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1. Introduction.
Let 2 be a bounded C*-domain in R® and set
Qr=0x%0, T), Sp=082x%0,T).

E.B. Fabes and M. N. Riviére proved a Fatou type theorem for the heat oper-
ator in [FR]; If 1<p<-+oo, then for each fLP?(Sy) there exists a function
g€ L?(Sy) such that the double layer heat potential u# of g is caloric in £7 and
has the limit f(P), nontangentially on the hyperplane {=t¢, at almost every
point P=(p, t,)Sr with respect to the surface measure of Sry.

Moreover in the case p>2—e¢ it has been known that this result is still
valid even if £ is a bounded Lipschitz domain and an approach region is
replaced by a parabolic nontangential one (cf. [FS], [BrL], [Br2]).

R.M. Brown also considered the initial-Neumann problems for the heat
operator in the above Lipschitz cylinder and proved that if 1<p<2-+e, then a
solution with lateral data in L?(Sr) exists and is represented as a single layer
heat potential ([Brl], [BrZ].

On the other hand, for a bounded open subset £ of R"*! and a continuous
real-valued function g on 08 there exists a generalized solution u to the
Dirichlet problem

ou
Au-——at— =0 on £,
U= g

by the Perron-Wiener-Brelot-Bauer method, but it is not true in general that u
attains continuously the boundary value g (cf. [Bal). A boundary point (x,, t,)
is regular, i.e.,

lim u(-x: t) - g(x()’ to)
(&, L)~ (Z0: Lo)s (%2 1YER
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for every continuous function g on 02 if and only if it satisfies Wiener’s
criterion (cf. [L], [EG]). Such characterizations for boundary points to be
regular have also been studied for more general parabolic operators (cf. [GL],
[FGLD.

R. Kaufman and J-M Wu considered, for = C*R), a domain 2={(x, ¢):
t>7(x)} in R? and proved that the solution u to the Dirichlet problem for the
heat operator in £ with boundary data f< L? exists and the parabolic nontan-
gential limit of u is equal to f at almost every boundary point (cf. [KW]).

Suppose D is a bounded domain in R™*!, which is bounded by a domain
Bp on the hyperplane {=0, a domain 7, on the hyperplane ¢{=7T and a smooth
manifold lying in the strip 0<¢<7T. We know that under additional assumptions
the initial-Dirichlet problem

ou
1.1 Au———g— 0 on D,
u=f on Sp,

=0 on BD
has a unique classical solution on D for all functions f on S, such that
LfX)—fX)] = ¢;0X, V)

for all X, Y =S, and for some positive real numbers c¢,, 4 (cf. [Fr, Theorem 7,
p. 65]). Recall that the parabolic distance 6(X, Y) is defined by

0X,Y)=(x—yl*+t—s"?,

for X=(x, t) and Y={(y, s).

But, for such a non-cylindrical domain D, the existence and boundary be-
havior of the solution to the problem (1.1) with L?-lateral data f has not been
discussed, even if S, is smooth.

In this paper, we consider the initial-Dirichlet and initial-Neumann problems
for the heat equation in such a domain with L?-boundary data, and study
boundary behavior of solutions.

More precisely it is assumed that a bounded domain D in R"*! lies in the
strip 0<t<T and 0D is the union of three closed sets, Bp, Tp and Sp such
that

Bp =0DN\{t=0}, Tp=0DN{=T}, Sp=0DN{0<t<T}

and Sp has the following property (s).

(s) For each Z=(z, s,)&S, there correspond a system of orthogonal coor-
dinates in R" and an open ball B(Z, d) in R"*' such that each coordinate axis
is orthogonal to the time-axis and with respect to the coordinates
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SpN\B(Z, 0)
={¢, &, O): §ER™, §LER, §:=9¢¢", 1), 0st<T}INB(Z, 9)
and
DNB(Z, o)
={¢, &, 0): &ERY, §ER, §.>¢¢, 1), 0<i<T} N B(Z, 9).
Here ¢ is a C'-function defined on R"™'X R with compact support and satisfies

(1.2) Vol = M, [V(E', H—=V({l, )| = M(|&'=C'|"+[t—s|*?),

0¢ .
-0, sp) =0 (=1, ---, n—1
ot =00 )
for some positive real number a<1 and some constant M>=1. We note that in
the case n=1, ¢ is a function defined on R with variable ¢ and ¢(&’, )=¢(?).
Furthermore, we assume that D satisfies the following conditions:
(d,) The set

Z = (07 O; So),

(1.3 I.:=DN{(x, s): x&R"}

is a domain in the hyperplane ¢t=s and each component of {(x, s): x&R"}\I
is unbounded for each s, 0<s<T.

(d;) There exists a simple continuous curve in D connecting some point of
Bp to some point of Tp along which the ¢-coordinate is nondecreasing.

In this domain we consider the initial-Dirichlet problem (1.1) with lateral
boundary data feL?(¢), where ¢ is the surface measure of Sp,. For this
purpose, setting

eXpColXI/AD i 450
WX)=W(x, t) = (4rt)

0 otherwise,

we introduce a mixed layer potential kernel: for X=(x, H)eR"*! and Y=(y, s)
ESD,

(1.4 kX, Y):

I

LV WX=T), Np—%W(X—Y)NS

_ exp(—|x—y|*/4(t—s))

2(4m)™ /2 (t—s)m/2 1 Y —X)ny

if t>s and k(X, Y)=0 otherwise, where ny=(N,, N;) is the unit outward normal
to Sp at Y, ¢, ) is the inner product in R” and (Y —X)-ny is the inner product
of Y—X and ny in R"*.

Using this kernel, we define a mixed layer potential, for f=L?(s) and
XeRn+1’
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(L5 000 = [k (X, VFI)do )

if it is well-defined and @ f(X)=0 otherwise.
To study the boundary behavior of the potential @ f, we consider a parabolic
approach region at Z=(z, s)&Sp

I'(Z)y={XeD:(Z—X)-nz;>wX, Z)}

for 7, 0<z<(1+M? Y% where M is the positive real number in [I.2).
Using these mixed layer potentials and estimating them by parabolic maximal
functions, we will prove the following theorem in §8.

THEOREM 1. Let p>1, 0<e<(A+M?»"Y2 and f<L?(a). Then there exists
a function g€ L?(0) such that the mixed layer potential u=®Dg has the following
properties:

ou )
Au—a—t = n D,
lim u(X)=0 for all Z = Bp\Sp
X-Z, XeD

and
Iim u(X)= f(Z)

X2, Xel'r(2)
for a-almost every point Z & Sp.

Next, let us define, for geL?(s), XR""' and Y &S, the single layer
potential u, by

1.6) ue(X) = — (WX =Y)g()da(¥)

if it is well-defined and u,(X)=0 otherwise.
The initial-Neumann problem for the heat operator is solved as follows.

THEOREM 2. Let p>1, 0<e<(1+M?*"Y? and f=LP(g). Then there exists
a function g L?(g) such that the single layer potential u =u, has the following
properties :

ou .
Au—a—t =0 in D,

lim u(@)=0 forall Z & Bp\Sp

X-Z, XeD

and

lim (), Ny—qu(ON) = £(2)

X-Z, Xelp(

for c-almost every point Z=(z, s)&Sp.
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REMARK. In this paper we considered only the heat operator. But our
method is applicable to a more general parabolic operator, for example, for a
uniformly parabolic operator, by considering k(X, Y) corresponding to the
fundamental solution of the operator.

2. Estimates of the kernel k.

We denote by (x, t) a point X in R"*!, where x=(x,, x5, -+, X,) are space
variables and t is the time variable. We consider the heat operator L defined

by

0
L= AN .
and the adjoint operator of L defined by
0
* —
L* = A-I-*at .

Hereafter V indicates the n-dimensional spatial gradient operator. Let £ be
a bounded piecewise smooth domain in R™*! and u, v be smooth functions on
Q2. Using the divergence theorem, we obtain

@1 SQ(uL*v—vLu)dxdt
= Sw K(uVv—oVu), Ny>+uvNy dS.
If Lu=L*»=0 in £, then implies

2.2) SagK(qu—vVu), N,>4uvN, dS = 0.

It is well-known that, for (x,, t,)=R"*! and the function W in §1, the
function v(x, t)=W(x,—x, t,—t) is a C=-function in the half space t<?, and
L*y»=0 in this space. Furthermore v=0 in the half space ¢>¢,.

By virtue of the condition (s) for Sp we note that there exist a finite
number of balls B;=B(Q;, d;) in R**!, with §;<1, a finite number of systems
of orthogonal coordinates in R” and a finite number of functions ¢;= Ci(R%)

(=1, ---, m) such that each coordinate axis is orthogonal to the time-axis and
with respect to the coordinates
(2.3 B(Q;, 20Md;) N\ Sp = B(Qy, 20Mé;)

NAE, & 1) 'R, £ ER, §,=0,&, 1), 0<I<T},
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and
2.4) B(Q;, 20M3;) N D = B(Q;, 20M5,)
m {(EI’ Enr t): ElERn_lr SnER’ §n>¢j<$’) t)) O<t<T}

and ¢=¢;, Z=Q; satisfy (1.2).
We next estimate the kernel %2 defined by [1.4). Let us begin with the
following lemma.

LEMMA 2.1, Let X=(x, 1), Y=(y, s), t>s and 8>0. Then

exp(—|x—y|?/4(—s))
t—s)?

= (X, Y)7*,

where ¢ is a constant independent of X, Y.

ProOOF. Noting that

lim s?# exp(—s?% = 0,

8—r00
we can find b>0 such that

lx—y[Pexp(—x—y/4(t=s) _ | , lx=2I"_

(t—s)k = I—s ©
Then
exp(—lx—y|*/4¢t—=s) . 1 2
(t—s)? T x—y|®¥ T | x—y|#+bFE—s)F

< ¢, 0(X, V)28,
On the other hand, if |x—y|%/t—s<b, we have

exp(—|x—y|[*/4(t—s)) 1 e
}zt_ys L S Gy S 0K V)

Thus we have the conclusion. Q.E.D.
The kernels W and % defined in § 1 have the following properties.

LEMMA 2.2, (@) WX—-Y)Zcd(X, V)™ for all X, YR},

® VWV X-Y)|=coX, Y)Y and |V.WX-Y) <coX, YY) ™t for all
X, YeR"!, X+Y,

© kX, Y)|<coX, V)"t for all X, YES,.

PROOF. (a) and (b) follow from Lemma 21. (c) Let X B(Q;, 6;)N\Sp for
B(Q;, 0;) satisfying [2.3) and [2.4). First, let YeB(Q,, 26,)N\Sp. For ¢=¢,
and with respect to the local coordinates we write X=(§’, ¢(&’, ), f) and Y =
(p', (', s), s). Then
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(2.5) (Y —X)-ny|

= Kn'—§, Vyd(p', sH—(6(y', s)—¢(&, t))+(s—t)%5(77’, s)

IA

ally’' =& +1s—tD(p —&'1*+1s—t]*?)
=< ¢0(X, Y)*e,

This and Lemma 2.1 lead to the estimate (c).
Next, if Y& B(Q,, 25,), then |X—Y |>d; and

kX, V)| < CSB(X, Yyt < c45;a5(X’ Y)a-n—l < Csa(X, Y)a-n-l,
whence we have the conclusion. Q.E.D.

LEMMA 2.3. Let 0<B=1 and X=(x, t), Z=(z, t)eSp. If Y=(y, s)ESy,
Y+X, Y#Z, then

(2.6) kX, Y)—k(Z, V)|
< cd(X, Z)PB(X, Y)e B 14 5(Z, Y)arB-im
and
2.7 kY, X)—k(Y, Z)]
< cd(X, 2)F@X, V) - rp 9(Y, Z)x B,
PrROOF. To show [2.6), first assume that d(X, Y)<3d(X, Z). Noting that
oY, Z) 20X, 2)+0(X, Y) 40X, 2)
and using Lemma 212, we obtain
|k(X, Y)—k(Z,Y)]
te(X, )I+1k(Z, V)|
c(0(X, Y)* 1 r+a(Z, Yot
< 60X, 2)R0(X, Y)r b1y 5(Z, Yyarbmin),

IA

IA

We next assume that o(X, Y)=36(X, Z). Furthermore, assume that #>s
and #,>s. Then

kX, Y)—k(Z, Y)

1 o 1x—]?
= 2(47) % (t, —s) Dl “Xp( 4(1‘1_3))
X|Ky—x, Ny>+(s—t)N;—<y—2z, Ny>—(s—1t)N;|
+[<{y—z, Ny>+(3-t2>Ns‘
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y 1 exp(— 1220
2(dm)"2(t,—s) O N 4, —s)
_ 1 (121
2(4z>n/2(t2—s)<n+2>/z”Xp( 4(t2—~s))l
E[1+[z.

To estimate I, let XeB(Q;, d;) and first assume that Z<B(Q;, 20;) and
Y=B(Q, 20;). Noting that

{z—x, Ny> =<z—x, Ny—N >4+<{z—x, N>
and
[{z—x, N>+ (t—1)N, | < c0(X, Z2)'*4,

we have, by Lemma 2.1,
I £ cd(X, Z2)""0(X, Y) "t < ¢0(X, Z)Po(X, Y)a-B-1n,
Next, if Z¢&B(Qj, 20;), then [ X—Z|>0; whence
I £ ¢l X—Z0(X, V)" < ce07%| X—Z |1 20(X, YV) 2
< ¢.0(X, Z2)Po(X, Y)yab-1m,
Similarly if Y & B(Q;, 20;), then | X—Y|>d;, whence

< ¢0(X, Z)Po(X, Y)* B-17m,

I c| X—Z|6(X, V)" < ¢07%| X—Z |8(X, V)2 nta

We next estimate I,. Using [2.5), the mean-value theorem and Lemma 21,
we have

(2.8) I < ¢,0(Y, )" (| x—2[0(P, Y) " 7*+ [t;—t|0(P, Y) "7
for some point P=bX+(1—5b)Z (0<<b<1).

We claim
2.9) 0P, Y)=cnoY, Z).

In fact, if max{|y—z|, |s—t,|"? =|y—z|, then
0P, Y) z lbx+(1—bz—y| = |y—z|—blx—=z|
= (2712 —1/2)0Y, Z).
If max{|y—z|, |s—1t.|"? =|s—t;|"?, then
o(P, Y)* = bt +(1—b)ts—s| = [&z—s|—blt,—1,]
=0, 2)%/2—0X, Z2)* =z (1/2—1/4)0(Y, Z)* = (1/4)0Y, Z)*.



The initial-boundary value problems 407

Thus was shown. Combining [2.9) with [2.8), we have
12 = 6125(X, Z)‘Ba(Y, Z)a—ﬂ—l—n.

Therefore we have
Finally, assume that t,>s>tf,. As in the proof of Lemma 22 we have

kX, Y)—k(Z, V)| = |k(X, Y)]
exp(—|x—y[*/4t—s))

g 13 (tl_s)(n+2)/2 5(Xy Y)1+a
K
< culti—t) P17t —5) P exp(— ‘4’& 2 S') )ox, vy
—
g 6145(X: Z)ﬂa(Xy Y)a—ﬁ—l—n’
which shows that [2.6) holds.
Similarly we can show [2.7). Q.E.D.

3. Parabolic maximal functions.

Let feL?(g). To estimate the LP-norm of (®f)s,, we may suppose that
supp fC B;=B(Qj, d;) by a partition of unity, where suppf stands for the
support of f and B, is one of the balls satisfying and [2.4). Putting
o=¢;, we define, with respect to the local coordinates,

{ f(n’: ¢(7],) S): S) if (7],’ ¢(77,7 S); S)ESD/—\B(QJ‘; 5])

gy, 8)= )
otherwise.

Then g is a function in L?(R") with compact support and we can estimate, by

(@, 9, D, D = CS(|5,’“77'|2+]t“3|)(a-n_l)/2|g(7]', s)ldy'ds

for (&', ¢&’, 1), HeSpNB(Q;, 20M0;).
In this section we denote by (x, ) a point XeR" !X R, instead of &=(&’, ¢).
Let g L?(R") with compact support. To estimate the function

X —> §6<X, Y)eirg(¥)dY,

we introduce a maximal function with respect to parabolic cylinders in R,
instead of balls. More precisely for X=(x, t)eR" and r>0 we denote Dby
C.(X) the bounded cylinder

Y =(y, s):YeER": |y—x| <r, |s—t] <r}
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and call it a parabolic cylinder. We note that if =1, then the x-component
is not considered, i.e., X=t, Y=s and C,(X)={s: |s—t|<r?.
Let feLi,.(R*). We define the parabolic maximal function by

1
HfX) = sup{ﬁmgcr(x) | F(V)|dY : r>0},

where |C.(X)| stands for the measure of C.(X) with respect to the n-dimen-
sional Lebesgue measure.

By the same method as in the proof of the lemma on p. 9 in [S] we can
show that the following covering lemma is also valid for parabolic cylinders.

LEMMA 3.1. Let E be a measurable subset of R™ which is covered by the
union of a family of parabolic cylinders {C.(X)}; with r;<r, for some r,. Then
from the family we can select a disjoint subsequence {C.}, such that

[El S¢S C,

where ¢ is a constant depending only on the dimension n.

Using this we obtain the following estimate for the parabolic maximal
function by the analogous method as on p. 5 in [S].

LEMMA 3.2. (a) For feLYR") and b>0 we set
E;p= {XER": SUf(X)>b}.

Then there exists a constant ¢ such that

Epool < £,

for every fe L*(R™) and b>0.
(b) Let 1<p=Zoo. Then there exists a contant ¢ such that

IHSflp, = clfll, for every f & LP(R™).

LEMMA 3.3. Let 0<f<n+1, 1<p<+oo, b>0 and R>0. Furthermore de-
fine, for g& LP(R™) with compact support,

I5@@X) = [ocx, VP11 gy .

Then there is a constant ¢ such that
I5(@)(X) < eHg(X)
for every g= LP(R™) with supp g B(0, R) and every X< B(0, b).
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PROOF. Set, for an integer 2 and X< B(0, b),
EyX) = {YBW, R): 6(X, Y)-n"1>2k},

If YEE,(X), then (X, Y)<r., where r,=2"%#*1-H  Writing X=(x, 1), Y=
(v, s), we have

lx—y| <rp and |t—s| < ri.
If XeB(, b) and Y=B(0, R), then

OX, Y)Fm < 33 2Mp, (V)

for some integer m determined by b and R, where Xg stands for the character-
istic function of a set E. From this we deduce

o, vyprrigmylay = e 3 20 ng ).

Since >, 2*rP*'<<co, we have the conclusion. Q.E.D.

LEMMA 3.4. If 1<p=-+oo, then there is a constant ¢>0 such that

rS _lg)]
sx.m>r 0(X, Y2

dY £ eHg(X)
for every positive real number »r<<R, XeR" and g= L?(R").
PROOF. Set
EiX)={YeR":6X, V) " 2>2k

and 7,=2"%#@*®_ From the same consideration as in the proof of Lemma 33
we deduce

fox, vyeleiay = ¢ B 2 ug(),
where m is the least integer satisfying »,<r». Since

m 1
SV 2kpprl= D) 20-aEh/(tenk < o 9m/(nt2) < c—,
id

k=- =-—00
we have the conclusion. Q.E.D.

LEMMA 3.5. Suppose that p>1, 0<B<n+1 and

1 1 B

-1 -—:.—._.

3.1 77 e
Then
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Ms(@)le = cliglp for all g € L*(R).

PROOF. By the same method as in the proof of on p. 119 in

we see that Iz is of weak-type (p, ¢) for every p=1 and ¢ satisfying [3.1).
Therefore I is of strong-type (p, ¢) by the Marcinkiewicz interpolation theorem
(cf. [S, Appendix B]). Thus we obtain the conclusion. Q.E.D.

4. Single layer potentials.

We go back to the (n+1)-dimensional Euclidian space and consider the
bounded domain D in §1. In this section we will show the boundedness and
continuity of single layer potentials of bounded functions on Sp.

We first note that the kernel W(X—Y) has the following properties.

LEMMA 4.1. Let 0<B=1and X=(x, t)), Z=(z, th)ER"*'. If Y =(y, s)eR""},
Y+X, Y+Z, then

IWX-Y)-W(Z-Y)| £ cdX, Z2)POX, Y) 5 "+6(Z, Y) 5"
and
WY =X)—WX¥ —=2)| £ cdX, Z)BOX, Y) 2"4+8(Z, V) E-7).

PROOF. By the same method as in the proof of Lemma 23 we can prove
this lemma. Q.E.D.

We next mention boundedness of single layer potentials of bounded func-
tions. Recall that ¢ is the surface measure of the lateral boundary Sp of D.

LEMMA 4.2. Let >0 and f&L>(g). Then the function h defined by
B = (80X, Y)P7-1F(V)do (1)

is bounded on R"*.

PrOOF. Using a partition of unity, we may suppose supp fCB; and | f| <1,

where B;=B(Q;, d,) is one of the balls satisfying and [2.4). It is obvious
that the function % is bounded on R"*\3B;, where 3B;=B(Q,, 30,).

We claim that /s is bounded on Sp;\3B;. Indeed we have, by Lemma 3.3,

h(X)] = ClS(|§"~1}’IZ+[t~s[)<ﬂ‘"‘1>/2d77'ds
= HMLE, D) =l

for X=(&’, ¢,(&', 1), )ESpN3B;.
Next, let X&3B,\Sp and pick Z& S, such that
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4.1) 0X, Z)=info(X, Y).
YeSp
We have
[hX)| = Sauf z>sza<x,z>5(X’ Y)Fmrtde(Y)

0X, V)b-"dg(Y) = I,+1,.

SE(Y.Z)>25(X,Z)
Noting that 8(Y, Z)<26(X, Z) implies o(X, Y)<3d(X, Z), we obtain, by [4.1),

¢y

. S )2 AY:
L= oX, Z)r*! Sa(Y‘z>szB(X,z)((361) +30)fdo(Y) = ca.

Further if 6, Z)>20(X, Z), then 0(X, Y)=(1/2)0(Y, Z). Consequently we have
L< c4ga(Y, 214 a(Y) < ¢

Thus we see that 4 is bounded. Q.E.D.
LEMMA 4.3. Let feL>(0o) and 0<e<1l. Furthermore define

u(X) = SW(X—Y)f(Y)do‘(Y) and v(Y)= SW(X—-Y)f(X)da(X).
Then
luX)—u(2)| < cdX, Z)¢||flle and |v¥)—v(Z)| < 0¥, Z)||f .

ProOF. We first note that W(X—Y)<c¢,d(X, Y)-* by Lemma 22. From
we deduce

lv(¥)—v(Z)]|
< o, 2yIf1(Jocx, Yy-erdon+{ox, 2)ndacx).

Similarly we see that » has the same property. leads to the con-
clusion,

5. Estimates of layer potentials.

In this section we will study the boundary behavior of the potentials with
respect to the kernel 2. We define, for f&L?(¢) and XeR"\Sp,

2fX) = = [ W&X=Y), Ny f)da®).
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To study the boundary behavior of the functions 9f and u,, which is
defined by [1.6), we consider a parabolic approach region at Z=(z, s))ESp
I'(Z)y={X&eD:(Z—-X)-n;>t0(X, Z)}
and
I'(z)= {(XeR"*"\D:0<t<T, (X—2Z)-n;>t0(X, Z)}

for a positive real number 7 satisfying =<(1-+M? "2,
Let v be a function defined on R*"*'\S,. We set

WEZ) = sup{|v(X)| : XEI'(Z)NB(Z, &)}

and
W¥Z) = supp{lv(X)| : XeI'{Z)NB(Z, &)}

for Z&Sp and £>0.
The layer potentials 9f and u, are estimated as follows.

LEMMA 5.1. Let 1<p=<co and feL?(a). Then there exist positive real
numbers ¢ and & such that

6.1 1@, < el flls, DO = cllfllp
and
(5.2) Il = clifllp, NupEl, = clflp,

where ¢ 1s a constant independent of f.

PrROOF. Cover Sp by a finite number of balls B;=B(Q;, d;) (/=1, ---, m)

satisfying and [2.4) We write simply ¢ instead of ¢; Recall that
|0¢/0t| <M. Without loss of generality we may suppose

L B(E s ye T
Further we may suppose suppfCB; Set e=min{d;, ---, 0n}. If Z&
Sp\B(Qj, 30;) and | X—Z|<e, then | X—Y | =0; for all Y=B,. Hence we have,

by
Fitol

63 @D = e swp [ gab e do)

gc2$MSVvaaovgcmﬂu.

“Snrl
0]

Next, let Z=(z, s9=(', &, s0E€B(Qy, 30)NSp. 1 X=(x, )=(, &, E
I'(Z)NB(Z, ¢), then
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Vg, s0), C'—§'>—(Cn~§n)+%—?—(§, So)(so—1) > 70X, Z).
Therefore we have
(5.4) 6a—Lal > 2K, Z)—50(X, 2) = %rB(X, 7).

Further if Y'=(y, $)=(1’, ¢(n’, s), )€ B(Q;, 36)N\Sp and &Y, Z)<3(X, Z), then

65 lx—yl 2 166’ 9| Z 16—Cal =16, s0—907, 9|
87 T, ., 2t
z 50X, 2)—(1gn'—U1+Mls—s|) = 58X, 2).

From this and Lemma 2.2 it follows that

1 1
|~ WEH—Y), NI < e S g gyeee
whence
(6.6 sSammsaa(x.z>—<vyW(X—Y)’ NpfY)deY)| < ceMg(', so),

where g(n’, )=f(p', ¢(n’, 9), 9.
We next suppose o(Y, Z)>30(X, Z). Then

G.7) X, V)= oY, Z)—dX, Z) = ~§—5(Y, 7).

From [5.7), and
exp(— | x—y|*/4(—s))
2(4n.)n/2(t_s)(n+2)/z

+,9xp(— |x—y|2/4@—s))
2(47r)n/2(t_s)(n+2) /2

—<(V,WX-Y), N> =

—z, Ny

z—x, Ny

we deduce

I_<VyW<X—'Y), Ny>| < C-,( oY, Z)e+t 1X—Z| )

(X, Y)n+e (X, Y)n+e
5(X, Z) )
oY, Z)n+e

< o(8(V, 2y 1t
On account of Lemmas 8.3 and 3.4 we have

6.8 VW E=Y), Ny fDdo()| < eugCy o).

| S
t oY, 2)>33(X,2)
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Therefore we obtain the first estimate of (5.1) by [5.3), [5.6), [(5.8) and
Similarly we can show the second estimate of (5.1) and the estimates of
(5.2). Q.E.D.

Let us now introduce a kernel i defined by

X, Y) =~V ,W(X=Y), Np—W(EX—-Y)N,
1

= kX, V)=

W(X—-Y)N;
for X=(x, )€ R"** and Y =(y, s)eadD, if t>s and h(X, Y)=0 otherwise.
Furthermore we set Ip=Sp\UBp.
LEMMA 5.2. The kernel h has the following properties:
(a) If XeD, then
S h(X, Y)dS(Y) = 1.
Ip
() If X&D, then
S h(X, Y)dS¥) = 0.
Ip
(C) ]f ZESD\BD, then

S WZ, V)ASY) = .
Ip 2

Proor. (a) Let X=(x, t,). For 0<t<t, the set D, defined by
D, = {(z, s)eD: s<t}
is a domain by the assumptions (d;) and (ds;). Applying (2.2) to w(Y)=1, v
=W(X-Y) and 2=D,, we obtain

S(qu\(8<t))ult

where I, is the set defined by [1.3) and N, is taken with respect to D, on I,.
Hence

S h(X, Y)dS(Y) = S W(x—y, t,—8)dS(Y).
Ipnis<ty I

Let Ii={yeR": (v, )el,} and J; be the image of I/ by the transformation
z2=(x—y)/2(t,—H"%. Then

= ey bty = izl
|, =y, t0dSW) = | W=y, t:—0dy = 3| exp(—1219dz.
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Since J; tends to R"™ as t—1,, we have

Sluh(x, Y)dS(Y) = lim hX, Y)dS(Y) = ;—}i/—zsmexp(— |21%)dz =1.

—»cOSIDmKn

(b) Let X=(x, t9g&D and t<t,. If IpN{s<t}=@, then

h(X, Y)dSY)=0.

SIDms<u

If 0D {s<t} + @, then by the same arguments as in the proof of (a),

SI h(X, Y)dS(Y) = lim h(X, Y)dS(Y)

z»toSIDmsc)

= limSI W(X—Y)dS(Y) =0,

t=tg

(¢) Let Z=(z, t)Sp\Bp and take positive real numbers B, z satisfying
B<a and t<(1+M?%"V2 Further let B; and ¢ be the same ball and the same
number as in the proof of Lemma 5.1, respectively. Moreover we can assume
that

(5.9) M@2é)*F < t/54.

Set r=min {e, ¢/3, 1/2}. Further assume that X=(x, ) DNB(Z, r) lies on the
spatial normal to Sp, at Z and Q=(q, )=2Z—X.
We claim that

(5.10) |h(X, V)+h(Q, V)| < co(Y, Z)F-1-"
for all Y=(y, s)eS) satisfying o(Y, Z)<2r. To show [5.10), we write

(6.11)  |hX, Y)+h(@Q, ¥)]

< o | EXP(= 2=y /4t —s)+exp(—|g—y |*/4(t—5)))
= U1 (t_s)(n+2)/2

exp(—|x—y|*/4(t—s))
(t___s)(n+2)/2

exp(—g—y|*/4(@—s))
(t_s)(n+2)/2 z—q, Ny_Nz)

exp(—|x—y|*/4(F—s))
(tis)iﬂ)/z Pz—x

+IWEX-)|+IWQ-Y)| = I,+1+ 1+ 1,41+ 1.
Note that 8(Y, Z)<2r<1. Using Lemma 2.1 and we obtain
I < 60X, Y) "2 4+0(Q, Y)"*®)a(Y, Z)!*e,

<y"“2, Ny>

z—x, Ny—N,>

—lg—v |2 At —
, N>+ exp( (tl_q_s)e)"lﬂ/),g( ) z—q, N,>
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I, £ ¢,0(X, V)" **03(X, Z)oY, Z)~
and
Iy < ¢ 0(Q, Y) **26(Q, Z2)o(Y, Z).
Since Xel'(Z)NB(Z, r) and Qel'{Z)N\B(Z, r), and show that

0X, Y)=c;0(X, Z) and 0(X, YV)=co(Y, Z), as well as 0(Q, YV)=¢.0(Q, Z) and
0(Q, Y)=c0(Y, Z). Hence

(5.12) I; < coY, Z)* " for j=1, 2, 3.
Similarly we have, by Lemma 2.1 and and [5.7),
(5.13) I; < ¢,0Y, Z)™* for j =5, 6.

Let us estimate /,, We can write Y=(', 9, s) and Z=({, {,, ) with
respect to the same local coordinates as in the proof of [Lemma 51 and t=s,.
Set

u= (', Vg, O, ' —C>+&) = (g, ta) € R™.

Noting that |x—u|=]|¢—u| and ¢g=2z—x, we have

(exp(—[x—y|*/4(@t—s))—exp(—|x—u|"/4(—s)))
]4 =cn (t_s)(n—-;f)/z <Z—X, Nz>
o | U= OB ol M=) iy
= Iu+1,.

To estimate I,,, we write X=(&’, &,, t). The mean-value theorem and
yield

G.14)  pa—al =180, =6, H—<Veol, 8, 'L
=< M(lnp'=C'*+Is—t[*))|p =L+ M|s—t]
< 2MO(Y, Z)x-Bo(Y, Z)HE+MO(Y, Z)*A5(Y, Z)* P < —%6()’, AR

and

}exp(— lé‘n—ﬁnlz)_exp(_ [§n—tal® )l

4@t—s) 4(t—s)
<tea =0l jg,— g Jexp( Lo toLy,

where p,=1—b)p.+be, for some positive real number b<1. Putting P=
(', pa, 5), We have, by
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exp(— 18— |/4(E—5)O, 2" |&2—pa | exp(— |£a—palY/All—5))
8 (t—s)+hi2 ~—|x—z|

é 6145()/; Z)“—ﬂa(Xr P)_n—Sa(Xy Z)'

Iy =< ¢

We claim
(5.15) oX, Py " 30(X, Z) < c;s0(Y, Z)" "2
In fact, if (Y, Z)<26(X, Z), then, by and (5.14),
0X, P) = |§a—pul Z [&a—0(n', ) —|9n—pal

2t T 48> T
= 50X, Z)—g0Y, Z)*F = 158(Y, Z),

whence holds. Next, if oY, Z2)>20(X, Z), then, by (5.14),

0P, Y) = |pn—1n| S |9a—ta] = {g0(Y, 27,

whence

X, P)=oY, 2)—0(X, Z)—o(P, Y)

=8V, 2)— 58V, Z) =450V, 2) =58, 2),

whence holds. Thus we obtain the claim and hence
Ii < 0, Z)E-m1,

Similarly we obtain
I < cpo(Y, Z)B-n-1

whence we have

Combining [5.12), (5.13) and with (5.11), we conclude that the inequality

holds.
Finally, if ¥ €BpU{Y €Sy: 8(Y, Z)=2r}, then

X, V)| € cr™ ™", 1(Q, V)| = |hRZ—X, Y)| < crr ™7

(5.16) I, < ¢80, Z)F17m,

Therefore, using (a) and (b), we have

ZSIDh(Z, )dS(r) = lim (SI h(X, Y)dS(Y)—}-SIDh(ZZ;X, Y)dS(Y)):l,

-Z, Xely D

where
T,={X=(, )eD:<{z—x, Ny=|z—x||N,|, X&B(Z, r)}.
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Thus we have the conclusion. Q.E.D.
We now define, for X=(x, t)€adD, Y =(y, s)&R"*},
X, Y)= (V. W(X-Y), N >+WX~-Y)N,

if t>s and A*(X, Y)=0 otherwise.
We also have the following lemma.

LEMMA 5.3. The kernel h* has the following properties:
(@ If YeD, then

S h (X, Y)dS(X) = 1.
SpYTp
(b) If Y&D, then
S h*(X, Y)dS(X) = 0.
SpuTp
() If YeSp\Tp, then

SsbuTDh*(X, Y)dS(X) =

Do

ProOOF. Let Y=(y, sp)&D. For s>s, we put
DP=A{lz, t): (g, VED, t>s}.
Applying to u(X)=W(X-Y), v(X)=1 and 2=D*% we obtain (a) by the
same method as in the proof of Lemma 5 2. Similarly the assertions (b) and
(c) can be shown. Q.E.D,

6. Compact operators.

Let us introduce operators K and K* which map the family of all Borel
measurable functions on Sp into itself. We define, for X&S,,

KFX) = (X, V)Fda(r)
if it is well-defined and Kf(X)=0 otherwise. Similarly we also define
K+ = (e (X, V)1 C0dox)

if it is well-defined and K*f(Y)=0 otherwise.
LEMMA 6.1. Let p>1. Then

(a) K and K* are bounded operators on L?(c).
(b) K and K* are compact operators on L?(c).
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PROOF. (a) Let f€LP(s) and {B,} be the family of balls satisfying
and [2.4). By a partition of unity we may assume that supp fC B, From
Lemmas and B.5 it follows that

”(Kf)szj”p = alflly,
where 2B;=B(Q;, 26;). Moreover, by we have

1K s pesjllo < €205 7" flls

which leads to the conclusion.

(b) Let {fn.} be a sequence in L?(g) such that ||f,],<1. To show that
there is a subsequence {fn,} of {fn} such that {Kf.,} converges in L*(a),
we may assume that supp fnC B;. Since {(Kfn)Xsp.s;ln is uniformly bounded
and equicontinuous on Sp\2B;, we can select {fn,}. such that {Kf,,} con-
verges uniformly on Sp\2B;. We also denote by {f.} the subsequence instead
of {fn,}. Therefore it suffices to see that there exist a subsequence {Kfn,}
of {Kf,} and a function g, L?(g) such that

6.1) [(Kfm,—&epllp —> 0 as k —co.

Set d=¢;, gn(n’, )=rn(y’, ¢(y’, s), s) with respect to the local coordinates.
To simplify the notations, we use x’, ¥/, ---, instead of &’, 5/, ---, in the proof
of this lemma.

£/t ;o exp(—=(x' =y |*+|g(x’, )—B(’, $)|®)/4t—s))
k(x', t; 9, s)= 2(477)532@_3)“?2;/2

XK' =x", Vyd(y', sH—@0, $)—@(x', )+ (s—1)ds(y’, )

if t>s and B(x’, t:y’, s)=0 otherwise.
Furthermore we define

Rg(x', )= Sfe(x’, t; v, $)g(y’, s)dy'ds.
Note that

[ecx, Vrundom) = (b, 25 5, 9gn(r, 9dyds

for X=(x’, ¢(x’, 1), )E2B,.

We next consider a class {v.}.>, of approximations to the identity consisting
of functions v.(x’, f)=e " v(x'/e, t/e?), where
exp(—— L
v(x’, t) = r 1—(x"[*+12])

0 otherwise

) i |x |21t <1,
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and y>0 is so chosen that Sv(x’, Hdx’dt=1. Using this, we define a Kkernel
and an operator by

Balx', 85y, 5) = Sﬁ(x’~lv’, t—r; v, Soa(w’, rdw'dr
and

K.g(x', t) = Sén(x', t; v, 8)gWy’, s)dy'ds,

respectively. Set Q;=(0, 0, t;) and Co={(x/, t): |x'|=<20;, |t—t,|=20;}. Since
k, is continuous and bounded on CyXCo, {K.gm}n is equicontinuous and uni-
formly bounded on C, By the diagonal method we can select a subsequence
{gm,} of {gn}, independent of n, such that {f(ngmk}k converges to u, uniformly
on C,. Therefore we have

[1Rugn,~un 20, dx7dt —> 0 as koo,

So, to see it suffices to show that there exists a sequence {a,} of positive
real numbers such that ¢, —0 as n-— o and

6.2) [1Rag—Rgi720,dx'dt < a,{1g17dx"dt

for every g L?(R") with suppgCC,. In fact, using [6.2), we can easily show

that {Kgmk} ¢ is a Cauchy sequence with respect to the L?-norm with weight
Xe

o

To show [6.2), we choose a positive real number p with 2p<a. [emma
2.3 yields
6.3) b/ —w', t=r; 9, $)—k(x', 15 5, 9]

S o(lw' P r Do x'—w' —y [P [t—r—s]| )@ n b2
+(|x' =y |24 |t—s]|)ampmn b2}
If lw'|<1 and |r|<1, then, by

S(Ix’—w’—y’l2+lt—r—sl)‘“""""”zlg(y’, s)ldy'ds
S CeHg(x'—w', t—7),

whence, together with Lemma 3.3 and [6.3),
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lkﬂg(x’) t)-Kg(x/) t) |

1
< e, () (Hele—w', 1=n)+ g, 1)
1
< oo ) (MG, 1-+Hg(x', 1),
Using [Lemma 3.2, we obtain

(SI(Kng—Kg)Xcol de'dt>”p < 67(711—)p(glgl’”dy’d3)”p,

which shows [6.2). Thus we see that K is a compact operator.
Similarly we can show that K* is also a compact operator. Q.E.D.

To solve the initial-Neumann problem we introduce another kernel j. Define,
for X=(x, 1) and Y =(y, s),
S, ¥) = —@HX~), N5 WE-VIN,

if t>s and (X, Y)=0 otherwise. Furthermore define, for f= L?(¢) and for
XESD,

JfX) = SJ‘(X, Y)f(V)da(Y)

if it is well-defined and Jf(X)=0 otherwise.
If t>s, then

exp(—|x—y|?/4t—s))

J X, Y)=— 2(4;7.')”/2(1‘—8)”/2“

(x—y, N>+ ({t—s)Ny).

Therefore the kernel j has the same properties as those of % in
(c) and So we can also prove the following lemma by the same
method as in the proof of Lemma 6.1.

LEMMA 6.2. Let p>1. Then J is a compact operator on L?(o).

7. Parabolic limits.

In this section we consider the parabolic limits of layer potentials @ f for
the heat kernel and of spatial normal derivatives of single layer potentials for
the adjoint heat kernel.

We first study the boundary behavior of @f.

LEMMA 7.1. Let p>1 and f<L?(g). Then
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@.1) lm  0fX) = Kf(Z)+f(2)

X-2Z,Xel'p(2)

for g-almost every point Z<Sp and

(7.2) lim OfX)=Kf(Z ——é—f(Z)

X2z, Xel%2)

for g-almost every point Z&Sp.

ProOOF. First, suppose f&CSp). Let Z=(z, s))=Sp\Bp and X=(x, f)E
I'(Z)NB(Z, ¢). On account of and [(5.5), we have

[R(X, YX)=F(Z)] £ €0, V) * Y —=Z] < .0V, Z)"

and [W(X, Y)| <0, Z)™™ for Y=Sp. Noting that N,=0 on Bjp, we can
write

O5X) = | R, YO~ ((Z)do(¥)
+f(Z)SIDh(X, Y)dS(Y) —l——f—(ZJZv)SSDW(X—Y)Nst(Y)
+1@), WX=YINIS().

From Lemma 5.2, (a) we deduce that the second term on the right-hand side is

equal to f(Z). Using the dominated convergence theorem and (©)
we obtain

lim =~ ®f(X)= Kf(Z)—f(Z)SIDh(Z, Y)dS¥)+f(Z)

X~Z, Xel't(2)
= K2 +51(2).

Thus we have for all functions feCY(Sp).

On the other hand, from Lemma 51 we deduce the following weak-type
estimate :

7.3 o1V €S,: @E>bp) = o(V12Y

for every b>0 and f=L?(g). Since C'(Sp) is dense in L?(¢) and K+(1/2)I is
bounded on LP?(¢), we see by the usual method that holds for all f= L?(g)
(cf. [S, PROOF OoF THEOREM 1, COROLLARY 1 in Chapter 17).

To see let f=C'(Sp). From the same consideration as in the proof
of we deduce
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lim  0fX) = Kf(2)—+1(2)

X2z, XEI’;(Z)
by using Cemma 52, (b). Therefore we have also [7.2). Q.E.D.

Next, let us define, for g L?(s), YER"'' and X&Sp, the adjoint single
layer potential v, by

0 (1) = — WX -V)gX)doX)
if it is well-defined and v,(Y)=0 otherwise.
The adjoint single layer potentials have the following properties.

LEMMA 7.2. Let p>1 and g=L?(a). Then for c-almost every point Z=
(2, so)=Sp we have

. 1 . L
a4 dm (G0, Nodg NousV) = K*g(Z)—52(2)
and
.5 lim  (<Vy,), Nt g NV = K#6(2)+ 5 2(2).

Y-z, vel'z

ProoF. We will prove only [7.4). First, assume that g&C'(Sp) and Z<
Sp\Tp. Noting that dW(X—Y)/0y;=—dW(X—Y)/dx; and N,=0 on Tp, we
write

“S o, VW X=Y), Nog(X)da(X)
- —Ss[fvyW(X —Y), N> (gX)—g(Z))da(X)
+g(Z>SSD<VxW(X ~Y), N,—N.>da(X)

+2(2), | (W EA=Y), No—NW (X—Y)}dSX)

SpuTp

+g(Z)S W(X—Y)N,dS(X).
SpuTp

By Lemma 5.3, (a), the third term on the right-hand side is equal to —g(Z).
Thus, using the dominated convergence theorem (cf. the proof of Lemma 71)
and and then [Lemma 53, (c), we obtain
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. 1
lim  (CVy0,(1), N+ Ne,o(1))

Y-Z.Yel (Z)

= K*g(2)—g(@)| V.W(X=2), N>doX)

—e)+a@), | WX=2N.ASX)

Sp
= K*g(Z)—582).
Thus we see that holds for all functions g= C*(Sp).
Let g L?(s) and set
W HZ) = sup{|<Vyw,(Y), N>| : Yel'(Z)NB(Z, ¢)}
= sup{| ~S<VyW(X—Y), N>gX)do(X)| : Y eIAZ)NB(Z, )}

and
¥ Z) =sup{lv,(Y)|: Yel'(Z)NB(Z, ¢)}.

Then we can show, by the same method as in the proof of Lemma 51, that
(7.6) T ¥l, < cillgl, and [[W)¥ll, = caliglly.

Since the operator K*—(1/2)I is bounded on L?(¢), we see that holds
for all g= L?(0). Q.E.D.

Similarly we can show the following lemmas 5.1 and 5.2.

LEMMA 7.3. Let p>1 and g L?(s). Then

lim (Ve X), No— g Noyus00) = J(Z)—5£(2)

X~z Xel'((Z)

for g-a.e. Z&S).

8. Proofs of Theorem 1 and Theorem 2.
We begin with the following lemma.
LEMMA 8.1. Let fe L>(o) and set
@.1) Q= {X=(x, he¢D:0<t< T}
and
oY) = ——SW(X—Y) F(X)da(X).

Then
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1

8.2) Sglwlwy — SSDv(K*f—i—%f)da—TZ— »*dS.

Sanc=m

Proor. Without loss of generality we may suppose ||f[l.=1. Choose 7,
satisfying D B(0, r,/2) and consider the set

A= {X:(xly tty Xa t): |le<7'o (]:1, Tty n), 0<t<T}'

By dividing the intervals {x;: |x;|<ro} and {t:0<t<T} into m intervals with
the same length, respectively, we obtain a mesh J1, which is a collection of
m"*! open intervals in R"*!. Denote by ¥, the collection of all intervals [ in
T, such that ]N\R2+@. For a sufficiently large m we may assume that for
each €%, with SpNI#@, SpNIc(n+1)"Y2B, for some j, where B;=B(Qy, ;)
is one of the balls satisfying [2.3), and bB;=B(Qj, bd;) for b>0. We note
that ¢=¢; satisfies for Z=0Q;=(0, 0, s,).
Moreover we may assume that

1 1

(8.3) V| < and (20)'*M < T

w|

We claim that
1
(8.4) X, Y) = §}¢(77" S)—7a]
for every X=(&', ¢(¢’, 1), )eSpN\2B; and Y=(y', 5., $)=€2NB;. In fact, since
1
[0¢', D—d(y’, s)| = ~3‘(IE'~—77'|+U——SI”Z)

by the mean-value theorem and [8.3), we have

1

0X,Y) = §(|€'—77'|+|¢(§', D—nn|+1t—s]?)
1 ,
= §1¢(17 , S)=Nal.

Let I be one of the intervals in &, and set J=IN§. First, assume that
JNSp=@. Since L*»=0 on J, the divergence theorem yields

8.5) SJWUWY = SaJv<<Vv, Ny>+~;~va)dS(Y).

Next, assume that /N\Sp#@. Let INSp,C B; and ¢=¢;. Take a sufficiently
small positive number ¢, and set

G =N, 9 )1 9 >P(n’, S)—eo}.
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We define
Ge =GN, Nn, 8): 92<P(p’, s)—¢}

for 0<e<e, By the divergence theorem we have

8.6) SG V|2 dY :S (<o, Ny>+%st)dS(Y).

v
3G,

Choose f§ satisfying 0<28<1. On account of Lemma 4.2 and we have,
for YeG,,

8.7) IVo(Y)| < c1§ 3X, V) (X do(X)
(SpNeBj)u(Sp\2Bj)
< ¢(|o(n’, $)—nal 407",
Since
’ _ -28 < ’ <o ~283 < 1-28
§G|¢(7} , )= | FdY < Smw@;- ]s~301<6jd77 dsS0 r2fdr < ciel7?8,
we have
[, lmorar < oo,
whence
(8.8) Iin;lSG IVol2dY = Sajvwd}f.
Set

Gg = Gm{(ﬂ,, Nn, S): 7]n:¢(77’; S)—s}
and Y.=(y., $)=(', ¢(’, s)—¢, s) for Y=(y', é(x’, s), s). Then Y.eI'{,¥).
Let Y.€G% Then
]<Vyv(Ys); N‘y5>1 = su )]<V.Z‘U(X>7 Ny>]

Xel‘r(Y)rI\)B(Y, ERY
for r<1/2, where N, is taken with respect to G. on GI. By the same method
as in the proof of Lemma 5.1, we can see that the right-hand side is dominated
by ¢4l flle. Noting that v is continuous on R"*' and using the dominated con-
vergence theorem and we have

8.9) lsill;lngv<<Vv, Ny>+—%st)dS = S v(K* f+% f)ds.

ﬁGf\SD

We next discuss the surface integral over F:=0dGN {y;=a}, which lies on
a hyperplane vk:al771+ +ak_177k—1+ak+17]k+1+ +an7?n+an+ls (1§k§n~1>-
Set
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F.=0G.N{y;=a}, E'={(y/, s):|19'1<d; |s—so| <dj}.

Every point in F, can be written as Y, for some Y =(y’, ¢(y’, s), s) and (’, s)
€E’. From (8.7) we deduce

W D KV(YS), Ny >l < es(r 40571,

whence

[, 1901 1<Va0), N> 1dSr)

<l dp o dyeadnan, o, dyads| P07,
k &
where

Elle: {(771’ tty 77k—l: 771!+1y ) 7771—1; S): |7]jl<5]'7 IS—SOI<6I}'

Therefore we have

limSF o<, Ny>+~;~st)dS = SFv(<Vv, NQ-{—%UNs)dS.

iad ]

Moreover note that <Vv, N,>=0 on 0G.N\{s=z}; we have, together with

(8.6}, (8.8) and [8.9),

SGWv[ZdY = SaGnSDv(K* f+% f)dS—i—S o<, Np—i—%st)dS.

dG\Sp

Since |Vv| is continuous on J\G, we also obtain the same equality as in
which J is replaced by J\G. Hence

1 1
2 — * . R
(8.10) SJWUI dy = SSDWU(K f+3 f)dS—}—S(aJ)\SDv((Vv, Ny>+-oN,)dS
for each J=IN& satisfying INSp+ @.
Next, to estimate the integral of |Vv|2 over 2\A4, set
Q. ={Y=(, 9€Q\A: |y|<r}

for r>+/nr, By the divergence theorem we obtain
8.11) S IVo|2dY = S o(<Vo, N SN )ds
) 2, a0, SRR

If Ye@, then |[Vu(Y)|<c,|y|™*"*. This implies
1

IZ(TL+1)

dy for some r,>0,
rsiyI<r ]y

Sgr]Vvlde < cBS:dsS
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whence
S IV0|2dY < +co.
[V

Similarly we have

1 1

1
(¥, Nyyt-goN,) e T 1 31

T
S < cgg dsS

gaer\nw:r) 0

whence

limS S =0.
row )i N1y =71}

v((VU, N> +—12—st>

Thus we see, by [8.11), that

1
2 J—
(8.12) Smwm dy = Sa(g\z)v<<Vv, N+ Zst)dS.
The equalities [8.5), (8.10) and lead to the equality
1
2 — * —
SQIVUI 4y = SSDU(K f+ Zf)do
1
v(<v, Ny>+—2—va)dS.

Sagn<4s=m uis=Tr)

Since Vv, N,>=0 on 02" ({s=0} U {s=T}), v=0 on 02N {s=T} and N,=-—1
on 02N {s=0}, we have [8.2). Q.E.D.

We now show that K*4-(1/2)] is injective on L?(¢).
LEMMA 8.2. Let p>1 and felL?(a). If K*f+Q1/2)f=0, then f=0 c-a.e.

Proor. First, we claim that K*f is bounded on S,. Indeed, if pa>n-+1,
then K*f is bounded on Sp, because X—d(0, X)* "' belongs to L?'(¢) for
p'=p/(p—1). If pa<n+1, then we choose an irrational number S satisfying
0<B<a. yields K*f < L%o) for g=p(n+1)/(n+1—pp). Therefore
f=—2K*feL%g). Repeating this, we see that K*f is bounded on S,. Note
that the function f, which is equal to —2K*f ¢-a.e., is essentially bounded.

Setting

WY = —SW(X—Y) FX)de(X),

we see by that v is continuous on R**!, Let £ be the set defined
by [8.1). From we deduce
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Sleyv(Y) | ady+é—ga.0mt=mv2d = SEQASDU(K*f_*—%-f)dS =0,

whence [Vv|=0 in £ and dv/0s=—Av=0 in £. Since v=0 on Tp\Sp, we see
that v=0 on £ and v=0 on S,. Therefore v is equal to 0 on D by the
assumption (d,) and the maximum principle. This, together with
vields

0= lim ((Vyv(Y), Nz>+%N,,v(Y))

Y-2z.Yel' (Z)
= K*[(2) =5 f(2) = K*[(D)+ 5 [~ [(2) = —{(2)

for o-almost every point Z&S,. Thus we have the conclusion. Q.E.D.
Furthermore we have
LEMMA 8.3. Let p>1 and fL?(g). If Kf+(1/2)f=0, then f=0 g-a.e.

PROOF. Set g=p/(p—1). On account of and we
see that K*-+(1/2)1 is surjective on L%e). Therefore we have the conclusion.
Q.E.D.

LEMMA 8.4. Let p>1 and feL?(o). If Jf—1/2)f=0, then f=0 o-a.c.
PROOF. Set
w(X) = ——SW(X—Y) FV)da).

Using and

[, 1vule= Ssbu(]f—é—f)dS—%STDuzdS,

we can show this lemma by the same method as in the proof of Lemma 8 2.
Q.E.D.
Finally we prove our theorems.

PrROOF OF THEOREM 1. Let feLP?(g). Since K is a compact operator on
L?(¢) by Lemma 6.1, K4+(1/2)I is invertible by Hence there exists
a function g L?(¢) such that Kg+(1/2)g=f. [Lemma 7.1 yields

lim Pg(X) = (K—i—%])g(Z) = f(2)

X-Z. Xel (2

for g-almost every point Z&Sp. Moreover it is obvious that @g satisfies the
heat equation in D and
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i, 08X =0

for every Z& Bp\Sp. Thus we see that u=@g is the desired function. Q.E.D.

PROOF OF THEOREM 2. Since J—(1/2)I is invertible by Lemmas 6.2 and 8.4
there exists a function ge L?(¢) such that (J—(1/2)I)g=f. We see by Lemmas

7.3 and 5.1 that g is the desired function. Q.E.D.
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