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1. Introduction.

In this paper we construct the fundamental solution of the Schrodinger
equation for a charged particle in electromagnetic fields:

5.0 1g/ . @ :

thg = [7 El(""h‘;‘;—f‘lk(t x)) +V(x)]u

=Hn Hu, teR, x=(x, -, xq) € R?, (L1)

where 0<#<1 is a parameter and A(, x)=(A.{, x), -, A4(t, x)) and V(x) are

the vector and scalar potentials of the fields which satisfy the following
assumption :

ASSUMPTION (A). For k=1, ---, d, At x) is a real-valued function of
¢, x)ERXR?, and for any multi-index a, 02A4,(t, x) is C! in (¢, x)eRxR®.
There exists ¢>0 such that

lagAk(t) x)l_’_lagalAk(t,- x)' é Ca’ |a| 2 17 (t’ x) S RXRd; (1'2)
103B@, x)| < Co(l+ x5 lal 21, 1.3)

where B(f, x) is a skew symmetric matrix with (&, /)-component B,;({, x)=
(0A;/0x,—0As/0x,)(t, x) and | B| denotes the norm of matrix B regarded as an
operator on R V(x) is a real-valued C> function which satisfies

103V (x)| < Co, lal =2 (1.4)

Let ¢(r) be a classical path in the electromagnetic field joining yesR? at
time s to x&R? at time ¢: g(r) satisfies Lagrange’s equation

¢(r) =v(r), v(r)= B(r, qt)v(t)+F(r, q(t)), s=t<t, (1.5)
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with boundary condition

gs)=y, q)=x, (1.6)

where F(t, x)=—(0,A)¢, x)—(@.V)(x). When Assumption (A) is satisfied, if
|[t—s]| is sufficiently small, for any x, yR* there exists a unique solution ¢(z)
of (1.5) and (see [12, Proposition 2.6]).

For a path 7:[s, t]1— R® satisfying (d/dt)yyeL*([s, t1; R*), y(s)=y and
r()=x, we define the action along 7 as

s = L, 7@, y@nde, .7

where L(z, 7, y) is the Lagrangian

Lee, 7, =T A, -V ). .8

We write the action S(g) along the classical path ¢(r) which is a function of
(s, x, ¥) as

S(@ = S@, s, x, ¥). (1.9)

Let A:s=7,<7,< --- <rp=t be an arbitrary division of the interval [s, ¢]
into subintervals. Put Ar;=7;—7;_,, j=1, -+, L, and |A|=maxX;s;s1A7;. For
this division A and for any x;=R¢, j=0, ---, L, we denote by g, the piecewise
classical path joining the (z;, x;), i.e., g, satisfies

ga(t) = B(r, A(0)4r(0)+F(z, (@), t5St=7;, 7=1,, L, (1.10)

with ga(z;)=x;, =0, ---, L. The action S(g,) along the picewise classical path
ga can be written as

L
S(ga) = S(xz, -, %0) =j§5(?j, Tj_1, Xjy Xj-1). 1.11)

What we mean by the time slicing approximation of Feynman path integral

(see [2]) is
KA;n t s, x, v)

L 1 d/2 . S L-1
- g(m) [ ac_nexo(in 28 o x5 100) [ dxy, (L12)
with x=x; and y=x,.

The construction of the fundamental solution of the Schrédinger equation
based on the idea of Feynman path integral has been done by Fujiwara [3],

[4], [7], Kitada and Yajima [12].
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When the vector potential A is absent and the scalar potential V, though
time-dependent, satisfies [1.4), Fujiwara constructed the fundamental solution
for the Schrodinger equation by using the associated integral equation to show
that K(A; A, 1, s, x, y) converges to the fundamental solution in a strong topo-
logy as |A|—0 (cf. [3]). When A is present, Yajima also constructed the
fundamental solution in a similar way to [4], under Assumption (A), showing
the convergence of K(A; 7, t, s, x, ¥) as |A|—0 in the same topology as in [4].

On the other hand, again, in the case where A is absent and V satisfies
(1.4), Fujiwara applied the stationary phase method to express the
integral (1.12) as the main term plus a remainder term for L large (cf. [5]),
and in constructed the fundamental solution by not using the integral
equation but directly showing the convergence of the obtained expression as
|A]—0. Tsuchida has extended the results of Fujiwara to the case
where both A and V are present and satisfy Assumption (A). In this paper we
want to use it to study the convergence of the integral (1.12) in this case
where A and V satisfy Assumption (A) and to construct the fundamental solu-
tion for the Schrédinger equation [L.1).

In §2 we state our main results, Theorems 2.4 and 2.5, which are

proved in §3, 4 and 5.
2. Main results.

In this section we denote the k-th component of x&R? by (x),, k=1, ---, d.
The next two propositions were proved in [11].

PROPOSITION 2.1. There exists a positive constant 0 such that if |t—s|<0

then the action corresponding to the division A

L
S(xyg, -+, x9) :jg‘,lS(z'j, Tj_1, Xj Xj_1) 2.1)
has the following properties :
S) S(rj, 51, x5, xj_1) is of the form

[ x5—x;_1]2 .
S<ij Tj—l) xj; xj—l) - 7(1*'4‘1_“4-&)(?]) Tj-—l) X jy xj—l); J = ]-y ttty L' (2-2)
Tj—Tj_l)

For notational simplicity we omit t; and ©;_, to write

Si(xj xj-1) = Sty T, X5 Xj_1) 2.3)
and

(x5 xj0) = &(Tj, Tj_g, Xj, Xj_1). (2.4)

These wy(x;, x;_,) have the following properties:
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(i) For any mz=2 there exists a constant K, >0 independent of j such that

max sup |0208wy(x, y)| < kn. (2.5)
2sia+Bfism z.ycRd
(i) Let (%, -+, %o) be an arbitrary solution of the system of the equation
anSj+l()—:j+L- x-j)'—*_axjsj(xﬁ x’j—l) = O) ] == 1) ) L—l' (2'6)

Then for any m=1, there exists a constant B, independent of (X1, ---, %,) and
the division A, but dependent on d such that

t~

-1

El 1§'§Sml[(az‘j_l+azj+azj+1)aagj(wj+wj+1)]("E]'-lx fj; xj+1)l é me (2'7)
181=1

where (6,}._1—}-61}—{—62“1)“:{1,?:1 <a(zj_1)k+aw,k+a(x}.“,k)ak for a multi-index a=
(ay, -+, aq).

<.

ProOOF. For the proof see [11, Theorem 2.3]. O

When S(xz, -+, xo)=2k1S(z;, 75_1, xj, x;_,) satisfies (S) in [Proposition 2.1|,
then if |t—s]| is small enough, for any x;, x,&R? there exists a unique critical
pOint (xt-—b ) xik), i-e-y

a.tjsj+l(x;k+1: x;“)'l"aijj(x;g, x?—l) = 0’ ] = 1; Ty L—‘ly (2-8)

where x¥=x;, x¥=x, (the proof is in [11, §37). The piecewise classical path
g% corresponding to this critical point, joining the (r; x¥), coincides with the
classical path g(z) so that ¢(s)=x, and ¢(f)=x;. In particular we have x¥=q(zj),
j=1, ---, L—1,

We write the Hessian matrix of S(x;, ---, x,) with respect to (xr_, >+, X1),
which is a d(L—1)Xd(L—1) matrix, as

Hess S(xz, =+, x¢) = Hy+Wy(X)

hy 0 0 - Wiu(X) Wie(X)
=0 e 29)
0 - o hy e WaaX)
for X=(xz, -+, x,), where h, is an (L—1)X(L—1) matrix given by
1 1 1
A T Ae,  Anm
1 1 1 1
ho=| “An  An T An A (2.10)
. ' 1 11
ATL_1 ATL_l ATL
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and W, (X), &, I=1, ---, d, are (L—1)X(L—1) matrices with entries

W er(X))jo1,5= 0z p 0cz;_p ,05(%5 X51), (2.11)
W i) = 0o p 0 py @5a(X g0, X)F @55 %5.0)), 2.12)
W ai(X))j jur = a(xj+1)La(zj)kwj+l<xj+b xj), (2.13)
WX, ; =0, if li—jl 22 (2.14)
Let G, be the inverse of H,;
ga 0 0
Hy=ca=|) 0 T 215
0 o g

where g, is an (L —1)X(L—1) matrix with (, 7) entry

(Ti—s)t—1;)
t—s ’
_ (@—s)t—1)

AT <ji<i<[—
s , if 1<7<i< L1,

if 1=/

IA
h
i

(ga)i; =

We apply the stationary phase method to the right-hand side of (1.12).

PROPOSITION 2.2. There exists a positive constant 0 such that if |t—s|<0
then K(A; b, t, s, x, y) is of the form

1 d/2 .
KA;n t s, x, y)= (*?h(t—;_?)) exp(eh™'S@, s, x, ¥))

XDt s, x, y)M2A4rA R, 8, s, x, 9),  (2.16)

where
DAt s, x, p) = det(+G ) Wa(X)) | x=ca, 231 ot - (2.17)
For any a and B there exists a positive constant C,g independent of A such that

102087(A; 7, 1, s, x, )| < Caphlt—s|t (2.18)

PrOOF. Since the phase function X7, S(z;, t;_1, xj; x;_,) satisfies (S), we
can apply [11, Theorem 2]. Hence we have [Proposition 2.2, O

The aim of this paper is to show the following three theorems.

THEOREM 2.3. There exists a positive constant 0 such that if |i—s| <0 then
there exist functions d(t, s, x, v) and r(h, t, s, x, v) in B(R*XR?*) such that

DAt s, x, y) > 14+(E—s)d({, s, x, v), in B(R*XRY), as |[A] -0 (2.19)



304 D. Fujiwara and T. TsucHIDA

and
rlA;n t, s, x, v)—rh t s, x, ), in B(R*XR), as |A| — 0. (2.20)
There exists a positive constant C such that
1d@, s, x, | = C(lt—s|+]1x—3]) (2.21)
and for any a and B there exists a positive constant C.pg such that

19208d(t, s, x, ¥)| = Cap (2.22)
and
1ag657’(h, t, s, X, y)l = Caﬁhlt_S]Z. (2-23>

In Theorem 2.4 below we will give an explicit formula for 1+(t—s)d(, s,
x, y). Let £ be the Hilbert space L*[s, t]; R%) with inner product

(, v)2 = 3 | us@ua@de, for u=(u, -, ug), v=10,, , va) € L,

and let & be the Sobolev space Hi([s, {]; RY)={ulu, an<.L, u(s)=u()=0} which
is a Hilbert space with inner product (u, v)«=(u, ¥)_r.
We write the unique solution ¢(zr) of (1.5) and (1.6) as

t—7t T—S
el s (2.24)

q(t) = ¢°(t)+¢*(z) with ¢%c) = -
Then we have
§'(z) = B(z, ¢@)§(®)+F(r, ¢r)), s<t=<t and ¢'(s) =g ®)=0. (2.25)

The first variation of the functional 4 >wu — S(¢°+u) vanishes at the critical
path ¢*. The second variation at ¢' is

D h— S:(‘Ed;h(r)!2+‘h(z')(Yh)(z-))dz', (2.26)
where

(Y h)(z) = B(z, q(r))%h(r)-FZ (D)h(z)

0 Bis(z, q(1)) Bus(z, g(t)) -+ oo hy(7)
_ | Bu(z, q(@)) 0 Bos(t, q(z)) - | d [ha(7)
: : : oeldr :
Ba(z, q(r)) 0 ha(z)
Zy(T) Zis(t) hy (1)
n Zu:(r) fo.(r) hz.(‘f) . ©.27)

Zaa@! \ha®)
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Here Zu.(z), k, I=1, -+, d, are multiplication operators given by
d
Z y(7) :EI(%HB km) (T ¢O)Ga(®)+ 0w, Fr)(T, q(1)). (2.28)

The operator Y is symmetric in £ with domain D(Y)=4, since B(r, ¢(7)) is
skew symmetric and we have

4 Ble, g(e) = 2002,

For each fixed x, yeR% Y is a bounded operator from 4 to .[, i.e., there
exists a constant C(x, y) such that ||[YA|,<C(x, y)llhlla. Z is a Hilbert-Schmidt
operator from 4 to .L because the Z,,(r) are bounded functions for fixed
x, yeR,

Let G be the Green operator for the Dirichlet boundary value problem :

—i(t)=f(r), s=t=t, u(s)=u@®)=0.

Then for f=(f,, -+, fo)E.L, we can write Gf=(Gf)s, -+, (Gf)a) as

Gu@ = | gr, Ifae)de, k=1, -, d, (2.29)
where
gz, o) = .ﬁ?_'{ts__)(s%__@., ifs<e<c<t
_ ‘('%;_ﬂ’ fs<r<c <t (2.30)

Since G is a Hilbert-Schmidt operator from £ to %, GY is a Hilbert-Schmidt
operator on 4 and GZ is trace class on 4.

THEOREM 2.4.

I+@—s)d(E, s, x, ¥) = lAilrnOD(A; t, s, x, v) = det;(I+GY)e™ 92, (2.31)
l -

where det, is the regularized determinant and TrGZ means the trace of the
operator GZ.

For the definitions of the regularized determinant det, and the trace, for
example, see [10, §9 and §3].

REMARK. The expression for 1+4(t—s)d(t, s, x, ) in (2.31) differs from
that in Fujiwara’s result where the vector potential A is absent. In this
case GY was trace class so that 1+(—s)d(t, s, x, y)=det(I+GY), while in our
case we have to modify its expression as in (2.31) since GY is not trace class.



306 D. Funiwara and T. TSucHIDA

Using the functions d and » given in 3, put
k@, t, s, x, 3) = (1+E—s)dE, s, x, y)V2A+rh, t, s, x, ¥)). (2.32)

THEOREM 2.5. There exists a positive constant 0 such that if |t—s| =<0 then
the limit of KA;n, t, s, x, y) as |A]—0

Kwn, t s, x, y)=ImKAQ;nt s, x, 5

1A1-0

1 d/2 . )
= (gmn—yy) CSPERTSE s % oklh 1,5, %, ), 233
is the fundamental solution of the Schrodinger equation (1.1).

Theorems 2.3, will be proved in §3, 4, 5, respectively.

3. Proof of Theorem 2.3.

Before proving we prepare some lemmas about the classical
path in electromagnetic fields satisfying Assumption (A). In this section also
we denote the k-th component of x by (%), k=1, .-, d.

LEMMA 3.1. Let |t—s| <1,
(i) For any a with |a|=1, there exists a constant C, such that for any
solution (¢(7), v(7)), s=t=t, of (1.5),

t
[[102B)e, g@) 1 v@1de = Ca. (3.1
(ii) There exists a positive constant 0, such that if |t—s|=<0,, then for any

x, y&=R? there exists a unique solution (g(t), v(r)), s=t=t, of (1.5) with (1.6).

Proor. We refer the proof to Yajima [12, Lemma 2.1 and Proposition 2.6].
O

Let ¢(z)=¢"t)+4'(z) be the classical path joining (s, y) to (¢, x) defined by
L
@22, Put fls=\ | @) dr and | fllz==supsces:| FO)].

LEMMA 3.2. There exists a positive constant 6,=0, such that if |t—s|<0,
then the following inequalities hold :

10208 | 1 < 11020841 < Caplt—sl, for la+pl =1; 3.2)
105054 |z < Cap, for |a+Bl =1; 3.3)
gl = C(lt—s|+1x—y]). 3.4)

For any 7, and 7, with s<t, <, =4,
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G508(q(e)—g(e)| = 1T

S g BessatCaglre—nl, for Jatplz1, (35)

where 0;,, is Kronecker’s delta. In (3.2-3.5) all constants C, C.z are independ-
ent of x, .

ProoF. The proof of is in [11, Lemma 2.2]. (3.3) can be proved in
a similar way to

(3.4). By Assumption (A) and (2.25), using ||d(Gf)/dt|p< |t—s]||fl, we
have

lg*ler = [t—sH[Bg+F|w
= Clt—sllgllr+Cli—s|?
= Cli=s|(lx—y+Ig' )+ Cle—s]™
This yields that
lg'lr = Cli—sl(lt—sl+lx—y1), (3.6)

if |t—s]| is sufficiently small. Therefore it follows that

gl = [x—y1+IgMm = C(t—s|+1x—3D. 3.7
(3.5) is easily seen by [(3.4) and [2.24). |

We will need the next lemma in this section and §5.

LEMMA 3.3. The notation w(, s, x, y) given by (2.2) is used.
(1) Let s<t with |t—s|<8,. There exists a positive constant C such that

Q@) s, x, y)+div A)s, M| = C(t=sl+1x—y]), 3.8

where A, is the Laplacian with respect to y.
(1) Let s<r<t with |t—s|<0,. For any a there exists a positive constant
C, such that

|[(0,40,40,)A ], 7, x, 2)+wr, s, 2, V)| ,=

= Cullt=si+| 2 1@B)E o@)| (@)l do), 39)

s 15181+
where z* is the critical point of S, r, x, 2)+S(r, s, z, ¥) with respect to z.

PROOF. (i). By the definition of S(t, s, x, y) we have

St s, % 9= | (PO ae, gepitr-vigte)e

= 2P T A a0 -Va@)de, @10
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and hence

ot, s, % 9= (" 1 a6, griae—va@n)ar. @.11)

Since ¢ satisfies (2.25), we obtain

O, @), s, x, y) = S:&y)kq"-(B(r, q()§(r)+F(z, q)dr—Aw(s, y), (3.12)

O 0, s, x, ¥) = S:awkqo'(B(T, g@N§(@)+F(z, g)dr+ AL, x). (3.13)
Since 0y ,gn=>—7)t—5)"dsm, it follows that

f— d
Ao, s, x, y) = St T<k2 B, a(y)an+ Z (0cx), Bam)im 0y ,Gn

t—s 1 s, m=1

d
R

k,

B, F)- D 00 )dT—(div A)s, ). (3.14)

1
Therefore by and [3.4), we have
|Ay@)@, s, x, y)+(div A)(s, y)]

< (1,2, 1Brndepydhl 4 2 10, Bandin-dip40al

k. n,m=1

d
T2

k.

10, Fr) 0¢y) ,qn ])dz‘

1
< Clt—=s|+C(lt—s|+|x—y )+ Clt—s]
< C(lt=s|+]x—y]). 3.15)
(ii). Similarly to the above, we have

Ao, 7, x, 240, s, 2, Y)) =

¢ p— a
:S ¢ > kna(z)an"“ Z (a(z) Bkm)ﬂm a(z)kC]n

ri—7 \r'n=1 k.7, m=1

d
A:J= (a(x) Fk) a(z)kqn)df

1

d
2 (a(z)anm)q‘m'a(z)an

k. n, m=1

+ST‘Eii(k,$=‘Bkna(z) Jnt

é= (am Fp)- a(z)an)dT (3.16)

1

Hence it follows with that
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A0, 7, x, 2)+o(r, s, 2, ¥))| =]

A
= C(HHSH-Ss [;I]:ll(aﬁB)(T, q(0)| \v(r)}dr). &.17)
Similar arguments are valid for the differentiations (0,+0,+0,)%, |a|=1. Thus
(ii) has been proved. J

In the rest of this section we prove Let |t—s| be so small
that Propositions 2.1 and hold. We shall first estimate D(A; ¢, s, x, ¥) and
next show the convergence of D(A;¢, s, x, v) and r(A: 7, 1, s, x, V).

Let x¥ be the critical point of Sy(x,, x,)+S,(x,, x,) with respect to x,. We
define a function D(S,+S;; xs, x,) through the Hessian determinant at x¥ in
the following way:

AflAfz

DS+ xa, x0) = (421t
1 2

)" det Hess.o(S.+5.). (3.18)

Then D(S,+S;; x5, x,) is of the form
D(Sg+S1; X2, xo)

At Az, N
= det(]—}— AT.'I *ATZ'}Q(Xz, X1, Xo)] r;=x’f>
B At Az, At Aty N2
= 1+AT:AA“‘;2A11(C02+0)1) | x1=x’f'—* <"A‘)z_‘1 AT2> C(Az, 10) ’ (319)

with
8%zl>1(w2+w1) a(”l)la(rl)g(w2+w1)
Q(X X x ) . a(xl)za(rl)1<wg+a)l) a%zl)z(wz_’_wl)
2, X1, Xo) = : :

: a%zl)d(w2+w1>
where A;, is the Laplacian with respect to x; and c(x,, xo) is a function in
B(R*xX R®) because of (S) (i).

We introduce the notations S;,; and w, ;. For two integers £ and [/ with
L=k>1=0, put

Sexr, x1) = S(th, 1, X2, X1) (3.20)
and define w, ; as
— |2
SuiCrn, 1) = 5o . (s ). 3.21)

Then we have

Seroa(xp, Xp_0) = Se(xe, Xp_1)
and
Sp(xe, x0) = Sp(xs, x¥E)+ - +SulxF, x0)
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with critical point (x¥.,, ---, x¥.,) with respect to the variables (xz_y, -*, X141)-
The following proposition estimates D(A; ¢, s, x, y).
THEOREM 3.4. There exists a positive constant 0,<0, such that if {t—s| <0,
then DAt s, x, v) is of the form

L
D<A; t: S, X, 3’) - I:Q[;I2D<Sk+sk-l,0; Xk, xO)IX=(1,I’£_1.m,x’f.y)

=1+ 3 AT’EZ s ) Ay @x@ror, )| xmo sy ot
+|t—s|®d.(A; L, s, x, ¥)
=14+@G—s)ds(As t, s, x, v). (3.22)
For any a and B there exists a positive constant C,.z independent of A such that
1050§d,(As 2, s, x, ¥)| < Cap, (3.23)
10305d:(A5t, s, x, 9| = Cag, 3.24)

and there exists a positive constant C independent of A such that

[da(As 2, s, x, )| = C(lt—=s|+[x—y]). (3.25)

PRrOOF. The first equality in was proved in [11, Lemma 3.9]. The
second equality and follow from [3.19), (S) (i) and Lemma A (A.2) in
Appendix. (S) (i) yields the third equality in [3.22) and [3.24). Next we show
By Lemma 3.3 (ii), and we have

IdZ(A; t; S, X, y)l

= maX (|As, (@344 1.0) | xete.o_p ot D 1E=s1 B3 8 5, %, )]

= C(it=s1+], 2,1@B), 9@ v@1de)+Cle—s]

t
8

= C(lt—s|+lx—yD. (3.26)
Thus we have proved [3.25). O

The next theorem shows that {D(A;t, s, x, ¥)}, forms a Cauchy net.

THEOREM 3.5. Let A’ be any refinement of A. Then if |t—s|<0, there
exists a function d(A’, A;t, s, x, v) such that

DAL s %9 A
D(A; t, S, X, y> - 1+1A|d(A ’ A9 t; S, X, y)- (3.27)

For any a and B, there exists a positive constant C.z independent of A and A’
such that
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10%05d (A", Aty s, x, )| < Cag. (3.28)
We have the following corollary to this theorem.

COROLLARY 3.6. If |t—s| <0, then for any a and (8, there exisis a positive
constant C,z independent of A and A’ such that

10205(D(A" 5 t, s, x, )—D(@Ast, s, x, ¥)| = CaglAl (3.29)
PROOF OF COROLLARY 3.6. From [Theorem 35 we have
DAt s, x, v)—DA;t, s, x, v) = |Ald@A, At s, x, y)DA; ¢, s, x, v).
This and [Theorem 34 yield ]

PROOF OF THEOREM 3.5. Let A: s=7,<7,< - <rp=t be a division of the
interval [s, t]. Let 1<7<L. Since A’ is a refinement of A, A’ divides the
interval [r;_,, r;]. We denote this division of [z;_,, 7;] by 4j, i.e.,

Ajiti=150<15 < <750,=7;, L;>0.

We introduce some notations. Corresponding to this subdivision we set x; ;=
qA'(Tj,l); Afj,lzfj,l—fj,l_l aﬂd leleTj'1+ +Afj_l for l—"—-—-]., ey, Lj. For two
integers £ and [ with L;=k>[=1, put

O (x5, x5,0) = OT5. 8, Tj1, Xjoky X5.0). (3.30)
By [6, Proposition 2.6], we have
D5t s, x, )= DAt s, %, 3) I D@5 7y iy 8, 052, (.31
where x¥=q(r;). So to prove we have to prove that
jli[lD(A}; T, Tjoy, XF x¥ ) = 14+]Ald(A, At s, x, v), (3.32)

and that d(A’, A;t, s, x, y) satisfies (3.28).
By the second equality in we have with a function d, in B(R*xXR?)

L
11 D(Aj; 75, Tj-0, &F, x320)

j=1
L Lj ATj,kT',k- ) .
= L1 I 5 AL @00 ey
FAS(AY; T, Ty, 3, x;';)]. (3.33)

To apply Lemma A (A.l) to the right-hand side of [3.33), we estimate the
second term in each factor of the product on the right-hand side of [3.33).
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First, from Lemma 33 (ii) it follows that
sz _éfj,ij.ka

k=2 Tj_k

A.rj,k_l(w ;e 1+Cl) 10)[(; 1 "”}‘,Lj—l),
< Carfar, 4 3 1@LB) @) @) de). (3.30

Second, we can show that

At; T
2504 3 ATl @t o0l e |

< Coptrf(aet 2 +[7 5 |@LB)E g@) 1@1d7), latpl 21
lt S| Tj_1 1si71s2
3.35)

In fact, for instance, differentiating by (x)s, m=1, ---, d, the summand of the
summation on the left-hand side of (3.35), we have

0oy y[Azj (@021 0) | 0% 453 4_p 03, 9]
= 0y X5 802 48z, )@ 1+ 00| u; 525 ko1 2k
+0 ) 5 2100, 4 Az 4 D@} 1@ o) 0% 0%y 0% 0
0 550025, Ary o DOk FOL D ot 40t 43 )
= 002y 5300, 4y H0a, ;1025 J)Az; o J@Fh 1+ 0L )| 23 423 41230
+0 2y (XK 4= 25 0)0z; Az, )@k o)
+0(0 (X5 51— 2500z 4, Az D@10 (3.36)
So by (S) (i) and [Lemma 3.3 (ii), we obtain

Ia(z)m Zj k- 1(‘” l)b 1+(!) 10>|(zjk .z‘] B lJ:j 0)|

< O(Toat " 5y 10LB)E, g 101 de)+ C( 24+ )

< C(aepr 4?5 1@ (@) ol dr), 3.37)
tj_1 1siT|s2

using |0 x50l <C and |0, (xFs—xF)| <Tj 4/ 1t—s|+CT;. . (see and
[3.6). Hence together with 32, Ar; o Ty 4_1/ T+ <Az;, (3.37) yields (3.35) for
lal=1. Arguments for other differentiation 9204 hold analogously. So apply-
ing Lemma A (A.1), we obtain by (3.34, 35) and Lemma 31 (i),

i Ar; T
aaaﬁ( I [l-i— Z Tj,} i L’Ax] . 1(wk e ol 3 1.

j. k

+Atid (A T, T, xF, x;“_l)]—l)l

x; Lj—l)
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< M [1+-Captrs(bet 247 53 (@LBYE @) vl dr) |1

[t—s| Tj_1
L At Tj
< 3 Capbery(Be+ 2t 5 @B o) 100 d7)

[t—s|  Jej_y 1simise

< CuslAl. (3.38)
This with (3.31, 33) means (3.28, 32). Thus we have proved [Theorem 3.5. [
Next we show the convergence of »(A; %, ¢, s, x, y) as |A|—0.

THEOREM 3.7. Let A’ be any refinement of A and let |t—s|<8,. Then for
any a and B there exists a positive constant Cnp independent of A and A’ such

that
10208(r(A; i, t, s, x, y)—7(A' 5 1, 8, s, x, V)| < CaplAl. (3.39)

PrROOF. We use the same notations as in the proof of [Theorem 3.5. As A’
is a refinement of A, we can use [Proposition 2.2 to write K(A'; A, t, s, x, y) as

L L-1
K@ nts x, 9) = Snd(Lq)}I:IIK(A}; h, T5, T, Xy, xj~1)]].;.[ldxj, (3.40)
where
KAj; h, w5 Tjoy Xy X520)
- 1 a2 L L Ly,
- g(m) SRd(Lj_l)eXp(zh kzjls(fj,k; Tj,k_l, -xj,k, x]'_k__l)> I;[;_[ldx]"k
_ 1 are T
o <m) exp(th™'S(ty, Tjo1, X5 X5-1))
X D3 5 Toay Xy X5 LTG5 Ry T Ty Xy, X)), (3.41)

with x;,=x;.; and x;.,=x; And for any a and B there exists a positive
constant C,p such that

|0208r(A}; 1, T3, Tion, X5 X520 S CophAch. (3.42)
So we have

K(A'; h’ tr S, X, y)_K(A; hy t,' S, X, y)

_ 1 /e oy &
- .E(QﬂihATj) SRd(L—I)eXp(Zh §S<Tﬁ Ti-1, xj) x]'—l))
L~
b, As b, xp, xo)}}:dxj, (3.43)

where
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b(A,: A; h, XLy, **, xo)
L
= }:IIED(M; Tj, Tjo1, Xj Xjo1) M?

X(1+r(A.;; h: Tj, Tj-1, xjy xj-—l)):]'_l . (3.44)

We can show that for any « and j there exists a positive constant C,s such
that

IagLagob(A’) A; h; XL xf—ly ) x’lk’ xo)| é CaﬁlAi- (3'45)

Moreover, recalling here [11, Theorem 1], we can show, as we do below, that
bA’, As h, xz, -+, x,) satisfies the assumption (H.2) there. With the same nota-
tion as used in (H.2) we can put

441(: CK|A‘ and XK= [2(1+CK[A|)]2. (3.46)

Suppose for the moment that [3.45) and [3.46) are valid, which will be proved
in below. Then we can apply [11, Theorem 1] to the right-hand
side of (3.43) and we have

K<A,; h} t} SI x! y)——K(A; h’ t! S’ x’ y)

= (o) expnis
= (Qi;r'ih(t:s)) exp(in™'S(E, s, x, ¥))
XDt s, x, y)7VpA, Ay 8, s, x, ), (3.47)
where for any « and § there exists a positive constant C,s such that
10205p(A", A 1, t, 5, x, )| = CaglAl. (3.48)
On the other hand, we have by (2.16)
A, A it s, x, )

= (PO B I ain s, x )

D@Ast, s, x, 9)
—(1+T(A; h» f, s, X, y))- (3.49)
Therefore follows from and [3.49). O

In the next lemma we check [3.45) and [3.46) which remain to be proved in
the proof of [Theorem 3.7 above. For two integers L=k >[>0 and a function
a(xg, -+, X,), we use the notation:

* *
a(Xg, =+, Xp, X, 0, Xo) = a(Xy, =+, Xp, XEq, =+, XFer, X1, o0, Xo).

LEMMA 3.8. (i) For any sequence of positive integers with 7,=0<j,—1<
N1<je—1< o <ju<jun—1=L, n=1, -, L—1, if la;|=K, j=0, 11—1, j,, -,
In—1, 7a, L, there exists a positive constant Cx such that
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7 « , —_— 1 1
aggagi Hlaggg:{al‘;zb(A ’ A; h} XL, xjny xjn—ly xjn—p Ty le-h xO)

< CklAl[2(1+CklADT™ (3.50a)
If j.=0L, we read the above inequality as

" ajg a ’
aggpla.r}z:iaz;zb(A ’ A; h} XL, xjn—ly xjn_ly “'le—h xO)

< Cxl|AI[204+CklADT™ (3.50b)

(i) holds: for any a and B there exists a positive constant C,p such
that

102,08,6(A", As b, x1, %0)| < CaplAl. (3.51)

PrOOF. We prove only (3.50a). [3.50b) and [3.51) can be proved in a
similar way. We can write

, r 1 T 1 —
b(A ) A; h’ XLy xjni xjn-ly xjn_ly Y le—-ly xo)

= L A+1Adu(¥ sy, %5, ) I A+ 1AId4 00, %50)
x [T (-+Adr(es, o)1 (3.52

with x¥,_ =xj,_, and x¥,_1=xj,_1, u=1, -, n+1. Here we put

Jy—1

1+ 1A du(xjy1, X5, ,) = le lD(Aén; Tmy Tmo1, X5, Xho1) Y2, (3.53)
m=jy_1+
]-+ ‘A‘ d;l(x]u) xju—l) = D(A}u ; T]u’ Tju-—l,v xjuy xju—-l)—llz (3.54)
and
L+ATrj(xF, xF) = 1+r(Af; b, Ty 750, X5, 250, (3.55)

with x¥,_ =x,,_, and x¥,.,=x;,.1, u=l, -, n+1. So (3.32, 22) and [3.42) yield
that d,, d and rj are in B(R*xR%. Apply Lemma A (A.1) in Appendix to
the right-hand side of [3.52), then we obtain that if |a;|<K, =0, j,—1, /i,
-+, Jn—1, 7a, L, there exist positive constants Cg, C%, C% such that

— pee—

& ’
apgna iy - .
axgaxfglagﬂ';_iagﬁb(A ’ A: h: XL, xjn; xjn—b xjn_y R le—ly xO)

< (14 CxlA] f11<1+cKAr§->—1
J=

= (110 Cote— 1)1+ C el A (1 C A1
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= CklAlI T 1A+ Cx AN+ CklA]@n+1)1+Cx [A])™
= CklAI[20+CxlADI™,

where in the second inequality we have used (1+a)***"'—1<a(Zn+1)(1+a)?",
a=0. Therefore we have proved (3.50a). O

With [Theorem 34, [Corollary 3.6 and we have completed the
proof of

4. Proof of Theorem 2.4.

In this section, to simplify notation we consider the case d=2. Let ¢a(7)
be a piecewise classical path given by (1.10) such as ¢a(zj))=x; j=0, -, L.
Put ga=q¢i+gy with ga(D)=((t;—7)/Atp)x ;. +((t—7;_)/Arpx;, t;.5t<7; j=1,
-+, L, and fix x,=y and x,=x. Using the operator ¥ given by [2.27), we can
write the entries of the matrix Wi=Wa(X)|x=z.z%_,... st @S

(Wkl(X»wl X=(z, 2} i, 2t 9
L-1

= (a(l‘j)la(z‘i)k jgij'(x;', xj'—l))1X=(r,z*i_1.-~-,z’f, )

= (a(zi)kq(}p Y@(xj)lq&‘i'a(xj)ﬂ}x*))r

- (ng>ij+([VI]él)ij7 k: l: 11 2! i; ] = ]-; Tty L—ly (4-1)
where we put 0, g5*=0 00| x=(z, 24 _,... 21, and

Wi = Ozp 94 Ya(xj)lf]?g).f, Wi = (aui),ﬂ%, Ya(zj)ll]};*)J:- 4.2)

So we write W% as

W, W? Wi Wi
K 0 1 __ 11 12 11 12
W= W= (e e) (. )

Note that W% and W} are symmetric matrices. The next two propositions
yield [Cheorem 2.4

PROPOSITION 4.1. For fixed x, yeR?,
det(J+GaAW%) = det(I+GaWQ)+o(1), as |A] — 0. 4.3)
PROPOSITION 4.2. For fixed x, yER?,

det(I+GaWY) — deto(I4+GY)exp(TrGZ), as |A] —0. 4.4)

We prove first [Proposition 4.2 and next [Proposition 4.1l
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PROOF OF PROPOSITION 4.2. Here we use a finite element method. Let P,
be an orthogonal finite rank projection in 4 onto the linear hull of {auj) R
j=1, -+, L—1, k=1, 2}, which is a set of piecewise linear paths. It is clear
that P, converges to the identity operator I strongly on 4 as |A|—0.

Since G,W} has the same eigenvalues as P,GY, it follows that

det(/+GaW$) = det(I+PAGY), 4.5)
where det on the right-hand side of means the Fredholm determinant.

Since P is of finite rank so that P,GY is trace class on % and since
Tr(PsG B(d/d7))=0 by the skew-symmetricity of B, we have
det(/+ Py\GY) = det,(I+PyGY ) exp(Tr PAGY)

=dety(I+PAGY)exp(Tr PAGZ). (4.6)

Let |A|;=Tr|A] for A in the trace class and [|Alls=(Tr(A*A))"2 for a Hilbert-

Schmidt operator A. By the inequalities in [10, Theorem 9.2 (¢) and Theorem

3.1], we have
|dety(I+PrGY)—det,(I+GY)]

S (Pa—DGY |l exp[ C(| PAGY [lo+GY [, +1)%] %))
and
ITrPAGZ—TrGZ| < |(Ps—D)GZ|,. 4.8)

By the arguments in [10, p. 42, Example 3], for the factors in (4.7, 8 we have
[(Pa—DGY |, I(Ps—DGZ];—0, as [A] —0. 4.9)

Therefore by (4.5-4.9) we have proved [Proposition 4.2 O

PROOF OF PROPOSITION 4.1, We begin with three lemmas. To simplify
the formulas, in Lemmas and [4.4] and their proofs we write

SjilaBi lvldr = S”“ m}3=1|(a;B)(r, g(@)| lv(r)|dz.

Tj-l

LEMMA 4.3. There exists a positive constant C independent of A such that
for any k, =1, 2,

{Wei-n s, 1TWissl, 1W)msl = C, (4.10)
[ Wi, s W) s s+W i) jen. 5]
< C(S”'*Wam (vl de+ e +Ar,0)), (4.11)
Tj—l

I(W}n)j_le = CATj, i(W}rl)j.j‘ = C(A7j+ATj+l):
|(Wi)js il = CATj, 4.12)
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and
|V i, s+ Wi s+ W i) jan sl

= C(Afj+ATj+ 1)(S

9B ) dr+(Aty+A7s.)). (4.13)

tj—l

ProoF. First we show (4.12) and [4.13). By the symmetricity of Y,
3.1 (i) and [3.2), we have

|Wk)jo1.51 = l(a(x,-_l)k(]?p Ya(z,-),(]lA*)ﬂ = |(Ya(zj“1>kqom 5<z,>,qk*),r|
SNY0o, p,9allet ey ep O p @i¥lioe, . cp = CAz;,
since suppa(xj_l>kq3\f\supp3(xj)zqg* is included in [z;_;, 7;]. The second and
third inequalities in (4.12) can be shown analogously. follows from
| Wi j—r, s+ Wi 5+ ke, 51
= [(@zsp,+0czp,+0y,p )00 Y0z p,gir]
= [(Y@zy_p,+0p,+0crsp )00 O, qi¥)c]
SNYO@crjp,+0p, 0y, p )0l L e,y e gy 1002 p @5¥ 2

< C(Af,-+Afj+1)(S” 1081 1v| de+(Ars At ),
5.1

since the support of d¢zp,q%* is in [7;_;, 7;1] and @y, +0p, F0yup J@n
=0r,m On [75_1, Tjs1l.

We can show [4.10) and (4.11), replacing 9. ,,¢k* by 0z ,q4 in the arguments
above and using 8¢ ,g4)lz><1. 0

For an NXN matrix A=(a;), put |Allsev=>¥,_,1a|®"

LEMMA 4.4. There exists a positive constant C independent of A such that

NG AWl r2ce-v < CLIA?, (4.14)

|'Tr GaWi1 < ClA] (4.15)
and

|Tr GaWS| £ C. (4.16)

Proor. For the (7, 7) entry of gaW},, we have

(@aWi)is = (@a)i. i Widjor, i+ (@) iW i) 5+ (@06 501 Wk 11, 5
= ((gn)i. 51— (@) e, )W) j_1. 5
+(ga)i Wi 5+Wiis s+ Wi jer. )
+ gt = (@81, DWW, a1 - 4.17)
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Using |(ga)s, jo1—(8a)e. 11 £AT;, [(ga)i,j1—(ga)i. 5| SA7y,, and Lemma 4.3, we ob-
tain

(gaWiul < Ce+an (| 71081 vl detbeytac,). @iy

zj—l

Hence by Lemma 31 (i), we have
IGAW A mece- = 35 [(gaWi)sl®

=1, JsL
kJLLz

<2cLiAlS (S”’*‘wm vl dr+(Ac,+Azy)
J=1 j-1

T

= CLIA|?
and
1 1 ..
|Tr GAWA| glskj;_leZ—IKgAWkk)“l

< ClAL.
Therefore we have shown and (4.15). Similarly to the above, we have
by Lemma 43

el = (|7 1981 101 drt e +az,.0), (4.19)
j-1

T

and so ((4.16). O

Recall the Hilbert-Schmidt norm |-|. and the orthogonal projection Pa
defined in the proof of [Proposition 4.2

LEMMA 4.5. We have

[V GAWAV G alle, r2et-n < [|PAGY |,

Proor. Let {¢;}%, be an ONB in .4 such that ¢,, ---, d.r._1»=Range(Py)
and

a(:q)l(]% [N
0
,\/-—G—A a(.‘tz:) IQA — ¢i2 . (4‘ 20)
a(zL-l)ZC]Z Pacz-1)

Then by we have
IPGY 1= 3 |(§0 PGY $))a"

2 1
2(L-1) -

2 516y Y6):!* = [VCWVGalhreaas. O
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REMARK. If is satisfied, then (@i, ¢;)a=0; ; because Hy=(0,,q},
0z p g ))-

We are now in a position to show [Proposition 4.1, For a division A, let
A s<r]< - <3<t be a refinement of A such that L'|A’|<2|t—s|. Put
As=det(J+G W% and By=det(/4+GaWY9). Then we have

|det(I+G W —det(I+G W) |

< |Ay—Ap |+ 1Ay —Bar |+ Bar—Bal. (4.21)
We have to estimate the three terms on the right-hand side of [4.2I) First,
we have obtained in that | Ay—As | <CJlA]. Second, for the third

term, we have shown in [Proposition 4.2 that B, is convergent. Third, noting

and Trv/GaW4+/Gy=Tr G,W5, we have
| Aar— By |
= |dets(I+VGa Wk A/ Ga)exp(Tr GaW¥)
< |detos(I+VGaWE A Gy)—dety(I+VGa WSV Gan | 1exp(Tr Gy W) |
+1exp(Tr Ga W%)—exp(Tr GaWi) | |deto(I+ VG A WSV Gadl.  (4.22)
For the first term on the right-hand side of (4.22) we have

|deto(J+ VG a Wk /Gy ) —dets(I+ VG Wo vV Gao) | lexp(Tr Gy W)

VG WS Gl w20+ | €xp(Tr G 5 WE)|
< 1Ga Wi lla rea-0 explC(| Py GY B+ 1G o Wy I3, gzcz-n+1)]
< CLMRA| < Clt—s|V2AT|Y3, (4.23)
where we have used an inequality in [10, Theorem 9.2 (c)] in the first step,
IVG WiV Ga o r2r-n < [|GaW i o p2ez-1

(see [10, Theorem 8.1 (8.4")]) and Lemma 4.5 in the second step, and Lemma 44
in the third step. For the second term on the right-hand side of (4.22) we have
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lexp(Tr Ga-W¥§)—exp(Tr GaW4)| Idets(I++Ga Wi VGl
= | TrGyW5 —Tr Ga Wi iexp@(ITr Gy W5 |+ Tr Ga WS 1))
Xexp(C|vGa WiV Gy |8, rez-v)
< |Tr CaWiilexp(C(ITr Gy WS [+ Tr Gy Wh |+ PaGY [3)
= Cl47],
where we have used inequalities [det.(/-+A)| Zexp(C|iAll?) (see [10, Theorem 9.2
(b)]) and |e*—e?| <|a—b|e20®1*1®) in the first step and and

4.5 in the second and third steps. Therefore we have completed the proof of
[Proposition 4.1l -l

5. Proof of Theorem 2.5: Fundamental solution.
In this section we prove that the limit

K(h’ t’ S? x} y) :llz;llr—[.}OK(A; h} t,' S’ x? y)

1 di2 ;

- N 7_——1 >, X h) t; S, X, ‘,); :-'l
(gmin—s)) EXPERSE s, 5 Mk b5, 5, 30, G
where k@, t, s, x, y) is of the form given by (2.32), is the fundamental solution
of the Cauchy problem of the Schrodinger equation We begin with a
proposition. Let 8 be a positive constant such that Propositions 2.1, and
Theorem 2.3 hold if |[¢t—s|<a.

PROPOSITION 5.1. Let |t—s| <0 with t>s. Then we have

[?aﬁ%(?az—m, .\')>2+V(x)]K(h. fs x, 9) =0, 5.2
[—?@ﬁ—%(?ay—A(s, y)>2+V(y)]K(h, t, s, x, y)=0. (5.3)

Proor. We show only [5.2). Using the Hamilton-Jacobi equation

2,50, 5, %, DH5 @S0, 5, %, V)= Al DAV () =0,
we have

n 1/% . 2
[Foct (G0, A0 DY +V0) K, 1,5, x, 0
B _fi V*_Jﬁ,,,,,,, dl/2 o
= gmniesy) XPERTISE s, 3 MAG 1,5, %, 9),

where
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hh, t, s, x, ¥)

=0uk(h 1,5, %, Dt (85 5, % 9=, =iV AN, DYeh, 1, 5, %, )

FOuk 1, 5, %, DS, 5, %, )= Al DNF oAk 1,5, %, 3). (B

So we show that hA(#, ¢, s, x, y)=0. We take the limit of

kh, tte, s, x, )=k, 1, 5, X, )
&

as ¢—0 to calculate d,k(%, t, s, x, v). We may suppose ¢>0. The case ¢<0
is dealt with in the same way. We put r=¢(t—s)/(e+t—s) and

D(S@+e, t, x, 2945, s, 2%, y))
= t?det Hess,(S(t+¢, ¢, x, 2)+SE, s, 2, )| ,=a%.

By the stationary phase method [6, Lemma 3.5] or [11, Lemma 4.1], we have
the equality :

1 d/2 1 d/2 o
(Zﬂiha) (Znih(t—s)) Skdexp(zh (Sltte, 1, x, 245 5, 2, 3))
Xkh, t+e, t, x, 2k, t, s, 2, V)dz

1 aiz .
= (%ﬁim) exp(ih1S(t+e, s, x, )
X D(St+-e, t, x, 25)4+S(, s, 2%, y)"%(x, ), (5.5)
where
b(x, v) = kh, t+e, t, x, 2%k, ¢, s, z*, v)

_%%D(S(H-s, t, x, #Z9+S¢, s, 2%, y)™

XA k(h, t+e, t, x, 2k, 1, s, 2%, y)+7'(x, ), (5.6)

with some b'(x, y) in BR*XR?*. By the definition of k@, t+e, s, x, y), we
have

k(h, t-+e, s, x, ) = D(S(t+s, t, x, 2¥)+S(, s, 2%, y)7V2(x, ). 5.7
Since we have by [3.19),
D(S(t+-e, t, x, 2%)+S(, s, z*, y)~'/*

= 1—;—Az(w(t+s, t, x, 240, s, 2%, y)+1ic'(x, ¥), (5.8)

with some ¢’(x, v) in B(R*XR?), and by [2.23),
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k@, t+e, t, x, 2) = 1—%d(t+s, t, x, 2)+er(x, 2), (5.9)

with some 7,(x, 2) in B(R%xR?), it follows that
k(h, t+e, s, x, ¥)
= [1-FA@E+e, £ 1, 2+0t, 5, 2% M+, )]
X[k b, 5, 2% )= TTAR, e, 1, 3, P 1, 5, 2, 9))
-%d(t%, t, x, 2%k, t, s, 2%, ¥)+1°r(x, y)]
- k(h, t; S, Z*) y)—‘;‘Az@)(t'f‘e; t} X, Z*>+w(t’ S, Z*; y))k(h; t’ S, 2*) y)
ht
—’27A2<k(hy t+E, t’ X, Z*)k(hr t} S, Z*: y))

—dlt+e, b, x, 2k, 1 s, 2% $)Fen(E, 9), (5.10)

with some 7,, r; in B(R* X R?). [5.10) yields that

k(h, tt+e, s, x, v)—kM, 1, s, x, y) _ ki, s, 2% 3)—kM, L, s, X, 9)

3 15

_"Z'T;'A,(w(t+s, t, x, 2¥) 4w, s, 2%, )k, t, s, z¥, ¥)

ht

A P v, 28k (h *
21-5 Az(k(hy t“} S, t,v vy R )/ (h: t’ S’ 4 ’ y))
g e b R 1 s, 2 ), ), (5.11)

Let ¢ tend to zero in [5.11), The left-hand side of [(5.11) converges to
0.k(h, t, s, x, v) as ¢ | 0. The first term on the right-hand side of

: * 4y , *_
kh, b, s, 2% y)—kM, t, s, %, 9) Z,,,,,,ﬁg:)(axk)(h, t, s, x+0(z*—x), y)do

B e
converges to
—0.k(h, t, s, x, ¥)(0:SC, s, x, y)—A(, x)) (5.12)
since z* tends to x and (z*—x)/¢ tends to —v(¢) as ¢ | 0, and since
0,50, s, x, v) =v(®)+ A, x).
In the second term on the right-hand side of [5.11), the factor
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Az(a)(t+8; t} x’ Z*)+w(t’ S’ Z*) y))
= (A, @)(+e, t, x, 2¥)F+(div A, 2H)+AQ.w)@, s, 2%, y)—div A)(E, 2%

converges to

S0, s, 3, D= =iV AN ), as €0,

since z* tends to x, and we have
[(A)(t+e, t, x, 2%)+(div A, z%)| = Cle+|x—2*])
(see Lemma 3.3 (i)) and

AZS(ty S, 2, J’) = t’,f%-*_Azw(tr S, z, y)-

Hence the second term on the right-hand side of converges to

1

d }
~—2—(Ax5<t, s, %, 3)— - —(div A)G, 0)k@, 1, 5, x, ).

The third term on the right-hand side of converges to

n
—-Q?Ark(h; t’ S, X, y))

by [5.9). For the forth term we have
d(t+e, t, x, z29kM, t, s, 2%, v)—0 as ¢[0,
since we have, by
[d(t+e, t, x, 2%)| < Cle+]x—2*]).

The last term converges to zero, since r%/¢ tends to 0.
Therefore (5.12, 15, 16) and yield that

atk(h’ ty S, X, y)

= —0:k(, 1, s, x, ¥)0:5(, s, x, )—AE x))

1 d .
—5(8:S¢, s, 1, =T —@iv A, D)k, 1, s, %, )

n
_—i;Axk(hy t: S, X, y)

(6.13)

(5.14)

(6.15)

(5.16)

(6.17)

(6.18)

So we have proved A(#, ¢, s, x, y)=0 and so [(5.2). can be proved similarly

to the above.

O
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Let J=[a, b] be an interval with |a—b|<d. For t, seJ with {>s we
introduce the operators

K t, 9f0 = | Kt s, %, 9)f(5)d 5.19)

and
K, s, 0f () = | K15 5, Df0)dy, e CaRY. (5.20)

We apply [1, Theorem] to (5.19, 20) and see that there exists a constant C>0
independent of ¢, s/ such that

K, t, s)fl2wey = CllfllLewe . (5.21)
Let s, 7, t=J with s<r<t. Then we have
K t, nKh, r,s)=K#, t, s). (5.22)

So we use [5.22) to extend the definition of K(h, t, s) for any ¢, s€R by [5.22).
The next theorem shows [Theorem 2.5.

THEOREM 5.2. Let 7, s, t=R.

(i) s-lim K(i, t, s) =1, in L*(RY). (5.23)

t—s

(i) K@, t, s) is unitary on L*(R?*) and
K, t, VK, r, s) = K, t, s). (5.24)

(iii) If feCy(RY), then K, t, s)f is strongly differentiable in t and s and
we have

ihdKh, t, s)f = Heh, HK(h, t, s)f, in L¥RY). (5.25)

Proor. We write the L*WR%)-norm as |[[-]|. (i). If feCy(R%), we have

|\K, t, s)f—fll—0 as t—s, by the stationary phase method. So (i) follows

from [5.21).
(iii). Let f=Cy(R*). By Proposition 5.1, for any x&R? we have

oK, 1, 9)f() = | (L. — A, ) +Vin) Ko, 1, 9)F00).
2\

Moreover, since the right-hand side of this is in L%*WR%), it follows that
LI
(K, ', $)f—Kh, 1, 5)f) = gt Hh, NK®, 7, s)f dr

as a Bochner integral in L%*R%). Therefore we have proved (iii).
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(if). By (iii) and the symmetry property of H(k, t), we have |[[K(%, ¢, s)f||
=|lfll. And similarly we have |[K*(, ¢, s)fll=|fl, where K*(%, ¢, s) is the
adjoint of K(#, t, s). These yield that Range K(%, t, s)=L*R?) and so K(i, t, s)
is unitary. Hence we have

Kt s) = K*@, t, s) = K, s, ). (5.26)
By and [5.26), we have (5.23) for any ¢, », s€R. O

Appendix.
The next lemma is a simplified version of [8, Lemma 2.14].

LEMMA A. For a positive integer L, we put x=(xy, -, xp)ER*. Let ],
d and K be positive integers. Let fi(x;, -+, Xj,), =1, -, J, be C=(RY)-func-
tions. Assume that there exist positive functions e;j(x), j=1, ---, J, such that for
any j=1, -, J,

a
gag‘_‘;ij(le: Ty xjd) = Ej(X),
if lag,| =K, u=1, .-, d. Then there exist positive constants Cx and Ck such
that if |la;| <K, =1, -+, L, then
L J J .
gagi[g(l+fi(xfl’ e xjd))—l]l ég(l—l—CKsj(x))~1 (A.1)

and
| T 1A+, 0 50— 1= 3, 200 ||
=1 Jj=1 /=1
< (é sj(x))zexp]:C}{( Jé ej<x)+1)]. (A.2)

The constants Cx and C% are independent of L and ] but dependent on K and d.
PROOF. The proof can be done by induction on J. O
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