime}}$. If $K_{X^{\prime}}+L^{\prime}$ were nef, then so would $K_{S^{\prime}}$ be. On the other hand $-K_{S^{\prime}}$ has to be ample in view of (2.3), a contradiction.
(2.7) By adjunction theory [S3, (0.4)] and [BS, (1.2)] it follows from (2.6) that $\left(X^{\prime}, L^{\prime}\right)$ is one of the following pairs:
(2.7.1) ( $\left.\boldsymbol{P}^{3}, \mathcal{O}_{\boldsymbol{P}_{3}}(3)\right)$,
(2.7.2) ( $\left.\boldsymbol{Q}^{3}, \mathcal{O}_{\boldsymbol{Q}^{3}}(2)\right)$,
(2.7.3) a Veronese bundle, i.e. $X^{\prime}$ is a $\boldsymbol{P}^{2}$-bundle over a smooth curve $C$ and $2 K_{X^{\prime}}+3 L^{\prime}=\phi^{*} H$, where $\phi: X^{\prime} \rightarrow C$ is the bundle projection and $H$ is an ample line bundle on $C$.

We show that these pairs lead respectively to cases g ), h ) and i ) in (2.4). Let $S^{\prime}=\rho(A)$ as before ; then according to (0.2.3), $\rho$ is the blowing-up of $X^{\prime}$ at $t$ points, where

$$
t=K_{S^{\prime}}{ }^{2}-K_{A}{ }^{2}=K_{S^{\prime}}{ }^{2}-k
$$

Note that if $A$ is $\boldsymbol{P}^{2}$ or $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ it must be $t=0$, i.e. $(X, L)=\left(X^{\prime}, L^{\prime}\right)$; on the other hand for none of the above pairs it can be $L^{\prime}=[A]$ (e.g. [Ba1]). So
from now on we can assume $k \leqq 8$ and $A \neq \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$.
As to case (2.7.3) note that $C=\boldsymbol{P}^{1}$, since $A$, which is a rational surface, has to fibre over $C$; this gives (2.4.i). A complete description of pairs occurring in this case is given in (3.1). Here we study in detail the first two cases.

In case (2.7.1) we have $K_{S^{\prime}}{ }^{2}=3$, whence $k \leqq 3$ and so $\rho: X \rightarrow \boldsymbol{P}^{3}$ is the blowing-up at $0 \leqq 3-k \leqq 2$ points and $L=\rho^{*} \boldsymbol{O}_{P_{3}}(3)-\rho^{-1}((3-k)$ points $)$.

Note that all these cases really occur. This is obvious for $k=3$, while if $k=1,2$, for $\left(X^{\prime}, L^{\prime}\right)$ and $\rho$ as above, the line bundle $\rho^{*} \mathcal{O}_{P_{3}}(3)-\rho^{-1}((3-k)$ points $)$ is in fact very ample, by [LPS, (0.4) and (0.5.1)]. This gives (2.4.g).

In case (2.7.2) we have $K_{S^{\prime}}{ }^{2}=4$, hence $k \leqq 4$ and $\rho: X \rightarrow \boldsymbol{Q}^{3}$ is the blowingup at $0 \leqq 4-k \leqq 3$ points and $L=\rho^{*} \Theta_{Q^{3}}(2)-\rho^{-1}((4-k)$ points $)$. Note that no two of these points can lie on a line $\mathfrak{l} \subset \boldsymbol{Q}^{3}$; otherwise we would get $L \rho^{-1}(\mathfrak{l})=0$, contradicting the ampleness of $L$. On the other hand assume that the $4-k$ points satisfy the above condition, then the very ampleness of $L$ follows from [LPS, $(0.5 ; 1)$ and $(0.6)$ ] in cases $k=3$ and 2 respectively and from ( 0.5 ) in case $k=1$.

Note that in both cases the general element of $|L|$ is a Del Pezzo surface with $K_{A}{ }^{2}=k$; in fact it is either a cubic surface blown-up at (3-k) general points or a complete intersection of two quadrics blown-up at ( $4-k$ ) general points.
(2.8) Let $(X, L)$ be as in (2.4.c). Then according to [Ba1, 2] we have that $X=\boldsymbol{P}(\mathcal{E})$, where $\mathcal{E}=\bigoplus_{i=1, \ldots, 3} \mathcal{O}_{\boldsymbol{P}_{1}}\left(a_{i}\right)$ with $a_{i}>0$ for all $i$ and $c_{1}(\mathcal{E})=a_{1}+a_{2}+a_{3}$ is even if $A=\boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{1}}$, odd if $A=\boldsymbol{F}_{1}$.
(2.9) The list of Del Pezzo threefolds occurring in (2.4.d), is the following [Fu, I and II]:
$k$ description of $(X, L)$; in all cases $-K_{X}=2 L$
$3 \quad\left(V_{3}, \mathcal{O}_{\boldsymbol{P}}(1)_{V}\right)$ a smooth cubic hypersurface;
$4 \quad\left(V_{2,2}, \mathcal{O}_{P}(1)_{V}\right)$ a general complete intersection of type $(2,2)$;
$5 \quad\left(V, \mathcal{O}_{\boldsymbol{P}}(1)_{V}\right)$ the section of the grassmannian $G(1,4)$ embedded in $\boldsymbol{P}^{9}$ via the Plücker embedding by three general hyperplanes;
$6 \quad\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{\mathbf{1}}, \boldsymbol{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}}(1,1,1)\right)$ or $\left(\boldsymbol{P}\left(T_{\boldsymbol{P}^{2}}\right), \xi\right)$, where $T_{\boldsymbol{P}^{2}}$ is the tangent bundle to $P^{2}$ and $\xi$ its tautological bundle;
$7 \quad\left(B_{p}\left(\boldsymbol{P}^{3}\right), \boldsymbol{\sigma}^{*} \theta_{\boldsymbol{P}}(2)-\boldsymbol{\sigma}^{-1}(p)\right)$, where $\sigma: B_{p}\left(\boldsymbol{P}^{3}\right) \rightarrow \boldsymbol{P}^{3}$ is the blowing-up at a point $p$;
$8 \quad\left(\boldsymbol{P}^{3}, \mathcal{O}_{\boldsymbol{P}}(2)\right)$.

## 3. More on Veronese Bundles.

Here we look more closely at case (2.4.i). Recall that ( $X, L$ ) has a reduction ( $X^{\prime}, L^{\prime}$ ) where
(3.0) $X^{\prime}$ is a $\boldsymbol{P}^{2}$-bundle over $\boldsymbol{P}^{1}$ and $2 K_{X^{\prime}}+3 L^{\prime}=\boldsymbol{\phi}^{*} H$, where $\phi: X^{\prime} \rightarrow \boldsymbol{P}^{1}$ is the bundle projection and $H$ is an ample line bundle on $\boldsymbol{P}^{1}$.

The reduction morphism $\rho: X \rightarrow X^{\prime}$ is the blowing-up of $X^{\prime}$ at $t$ points, and as observed in sec. 2, if $S^{\prime}=\rho(A)$ then

$$
\begin{equation*}
t=K_{S^{\prime}}{ }^{2}-K_{A}{ }^{2}=K_{S^{\prime}}{ }^{2}-k . \tag{3.0.0}
\end{equation*}
$$

The general properties of ( $X^{\prime}, L^{\prime}$ ) have been worked out in [LPS, sec. 3]. Here we recall the situation for the convenience of the reader. Let $X^{\prime}=\boldsymbol{P}(\mathcal{E})$ and let $F$ be a fibre of $\phi: X^{\prime} \rightarrow \boldsymbol{P}^{1}$. Since $L_{F}^{\prime}{ }_{F}=\mathcal{O}_{P 2}(2)$ according to (3.0), we have $\left(K_{X^{\prime}}+2 L^{\prime}\right)_{F}=\mathcal{O}_{P^{2}}(1)$ and so we can assume that $\mathcal{E}=\phi_{*}\left(K_{X^{\prime}}+2 L^{\prime}\right)$. For shortness let $\xi$ be the tautological bundle of $\mathcal{E}$; then

$$
\begin{equation*}
\xi=K_{X^{\prime}}+2 L^{\prime} . \tag{3.0.1}
\end{equation*}
$$

Note that

$$
2 \xi=2\left(K_{X^{\prime}}+2 L^{\prime}\right)=2 K_{X^{\prime}}+3 L^{\prime}+L^{\prime}=\phi^{*} H+L^{\prime}
$$

is the sum of a nef and an ample line bundle, hence $\xi$ is ample and so is $\varepsilon$. Therefore

$$
\begin{equation*}
\mathcal{E}=\oplus_{i=1, \ldots, 3} \mathcal{O}_{P_{1}}\left(a_{i}\right), \quad \text { where } a_{i}>0(i=1,2,3) . \tag{3.0.2}
\end{equation*}
$$

By the canonical bundle formula

$$
K_{X^{\prime}}=-3 \xi+(\alpha-2) F, \quad \text { where } \alpha=c_{1}(\mathcal{E})=a_{1}+a_{2}+a_{3} .
$$

From (3.0.1) and the relation above we see that

$$
\begin{equation*}
L^{\prime}=2 \xi+(1-(\alpha / 2)) F \tag{3.0.3}
\end{equation*}
$$

In particular, recalling also (3.0.2), we have that

$$
\begin{equation*}
\alpha \text { is even and } \geqq 4 . \tag{3.0.4}
\end{equation*}
$$

On the other hand the basic relation for the tautological bundle $\xi$ gives $\xi^{3}=\alpha$ and thus, by adjunction,

$$
K_{S^{\prime}}{ }^{2}=\left(K_{X^{\prime}}+L^{\prime}\right)^{2} L^{\prime}=(-\xi+((\alpha / 2)-1) F)^{2}(2 \xi+(1-(\alpha / 2)) F)=5-(\alpha / 2) .
$$

So recalling (3.0.0) we get

$$
\begin{equation*}
t+k=5-(\alpha / 2) . \tag{3.0.5}
\end{equation*}
$$

As $t \geqq 0$ and $k \geqq 1$, by combining (3.0.4) with (3.0.5) we get only the following possibilities:

$$
\begin{array}{ll}
\alpha=8, & \text { with }(k, t)=(1,0) ; \\
\alpha=6, & \text { with }(k, t)=(1,1) \text { or }(2,0) ; \\
\alpha=4, & \text { with }(k, t)=(1,2),(2,1), \text { or }(3,0) .
\end{array}
$$

Cases with $k=2$ have already been studied in [LPS, sec. 3]. The case with $k=3$ simply corresponds to the reduction of the pair found in case $\alpha=4, k=2$ in the same study and the corresponding line bundle $L$ is in fact very ample in this case. Moreover note that for $\alpha=6,4$, in case $k=1$ we get a pair ( $X, L$ ) the contraction of a $(-1)$-plane of which gives rise to the corresponding pair found for $k=2$. In these cases it only remains to decide about the very ampleness of $L$. We now show that the line bundles $L$ occurring for these pairs are in fact very ample.

In case $\alpha=6, k=1,(X, L)$ has the pair $\left(X^{\prime}, L^{\prime}\right)=\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \mathcal{O}_{\boldsymbol{P}^{1} \times P_{2}}(2,2)\right)$ as simple reduction [LPS, (3.2.5)]. Let $x \in X^{\prime}$ be the point blown-up by $\rho$. To show that the line bundle $L=\rho^{*} O_{P_{1 \times P}(2,2)}-\rho^{-1}(x)$ is very ample on $X$, consider the Segre embedding $s: X^{\prime} \rightarrow \boldsymbol{P}^{5}$ and note that $\mathcal{O}_{\boldsymbol{P}_{1 \times P}}(1,1)=s^{*} \mathcal{O}_{\boldsymbol{P}_{5}}(1)$. Let $\theta$ : $P \rightarrow \boldsymbol{P}^{5}$ be the blow-up of $\boldsymbol{P}^{5}$ at the point $s(x)$ and let $E_{x}$ be the corresponding exceptional divisor. Then, looking at the inclusion of $X$ in $P$, we get $L=$ $\rho^{*} \Theta_{P^{1 \times P}}(2,2)-\rho^{-1}(x)=\left(\theta^{*} \Theta_{P 5}(2)-E_{x}\right)_{x}$. Thus $L$ is very ample since the line bundle $\theta^{*} \Theta_{P 5}(2)-E_{x}$ is very ample on $P$, as shown in [LPS, $(0.5 ; 1)$ ].

In case $\alpha=4$, with $k=1$, the reduction ( $X^{\prime}, L^{\prime}$ ) of ( $X, L$ ) is the following pair [LPS, (3.2.6)]: $X^{\prime}$ is $\boldsymbol{P}^{3}$ blown-up along a line $\mathfrak{l}$ via $\boldsymbol{\sigma}$ and $L^{\prime}=\sigma^{*} \Theta_{P_{s}}(2)+F$. Let $x^{\prime}, y^{\prime} \in X^{\prime}$ be the points blown-up by $\rho$. We already know from [LPS] that neither $x=\boldsymbol{\sigma}\left(x^{\prime}\right)$ nor $y=\boldsymbol{\sigma}\left(y^{\prime}\right)$ can lie on $\mathfrak{l}$. Look at the composite morphism $\beta=\rho \circ \sigma: X \rightarrow \boldsymbol{P}^{3}$, which exhibits $X$ as $\boldsymbol{P}^{3}$ blown-up along a line $\mathfrak{l}$ and two points $x, y \notin \mathfrak{l}$. Since $F=\sigma^{*} \Theta_{P_{3}}(1)-\sigma^{-1}(\mathfrak{l})$, we have

$$
L=\beta^{*} O_{\boldsymbol{P} 3}(3)-\beta^{-1}(x)-\beta^{-1}(y)-\beta^{-1}(\mathfrak{l}) .
$$

So the lines $\langle x, y\rangle$ and $\mathfrak{r}$ are skew ; otherwise it would be $L \beta^{-1}(\langle x, y\rangle)=0$, contradicting the ampleness. Thus $x, y$ and $\mathfrak{l}$ are three totally disjoint linear subspaces of $P^{3}$ and (0.3) applies. Hence $L$ is very ample.

So it only remains to look at the new case $\alpha=8$. In this case $(X, L)=$ $\left(X^{\prime}, L^{\prime}\right)$ since $t=0$, and $L=2 \xi-3 F=2(\xi-F)-F$, by (3.0.2). So from the ampleness of $L+F$ it follows that $\mathcal{E} \otimes \mathcal{O}_{P_{1}}(-1)$ is ample. Therefore, recalling (3.0.2) we get $a_{i}-1>0(i=1,2,3)$, so that, up to exchanging the summands, we get only the following possibilities for $\mathcal{E}$ :
i)

$$
\mathcal{E}=\mathcal{O}_{P_{1}(2)}\left(\oplus \mathcal { O } _ { P _ { 1 } ( 2 ) } \left(\oplus \mathcal{O}_{P_{1}}(4),\right.\right.
$$


Note that $\mathcal{E}=\mathcal{E}^{\prime}\left(\otimes \mathcal{O}_{P_{1}(2)}\left(\right.\right.$, where $\mathcal{E}^{\prime}$ is either $\mathcal{O}_{\mathbf{P}_{1}{ }^{\oplus 2}} \oplus \mathcal{O}_{P_{1}(2)}$ or $\mathcal{O}_{\boldsymbol{P}_{1}} \oplus \mathcal{O}_{\mathcal{P}_{1}(1)^{\oplus 2}}$ according to cases i) and ii). Let $\xi^{\prime}$ be the tautological bundle of $\varepsilon^{\prime}$; then $\xi^{\prime}=\xi-2 F$ and so we get $L=2 \xi^{\prime}+F=\xi^{\prime}+\left(\xi^{\prime}+F\right)$. Note that $\xi^{\prime}$ is spanned, since $\mathcal{E}^{\prime}$ is so ; moreover $\left(\xi^{\prime}+F\right)$ is very ample since it is the tautological bundle of $\mathcal{E}^{\prime} \otimes \mathcal{O}_{\mathbf{P}_{1}}(1)$, which is a direct sum of very ample line bundles. This shows that $L$ is very ample in both cases i), ii). Notice that, according to [Ha, sec. 3], $X^{\prime}$ is the desingularization of a quadric cone of $\boldsymbol{P}^{4}$ having as vertex a line in case i ), a point in case ii).

All the above proves the following
(3.1) Theorem. Let $(X, L)$ be as in (2.4.i), let ( $X^{\prime}, L^{\prime}$ ) be its reduction and let $t$ be the number of blowing-ups the reduction morphism $\rho: X \rightarrow X^{\prime}$ factors through. Then:
(3.1.1) $X^{\prime}$ is a minimal desingularization $\mu: X^{\prime} \rightarrow Q$ of a quadric cone of $\boldsymbol{P}^{4}$ of rank 3 or $4, L^{\prime}=\mu^{*} \theta_{Q}(2)+F, F$ being the proper transform of a plane of $Q$, and $(k, t)=(\mathbf{1}, 0)$.
(3.1.2) $\quad\left(X^{\prime}, L^{\prime}\right)=\left(\boldsymbol{P}^{2} \times \boldsymbol{P}^{1}, \mathcal{O}_{\left.\boldsymbol{P} \times P_{1}(2,2)\right)}\right.$ and $(k, t)=(2,0)$ or $(1,1)$;
(3.1.3) $X^{\prime}$ is the blow-up $\sigma: X^{\prime} \rightarrow \boldsymbol{P}^{\mathbf{s}}$ along a line $\mathfrak{X}, L^{\prime}=\sigma^{*} \Theta_{P 3}(2)+F, F$ being the proper transform of a plane through $\mathfrak{l}$, and $(k, t)=(1,2),(2,1)$ or $(3,0)$; for $t \geqq 1$ the points blown-up by $\rho$ do not lie on $\sigma^{-1}(\mathrm{l})$ and if $t=2$ their images in $\boldsymbol{P}^{3}$ generate a line skew with $\mathfrak{r}$.

## 4. More on quadric fibrations.

In order to give a better description of pairs as in (2.4.e), in this section we specialize the quadric fibrations ( $X, L$ ) considered in sec. 1 to the case of 3 -folds. So let ( $X, L$ ) be a quadric fibration over $\boldsymbol{P}^{1}$ with $n=3$ and let $\pi: P=\boldsymbol{P}(\mathcal{E}) \rightarrow \boldsymbol{P}^{1}$ be the $\boldsymbol{P}^{3}$-bundle in which $X$ embeds fibrewise as in (1.5).

Let us start with the following useful
(4.1) Remark. Let things be as in (1.0.1) with $n=3$ and let $(X, L)$ be a quadric fibration embedded fibrewise in $\boldsymbol{P}(\mathcal{E})$. If $2 a_{1}<b$ then $a_{0}+a_{3} \geqq b$ and $a_{1}+a_{2} \geqq b$.

Proof. By assumption, in view of the isomorphism

$$
\begin{equation*}
\Gamma(\boldsymbol{P}(\mathcal{E}), 2 \boldsymbol{\xi}-b F) \cong \Gamma\left(\boldsymbol{P}^{1}, \mathcal{E}^{(2)} \otimes \mathcal{O}_{\left.\boldsymbol{P}_{1}(-b)\right)}=\bigoplus_{0 S i}: j_{j \leq 3} \Gamma\left(\mathcal{O}_{\boldsymbol{P} 1}\left(a_{i}+a_{j}-b\right)\right)\right. \tag{4.1.1}
\end{equation*}
$$

every fibre of $X$ has an equation containing neither the term $z_{1}{ }^{2}$ nor, a fortiori, the terms $z_{0} z_{1}$ and $z_{0}{ }^{2}$. Assume that $a_{0}+a_{3}<b$ then the equation would also contain neither $z_{0} z_{3}$ nor $z_{0} z_{2}$. Similarly, assuming $a_{1}+a_{2}<b$ then the equation would not contain the term $z_{1} z_{2}$. In both cases it turns out that every fibre of $X$ would be a singular quadric, a contradiction.
(4.2) Theorem. Let $\mathcal{E}$ be as in (1.0.1) with $n=3$ and, keeping the same notation as in (1.0.5), set $\mathcal{L}=[2 \xi-b F]$.
A) Assume that $2 a_{1}<b$. Then there is a smooth element $X$ in $|\mathcal{L}|$ if and only if $a_{0}+a_{3}=a_{1}+a_{2}=b$.
B) Assume that $2 a_{1} \geqq b$; then
$\mathrm{B}_{1}$ ) if $a_{0}+a_{2} \geqq b$ then there is a smooth element $X$ in $|\mathcal{L}|$;
$\mathrm{B}_{2}$ ) if $a_{0}+a_{2}<b$ then there is a smooth element $X$ in $|\mathcal{L}|$ if and only if $a_{0}+a_{3}=b$.
Proof. Case A). Let $a_{0}+a_{3}=a_{1}+a_{2}=b$; then there are two sections generating $\Gamma\left(\mathcal{O}_{P_{1}}\left(a_{0}+a_{3}-b\right)\right)$ and $\Gamma\left(\mathcal{O}_{P_{1}}\left(a_{1}+a_{2}-b\right)\right)$ respectively. Hence in view of the isomorphism (4.1.1) we can choose an element $X$ of $|\mathcal{L}|$ whose restriction to every fibre of $\boldsymbol{P}(\mathcal{E})$ has $z_{0} z_{3}-z_{1} z_{2}=0$ as equation. Of course such an $X$ is smooth. To prove the converse assume that there is a smooth $X \in|\mathcal{L}|$. Consider $Y:=\boldsymbol{P}\left(\mathcal{O}\left(a_{0}\right) \oplus \mathcal{O}\left(a_{1}\right)\right)$. Note that $Y \subset P$; moreover $Y \subset X$. Indeed let $C$ be the section of $Y \rightarrow \boldsymbol{P}^{1}$, corresponding to the surjection

$$
\mathcal{O}_{P_{1}}\left(a_{0}\right) \oplus \mathcal{O}_{P_{1}}\left(a_{1}\right) \longrightarrow \mathcal{O}_{P_{1}}\left(a_{1}\right) .
$$

Then

$$
C^{2}=a_{1}-a_{0} \geqq 0 \quad \text { and } \quad \xi C=a_{1},
$$

by (0.7.1), Since $C X=C(2 \xi-b F)=2 a_{1}-b<0$ we see that $C$ and all deformations of $C$ are in $X$. On the other hand, since $C^{2} \geqq 0, C$ has deformations in $Y$ covering an open set of $Y$. It thus follows that $Y \subset X$. Now consider the exact sequence of the normal bundles

$$
0 \longrightarrow N_{Y \mid X} \longrightarrow N_{Y \mid P} \longrightarrow\left(N_{X \mid P}\right)_{Y} \longrightarrow 0 .
$$

Since $N_{X \mid P}=\mathcal{L}$, tensoring the above sequence by $\mathcal{L}^{-1}$ we see that $c_{2}\left(N_{Y \mid P} \otimes \mathcal{L}^{-1}\right)$ $=0$. On the other hand we know by ( 0.8 ) that

$$
N_{Y \mid P}=\pi_{Y}^{*}\left(\mathcal{O}\left(-a_{2}\right) \oplus \mathcal{O}\left(-a_{3}\right)\right) \otimes \xi_{Y} .
$$

We thus get $0=\left(-\xi+\left(b-a_{2}\right) F\right)\left(-\xi+\left(b-a_{3}\right) F\right) Y=a_{2}+a_{3}-2 b+\xi^{2} Y=\delta-2 b$, by (0.7.1). Hence $a_{0}+a_{1}+a_{2}+a_{3}=2 b$. Recalling (4.1), this gives $a_{0}+a_{3}=a_{1}+a_{2}=b$.

Case B). It is immediate to check by using [BS1, p. 74] that the line bundle $\mathcal{L}=[2 \xi-b F]$ is spanned if and only if $2 a_{0} \geqq b$. So we can assume that $2 a_{0}<b$. First consider subcase B1). Under the condition $a_{0}+a_{2} \geqq b$, the isomorphism (4.1.1)
shows that given any fibre $F$ of $\pi$, there certainly are global sections of $\mathcal{L}$ which restrict to non-zero multiples of the monomials $z_{0} z_{j}$ for $j=2,3$ and $z_{i} z_{j}$ for $1 \leqq i \leqq j \leqq 3$, but not of the monomial $z_{0}{ }^{2}$. The base locus of the surviving monomials is the point $(1: 0: 0: 0)$. Thus, as a set, the base locus of $\mathcal{L}$ is the section $C:=\boldsymbol{P}\left(\mathcal{O}\left(a_{0}\right)\right)$ corresponding to the surjection $\mathcal{E} \rightarrow \mathcal{O}_{P_{1}}\left(a_{0}\right)$. According to (0.6) a general section $s \in \Gamma(\mathcal{L})$ will have a smooth zero set if the differential $d_{C} s \in \Gamma\left(N_{C}^{*} \otimes \mathcal{L}\right)$ is nowhere zero on $C$. Note that, by ( 0.8 ), under the identification given by $\pi_{C}{ }^{*}$ we get

$$
\begin{align*}
N_{C}^{*} \otimes \mathcal{L} & \cong\left(\mathcal{O}_{P_{1}}\left(a_{1}\right) \oplus \mathcal{O}_{P_{1} 1}\left(a_{2}\right) \oplus \mathcal{O}_{\mathbf{P} 1}\left(a_{3}\right)\right) \otimes\left(-\xi_{C}\right) \otimes(2 \xi-b F)_{C}  \tag{4.2.1}\\
& =\mathcal{O}_{P_{1} 1}\left(a_{0}+a_{1}-b\right) \oplus \mathcal{O}_{P_{1}}\left(a_{0}+a_{2}-b\right) \oplus \mathcal{O}_{P_{1} 1}\left(a_{0}+a_{3}-b\right) .
\end{align*}
$$

So the differentials of the global sections span a 2 -dimensional vector subbundle of $N_{C}^{*} \otimes \mathcal{L}$. Actually, in local coordinates, the section corresponding to the monomial $z_{0} z_{j}$ goes to $d z_{j}$. Thus we can choose a global section $s \in \Gamma(\mathcal{L})$ whose differential vanishes nowhere on $C$.

Finally consider subcase B2). Since $a_{0}+a_{2}<b$, the isomorphism (4.1.1) shows that given any fibre $F$ of $\pi$, there are global sections of $\mathcal{L}$ which restrict to non-zero multiples of the monomials $z_{0} z_{3}$ and $z_{i} z_{j}$ for $1 \leqq i \leqq j \leqq 3$, and no other monomials are restrictions of global sections of $\mathcal{L}$. As before we thus see that the base locus of $|\mathcal{L}|$ is still $C$ as a set. Now, looking at (4.2.1) we see that the differentials on $C$ of the global sections of $\mathcal{L}$ span only the subbundle of $N_{C}^{*} \otimes \mathcal{L}$ given by $\mathcal{O}_{P_{1}}\left(a_{0}+a_{3}-b\right)$, which corresponds to the differential of the monomial $z_{0} z_{3}$. So we will have a general section, whose differential vanishes nowhere on $C$, if and only if the subbundle $\mathcal{O}_{P_{1}( }\left(a_{0}+a_{3}-b\right)$ is the trivial bundle, i.e. if and only if $a_{0}+a_{3}=b$. This concludes the proof in view of (0.6).

From now on assume that ( $X, L$ ) is as in (2.4.e), i.e.
(4.3) a smooth element $A \in|L|$ is a Del Pezzo surface.
(4.4) Proposition. Let things be as above and assume that (4.3) holds. If $2 a_{1}<b$ then $a_{3}=a_{2}=a_{1}+1=a_{0}+1$ and $a_{0}+a_{3}=b$, implying in particular that $b$ is odd and $\delta=2 b$.

Proof. Let $Y:=\boldsymbol{P}\left(\mathcal{O}\left(a_{0}\right) \oplus \mathcal{O}\left(a_{1}\right)\right)$. As shown in the proof of (4.2), case A), we have that $Y \subset X$. Since $A \in\left|\xi_{X}\right|$, it meets $Y$ along a curve $C$ and then $-K_{A} C>0$ since $A$ is Del Pezzo. By adjunction recalling (1.3.1) this gives

$$
\begin{equation*}
(\xi-(\delta-2-b) F) \xi Y \geqq 1 \tag{4.4.1}
\end{equation*}
$$

By using (0.7.1) we get $\xi^{2} Y=a_{0}+a_{1}$, so that (4.4.1) yields

$$
b+1_{k}^{*} \geqq a_{2}+a_{3} .
$$

On the other hand by (4.1) we have the inequalities $a_{1}+a_{2} \geqq b$ and $a_{0}+a_{3} \geqq b$. Putting together all these inequalities we get

$$
b+1 \geqq a_{2}+a_{3} \geqq b-a_{1}+a_{3} \geqq 2 a_{1}+1-a_{1}+a_{3}=a_{1}+a_{3}+1 \geqq a_{1}+a_{2}+1 \geqq b+1,
$$

and similarly $b+1 \geqq a_{2}+a_{3} \geqq a_{1}+a_{3}+1 \geqq a_{0}+a_{3}+1 \geqq b+1$, so that all the above inequalities are equalities. This proves the assertion.
(4.5) Proposition. Let things be as above and assume that (4.3) holds. Then $b+3 \geqq 2 a_{3}$. In particular, if $2 a_{1} \geqq b$, then $a_{3}-a_{1} \leqq 1$.

Proof. Let $Z:=\boldsymbol{P}\left(\mathcal{O}\left(a_{0}\right) \oplus \mathcal{O}\left(a_{1}\right) \oplus \mathcal{O}\left(a_{2}\right)\right)$ and note that $Z$ meets $X$ along a surface. This surface intersects $A$ along a curve and by ampleness $-K_{A}$ has to restrict positively to it. Since $A \in\left|\xi_{X}\right|$, recalling (1.3.1) this gives

$$
\begin{equation*}
(2 \xi-b F) \xi(\xi-(\delta-2-b) F) Z \geqq 1 \tag{4.5.1}
\end{equation*}
$$

As $\xi^{3} Z=a_{0}+a_{1}+a_{2}$ by (0.7.1) and $\xi^{2} F Z=1$, we get from (4.5.1) that

$$
2\left(a_{0}+a_{1}+a_{2}\right)-b-2(\delta-2-b) \geqq 1,
$$

which proves the assertion.
The above discussion allows us to list the possible invariants occurring for pairs as in (2.4.e). Note that the first 5 pairs corresponding to the invariants listed in (1.6) do really fit into case (2.4.e), by (1.6, ii), and by [Fu1] there are no more pairs with $g=2$. So the following statement takes care of the remaining case $g \geqq 3$. It follows by combining the list in (1.5) with the smoothness conditions given by (4.2) and finally checking the conditions of (4.4), (4.5).
(4.6) Theorem. Let $(X, L)$ be a quadric fibration as in (2.4.e), let $\boldsymbol{P}(\mathcal{E})$ be the $\boldsymbol{P}^{3}$-bundle over $\boldsymbol{P}^{1}$ in which $X$ embeds fibrewise and keep notation as in (1.5). If $g \geqq 3$, then only the following invariants can occur (where * stands for $X$ being a bundle):

| $k$ | $b$ | $\delta$ | $a_{0}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $d$ | $g$ |  |
| :---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 4 | 8 | 1 | 2 | 2 | 3 | 12 | 3 | $*$ |
|  |  |  | 2 | 2 | 2 | 2 |  |  | $*$ |
| 3 | 3 | 7 | 1 | 2 | 2 | 2 | 11 | 3 |  |
|  | 5 | 10 | 2 | 2 | 3 | 3 | 15 | 4 | $*$ |
| 2 | 2 | 6 | 1 | 1 | 2 | 2 | 10 | 3 |  |
|  | 4 | 9 | 1 | 2 | 3 | 3 | 14 | 4 |  |
|  |  |  | 2 | 2 | 2 | 3 |  |  |  |
|  | 6 | 12 | 2 | 3 | 3 | 4 | 18 | 5 | $*$ |
|  |  |  | 3 | 3 | 3 | 3 |  |  | $*$ |
| 1 | 1 | 5 | 1 | 1 | 1 | 2 | 9 | 3 |  |

## Continued.

| $k$ | $b$ | $\delta$ | $a_{0}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $d$ | $g$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 8 | 1 | 2 | 2 | 3 | 13 | 4 |  |
|  |  |  | 2 | 2 | 2 | 2 |  |  |  |
|  | 5 | 11 | 1 | 3 | 3 | 4 | 17 | 5 |  |
|  |  |  | 2 | 3 | 3 | 3 |  |  |  |
|  | 7 | 14 | 3 | 3 | 4 | 4 | 21 | 6 | $*$. |

Note that in cases $k=2$ and 3 the above result improves the description given in [LPS, (4.4)] and in [LPS1, (3.3.1)].

## 5. More on scrolls.

This section is devoted to the study of pairs $(X, L)$ as in case (2.4.f) satisfying $k \geqq 2$. Let $\pi: X \rightarrow S$ be the morphism expressing $X$ as a $\boldsymbol{P}^{1}$-bundle over a smooth surface $S$; we have $K_{X}+2 L=\pi^{*} H$ for an ample $H \in \operatorname{Pic}(S)$. Note also that $H$ is spanned, since so is $K_{X}+2 L$ [SV, (0.1)]. We have $X=\boldsymbol{P}(\mathcal{E})$, where $\mathcal{E}=\pi_{*} L$ is a very ample rank-2 vector bundle on $S$, since so is its tautological line bundle $L$ on $X$. Moreover $(S, \operatorname{det} \mathcal{E})$ is simply the reduction of $\left(A, L_{A}\right)$; so, as to the invariants $d=d(X, L)$ and $g=g(X, L)$ we have

$$
d=d\left(A, L_{A}\right)=d(S, \operatorname{det} \mathcal{E})-c_{2}(\mathcal{E}), \quad g=g\left(A, L_{A}\right)=g(S, \operatorname{det} \mathcal{E}) .
$$

Recall that $K_{X}+L=-\mathscr{H} \in \operatorname{Pic}(X)$, where according to (2.1) $\mathscr{H}$ is nef since we assume that $k=K_{A}{ }^{2} \geqq 2$. In this case $-K_{X}$ is ample, so that $X$ is a Fano bundle. This makes our analysis relatively easy, due to [SzW].
(5.1) Theorem. Let $(X, L)$ be as in (2.4.f) and assume that $X$ is Fano. Then the data $S, \mathcal{E}$ and the invariants $d, g$ are those listed in the following table, according to the corresponding values of $k$.


In the above table $\mathcal{I}_{x}$ stands for the ideal sheaf of a point $x$, while $s$, $f$ denote the section of minimal self-intersection and a fibre of $\boldsymbol{F}_{1}$ respectively.

Proof. Since $X$ is Fano we have to check the list in [SzW]. We call $\mathscr{F}$ the vector bundle in [SzW], so that $\mathcal{E}=\mathscr{F} \otimes \mathcal{L}$ for a suitable line bundle $\mathcal{L}$ on $S$. Note that in all cases $S$ is a Del Pezzo surface by (2.3), since it is dominated by the Del Pezzo surface $A \in|L|$ via $\pi_{1 A}$. First let us prove the following
(5.1.1) Lemma. If $\mathcal{E}=\mathcal{L} \oplus \mathcal{L}$, then $(S, \mathcal{L})=\left(\boldsymbol{P}^{2}, \mathcal{O}_{P 2}(2)\right)$ (which gives rise to the first case in (5.1)).

Proof. We have that $X=\boldsymbol{P}(\mathcal{E})=S \times \boldsymbol{P}^{1}$. Let $q: X \rightarrow \boldsymbol{P}^{1}$ be the second projection and call $F$ any fibre of it. So $\left(K_{X}\right)_{F}=K_{F}$. Let $D$ be the effective divisor cut out on $F$ by $A$. Then $K_{A} D<0$ since $-K_{A}$ is ample and then by adjunction we get

$$
0>\left(K_{X}+L\right) D=\left(K_{X}+L\right)_{F} D=\left(K_{F}+L_{F}\right) D,
$$

which shows that $K_{F}+L_{F}$ is not nef. Therefore $\left(F, L_{F}\right)$ is either ( $\boldsymbol{P}^{2}, \mathcal{O}_{\boldsymbol{P}_{2}}(2)$ ), $\left(\boldsymbol{P}^{2}, \mathcal{O}_{\boldsymbol{P}_{2}}(1)\right),\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, \mathcal{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{1} 1}(1,1)\right)$ or a scroll. Note that $\left(F, L_{F}\right)=(S, \mathcal{L})$ under the isomorphism induced by $\pi$, as we see by restricting to $F$ the canonical bundle formula $K_{X}+2 L=\pi^{*}\left(K_{S}+c_{1}(\mathcal{E})\right)=\pi^{*}\left(K_{S}+2 \mathcal{L}\right)$. So $(S, \mathcal{L})$ is one of the four pairs above. In order to prove that the last three cases cannot happen, it is enough to show that $K_{S}+2 \mathcal{L}$ is ample. But this follows from the fact that $K_{F}+2 L_{F}=\left(K_{X}+2 L\right)_{F}=\left(\pi^{*} H\right)_{F}$ is ample, so being $H$ on $S$.

Continuing the proof of (5.1). In view of (5.1.1) all cases corresponding to $\mathscr{F}=\mathcal{O}_{S} \oplus \mathcal{O}_{S}$ listed in $[\mathbf{S z W}]$ are ruled out apart from case 3) there which gives rise to the first case in (5.1). As to the remaining cases in [SzW] check the condition $c_{2}(\mathcal{E})=c_{1}(\mathcal{E})^{2}-L_{A}{ }^{2}=K_{S}{ }^{2}-K_{A}{ }^{2}$ for the Fano bundle $\pi: X=\boldsymbol{P}(\mathcal{E}) \rightarrow S$, with $L=\mathcal{O}_{\boldsymbol{P}(\mathcal{E})}(1)$ in order to determine the normalizing bundle $\mathcal{L}$. This check leads to the cases listed in (5.1) and the following ones:

| $k$ | $S$ | $\mathcal{E}$ |
| :---: | :---: | :---: |
| 6 | $P^{2}$ | $\mathcal{O}_{P 2}(3) \oplus \mathcal{O}_{P 2}(1)$ |
| 4 | $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ | $\mathcal{O}_{P_{1 \times P 1}}(2,2) \oplus \mathcal{O}_{P_{1 \times P} \times 1}(1,1)$ |
| 3 | $\boldsymbol{P}^{2}$ | $\mathcal{O}_{P 2}(3) \oplus \mathcal{O}_{P 2}(2)$ |
| 3 | $F_{1}$ | $[2 s+3 f] \oplus[s+2 f]$ |
| 2 | $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ |  |
| 1 | $\boldsymbol{P}^{2}$ | $\mathcal{O}_{P 2}(4) \oplus \mathcal{O}_{P 2}(2)$. |

Note that in the first 5 cases $\mathcal{E}=\left[-K_{S}\right] \oplus \mathcal{M}$. They are thus ruled out in view of the following
(5.1.3) Lemma. Let things be as above. If $\mathcal{E}=\left[-K_{S}\right] \oplus \mathcal{M}$, then $A$ cannot be a Del Pezzo surface.

Proof. We have $K_{X}=-2 L+\pi^{*}\left(K_{S}+\operatorname{det} \mathcal{E}\right)=-2 L+\pi^{*} \mathscr{M}$. So $-\left(K_{X}+L\right)=$ $L-\pi^{*} \mathscr{M}$ is the tautological bundle for the projectivization of $\mathcal{E}^{\prime}=\left[-K_{S}-\mathscr{M}\right] \oplus \Theta_{s}$ and then it is trivial when restricted to the section $\Sigma$ of $\pi$ corresponding to the surjection $\mathcal{E}^{\prime} \rightarrow \mathcal{O}_{S}$. Then by adjunction we see that $-K_{A}$ cannot be ample.

Concluding the proof of (5.1). The same argument for proving (5.1.3) rules out also case $k=1$ in the table above; actually $-\left(K_{X}+L\right)$ is the tautological bundle of $\mathcal{E}^{\prime}=\mathcal{O}_{P^{2}}(1) \oplus \mathcal{O}_{P_{2}}(-1)$; if $\Sigma$ stands for the section corresponding to the surjection $\mathcal{E}^{\prime} \rightarrow \mathcal{O}_{\boldsymbol{P}_{2}}(-1)$, we thus see that $\left(-K_{A}\right)_{\Sigma \cap A}$ is negative, a contradiction.

So it only remains to show that all cases listed in the statement of (5.1) do really occur. As to the 4 cases corresponding to $k=2$ this was shown in [LPS, sec. 5]. We prove the same in the remaining cases.

Let $k=5$. In this case, $-\left(K_{X}+L\right)$ is the tautological bundle of $\mathcal{E}^{\prime}=\mathcal{O}_{P_{2}}(1)^{\oplus 2}$, hence it is very ample, so being $\mathcal{E}^{\prime}$. This shows that every smooth element $A$ of $|L|$ is a Del Pezzo surface.

Let $k=4$. We prove that $\mathscr{H}=-\left(K_{X}+L\right)$ is ample. By adjunction this implies that for every smooth element $A$ of $|L|,-K_{A}=\mathscr{H}_{A}$ is ample, hence $A$ is a Del Pezzo surface. By contradiction assume that $X$ contains a curve $C$ on which $\mathscr{H}$ fails to be ample. Recalling that $\mathscr{H}$ is nef since $4=k>1$, we thus get

$$
\begin{equation*}
\mathscr{H} C=0 . \tag{5.1.4}
\end{equation*}
$$

Note that $\mathscr{G}$ is the tautological bundle of $\mathcal{E}^{\prime}=\mathcal{E}(-1)$. Since $C$ is not a fibre of $\pi$ we have that $D=\pi(C)$ is a curve and $\mathcal{E}_{D}^{\prime}$ is not ample. Restrict to $D$ the exact sequence defining $\mathcal{E}^{\prime}$ : the first term is $\mathcal{O}_{P_{2}}(1)_{D}$, which is ample, while the third one is $\mathcal{J}_{x}(1)_{D}$, which is ample unless $D$ is a line through $x$, in which case it is simply $\mathcal{O}_{D}$. So $D$ is a line through $x$ and this sequence reads as follows:

$$
0 \longrightarrow \mathcal{O}_{P_{1}}(1) \longrightarrow \mathcal{O}_{P_{1}}(1) \oplus \mathcal{O}_{P_{1}} \longrightarrow \mathcal{O}_{P_{1}} \longrightarrow 0
$$

Hence $\pi^{-1}(D)$ is the Segre-Hirzebruch surface $\boldsymbol{F}_{1}$ and $C$ is the fundamental section on it, corresponding to the surjection $\mathcal{O}_{P_{1}}(1) \oplus \mathcal{O}_{P^{1}} \rightarrow \mathcal{O}_{P_{1}}$. We have $K_{X}=$ $-2 L+\pi^{*}\left(K_{S}+\operatorname{det} \mathcal{E}\right)$; moreover $\operatorname{det} \mathcal{E}=\mathcal{O}_{P^{2}}(4)$ as we see from the exact sequence defining $\mathcal{E}$, since $x$, which is 0 -dimensional, does not affect the computation of $c_{1}$. Therefore $\mathscr{H}=-\left(K_{X}+L\right)=L-\pi^{*} \mathcal{O}_{P_{2}}(1)$ and so (5.1.4) implies that $0=$ $\left(L-\pi^{*} \mathcal{O}_{P_{2}}(1)\right) C=L C-\mathcal{O}_{P_{2}}(1) D=L C-1$, i.e.

$$
\begin{equation*}
L C=1 \tag{5.1.5}
\end{equation*}
$$

Now look at the normal bundle $N$ of $C$ in $X$. We have the exact sequence

$$
0 \longrightarrow \mathcal{O}_{c}(-1) \longrightarrow N \longrightarrow \mathcal{O}_{c}(1) \longrightarrow 0,
$$

$\mathcal{O}_{C}(-1)$ being the normal bundle of $C$ inside $\pi^{-1}(D)=\boldsymbol{F}_{1}$ and $\mathcal{O}_{C}(1)$ being the pull-back of the normal bundle of the line $D$ in $\boldsymbol{P}^{2}$. We thus get by adjunction

$$
-2=K_{X} C+\operatorname{deg}(\operatorname{det} N)=K_{X} C
$$

This, recalling (5.1.5), gives $\left(K_{X}+L\right) C=-1$, which contradicts (5.1.4).
Let $k=3$. There are two cases. In the former case note that $\boldsymbol{P}\left(\mathcal{O}_{P_{2}}(1)^{\oplus 4}\right)$ $=\boldsymbol{P}^{2} \times \boldsymbol{P}^{3}$ Segre embedded in $\boldsymbol{P}^{11}$ by means of the tautological bundle. From the exact sequence defining $\mathcal{E}$ we thus see that $X$ is the intersection of it with two general hyperplanes of $\boldsymbol{P}^{11}$. Thus every smooth element $A$ of $|L|$ is a Del Pezzo surface.

Now come to the second case. Let $\mathscr{H}=-\left(K_{X}+L\right)$ again and note that $\mathscr{H}$ is the tautological bundle of $\mathcal{E}^{\prime}=\mathcal{O}_{\boldsymbol{P}_{1 \times P}(0,1)}\left(0 \mathcal{O}_{\boldsymbol{P}_{1 \times P 1}}(1,0)\right.$; so $\mathscr{H}$ is spanned. Note that $\mathscr{H}$ restricts as $\mathcal{O}_{P_{1}}(1)$ to the fibres of $\pi$. So, if $X$ contains an irreducible curve $C$ such that $\mathscr{F}_{C}$ is trivial, then $D=\pi(C)$ is a curve and $\mathcal{E}^{\prime}{ }_{D}$ is not ample. As $\mathcal{E}^{\prime}$ is the sum of the pull-backs of two ample line bundles via the projections of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ on the factors, we see that $D$ must be either a horizontal or a vertical factor of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Without loss of generality we can assume $D=\boldsymbol{P}^{1}$ to be vertical. Thus $\mathcal{E}^{\prime}{ }_{D}=\mathcal{O}_{P_{1}}(1) \oplus \mathcal{O}_{\boldsymbol{P} 1}$. Note that the tautological bundle of $\mathcal{E}^{\prime}{ }_{D}$ is $\mathscr{H}_{\pi^{-1}(D)}$; also $C$ corresponds to the surjection $\mathcal{O}_{P_{1}(1)}\left(\mathcal{O}_{P_{1}} \rightarrow \mathcal{O}_{P 1}\right.$. So $\pi^{-1}(D)=\boldsymbol{F}_{1}$ and $C$ is the fundamental section on it. Now let $S_{1}$ be the surface in $X$ swept out by those curves $C$, as $D$ varies among the vertical fibres of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. Note that $C^{2}=0$ in $S_{1}$ and in fact $S_{1}=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, with $C$ as vertical fibre. Similarly there is a surface $S_{2}$ in $X$ generated in the same way as $D$ varies among the horizontal fibres of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. The above argument shows that the only curves to which $\mathscr{H}$ restricts trivially are the vertical fibres of $S_{1}$ and the horizontal fibres of $S_{2}$. As $L$ is very ample, the general element $A \in|L|$ cuts $S_{1}, S_{2}$ along smooth curves and so does not contain curves like $C$. Thus, by adjunction, $-K_{A}=\mathscr{H}_{A}$ is ample. So the general element of $|L|$ is Del Pezzo.

## Appendix. Del Pezzo manifolds as ample divisors.

Del Pezzo manifolds have been classified by Fujita [Fu]. Let $A$ be a Del Pezzo $n$-fold; then $-K_{A}=(n-1) h$, where $h$ is an ample element of $\operatorname{Pic}(A)$. Let $d(A)=d(A, h)$. Here we assume that $A$ is contained as an ample divisor in a smooth projective $(n+1)$-fold $X$ and we classify pairs $(X, L)$, where $L=[A]$, under the assumption that $n=\operatorname{dim} A \geqq 3$. The results are summarized in the following table, where in the last column an indication for the argument proving the result is given. Here $\boldsymbol{V}_{n}$ stands for the cone over the Veronese manifold ( $\boldsymbol{P}^{n-1}, \mathcal{O}_{\boldsymbol{P}}(2)$ ).

| $d(A)$ | $A$ | $\operatorname{dim} A$ | $X$ | $L$ | where |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{gathered} \pi: A \rightarrow V_{n} \\ \text { double cover } \end{gathered}$ | any | $\Pi: X \rightarrow V_{n+1}$ double cover | $\Pi * O_{V}(1)$ | (A.1, i) |
| 2 | $\begin{gathered} \pi: A \rightarrow \boldsymbol{P}^{n} \\ \text { double cover } \end{gathered}$ | any | $\left\{\begin{array}{l} \Pi: X \rightarrow \boldsymbol{P}^{n+1} \\ \text { double cover } \end{array}\right.$ | $\Pi * O_{P}(1)$ | (A.1, i) |
|  |  |  | $\boldsymbol{Q}^{n+1}$ | $\mathcal{O}_{Q}(1)$ | (A.2) |
|  |  |  | $P^{n+1}$ | $\mathcal{O}_{P}(2)$ | (A.2) |
| 3 | cubic hypersurface of $\boldsymbol{P}^{n+1}$ | any | $\left\{\begin{array}{c} \text { cubic hypersurface } \\ \text { of } \boldsymbol{P}^{n+2} \end{array}\right.$ | $\mathcal{O}_{X}(1)$ | (A.1, i) |
|  |  |  | $\boldsymbol{P}^{n+1}$ | $\mathcal{O}_{P}(3)$ | (A.1, iii) |
| 4 | complete intersection of two quadrics in $\boldsymbol{P}^{n+2}$ | any | complete intersection of two quadrics | $\mathcal{O}_{X}(1)$ | (A.1, i) |
|  |  |  | $\left\{\begin{array}{l}\text { in } \boldsymbol{P}^{n+3} \\ \boldsymbol{Q}^{n+1}\end{array}\right.$ | $\mathcal{O}_{\boldsymbol{Q}}(2)$ | (A.1, ii) |
| 5 | section $G \cap H^{i}$ with $i$ hyperplanes of $G=G(1,4) \subset \boldsymbol{P}^{9}$ | $3,4,5,6$ | no if $i=0$ | - | (A.1, i) |
|  | Plücker embedded $(i=0,1,2,3)$ |  | $\underset{\text { if }}{G} \bigcap_{i>0} H^{i-1}$ | $\mathcal{O}_{X}(1)$ |  |
| 6 | $\boldsymbol{P}^{1} \times \boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{1}$ | 3 | no | - | (A.3) |
|  | $\boldsymbol{P}\left(T_{P 2}\right)$ | 3 | $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2} \quad 0$ | $\mathcal{O}_{P 2 \times P 2}(1,1)$ | (A.4) |
|  | $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ | 4 | no | - | (A.3) |
| 7 | $B_{p}\left(\boldsymbol{P}^{3}\right)$ | 3 | no | - | (A.5) |
| 8 | $\boldsymbol{P}^{3}$ | 3 | $P^{4}$ | $\mathcal{O}_{\boldsymbol{P}}(1)$ | (A.1, iv) |

Note that $L$ is very ample except in cases $d(A)=1$ and $d(A)=2$ when the double cover $\Pi: X \rightarrow \boldsymbol{P}^{n+1}$ has a branch locus of degree $2 b, b \geqq 2$. Obviously, when $b=1$ the pair ( $X, \Pi * \mathcal{O}_{\boldsymbol{P}}(1)$ ) coincides with ( $\boldsymbol{Q}^{n+1}, \mathcal{O}_{\boldsymbol{Q}}(1)$ ).
(A.1) Proposition. Let $A$ be a Del Pezzo n-fold contained as an ample divisor in a smooth projective $(n+1)$-fold $X$ and let $L=[A]$. Assume that $\operatorname{Pic}(A)$ $=\boldsymbol{Z}$. Then $(X, L)$ is either
i) a Del Pezzo $(n+1)$-fold of the same degree,
ii) $\quad\left(\boldsymbol{Q}^{n+1}, \mathcal{O}_{\boldsymbol{Q}}(2)\right)$,
iii) $\left(\boldsymbol{P}^{n+1}, \mathcal{O}_{\boldsymbol{P}}(3)\right)$, or
iv) $\left(\boldsymbol{P}^{\mathbf{4}}, \mathcal{O}_{\boldsymbol{P}}(1)\right)$.

Proof. Let $-K_{A}=(n-1) h$, where $h$ is an ample element of $\operatorname{Pic}(A)$. As $n \geqq 3$ we have $\operatorname{Pic}(X) \cong \operatorname{Pic}(A)=\boldsymbol{Z}$, by the Lefschetz theorem ; let $\mathscr{H} \in \operatorname{Pic}(X)$ be the element such that $\mathscr{F}_{A}=h$. Note that $\mathscr{H}$ is ample. Assume that $h$ generates $\operatorname{Pic}(A)$; then $\mathscr{H}$ generates $\operatorname{Pic}(X)$ and so we can write $L=a \mathscr{H}$ and $K_{X}=r \mathscr{H}$ for
some integers $r$ and $a>0$. By adjunction we have

$$
\begin{equation*}
(n-1) h=-K_{A}=-\left(K_{X}+L\right)_{A}=-(r+a) \mathscr{H}_{A}=-(r+a) h, \tag{*}
\end{equation*}
$$

hence $-K_{X}=(n-1+a) \mathscr{H}=(\operatorname{dim} X-(2-a)) \mathscr{H}$, which implies $a \leqq 3$ by well known properties of Fano manifolds. Since $a \geqq 1$, we get the following possibilities:
i) $a=1$, in which case by definition $X$ is a Del Pezzo manifold and $d(X, \mathscr{H})$ $=\mathscr{H}^{n+1}=\mathscr{H}^{n} L=\mathscr{H}_{A}{ }^{n}=d(A)$;
ii) $a=2$, in which case $(X, \mathscr{H})=\left(\boldsymbol{Q}^{n+1}, \mathcal{O}_{\boldsymbol{Q}}(1)\right)$ by the Kobayashi-Ochiai theorem [KO] and $2=d(X, \mathscr{H})=\mathscr{C}^{n+1}=\mathscr{H}^{n} L / 2=\mathscr{H}_{A}{ }^{n} / 2=d(A) / 2$, hence $d(A)=4$;
iii) $a=3$, in which case $(X, \mathscr{H})=\left(\boldsymbol{P}^{n+1}, \mathcal{O}_{\boldsymbol{P}}(1)\right)$ by the Kobayashi-Ochiai theorem [KO] and $1=d(X, \mathscr{H})=\mathscr{H}^{n+1}=\mathscr{H}^{n} L / 3=\mathscr{H}_{A}{ }^{n} / 3=d(A) / 3$, hence $d(A)=3$.
Thus in all the above cases the assertion follows from Fujita's classification [Fu, I, II and III]. Recall that in case $d(A)=1$, we have $\operatorname{Pic}(A)=\boldsymbol{Z}[$ Is, (6.11)]. Now assume that $h$ does not generate $\operatorname{Pic}(A)=\boldsymbol{Z}$; note that this happens just when $d(A)=8$, in which case $h \in 2 \operatorname{Pic}(A)$. Let $\mathcal{G}$ denote the positive generator of $\operatorname{Pic}(X)$ and set $L=\alpha G$ and $K_{X}=\rho G$ for some integers $\rho$ and $\alpha>0$ as before. Then adjunction gives $-K_{X}=(4+\alpha) \mathscr{H}$, hence $\alpha=1$ and then $X=\boldsymbol{P}^{4}$ by [K0], with $L=\mathcal{G}=\mathcal{O}_{\boldsymbol{P}}(1)$. This gives case iv).

Note that (A.1) covers cases $d(A)=1,3,4,5,8$ and partially case $d(A)=2$.
(A.2) In case $d(A)=2$, when $A$ is a quadric, the above argument still works with a small modification. In fact in this case we have $-K_{A}=n h$. Modifying ${ }^{(*)}$ accordingly this gives $-K_{X}=(n+a) \mathscr{H}$, which implies $a \leqq 2$. Now use again [K0]; then case $a=1$ gives $(X, L)=\left(\boldsymbol{Q}^{n+1}, \mathcal{O}_{Q}(1)\right)$, while in case $a=2$ we get $(X, L)=\left(\boldsymbol{P}^{n+1}, \mathcal{O}_{\boldsymbol{P}}(2)\right)$.

In case $d(A)=6$, if $A$ is a product the assertion is an immediate consequence of the following fact:
(A.3) Proposition ([S1, Prop. IV]). Let $A$ be a projective $n$-fold, which is a product, contained as an ample divisor inside a projective $(n+1)$-fold. Then $A$ has exactly two factors, one of which has dimension 1.
(A.4) For the case $A=\boldsymbol{P}\left(T_{P_{2}}\right)$ we first recall the following fact
(A.4.1) Proposition ([FSaSo, (2.0)]. Let $p: A \rightarrow \boldsymbol{P}^{2}$ be a $\boldsymbol{P}^{1}$-bundle contained as an ample divisor in a projective 4 -fold $X$. If $A \neq \boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ then $p$ extends to a morphism $P: X \rightarrow \boldsymbol{P}^{2}$ giving $X$ the structure of a $\boldsymbol{P}^{2}$-bundle.

Recall also that one can realize $A$ as the obvious incidence correspondence in $\boldsymbol{P}^{2} \times \boldsymbol{P}^{2 *}$, where $\boldsymbol{P}^{2 *}$ stands for the dual projective plane; this endows $A$ with two distinct $\boldsymbol{P}^{1}$-bundle structures on $\boldsymbol{P}^{2}$, from which $X$ inherits two
distinct $\boldsymbol{P}^{2}$-bundle structures, due to (A.4.1). This implies that $X=\boldsymbol{P}^{2} \times \boldsymbol{P}^{2}$ in view of [Sa]. Moreover as $P_{1 A}=p$, we conclude that $A \in \mid \mathcal{O}_{\boldsymbol{P}_{2} \times \boldsymbol{P}_{2}(1,1) \mid \text {. Note }}$ that in fact $X=\boldsymbol{P}(\mathcal{E})$, where $\mathcal{E}$ is the extension of $T_{P^{2}}$ defined by the Euler sequence.
(A.5) We finally come to case $d(A)=7$. In this case $A=B_{p}\left(\boldsymbol{P}^{3}\right)$ is the blow-up of $\boldsymbol{P}^{3}$ at a point $p$. Let $X$ be a smooth 4 -fold containing $A$ as an ample divisor; then by [Fu2, (7.15) and (7.16)] there exists a projective 4 -fold $Y$ containing $\boldsymbol{P}^{3}$ as an ample divisor such that $X$ is the blow-up of $Y$ at $p$. It thus follows that $Y=\boldsymbol{P}^{4}$ (e.g. see [S1, p. 67]) and so $X$ has a structure of a $\boldsymbol{P}^{1}$-bundle over $\boldsymbol{P}^{3}$. On the other hand $A$ has a structure of $\boldsymbol{P}^{1}$-bundle over
 $\boldsymbol{P}^{2}$-bundle over $\boldsymbol{P}^{2}$, which gives a contradiction since the two $\boldsymbol{P}$-bundle structures of $X$ are topologically not compatible.

## References

[Ba1] L. Bădescu, On ample divisors, Nagoya Math. J., 86 (1982), 155-171.
[Ba2] L. Bădescu, The projective plane blown-up at a point as an ample divisor, Atti Acc. Ligure Sci. Lett., 38 (1982), 88-92.
[BS] M.C. Beltrametti and A. J. Sommese, New properties of special varieties arising from adjunction theory, J. Math. Soc. Japan, 43 (1991), 381-412.
[BS1] M. C. Beltrametti and A. J. Sommese, The Adjunction Theory of Complex Projective Varieties, Expositions in Math., vol. 16, De Gruyter, 1995.
[ Fu ] T. Fujita, On the structure of polarized manifolds with total deficiency one, I, II, III, J. Math. Soc. Japan, 32 (1980), 709-725; 33 (1981), 415-434; 36 (1984), 75-89.
〔Ful] T. Fujita, Classification of polarized manifolds of sectional genus two, Algebraic geometry and Commutative Algebra, in Honor of M. Nagata, pp. 73-98, Kinokuniya, 1987.
[Fu2] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lect. Note Series 155, Cambridge Univ. Press, Cambridge, 1990.
[FSaSo] M.L. Fania, E. Sato and A. J. Sommese, On the structure of 4 -folds with a hyperplane section which is a $\boldsymbol{P}^{1}$-bundle over a surface that fibres over a curve, Nagoya Math. J., 108 (1987), 1-14.
[Ha] J. Harris, A bound on the geometric genus of projective varieties, Ann. Sc. Norm. Sup. Pisa, (4)8 (1981), 35-68.
[Io] P. Ionescu, Embedded projective varieties of small invariants, Algebraic Geometry, Proc. Bucharest 1982, pp. 142-186, Lect. Notes Math., 1056, Springer-Verlag, Berlin, Heidelberg, New York, 1984.
[Is] V. A. Iskovskih, Fano 3-folds, I. Math. U.S.S. R. Izvestija, 11 (1977), 485-527.
[LPS] A. Lanteri, M. Palleschi and A. J. Sommese, Double covers of $\boldsymbol{P}^{n}$ as very ample divisors. Nagoya Math. J., 137 (1995), 1-32.
[LPS1] A. Lanteri, M. Palleschi and A. J. Sommese, On triple covers of $\boldsymbol{P}^{n}$ as very ample divisors, Classification of Algebraic Varieties, Proceedings L'Aquila 1992, Contemporary Mathematics, 162, pp. 277-292, Amer. Math. Soc., 1994.
[KO] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., 13 (1973), 31-47.
[Sa] E. Sato, Varieties which have two projective space bundle structures, J. Math. Kyoto Univ., 25 (1985), 445-457.
[S1] A.J. Sommese, On manifolds that cannot be ample divisors, Math. Ann., 221 (1976), 55-72.
[S2] A.J. Sommese, On the adjunction theoretic structure of projective varieties, Complex Analysis and Algebraic Geometry, Proc. Göttingen 1985, pp. 175-213, Lect. Notes Math., 1194, Springer-Verlag, Berlin, Heidelberg, New York, 1986.
[S3] A. J. Sommese, On the nonemptiness of the adjoint linear system of a hyperplane section of a threefold, J. reine angew. Math., 402 (1989), 220-221; Erratum, ibidem, 411 (1989), 122-123.
[SV] A. J. Sommese and A. van de Ven, On the adjunction mapping, Math. Ann., 278 (1987), 593-603.
[SzW] M. Szurek and J. A. Wiśniewski, Fano bundles of rank 2 on surfaces, Compositio Math., 76 (1990), 295-305.
Antonio LANTERI and
Marino PALLESCHI
Dipartimento di Matematica
"F. Enriques"-Università
Via C. Saldini, 50
I-20133 Milano
Italy
lanteri@vmimat. mat.unimi. it
apelles@vmimat.mat.unimi. it

Andrew J. Sommese

Department of Mathematics
University of Notre Dame
Notre Dame, Indiana 46556
U.S. A.
sommese.1@nd.edu

