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1. Introduction.

A Fuchsian group $G$ acting on the unit disk $D$ is of type $(g, 0, m)$ , if the
quotient space $D/G$ is a Riemann surface of genus $g$ with $m$ holes. This
Riemann surface is also called of tyPe $(g, 0, m)$ . From now on, let $(g, 0, m)$

satisfy $2g+m\geqq 3$ . This condition means that $G$ is non-elementary. Teichm\"uller

space $T(g, 0, m)$ is the set of equivalence classes of marked Fuchsian groups of
type $(g, 0, m)$ and a global real analytic manifold of dimension $6g+3m-6$ .
There are various methods parametrizing $T(g, 0, m)$ . For example, $T(g, 0, m)$

is parametrized global real analytically by some lengths of closed geodesics and
intersection angles between geodesics on a Riemann surface represented by a
marked Fuchsian group (see Keen [5]). Such lengths and angles are called length
parameters and angle parameters, respectively.

It is known that length parameters parametrize $T(g, 0, m)$ global real
analytically (see for example, [3], [6], [8], [9] and [18]). We denote by
$N_{1}(g, 0, m)$ the minimal number of length parameters which describe $T(g, 0, m)$

global real analytically. Recently, Schmutz [14] showed that

$N_{1}(g, 0, O)=\dim(T(g, 0,0))+1$ .

Thus in the case of $T(2,0,0)$ , the minimal number of length parameters is
seven. In the same time, the author [10] also obtained this result independ-
ently and described this parameter space. The length parameter spaces are
represented by some complicated polynomials.

In the hyperbolic geometry, a triangle is determined by three lengths of
sides or three interior angles. Hence we can deduce that $T(g, 0, m)$ is param-
etrized global real analytically by some angle parameters. We denote by
$N_{2}(g, 0, m)$ the minimal number of angle parameters which describe $T(g, 0, m)$

global real analytically. For describing the deformations of figures, angles are
more suitable than lengths. Thus it seems that the information from angles is
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richer than the one from lengths. Hence we conjecture that

$N_{2}(g, 0, m)\leqq N_{1}(g, 0, m)$ .
Since a polynomial with respect to cosines and sines can be changed to a linear
form, the angle parameter spaces become possibly easier than the length param-
eter spaces. Forthcoming paper, we shall show that

$N_{2}(g, 0, m)=\dim(T(g, 0, m))$ in the case of $(g, 0, m)\neq(2,0,0)$ .

In Section 2, we define the one-half power of a M\"obius transformation. This
is useful for considering the geometry of M\"obius transformations. In Section 3,
we show the geometry of hyperbolic transformations and give some criterions
of canonical systems of generators of types $(0,0,3)$ and $(1, 0,1)$ . In Section 4,
we investigate the relations of the sides and the interior angles of some triangle
which is determined by the axes of hyperbolic transformations. Then we obtain
global real analytic angle parameters for $T(1,0,1)$ and describe this angle
parameter space. Also we show that

$N_{2}(1,0,1)=\dim(T(1,0,1))$ .
We also consider the positions and lengths of some geodesics on a Riemann
surface of tyPe $(1, 0,1)$ . In Section 5, we decompose a marked Fuchsian group
of type $(2, 0,0)$ into two basic marked Fuchsian groups of tyPe $(1, 0,1)$ and
consider how to combine these two groups by one angle parameter. Then we
show that

$N_{2}(2,0,0)$ $ $\dim(T(2,0,0))+1$

and this angle parameter space is simpler than the length parameter space
stated in [10].

2. Preliminaries.

The group of M\"obius transformations preserving $D,$ $M(D)$ , is the group of
isometries of $D$ with respect to the Poincar\’e metric $d$ . For distinct two points
$p_{1}$ and $p_{2}$ in $D$, let $L(p_{1}, p_{2})$ be the full geodesic through $p_{1}$ and $p_{2}$ with the
direction from $p_{1}$ to $p_{2}$ , where this direction is sometimes ignored. $L(p_{1}, p_{2})$

divides $\overline{D}$ into two parts. The right-hand part and the left-hand part are
denoted by $r-L(p_{1}, p_{2})$ and $l-L(p_{1}, p_{2})$ , respectively.

An elliptic element $A\in M(D)$ has the sole fixed point in $D$ . We denote it
by $fp(A)$ . A hyperbolic element $A\in M(D)$ has tbe attracting fixed point, $q(A)$ ,

and the repelling fixed Point, $p(A)$ , which are characterized by $q(A)=11m_{narrow\infty}A^{n}(z)$

and $P(A)= \lim_{narrow\infty}A^{-n}(z)$ for any $z\in D$ . The axis of $A,$ $ax(A)=L(p(A), q(A))$ ,
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and the translation length of $A,$ $tl(A)= \inf\{d(z, A(z))|z\in D\}$ , are characterized by

$ax(A)=\{z\in D|d(z, A(z))=tl(A)\}$ ,

$\cosh\frac{tl(A)}{2}=\frac{|trA|}{2}$ .
We remark that $q(A)=p(A^{-1})$ and $l-ax(A)=r-ax(A^{-1})$ .

Let $A$ be a hyperbolic element of a Fuchsian group $G$ acting on $D$ . Then
$ax(A)$ projects on a closed geodesic on $D/G$ whose length is $tl(A)$ and corre-
sponds to $|trA|$ real analytically.

TO define a marked Fuchsian group, we give the following:

PROPOSITION 2.1 (Keen [5]). Let $G$ be a Fuchsian group of type $(g, 0, m)$ .
Then $G$ has a system of generators

$\Sigma=(A_{1}, B_{1}, \cdots, A_{g}, B_{g}, E_{1}, \cdots E_{m})$ ;

$E_{m}E_{m-1}\cdots E_{1}C_{g}C_{g-1}\cdots C_{1}=identity$ ,

where $A_{j},$ $B_{j},$ $C_{j}=[B_{j}, A_{j}]=B_{j}^{-1}A_{j}^{-1}B_{j}A_{j}(j=1, \cdots, g)$ and $E_{k}(k=1, \cdots, m)$ are
hyperbolic with axes illustrated as in Figure 2.1, and if $g=0$ (resp. $m-O$), then
$A_{j},$ $B_{j}$ and $C_{j}$ (resp. $E_{k}$ ) are omitted.

A system $\Sigma$ mentioned in Proposition 2.1 is called a canonical system of
generators of $G$ . A pair $(G, \Sigma)$ of $G$ and this system $\Sigma$ is called a marked
Fuchsian group. Two marked Fuchsian groups $(G_{1}, \Sigma_{1})$ and $(G_{2}, \Sigma_{2})$ are equiv-
alent, if $G_{2}=hG_{1}h^{-1}$ and $\Sigma_{2}=h\Sigma_{1}h^{-1}$ for some $h\in M(D)$ . Teichm\"uller space
$T(g, 0, m)$ is the set of equivalence classes of $(G, \Sigma)$ of type $(g, 0, m)$ .

FIGURE 2.1.
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One of the matrix representations of a M\"obius transformation $A$ is denoted
by $\tilde{A}$ . Since the matrix representations of $A$ are $\pm\tilde{A},\tilde{A}$ is determined up to
the sign. For two M\"obius transformations $A$ and $B$ , the matrix $[\tilde{B},\tilde{A}]$ is
invariant under the choice of $\tilde{A}$ and $\tilde{B}$ . Then we remark the following:

REMARK 2.2. The matrix $[\tilde{B},\tilde{A}]$ is uniquely determined by $A$ and $B$ .
The following equations of commutator traces of $X,$ $Y,$ $Z=(YX)^{-1}\in SL(2, C)$

are useful: for $\epsilon,$ $\eta\in\{\pm 1\}$ ,

$tr[X, Y]=tr[X^{\epsilon}, Y^{\eta}]=tr[Y^{\epsilon}, X^{\eta}]$

$=tr[Y^{\epsilon}, Z^{\eta}]=tr[Z^{\epsilon}, Y^{\eta}]$

$=tr[Z^{\epsilon}, X^{\eta}]=tr[X^{\text{\’{e}}}, Z^{\eta}]$ .
Finally, we define the one-half power of $A\in M(D)$ . For this purpose, we

notice the following:

LEMMA 2.3. Let $A$ be an element of $M(D)$ . If $A$ is hyperbolic or parabolic,
then $X\in M(D)$ satisfying $X^{2}=A$ is uniquely determined. Otherwise, such $X$ is not
uniquely determined.

In fact, if $A$ is the elliptic element with the angle of rotation $\theta$ and the
fixed point $z_{0}\in D$ , then $X$ is the elliptic element with the angle of rotation $\theta/2$

or $\pi+\theta/2$ and the fixed point $z_{0}\in D$ . If $A$ is the identity, then $X$ is any elliptic
element of order 2 or the identity.

DEFINITION. Let $A\in M(D)$ be hyperbolic or parabolic. Then $X\in M(D)$

satisfying $X^{2}=A$ is called the one-half power of $A$ and denoted by $A^{1/2}$ .
$A^{1/2}$ is determined by $A$ as follows:

PROPOSITION 2.4. Let $A\in M(D)$ be hyPerbolic or Parabolic. If $\tilde{A}$ is the
matrix rePresentation of $A$ with negative trace (resp. Positive trace), then the
matrix representations of $A^{1/2}$ are

(resp. $\frac{\pm 1}{\sqrt{|trA|+2}}(\tilde{A}+I)$).

Thus

This is shown by a simple calculation.
Since $(A^{1/2})^{-1}=(A^{-1})^{1/2}$ , they are denoted by $A^{-1/2}$ .



Global real analytic angle parameters 217

3. The geometry of hyperbolic transformations.

In this section, we state some results of the geometry of M\"obius trans-
formations related to our parametrizations, without proofs. We refer to [13]

in detail.
First we state the positions of the axes of two hyperbolic transformations.

LEMMA 3.1. Let $A,$ $B\in M(D)$ be hyperbolic. Then $ax(A)$ and $ax(B)$ inter-
sect, if and only if $tr[B, A]<2$ .

LEMMA 3.2. Let $A,$ $B\in M(D)$ be hyperbolic elements with intersecting axes.
Then eight elements $A^{e}B^{\eta},$ $B^{\epsilon}A^{\eta}$ ; $\epsilon,$ $\eta\in\{\pm 1\}$ are hyperbolic. Let $p$ be the
intersection point of $ax(A)$ and $ax(B)$ . Then

a $x(BA)=L(A^{-1/2}(p), B^{1/2}(p))$ ,

$ax(B^{-1}A)=L(A^{-1/2}(p), B^{-1/2}(p))$ ,

$d(A^{-1/2}(p), B^{1/2}(p))= \frac{tl(BA)}{2}$ ,

$d(A^{-1/2}(p), B^{-1/2}(p))= \frac{tl(B^{-1}A)}{2}$ .
Espedally, $ax(A),$ $ax(B)$ and $ax(BA)$ determine the tnangle with vertices $p$,
$A^{-1/2}(p)$ and $B^{1/2}(p)$ (see Figure 3.1).

FIGURE 3.1. The case that $p(A),$ $q(B),$ $q(A)$

and $p(B)$ are arranged clockwise
in order on the circle at infinity.

Let $X,$ $Y\in M(D)$ be hyperbolic. If $Z=(YX)^{-1}$ is not hyPerbolic, then $ax(X)$

and $ax(Y)$ do not intersect, by Lemma 3.2. If $Z$ is hyperbolic, then $ax(X)$ ,
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$ax(Y)$ and $ax(Z)$ are characterized as follows:

LEMMA 3.3. Let $X,$ $Y$ and $Z$ be hyperbolic elements of $M(D)$ satisfying
$ZYX=identity$ . Then the axes of $X,$ $Y$ and $Z$ are positioned as one of the
following:

(a) three axes are disjoint,
(b) three axes are parallel (namely, they have me common $endp\alpha nt$ on the

circle at infinity) or coincident,
(c) three axes do not intersect at one point and any two axes intersect each

other.

Thus, if some two axes are disjoint, parallel, coincident or intersecting, then three
axes are also in the same situation. Furthermore, the orientations of the axes are
determined as in Figure 3.2, where the pair $(U, V, W)$ is any permutation of $X$ ,
$Y$ and Z. These cases are characterized by $tr\tilde{X},$ $tr\tilde{Y}$ and $tr\tilde{Y}\tilde{X}$ as follows:

$(a_{1})\Leftrightarrow tr\tilde{X}tr\tilde{Y}tr\tilde{Y}\tilde{X}<0$,
$(a_{2})\Leftrightarrow tr\tilde{X}tr\tilde{Y}tr\tilde{Y}\tilde{X}>0,$ $tr[\tilde{Y},\tilde{X}]>2$ ,
(b) $\Leftrightarrow tr\tilde{X}tr\tilde{Y}tr\tilde{Y}\tilde{X}>0,$ $tr[\tilde{Y},\tilde{X}]=2$ ,

(c) $\Leftrightarrow tr\tilde{X}tr\tilde{Y}tr\tilde{Y}\tilde{X}>0,$ $tr[\tilde{Y},\tilde{X}]<2$ .

REMARK 3.4. $tr[\tilde{Y},\tilde{X}]=tr^{2}\tilde{X}+tr^{2}\tilde{Y}+tr^{2}\tilde{Y}\tilde{X}-tr\tilde{X}tr\tilde{Y}tr\tilde{Y}\tilde{X}-2$ and $tr\tilde{X}$

$tr\tilde{Y}tr\tilde{Y}\tilde{X}$ are invariant under the choice of matrix representations. In the
case of $(a_{1})$ , we have $tr[\tilde{Y},\tilde{X}]>18$ .

$(a_{1})$ (a $|$)

(b) (c)

FIGURE 3.2.

REMARK 3.5. Similarly, for any non-trivial elements $X,$ $Y,$ $Z=(YX)^{-1}\in$

$M(D)$ , the positions of their fixed points and the directions of their actions are
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characterized by such three traces (see [13]).

Next, we give some criterions of canonical systems of generators of types
$(0,0,3)$ and $(1, 0,1)$ .

LEMMA 3.6. Let $X,$ $Y,$ $Z=(YX)"\in M(D)$ be hyperbolic. The pair(X, $Y,$ $Z$ )

is a canonical system of generators of type $(0,0,3)$ if and only if $p(X),$ $q(X),$ $p(Y)$ ,
$q(Y),$ $p(Z)$ and $q(Z)$ are arranged clockwzse in order on the circle at infinity.

From Lemmas 3.3 $(a_{1})$ and 3.6, we obtain the following:

LEMMA 3.7. Let $X,$ $Y,$ $Z=(YX)^{-1}\in M(D)$ be hyperbolic. Either (X, $Y,$ $Z$ )

or $(Z^{-1}, Y^{-1}, X^{-1})$ is a canonical system of generators of type $(0,0,3)$ if and
only if

$tr\tilde{X}tr\tilde{Y}tr\tilde{Y}\tilde{X}<0$ .

LEMMA 3.8. Let $A,$ $B\in M(D)$ be hyperbolic. The pair $(A, B, [B, A]^{-1})$ is
a canonical system of generators of type $(1, 0,1)$ if and only if the following
two conditions are satisfied:

(i) $A$ and $B$ have intersecting axes such that $p(A),$ $q(B),$ $q(A)$ and $p(B)$ are
arranged clockwzse in order on the circle at infinity,

(ii) $[B, A]$ is hyperbolic.

This lemma is also shown by Keen’s results of [4], [5] and [6]. From
Lemmas 3.3 (c) and 3.8, we obtain the following:

LEMMA 3.9. Let $A,$ $B\in M(D)$ be hyperbolic. Either $(A, B, [B, A]^{-I})$ or
$(A^{-1}, B, [B, A^{-1}]^{-1})$ is a cononical system of generators of type $(1, 0,1)$ if and
only if

$tr\tilde{A}tr\tilde{B}tr\tilde{B}\tilde{A}>0$ and $tr[\tilde{B},\tilde{A}]<-2$ .
Finally, we state the following result.

PROPOSITION 3.10. Let $A,$ $B\in M(D)$ be hyperbolic elements with intersecting
axes. Let $p$ be the intersection point of these axes. Let $R\in M(D)$ be elliptic of
order 2 with the fixed point $p$ .

(i) The axes of $A^{\text{\’{e}}}B^{\eta},$ $B^{e}A^{\eta}$ ; $\epsilon,$ $\eta\in\{\pm 1\}$ determine the quadrilateral wzth
sides $tl(BA)/2,$ $tl(B^{-\iota}A)/2,$ $tl(BA)/2$ and $tl(B^{-1}A)/2$ , and vertices $A^{-1/2}(p),$ $B^{1/2}(p)$ ,
$A^{1/2}(p)$ and $B^{-1/2}(p)$ .

Further, suppose that $C=[B, A]$ is hyperbolic and $p(A),$ $q(B),$ $q(A)$ and $p(B)$

are arranged clockwise in order on the circle at infinity. Then the followzng
holds:

(ii) $(A, B^{-1}A^{-1}B, C^{-1}),$ $(BA, B^{-1}A^{-1}, C^{-1})$ and $(A^{-1}BA, B^{-1}, C^{-1})$ are canon-
ical systems of generators of type $(0,0,3)$ .
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(iii) $A,$ $B,$ $C$ and $R$ satisfy the followzng:

$A=RA^{-1}R=[R, A^{1/2}]$ ,

$B=RB^{-1}R=[R, B^{1/2}]$ ,

$C^{1/2}=RBA$ ,

$fl= \frac{\pm 1}{\sqrt{}\overline{det(\tilde{B}\tilde{A}-\tilde{A}\tilde{B})}}$(BA–AB).

(iv) $C^{-1/2}A,$ $C^{-1/2}B^{-1}$ and $C^{-1/2}BA$ are elliptic of order 2 satisfyz $ng$

$fp(C^{-1/2}A)=(ABA)^{-1/2}(p)=(BA)^{-1/2}A^{-1/2}(p)$ ,

$fp(C^{-1/2}B^{-1})=A^{-1/2}(p)$ ,

$ax(ABA)=L(fp(C^{-1/2}A), p)$ .

(v) Let $A_{1/2}$ (resp. $A_{-1/2}$) be elliptic of order 2 with the fixed point $A^{1/2}(p)$

(resp. $A^{-1/z}(p)$), namely, $A_{1/2}=A^{1/2}RA^{-1/2}$ and $A_{-1/2}=A^{-1/2}RA^{1/2}$ . Similarly, $B_{1/2}$

and $B_{-1/2}$ are defined. Then we have

$A=RA_{-1/2}=A_{1/2}R$ ,

$B=RB_{-1/2}=B_{1l2}R$ ,

$BA=B_{1/},A_{-1/z}$ ,

$AB=A_{1/z}B_{-1/2}$ ,

$C=B_{-1/a}A_{1/},B_{1/2}A_{-1/2}$ .
Especially, $C$ is determined by four elliptic transformations of order 2 whose
fixed points are four vertices of this quadrilateral (see Figure 3.3).

FIGURE 3.3.



Global real analytic angle parameters 221

4. A parametrization of $T(1,0,1)$ .
In this section, we show a parametrization of $T(1,0,1)$ by three angle

parameters.

First, we recall the cosine formula of a hyPerbolic triangle.

LEMMA 4.1 (Beardon [2, p. 148]). Let a, $\beta$ and 7 be intenor angles of a
hyperbolic triangle. Let $c$ be the side $oppo\alpha te$ to $\gamma$ . Then

$\cosh c=\frac{\cos\gamma+\cos\alpha\cos\beta}{\sin\alpha\sin\beta}$ .

Let $\Sigma_{(1}0.1$ ) $=(A, B, C^{-1})$ ; $C=[B, A]$ be a canonical system of generators
of type $(1, 0,1)$ . Let $p$ be the intersection point of $ax(A)$ and $ax(B)$ . Then by
Lemma 3.2, $ax(A),$ $ax(B)$ and $ax(BA)$ determine the triangle $T$ with vertices $p$ ,
$A^{-1/2}(p)$ and $B^{1/2}(p)$ . Let $\theta(A),$ $\theta(B)$ and $\theta(BA)$ be interior angles of $T$ as in
Figure 3.1.

LEMMA 4.2. Traces of $A,$ $B,$ $BA$ and $[B, A]$ are determined by these three
angles as follows:

$tr \tilde{A}=\frac{2\epsilon(\cos\theta(A)+\omega s\theta(B)\omega s\theta(BA))}{\sin\theta(B)\sin\theta(BA)}$ ,

$tr \tilde{B}=\frac{2\eta(\omega s\theta(B)+\omega s\theta(BA)\cos\theta(A))}{\sin\theta(BA)\sin\theta(A)}$ ,

$ir \tilde{B}\tilde{A}=\frac{2\epsilon\eta(\omega s\theta(BA)+\omega s\theta(A)\omega s\theta(B))}{\sin\theta(A)\sin\theta(B)}$ ,

$tr[\tilde{B},\tilde{A}]=2-4F(\theta(A), \theta(B),$ $\theta(BA))^{2}$ ,

where $\epsilon,$ $\eta\in\{\pm 1\}$ and

$F(x, y, z):= \frac{\cos^{2}x+\omega s^{2}y+\omega s^{2}z+2\omega sx\omega sy\omega sz-1}{\sin x\sin y\sin z}$ .

PROOF. Since $ax(A)$ and $ax(B)$ intersect, Lemma 3.3 implies that $tr\tilde{A}tr\tilde{B}$

$tr\tilde{B}\tilde{A}>0$ . Then we set $tr\tilde{A}=\epsilon|trA|,$ $t’\cdot\tilde{B}=\eta|trB|$ and $tr\tilde{B}\tilde{A}=\epsilon\eta|trBA|$ . By
Lemma 3.2, three sides of $T$ are $tl(A)/2,$ $tl(B)/2$ and $tl(BA)/2$ . Thus the cosine
formula implles that

$tr \tilde{A}=\epsilon|trA|=2\epsilon\cosh\frac{tl(A)}{2}=\frac{2\epsilon(\cos\theta(A)+\cos\theta(B)\cos\theta(BA))}{\sin\theta(B)\sin\theta(BA)}$ .
Similarly, $tr\tilde{B}$ and $tr\tilde{B}\tilde{A}$ are obtained.
three traces.

And $tr[\tilde{B},\tilde{A}]$ is determined by these
Q. E. D.
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Since $tr[\tilde{B},\tilde{A}]$ S2 and $[B, A]$ is hyperbolic, we have

$tr[\tilde{B},\tilde{A}]<-2$ .

This is equivalent to $F(\theta(A), \theta(B),$ $\theta(BA))^{2}>1$ . In general, $F(x, y, z)$ satisfies
the following:

LEMMA 4.3. Let $x,$ $y,$ $z\in(O, \pi)$ satisfy $x+y+z<\pi$ . Then

$G(x, y, z):=\cos^{2}x+\cos^{2}y+\cos^{2}z+2\cos x\cos y$ cos2–1 $>0$ ,

$F(x, y, z)= \frac{G(x,y,z)}{\sin x\sin y\sin z}>0$ ,

$F(x, y, z)<1$ for some $x,$ $y$ and $z$ ,

$\frac{\omega sx+\omega sy\omega sz}{s\ln ys\ln z}=\sqrt{\frac{G(x,y,z)}{\sin^{2}ysi2z}+1}>1$ .

PROOF. For example, $F(11\pi/12, \pi/36, \pi/36)<1$ . Since

$( \frac{\omega sx+\cos y\cos z}{S\dot{i}y\sin z})^{2}-1=\frac{G(x,y,z)}{\sin^{2}y\sin^{2}z}$ ,

we only prove that $G(x, y, z)>0$ . $G(x, y, z)$ is symmetric with respect to $x,$ $y$

and $z$ . Then we can assume $x\geqq y\geqq z$ without loss of generality.

$G(x, y, z)=(\cos z+\cos x\cos y)^{2}-\sin^{2}x\sin^{2}y$

$=(\cos z+\cos(x+y))(\cos z+\cos(x-y))$ .
Since O$x $-y<x+y<\pi-z<\pi$ , we obtain $\cos(x-y)>\cos(x+y)>\cos(\pi-z)=$

$-\cos z$ . Hence we have $G(x, y, z)>0$ . Q. E. D.

LEMMA 4.4. The following statements are equivalent:
(i) $C=[B, A]$ is hyperbolic,
(ii) $tr[\tilde{B},\tilde{A}]<-2$ ,
(iii) $F(\theta(A), \theta(B),$ $\theta(BA))>1$ .
The following lemma is useful for determining matrix representations.

LEMMA 4.5. Let $U\in M(D)$ be hyperbolic with $q(U)=e^{i\theta}$ and $p(U)=-e^{i\theta}$ .
Then $\hat{U}$ is determined by $|trU|$ as follows:

$0=\frac{\pm 1}{2}(_{e^{-i\theta_{\sqrt{|trU|^{2}-4}}}}^{|trU|}e^{i\theta_{\sqrt{|trU|^{\mathfrak{g}}-4}}}|trU|)$ .

This is shown by a simple calculation.
NOW we parametrize $T(1,0,1)$ by $\theta(A),$ $\theta(B)$ and $\theta(BA)$ .
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LEMMA 4.6. Let normalize $\Sigma_{(1,0,1)}$ such that $q(A)=-1,$ $p(A)=1$ and $p=0$ .
Then the matrix representations of $A$ and $B$ are

$\overline{s}i^{\frac{\pm l}{n\theta(B)\sin\theta(BA)}(\begin{array}{llll}cos\theta(A)+cos\theta(B)cos\theta(BA) -\sqrt G(\theta(A), \theta(B), \theta(BA))-\sqrt{G(\theta(A),\theta(B),\theta(BA))} cos\theta(A)+cos\theta(B)cos\theta(BA) \end{array})}$

and

$\frac{\pm 1}{\sin\theta(BA)\sin\theta(A)}(\begin{array}{ll}cos\theta(B)+cos\theta(BA)cos\theta(A) e^{-i\theta(BA)}\sqrt{G(\theta(A),\theta(B),\theta(BA))}e^{\iota\theta tBA)}\sqrt{G(\theta(A),\theta(B),\theta(BA))} cos\theta_{\backslash }^{(}B)+cos\theta(BA)cos\theta(A)\end{array})$ ,

respectively. Thus $\theta(A),$ $\theta(B)$ and $\theta(BA)$ determine $\Sigma_{(1,0,1)}$ real analytically up
to conjugation by any Mobius transformation. Hence they are global real analytic
angle parameters for $T(1,0,1)$ .

PROOF. By our normalization, $q(B)=e^{-i\theta(BA)}$ and $p(B)=-e^{-i\theta(BA)}$ . Thus
Lemmas 4.2 and 4.5 imply that $\tilde{A}$ and $\tilde{B}$ are obtained such that each entry is
a real analytic function of $\theta(A),$ $\theta(B)$ and $\theta(BA)$ . Since these angles are inter-
section angles between geodesics, they correspond to intersection angles between
geodesics on the Riemann surface represented by $\Sigma_{(1,0,1)}$ . Thus they are angle
parameters. Q.E.D.

Lemma 4.6 implies that any triangle in $D$ determines $A,$ $B\in M(D)$ satisfying
the condition (i) of Lemma 3.8 by three interior angles. Thus from Lemmas
3.8, 4.4 and 4.6, we obtain the following theorem.

THEOREM 4.7. $T(1,0,1)$ is parametrized global real analytically by three
angle parameters $\theta(A),$ $\theta(B)$ and $\theta(BA)$ which correspond to the interior angles

of the triangle determined by $ax(A),$ $ax(B)$ and $ax(BA)$ as in Figure 3.1. Hence
$N_{2}(1,0,1)=\dim(T(1,0,1))$ . This parameter space is defined by

(4.1) $\theta(A),$ $\theta(B),$ $\theta(BA)\in(O, \pi)$ ,

(4.2) $\theta(A)+\theta(B)+\theta(BA)<\pi$ ,

(4.3) $F(\theta(A), \theta(B),$ $\theta(BA))>1$ .

We consider some geodesics and angles on the Riemann surface $R$ repre-
sented by $\Sigma_{(1}01$ ). Let $(a, b, (aba^{-1}b^{-1})^{-1})$ be a canonical homotopy basis of the
fundamental group of $R$ corresponding to $\Sigma_{(1,0,1)}$ . We put same labels on a
closed curve on $R$ and the closed geodesic freely homotopic to it (see Figure 4.1).

Then $a,$
$b$ and $ab$ are the projections of $ax(A),$ $ax(B)$ and $ax(B4)$ , respectively.

These three closed geodesics determine two triangles on $R$ . These triangles are
congruent, since they have same interior angles. $\theta(A),$ $\theta(B)$ and $\theta(BA)$ are
three interior angles of these triangles. Let $q$ be the intersection point of $a$
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and $b$ . Let $r(a)$ be the unique point on $a$ satisfying $d(q, r(a))=tl(A)/2$ , that is,
two segments $a-\{q, r(a)\}$ have same length $tl(A)/2$ . Similarly, $r(b)$ is defined.
From Lemma 3.2, the following result is obtained.

PROPOSITION 4.8. ab intersects $a$ and $b$ at $r(a)$ and $r(b)$ , respectively. Thus
the geodesic through $r(a)$ and $r(b)$ is the closed geodesic ab. Two segments
$ab-\{r(a), r(b)\}$ have same length $tl(BA)/2$ . The anti-holomorphic involution of $R$

interchanges the above two triangles and fixes their vertices $q,$ $r(a)$ and $r(b)$ .

Since $R$ is determined by $\theta(A),$ $\theta(B)$ and $\theta(BA)$ , the length of a closed
geodesic is parametrized by these angles. From Lemmas 4.2 and 4.3, we have

$\cosh\frac{tl(A)}{2}=\frac{\cos\theta(A)+\cos\theta(B)\cos\theta(BA)}{\sin\theta(B)\sin\theta(BA)}=\sqrt{\frac{G(\theta(A),\theta(B),\theta(BA))}{\sin^{2}\theta(B)\sin^{2}\theta(BA)}+1}$

and

$\cosh\frac{tl(C)}{4}=l\frac{\cosh\frac{tl(C)}{2}+1}{2}=F(\theta(A), \theta(B),$

$\theta(BA))$ .

Then we obtain the following:

PROPOSITION 4.9. The lengths of $a$ and $aba^{-1}b^{-1}$ are

2 arc $\cosh(\frac{\cos\theta(A)+\cos\theta(B)\cos\theta(BA)}{s\ln\theta(B)\sin\theta(BA)})=2$ arc $\sinh(\frac{G(\theta(A)\overline,\theta(B),\theta(BA))}{\sin\theta(B)\sin\theta(BA)})$

and
4 arc $\cosh(F(\theta(A), \theta(B),$ $\theta(BA)))$ ,

respectively. Similarly, the lengths of $b$ and ab are obtained.

FIGURE 4.1.
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5. A parametrization of $T(2,0,0)$ .
In this section, we consider global real analytic angle parameters for

$T(2,0,0)$ . Using the combination theorem for two Fuchsian groups of type
$(1, 0,1)$ , Lemma 4.6 and Theorem 4.7, we shall prove Theorem 5.3.

Let $\Sigma_{(2,0,0)}=(A_{1}, B_{1}, A_{2}, B_{2})$ be a canonical system of generators of tyPe
$(2, 0,0)$ . Then $(A_{1}, B_{1}, C_{1}^{-1})$ and $(A_{2}, B_{2}, C_{2}^{-1})$ are canonical systems of gener-
ators of type $(1, 0,1)$ and $C_{1}=C_{2}^{-1}$ . Conversely, let $\Sigma_{1}=(A_{1}, B_{1}, C_{1}^{-1})$ and $\Sigma_{2}=$

$(A_{2}, B_{2}, C_{2^{1}})$ be canonical systems of generators of type $(1, 0,1)$ satisfying
$C_{1}=C_{2}^{-1}$ . Then the combination theorem implies that the amalgamated product
of two Fuchsian groups generated by $\Sigma_{1}$ and $\Sigma_{2}$ with the amalgamated subgroup
generated by $C_{1}=C_{2}^{-1}$ is a Fuchsian group generated by a canonical system of
generators $(A_{1}, B_{1}, A_{2}, B_{2})$ of type $(2, 0,0)$ . Thus $\Sigma_{(2,0,0)}$ is uniquely deter-
mined, if and only if $\Sigma_{1}$ and $\Sigma_{2}$ satisfying $C_{1}=C_{2}^{-1}$ are uniquely determined.

We shall construct $\Sigma_{1}$ and $\Sigma_{2}$ satisfying $C_{1}=C_{2}^{-1}$ global real analytically by
some angles between geodesics. Let $p_{j}$ be the intersection point of $ax(A_{j})$ and
$ax(B_{j})$ for $j=1,2$ . Lemma 3.2 implies that the axes of $A_{j},$ $B_{j}$ and $B_{j}A_{j}$ deter-
mine the triangle $T_{j}$ with vertices $p_{j},$ $A_{j}^{-1/^{\sigma}}\cdot(p_{j})$ and $B_{j}^{1/2}(p_{j})$ . Let $\theta(A_{j}),$ $\theta(B_{j})$

and $\theta(B_{j}A_{j})$ be three interior angles of $T_{j}$ as in Figure 5.1.

FIGURE 5.1.

Let normalize $A_{1}$ and $B_{1}$ such that

$q(A_{1})=-1$ , $p(A_{I})=1$ and $p_{1}=0$ .
Then Lemma 4.6 implies that $\theta(A_{1}),$ $\theta(B_{1})$ and $\theta(B_{1}A_{1})$ determine $A_{1}$ and $B_{1}$ .

Let $\hat{\Sigma}_{2}=(\hat{A}_{2},\hat{B}_{2},\hat{C}_{2}^{-1})$ be a canonical system of generators of type $(1, 0,1)$
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such that $q(\hat{A}_{2})=-1,$ $p(- 2)=1$ and the intersection point of $ax(\hat{A}_{2})$ and $ax(\hat{B}_{2})$

is $0$ . Similarly, we define $\theta(\hat{A}_{2}),$ $\theta(\hat{B}_{2})$ and $\theta(\hat{B}_{2}\hat{A}_{2})$ . Further, let $\hat{\Sigma}_{2}$ satisfy

$\theta(\hat{A}_{2})=\theta(A_{2})$ , $\theta(\hat{B}_{2})=\theta(B_{z})$ and $\theta(\hat{B}\hat{A}_{2})=\theta(B_{2}A_{2})$ .
Then Lemma 4.6 implies that $\hat{\Sigma}_{g}$ is determined by these three angles and con-
jugate to $\Sigma_{2}$ . Thus we have

$T\hat{\Sigma}_{2}T^{-1}=\Sigma_{e}$ for some $T\in M(D)$ .
Since $q(C_{f})=p(C_{1})$ and $p(C_{2})=q(C_{1}),$ $T$ satisfies

$T(q(\hat{C}_{2}))=p(C_{1})$ and $T(p(\hat{C}_{2}))=q(C_{1})$ .
Then one more condition, for example,

$T(\hat{A}_{2}\hat{B}_{2}(O))=A_{2}B_{2}(p_{2})$

determines T. $\hat{A}_{2}\hat{B}_{2}(0)$ and the fixed points of $C_{1}$ and $\hat{C}_{2}$ are obtained from
above six angles. Thus, if $A_{2}B_{2}(p_{2})$ is determined real analytically by some
angles, then $T$ and $\Sigma_{2}$ are also determined real analytically by angles.

In order to show that some angles determine $A_{2}B_{2}(p_{2})$ , we notice the fol-
lowing:

LEMMA 5,1. $A_{j}^{-1}B_{f}^{-1}(p_{j}),$ $B_{j}^{-1}A_{j}^{-1}(p_{j})\in l-ax(C_{j})$ . Especially, $B_{1}^{-1}A_{I}^{-1}(p_{I})\in l-$

$ax(C_{1})$ and $A_{2}^{-1}B_{\overline{z}^{1}}(p_{2})\in r-ax(C_{1})$ .
PROOF. Put $A=A_{1}$ , $\tilde{A}=\tilde{A}_{1}$ , $B=B_{1}^{\neg 1}A_{1}^{-1}B_{1}$ and $\tilde{B}=\tilde{B}_{1}^{-1}\tilde{A}_{1}^{-1}\tilde{B}_{1}$ . Then we

have $BA=C_{1},\tilde{B}\tilde{A}=[\tilde{B}_{1},\tilde{A}_{1}]$ and

$tr\tilde{A}tr\tilde{B}tr\tilde{B}\tilde{A}=tr^{2}\tilde{A}_{1}tr[\tilde{B}_{1},\tilde{A}_{1}]<0$ ,

by Lemma 4.4. Thus by Lemma 3.3 $(a_{1})$ and the positions of $ax(A_{1})$ and $ax(C_{1})$ ,
we have

$ax(B_{1}^{-1}A_{1}^{-1}B_{1})\subset l-ax(C_{1})$ .
Since $B_{1}^{-1}A_{1}^{-1}(p_{1})\in B_{1}^{-1}(ax(A_{1}^{-1}))=ax(B_{1}^{-1}A_{1}^{-1}B_{1})$ , we obtain $B_{1}^{-\iota}A_{1}^{-1}(p_{1})\in l-ax(C_{1})$

and $A_{1}^{-1}B_{1}^{-1}(p_{1})=C_{1}^{-1}(B_{1}^{-1}A_{1}^{-})(p_{1})\in l-ax(C_{1})$ . Similarly, we obtain $B_{2}^{-1}A_{2}^{-1}(p_{2})$ ,
$A_{2}^{-1}B_{l}^{-1}(p_{2})\in l-ax(C_{2})$ . Q. E. D.

This lemma imPlies that $ax(C_{1})$ and the segment $[B_{1}^{-1}A_{1}^{-1}(p_{1}), A_{2}^{-1}B_{2}^{-1}(p_{2})]$

intersect. Let $\mu$ be the intersection angle between them as in Figure 5.1. Let
$L_{1}$ be the full geodesic containing this segment. Then $L_{1}$ is determined by
$ax(C_{1}),$ $B_{1}^{-1}A_{1}^{-1}(p_{1})$ and $\mu$ . Set $L_{2}=C_{1}^{-1}(L_{1})$ . Then we have

$B_{2}^{-1}A_{2}^{-1}(p_{2})=C_{1}^{-1}(A_{2}^{-1}B_{2}^{-1}(p_{2}))\in L_{2}$ .
From the property of a hyperbolic transformation, we obtain the following:
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LEMMA 5.2. Let $z\in L_{1}\cap r-ax(C_{1})$ . If $z$ moves from the intersection Point
of $L_{1}$ and $ax(C_{1})$ to infinity along this semi-infinite geodesic, then $d(z, C_{1}^{-1}(z))$

increases monotonically from $tl(C_{1})$ to infinity. Thus there exists the unique Point
$z_{0}\in L_{1}\cap r-ax(C_{1})$ satisfying

$d(z_{0}, C_{1}^{-1}(z_{0}))=d(A_{2}^{-1}B_{2}^{-1}(p_{2}), B_{2}^{-1}A_{2}^{-1}(p_{2}))=d(\hat{A}_{l}^{-1}B_{2}^{-1}(0), B_{2}^{-1}A_{2}^{-1}(0))$ .

Hence $A_{2}^{-l}B_{2}^{-1}(p_{2})=z_{0}$ is determined real analytically by $A_{1},$ $B_{1},\hat{A}_{2},\hat{B}_{2}$ and $\mu$ ,
namely, $\theta(A_{j}),$ $\theta(B_{j})$ and $\theta(B_{j}A_{f})(\int=1,2)$ and $\mu$ .

By these arguments, $\Sigma_{1}$ and $\Sigma_{2}$ satisfying $C_{1}=C_{2}^{-1}$ are obtained real analyti-
cally from above seven angles. By our construction, any $\mu\in(0, \pi),$ $\Sigma_{1}$ and $\hat{\Sigma}_{2}$

satisfying
$\ovalbox{\tt\small REJECT} trC_{2}|=$ $trC_{1}|>2$

determine $\Sigma_{2}$ satisfying $C_{1}=C_{2}^{-1}$ . This trace equation is equivalent to

$tr[\tilde{B}_{1},\tilde{A}_{1}]=tr[\tilde{B}_{2},\tilde{A}_{2}]<-2$ .

Hence from Theorem 4.7, we obtain the following theorem.

THEOREM 5.3. Seven angle parameters $\theta(A_{j}),$ $\theta(B_{j}),$ $\theta(B_{j}A_{j})(j=1,2)$ and
$\mu$ parametrize $T(2,0,0)$ global real analytically. Hence $N_{2}(2,0, O)\leqq\dim(T(2,0,0))$

$+1$ . This parameter space is defined by

(5.1) $\theta(A_{j}),$ $\theta(B_{j}),$ $\theta(B_{j}A_{j}),$ $\mu\in(0, \pi)$ $(j=1,2)$ ,

(5.2) $\theta(A_{j})+\theta(B_{j})+\theta(B_{j}A_{j})<\pi$ $(j=1,2)$ ,

(5.3) $F(\theta(A_{1}), \theta(B_{1}),$ $\theta(B_{1}A_{1}))=F(\theta(A_{2}), \theta(B_{2}),$ $\theta(B_{2}A_{2}))>1$ .

Finally, we consider the angles on a Riemann surface corresponding to
these seven angle parameters.

Let $G$ be a Fuchsian group generated by $\Sigma_{(200)}$ and $R$ the Riemann surface
represented by $G$ . Let $R_{j}\in M(D)$ be elliptic of order 2 with the fixed point $p_{j}$

$(j=1,2)$ . Proposition 3.10 (iii) implies that $C_{j}^{1/2}=R_{j}B_{j}A_{f}=B_{j}^{-1}A_{j}^{-1}R_{j}$ . Since
$C_{1}^{1/2}=C_{2}^{-1/2}$ , we have

$L(p_{1}, p_{2})=ax(R_{2}R_{1})=ax(B_{2}A_{2}(A_{1}B_{1})^{-1})=ax(A_{2}B_{2}(B_{1}A_{1})^{-1})$ ,

$L_{1}=L(B_{1}^{-1}A_{1}^{-1}(p_{1}), A_{2}^{-1}B_{2}^{-1}(p_{2}))=L(C_{1}^{1/2}(p_{1}), C_{1}^{1/2}(p_{2}))=C_{1}^{1/2}(L(p_{1}, p_{2}))$

$=a$ $x(C_{1}^{1/2}R_{2}R_{1}C_{1}^{-1/2})=ax((B_{t}A_{2})^{-1}A_{1}B_{1})$ ,

$L_{2}=C_{1}^{-1}(L_{1})=C_{1}^{-1/2}(L(p_{1}, p_{2}))=ax((A_{2}B_{2})^{-1}B_{1}A_{1})$ .
Especially, the intersection angle $\mu$ between $L_{1}$ and $ax(C_{1})$ is equal to the one
between $L(p_{1}, p_{2})$ and $ax(C_{1})$ .
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Let $(a_{1}, b_{1}, a_{2}, b_{2})$ be a canonical homotopy basis of the fundamental group
of $R$ corresponding to $\Sigma_{(2,0,0)}$ . Then $\theta(A_{j}),$ $\theta(B_{j})$ and $\theta(B_{j}A_{j})$ are three interior
angles of two triangles on $R$ determined by $a_{j},$

$b_{j}$ and $a_{j}b_{j}$ . Let $q_{j},$
$r(a_{j})$ and

$r(b_{j})$ be defined as in Section 4 $(J=1,2)$ . These six points are the fixed points
of the hyperelliptic involution $J$ (namely, the Weierstrass points) of $R$ .

The decagon $Q$ with the vertices $A_{j}^{-1}B_{j}^{-1}(p_{j}),$ $A_{j}^{-1}(p_{j}),$ $p_{j},$ $B_{j}^{-1}(p_{j}),$ $B_{j}^{-1}A_{j}^{-1}(p_{j})$

$(j=1,2)$ is the fundamental polygon for $G$ (see Keen [5]). From the above
observation, $Q$ is also determined by ten axes of hyperbolic elements of $G$ .
(Let $Q_{1}$ be the hexagon as in Figure 5.1. Then we have $Q=Q_{1}\cup C_{1}^{1/2}(Q_{1}).$ )

TWO segments $[p_{1}, p_{2}]$ and $[B_{1}^{-1}A_{1}^{-1}(p_{1}), A_{2}^{-1}B_{2}^{-1}(p_{2})]$ are contained in $Q$ and
have same length $d(p_{1}, p_{2})=tl(R_{2}R_{1})/2=tl((B_{2}A_{2})^{-1}A_{1}B_{1})/2$ . Thus the projection
$pr(L_{1})$ of $L_{1}$ is the simple closed geodesic through $q_{1}$ and $q_{2}$ . We also have
$pr(L_{1})=pr(L_{2})=pr(L(p_{1}, p_{2}))$ . Since $pr(L_{1})$ and $pr(ax(C_{1}))$ are invariant under
$J$ and intersect twice, two intersection angles are same $\mu$ . This $\mu$ corresponds
to a Fenchel-Nielsen twist parameter (see Figure 5.2).

$a_{1}b_{1}a_{1}^{-1}b_{1}^{-1}$

FIGURE 5.2.
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