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Let $K$ be a knot in $S^{3}$ . The tunnel number $t(K)$ of $K$ is the minimal number
of mutually disjoint arcs $\{\tau_{i}\}$ “properly embedded” in the pair $(S^{3}, K)$ such that
the complement of an open regular neighbourhood of $K\cup(\cup\tau_{\mathfrak{i}})$ is a handlebody.
In the above, if the arc system consists of only one arc, it is called an unknotting
tunnel for K. $K$ is said to have a $(g, b)$-decomPosition if there is a genus $g$

Heegaard splitting $\{W_{1}, W_{2}\}$ of $S^{3}$ such that $K$ intersects $W_{i}(i=1,2)$ in a b-string
trivial arc system (cf. $[D$, MS]). If a knot $K$ has a $(g, b)$-decomposition, then
t(K)$g+b--1. In particular; if $K$ admits a $(1, 1)$ -decomposition then it has tunnel
number one; however, it is shown by [MR, MSY, Yol] that the converse does
not hold.

Kohno [Kh] gave an estimate of tunnel numbers of knots in terms of the
quantum invariants (cf. [Wk, $G]$ ), and the third author [Yol] gave a condition
for a knot to admit a $(g, b)$-decomposition in terms of the quantum $SU(2)$

invariants. Kouzi Kodama [Kd] applied Kohno’s estimate to prime knots up to
10 crossings by using his computer program “Knot”, and determined the tunnel
numbers of several such knots.

In this paper, we give another method to determine whether a given knot
$K$ has tunnel number one and whether it admits a $(1, 1)$-decomposition, by using
the idea due to Birman-Hilden [BH] and Viro [V] (cf. [BGM], [BM], $[BoZe]$ ).
The method enables us to determine the tunnel numbers of prime knots uP to
10 crossings (Theorem 2.5), and is potentially useful to the problem of detecting
tunnel number one knots which do not admit $(1, 1)$-decompositions. The idea is
to look at the canonical 2-fold symmetry arising from an unknotting tunnel and
to reduce the problem to that concerning symmetries of knots and that concern-
ing spatial $\theta$ -curves (Theorem 1.2). Study of symmetries of knots has long
history, and we now have enough information concerning symmetries of various
kinds of knots, including the Montesinos knots and the prime knots up to 10
crossings (see [AHW, $BoZm$ , HW, KS]). On the other hand, there is a naive
but convenient method for the study of the problem concerning spatial $\theta$ -curves
(Corollary 1.3). By using this method, we obtain a certain condition for a
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Montesinos knot to have tunnel number one (Theorem 2.2), and determine the
tunnel numbers of prime knots up to 10 crossings. However, for the $\theta$ -curves
arising from certain knots, the above naive method does not work. In Section
3, we give another method for the problem concerning spatial $\theta$ -curves by

means of special values of Yamada’s invariants of spatial graphs (Theorem 3.2).

The method depends on an idea similar to that due to Walker [Wk], Garoufalidis
[G], Kohno [Ko] and the third author [Yol]. By using the method, we show
that the condition given by Theorem 2.2 is not complete (Example 3.8). In the
final section, we discuss relation of our results with the reflection groups.

1. $\theta$-curves associated with unknotting tunnels.

A knot $K$ in $S^{3}$ is said to be strongly invertible, if there is an involution $h$

of the pair $(S^{3}, K)$ such that Fix$(h)$ is a circle intersecting $K$ in two points. We
call $h$ a strong inversion of $K$. Let $p$ be the projection $S^{3}arrow S^{3}/h$ , and Put
$O=p(Fix(h)),$ $\gamma=P(K)$ , and $G(K, h)=O\cup\gamma$ . Then, by [Wd], $S^{3}/h$ is again a
3-sphere, $O$ is a trivial knot, and $\gamma$ is an arc such that $\gamma\cap O=\partial\gamma$ . We call
$G(K, h)$ the $\theta$ -curve assoctated with $h$ .

DEFINITION 1.1. (1) $G(K, h)$ is said to have a 3-bridge decomposition, if
$(S^{3}, O, 7)$ is a union of $(B_{1}^{3}, t_{1}, \gamma)$ and (Bii, $t_{2},$ $\phi$) along their boundaries, where
$(B_{i}^{3}, t_{i})$ is a 3-strand trivial tangle for $i=1,2$ , and $\gamma$ is a “trivial” arc in $(B_{1}^{3}, t_{1})$

as illustrated in Figure l.l(a).

(2) $G(K, h)$ is said to have a 2-bridge decomposition, if $(S^{3}, O, r)$ is a union
of $(B_{1}^{8}, t_{1}, \gamma_{1})$ and $(Bg, t_{2}, r2)$ along their boundaries, where $(B_{i}^{3}, t_{i})$ is a 2-strand
trivial tangle and $\gamma_{i}$ is a “trivial” arc in $(B_{i}^{3}, t_{i})$ as illustrated in Figure l.l(b)

for $i=1,2$ .

$(B_{1}^{s}, t_{1}, \gamma)$
$(B_{i}^{\theta}, t_{i}, \gamma_{t})$

Figure 1.1.

By using the argument of [BH, V], we obtain the following result.
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THEOREM 1.2. (1) A knoi $K$ in $S^{s}$ has tunnel number one, if and only if
$K$ admits a strong inversion $h$ such that $G(K, h)$ has a 3-bridge decomposition.

(2) A knot $K$ in $S^{3}$ admits a $(1, 1)- decomposition$ , if and only if $K$ admits a
strong inversion $h$ such that $G(K, h)$ has a 2-bridge decomposition.

PROOF. We prove (1). Suppose $K$ admits an unknotting tunnel, say $\tau$ . Put
$V_{1}=N(K\cup\tau)$ and $V_{2}=cl(S^{3}-V_{1})$ , where $N(K\cup\tau)$ is a regular neighbourhood of
$K\cup\tau$ in $S^{3}$ . Then $\{V_{1}, V_{2}\}$ determines a genus 2 Heegaard splitting of $S^{3}$ . Let
$h_{1}$ be the involution of the triple $(V_{1}, K, \tau)$ as illustrated in Figure 1.2(a). Then
as described in [BGM, BH, BM], the restriction of $h_{1}$ to $\partial V_{1}=\partial V_{2}$ extends to an
involution, say $h_{2}$ , of $V_{2}$ as illustrated in Figure 1.2(b). Let $h$ be the involution
of $S^{3}$ determined by $h_{1}$ and $h_{2}$ . Then $h$ is a strong inversion of $K$, and its
quotient $(S^{3}, O, \gamma)=(S^{a}, Fix(h),$ $K)/h$ is a union of the quotients $(V_{1}, Fix(h_{1}),$ $K)$

$/h_{1}$ and $(V_{2}, Fix(h_{2}),$ $\phi)/h_{2}$ , which are illustrated in Figures 1.2(c) and (d). This
proves the only if part of (1). The if part of (1) can be proved by tracing
backward the above argument, and (2) can be proved by a similar argument.

(a) ( $\nu_{1}$ . K. $\tau$ )

1
(c)

$(V_{1}, Fix(h_{1})$ . $K$ ) $/h_{1}$

(b) V
$-$

)

$\downarrow$

(d)

(V,, $b^{\neg}ix(h_{2})$ ) $//\iota_{2}$

Figure 1.2.

COROLLARY 1.3. Let $K$ be a knot with tunnel number one. Then $K$ admits
a strong inversion $h$ such that the set of the constituent knots of $G(K, h)$ consists
of two trivial knots and a knot with a 2-bridge decomPosrtion.
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2. Montesinos knots and prime knots up to 10 crossings.

A Montesinos link $K=M(b;(\alpha_{1}, \beta_{1}),$ $\cdots$ , $(\alpha_{r}, \beta_{r}))$ with $r$ branches is a link in
$S^{3}$ as illustrated in Figure 2.1(a).

$M(b;(\alpha_{1}, \beta_{1}),$ $(\alpha_{2}, \beta_{2}),$ $\cdots$ $(\alpha_{r}, \beta_{r}))$ $b=3$

(b) (c)

$=$
$\cong$

Figuoe 2.1.

Here $r,$ $b,$ $\alpha_{i}$ and $\beta_{i}$ are integers such that $r-O,$ $\alpha_{i}\geqq 2$ , and $g.c.d.(\alpha_{i}, \beta_{i})=1$ . A
box $\overline{\underline{|\beta/\alpha}|}$ stands for a rational tangle of slope $\beta/\alpha$ (see Fig. $2.1(b)$). If we
forget the chart on the boundary, a rational tangle is merely a 2-strand trivial
tangle as illustrated in Figure 2.1(c); we call the image of the arc $\tau$ in Figure
2.1(c) in a rational tangle the core of the rational tangle. The following prop-
osition is well-known (see [Z], $[BuZ$ , Chapter 12]):

PROPOSITION 2.1. (1) Suppose $r-2$ . Then $K$ is a $2$-bndge link $S(p, q)$ of
type $(p, q)$ , where $P=|b\alpha_{1}\alpha_{2}-\alpha_{1}\beta_{2}-\alpha_{2}\beta_{1}|$ and $q$ is an integer relatively prime to
$p$ . In particular, $K$ is a trivial knot, if and only if $b\alpha_{1}\alpha_{2}-\alpha_{1}\beta_{2}-\alpha_{2}\beta_{1^{-}}\pm 1$ .

(2) Suppose $r\geqq 3$ . Then $K$ is not a 2-bridge link, and it is classified by the
Euler number

$e(K)=b- \sum_{i=1}^{r}\beta_{i}/\alpha_{i}$ ,
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and the vector
$v(K)=(\beta_{1}/\alpha_{1}, \cdots \beta_{r}/\alpha_{r})\in(Q/Z)^{r}$

up to cyclic Permutation and reversal of the order.

In this section, we prove the following theorem:

THEOREM 2.2. Let $K-M(b;(\alpha_{1}, \beta_{1}),$ $\cdots$ $(\alpha_{r}, \beta_{r}))$ be a Montesrnos knot (not

a link) with $r$ branches. Suppose $K$ has tunnel number one, then one of the
following conditions holds up to cyclic permuiation of the indices:

(1) $r=2$ .
(2) $r=3,$ $\alpha_{1}=2$ , and $\alpha_{2}\equiv\alpha_{3}\equiv 1(mod 2)$ .
(3) $r=3,$ $\beta_{2}/\alpha_{2}\equiv\beta_{S}/\alpha_{3}\in Q/Z$, and $e(K)=\pm 1/(\alpha_{1}\alpha_{2})$ .
Conversely, if the condition (1), (2), or the following (3) holds, then $K$ has

tunnel number one:
(3) $r=3,$ $\beta_{2}/\alpha_{2}\equiv\beta_{3}/\alpha_{3}\equiv\pm 1/3\in Q/Z$, and $e(K)=\pm 1/(3\alpha_{1})$ .
First, we prove the second part of Theorem 2.2. If the condition (1) is

satisfied, then $K$ is a 2-bridge knot, and therefore it has tunnel number one.
Suppose the condition (2) is satisfied. For $i=2,3$ , let $\tau_{i}$ be the core of the
rational tangle $\overline{|\beta_{i}/\alpha_{i}|}$ . Then we see each $\tau_{i}$ is an unknotting tunnel for $K$ as
illustrated in Figure 2.2. (A core of the genus 2 handlebody $cl(S^{3}-N(K\cup\tau_{i}))$ is
as illustrated in Figure 2.2(a). From this figure, we see that $\tau_{1}$ and $\tau_{2}$ are
$(1, 1)$ -tunnels and are dual to each other (see [MS, 1.1-1.3]).) Suppose the
condition (3) is satisfied. Then, up to reflection, $K$ is equivalent to
$M(O;(3n+2, -2n-1),$ $(3,1)$ , $(3, 1))$ for some integer $n$ . Let $\tau$ and $\tau’$ be arcs
as illustrated in Figure 2.3(a). Then we see each of them is an unknotting
tunnel as illustrated in Figure 2.3. (A core of $cl(S^{3}-N(K\cup\tau))$ is as illustrated
in Figure 2.3(a). From this figure, we see that $\tau$ and $\tau’$ are $(1, 1)$-tunnels and
are dual to each other.)

In the following we prove the first half of Theorem 2.2. If $K$ is an elliptic
Montesinos knot, $i.e.,$ $2-\Sigma_{i=1}^{r}(1-1/\alpha_{i})\geqq 0$ , then it satisfies either (1) or (2), and
it admits an unknotting tunnel. So, in the following, we may assume $K$ is
non-elliptic. Let $Sym(S^{3}, K)$ be the symmetry group of $K,$ $i.e.$ , the group of all
pairwise isotopy classes of diffeomorphisms of the pair $(S^{3}, K)$ . Let $Sym_{+}(S^{3}, K)$

be the subgroup of $Sym(S^{3}, K)$ generated by diffeomorphisms which preserve
the orientation of $S^{3}$ . The following result is proved by Boileau-Zimmermann
$[BoZm]$ .

PROPOSITION 2.3. There is an exact sequence

$1arrow Z_{2}arrow Sym_{+}(S^{3}, K)arrow D_{+}(v(K))\Psiarrow 1$ ,
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$M(b;(2,1),$ $(\alpha_{2}, \beta_{2}),$ $(a_{3}, \beta_{3}))$

$\{\begin{array}{l}b=0(\alpha_{2},\beta_{2})=(3,l)(\alpha_{a},\beta_{8})=(5.l)\end{array}$

$\downarrow$

$\cong$

Pigure 2.2.

where $D_{+}(v(K))$ is the group of those dihedral permutations of the vector $v(K)=$

$(\beta_{1}/\alpha_{1}, \cdots \beta_{r}/\alpha_{r})\in(Q/Z)^{r}$ which preserve $v(K)$ .

Let $(B, t)$ be a rational tangle of slope $\beta/\alpha$ , and let $f$ [resp. $g$] be the
$\pi$-rotation of $(B, t)$ about the horizontal [resp. vertical] axis (see Figures 2.4
and 2.5).

LEMMA 2.4. (1) Suppose $\alpha$ [resp. $\beta$] is odd. Then $f$ [resp. $g$] interchanges
the two components of $t$ , and the quotimt pair $(B, t\cup Fix(f))/f$ [resp. $(B,$ $t\cup$

$Fix(g))/g]$ is naiurally identified with a rational tangle of slope $2\beta/\alpha$ [resp. $\beta/2\alpha$].
(2) Suppose a [resp. $\beta$] is even. Then $f$ [resp. $g$] preserves the two compo-

nents of $t$ , and $t\cap Fix(f)$ [resp. $t\cap Fix(g)$] $con\dot{\alpha}sts$ of two points, say $v_{1}$ and $v_{2}$ .
Put $s=cl(Fix(f)-\overline{v_{1}v_{2}})$ [resp. $s=cl(Fix(g)-\overline{v_{1}v_{2}})$], where $\overline{v_{1}v_{2}}$ is the subarc of
Fix $(f)$ [resP. Fix $(g)$] bounded by $v_{1}$ and $v_{2}$ . Then $(B, t\cup s)/f$ [resp. $(B,$ $t\cup s)/g$]
is naturally identified with a rational tangle of slope $\beta/(\alpha/2)$ [resp. $(\beta/2)/\alpha$].

The image of Fix $(f)$ [resp. Fix $(g)$] in $(B, t\cup s)/f$ [resp. $(B,$ $t\cup s)/g$] is parallel
to an arc of slope $0$ .
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A 2-bridge knot and
its unknotting tunnel

Figure 2.3.
(a) (b)

$(B^{3}, tuFix(f))/f$

is a rational tangle
of slope $2\beta/\alpha$ .

$(\alpha, \beta)=(5,2)$

Fix$(f)\cap t=\phi$

Figure 2.4.
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$(\alpha,$ $\beta^{\backslash }=(8,3),$ $Fix(f)\cap t=\{v_{1}. v_{2}\}$ .
(b)

$=$
$\frac{\beta}{a/2}$

Figure 2.5.

PROOF. Clear from Figures 2.4 and 2.5.

In case the condition (2) in the above lemma holds, we denote the quotient

pair $(B, t\cup s)/f$ by the symbol $\underline{\overline{|\underline{\frac{\beta}{\alpha/2}}}|}$ . By [BS, Proposition 9.19] (cf. $[BoZm$ ,

Proposition 2.1]), the exterior of the non-elliptic Montesinos knot (not a link) $K$

is not Seifert fibred. Thus, by using [T], we see the equivalence class of a
strong inversion $h$ is uniquely determined by the order 2 element $[h]$ of
$Sym_{+}(S^{3}, K)$ represented by $h$ . Since Fix $(h)$ is a circle intersecting $K$ in two
points, we see that $\Psi([h])$ is either trivial or a reflection. Hence, by using
Proposition 2.3 and Lemma 2.4, we obtain the following classification of strong
inversions of non-elliptic Montesinos knots.

Case 1. $\Psi([h])=1$ . Then we may assume $\alpha_{1}\equiv 0$ (mod2) and $\alpha_{i}\equiv 1$ (mod2)
$(2\leqq i_{-}\leqq r)$ , and $h$ is as illustrated in Figure 2.6.

Case 2. $\Psi([h])$ is a reflection. Then $h$ is equivalent to an involution as
illustrated in Figure 2.7. Here $\alpha_{i}’\geqq 2$ $(2\leqq i\leqq s-1)$ , $\beta_{1}’\equiv 1$ $(mod 2)$ , and $\beta_{s}’\equiv 0$

$(mod 2)$ .

REMARK 2.5. For each reflection $\gamma\in D_{+}(v(K))$ , there are two involutions,
say $h_{1}$ and $h_{2}$ , of $(S^{s}, K)$ such that $[h_{1}]$ and $[h_{2}]$ are mutually distinct elements
of $Sym_{+}(S^{3}, K)$ whose image under $\Psi$ are equal to $\gamma$ . If we fix a projection of
$K$ in which Fix $(h_{1})$ is a planar axis, then Fix $(h_{2})$ is not planar. However, in
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$a_{1}\equiv 0,$ $\alpha_{2}\equiv\alpha_{3}\equiv\ldots i\alpha_{r}\equiv 1$ $(mod 2)$ .

$G(K, h)$

Figure 2.6.

Figure 2.7.

another projection, Fix $(h_{2})$ become planar as illustrated in Figure 2.8 (cf. [GS,
Figure 2.6], [Sa] $)$ .
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$\cong$

Figure 2.8.

NOW, suppose that $h$ is associated with an unknotting tunnel.
Case 1. Then the constituent knots of $G(K, h)$ are two trivial knots and

$M(2b;(\alpha_{1}/2, \beta_{1}),$ $(a_{2}, \beta_{2}),$ $\cdots$ . $(\alpha_{r}, \beta_{r}))$ .

The latter knot is a 2-bridge knot, if and only if $r=3$ and $\alpha_{1}=2$ by Proposition
2.1 (2). Hence, the condition (2) in Theorem 2.2 holds by Corollary 1.3.

Case 2. Then the constituent knots of $G(K, h)$ are a trivial knot,
$\#_{i=2}^{s-1}S(\alpha_{i}’, \beta_{i}’)$ , and $K’=M(O;(2\alpha_{1}’, \beta_{1}’),$ $(a_{2}’, \beta_{2}’),$ $\cdots$ , $(\alpha_{s-1}’, \beta_{l-1}’),$ $(\alpha_{s}’, \beta_{l}’/2))$ . Hence,
by Corollary 1.3, $s=3$ and $K’$ is a trivial knot; so it follows that $\alpha_{3}’=1$ by
Proposition 2.1 (1). This means that (1) $K=M(b;(\alpha_{I}, \beta_{1}),$ $(\alpha_{2}, \beta_{2}),$ $(\alpha_{2}, \beta_{2}))$ , where
$(\alpha_{i}, \beta_{t})=(\alpha_{i}’, \beta_{\ell}’)(i=1,2)$ and $b=-\beta_{3}’$ , and (2) $K’=M(b;(2a_{1}, \beta_{1}),$ $(\alpha_{2}, \beta_{2}))$ is a
trivial knot. By Proposition 2.1 (1), the latter condition holds, if and only if
$b\alpha_{1}\alpha_{2}-2\alpha_{1}\beta_{2}-a_{2}\beta_{1}=\pm 1$ . This is equivalent to the condition $e(K)=\pm 1/(\alpha_{1}a_{2})$ .
Hence the condition (3) of Theorem 2.2 holds.

At the end of this section, we apply our method to the prime knots up to
10 crossings. The bridge indices of these knots are equal to 2 or 3. So, their
tunnel numbers are equal to 1 or 2. On the other hand, the symmetry groups
of these knots are determined by [AHW, HW, KS]. So, by Theorem 1.2, the
problem to determine the tunnel numbers of these knots is reduced to a problem
concerning spatial $\theta$ -curves. However, for the $\theta$ -curves arising from these
knots, the problem is settled by the method described in Corollary 1.3, except
$10_{152}$ and $10_{1b4}$ . For these exceptional knots, we use the result of Scharlemann
[Sc] that tunnel number one knots are doubly prime, and conclude that their
tunnel numbers are not one.

THEOREM 2.6. Let $K$ be a prime knot $with\leqq 10$ crossings. Then $t(K)=2$ if
and only if $K$ is equivalent to one the following knots; otherwise, $t(K)=1$ :
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$8_{n}$ with $n\in[16,18]$ ,
$9_{n}$ with $n\in\{29\}\cup[32,35]\cup[37,41]\cup[46,49]$ ,

$10_{n}$ with $n\in[61,69]\cup[74,75]\cup[79,123]\cup[140,144]\cup[146,160]\cup[163,166]$ .
In the above, we use the numbering in the table of Rolfsen’s book. The

result can be rephrased as follows: A prime knot $K$ with $10 crossings has
tunnel number one, if and only if it is equivalent to (1) a 2-bridge knot,
(2) $M(b;(2,1),$ $(\alpha_{2}, \beta_{2}),$ $(\alpha_{3}, \beta_{3})),$ (3) $M(b;(\alpha_{1}, \beta_{1}),$ $(3,1),$ $(3,1))$ with $e(K)=\pm 1/(3\alpha_{1})$ ,
(4) a torus knot, or (5) $10_{161}=10_{162}$ .

3. Criterion by means of Yamada’s invariants of spatial graphs.

First, we recall the linear skeins of planar surfaces developed in [Ll, L2].

Let $F$ be a compact, connected, 2-dimensional submanifold of $S^{2}$ . A diagram
on $F$ is immersed circles and arcs joining specified points on $\partial F$ whose singular
set consists of a finite number of double points equipped with over-under
information. Two diagrams are regarded as the same if they differ by an
isotopy of $F$ relative to $\partial F$.

DEFINITION 3.1 [L2, Section 2]. Let $A$ be a unit complex number. The
linear skein $S(F)$ of $F$ is a complex vector space of formal linear sums of
diagrams on $F$ quotiented by relations

$D\cup O=-(A^{2}+A^{-})\cdot D$ ,

$\backslash ’/=A=+A^{-1})($ ,

where $O$ stands for the boundary of a disk in $F$.
Then $S(S^{2})$ is a 1-dimensional vector space with the empty diagram $\phi$ as a

natural base. In fact, for each element $D$ of $S(S^{2})$ , we have $D=\langle D\rangle\phi$ in $S(S^{2})$ ,

where $\langle\cdot\rangle$ denotes the Kauffman bracket [Ka] normalized so that $\langle\phi\rangle=1$ .
In what follows, $D_{\iota}$ denotes an oriented disk with $1\in 2Z$ specified points on

its boundary. Furthermore, for a partition $l=l_{1}+\cdots+l_{n},$ $l_{i}>0,$ $D_{\iota_{1^{+\cdots+}}\iota_{n}}$ denotes
$D_{\iota}$ equipped with disjoint $n$ arcs on $\partial D_{\iota}$ which cover $l_{1},$ $\cdots$ , $l_{n}$ points in order
with respect to the orientation of $\partial D_{\iota}$ . Then, there is an important element $f_{m}$

in $S(D_{m+m})$ , which is called the Jones-Wenzel idempotent or the magic knitting
(see [L2, Lemma 1]). In the following figures, $f_{m}$ will be shown as a small
blank square. Let $\Delta_{m}$ and $\Gamma(x, y, z)$ be the complex numbers corresponding to
the elements of $S(S^{2})$ represented by the diagrams as illustrated in Figure 3.1(a)

and (b) respectively. Here $m,$ $x,$ $y$ , and $z$ are non-negative integers, and the
numbers in Figure 3.1 represent the numbers of parallel copies of arcs. Then
we obtain the following [Ll, Lemma 1]:
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$\Delta_{m}=(-1)^{m}\frac{A^{2(m+1)}-A^{-2(m+1)}}{A^{2}-A^{-2}}$ ,

$\Gamma(x, y, z)=\frac{\Delta_{x+y+z}!\Delta_{x-1}!\Delta_{y-1}!\Delta_{z-1}!}{\Delta_{y+z-1}!\Delta_{z+x-1}!\Delta_{x+y-1}!}$ .

Here, $\Delta_{m}!=\Delta_{m}\Delta_{m-1}\cdots\Delta_{0}$ and $\Delta_{-1}!=1$ .

Figure 3.1.

A triple $(a, b, c)$ of non-negative integers is said to be admissible if

$|a-b|\leqq c\leqq a+b$ , $a+b+c\in 2Z$ .

This condition is equivalent to the condition that there are non-negative integers
$x,$ $y$ , and $z$ such that

$x+y=a$ , $y+z=b$ , $z+x=c$ .
We put $A_{a,b.c}=\Gamma(x, y, z)$ for each admissible triple $(a, b, c)$ .

We now recall the definition of Yamada’s invariant of spatial graphs [Ya].

Let $G$ be a trivalent graph embedded in $S^{3}$ and $D$ a diagram of $G$ . A weight
of $G$ is a map from the set of edges of $G$ to the set of non-negative integers.
Let $v$ be a vertex of $G$ and $\alpha,$ $\beta,$

$\gamma$ the edges incident with $v$ . A weight $\omega$ of
$G$ is said to be admissible at $v$ if $(\omega(\alpha), \omega(\beta),$ $\omega(\gamma))$ is admissible. If $\omega$ is admis-
sible at each vertex of $G,$ $\omega$ is said to be admissible. For an admissible weight
$\omega$ , we define $D^{\omega}$ by decorating each edge $e$ of $D$ with $\omega(e)$ parallel curves
equipped with the magic knitting $f_{\omega(e)}$ and by $\backslash ioining$ them at each vertex as
shown in Figure 3.2.

$x$ $z$

Figure 3.2.
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Then Yamada’s invariant of $G$ is defined by $Y_{G.\omega}(A)=\langle D^{\omega}\rangle$ . This is an invariant
of $G$ up to a multiplication of $\pm A^{\pm n}$ [Ya, p. 452]. (This invariant is generalized
to an invariant of graphs in $S^{3}$ which are not necessarily trivalent in [Yo2].)

Suppose $G$ is a $\theta$ -curve in $S^{3}$ with edges $\alpha,$ $\beta$ , and $\gamma$ By $Y_{G,a,b,c}(A)$ , we
denote $Y_{G.\omega}(A)$ with $\omega(\alpha)=a,$ $\omega(\beta)=b$ and $\omega(\gamma)=c$ . The following theorem
gives a criterion by means of Yamada’s invariant to determine whether a
$\theta$ -curve arising from a strong inversion of a knot satisfies the conditions in
Theorem 1.2:

THEOREM 3.2. (1) Suppose $G$ has a 3-bridge decomParition which induces
1- and 2-bridge decompositions of $\alpha\cup\beta$ and $\alpha\cup\gamma$ respectively. Then, we have

$\sum_{a}\frac{\Delta_{a}}{\Delta_{a,b.c}^{2}\Delta_{b}\Delta_{c}^{3}}|Y_{G.a.b,c}(e^{i\psi})|^{2}\leqq 1$

for $|\psi|<\pi/2(b+2c+1)$ , where a varies so that $(a, b, c)$ is admissibe.
(2) $SuPPOseG$ has a $2- b\dot{n}dge$ decomposition, which induces $a$ 1-bndge decom-

Position of $\alpha\cup\beta$ . Then, we have

$|Y_{G.a,b.c}(e^{i\psi})|\leqq\Delta_{a,b.c}\Delta_{c}$

for $|\psi|<\pi/(a+b+3c+2)$ .

TO prove this theorem, we use the approacb of [Yo2] to the invariants and
use the idea due to [Wk, $G$ , Ko, Yol]. For $v\in S(D_{l_{1}+\cdots+t_{n}})$ , we define $f(v)\in$

$S(D_{\iota_{1^{+\cdots+l_{n}}}})$ by glueing $v$ and $f_{l_{1}},$ $f_{\iota_{n}}$ at $n$ arcs. Put $\mathcal{H}_{l_{1}+\cdot\cdot+l_{n}}=f(S(D_{l_{1}+\cdots+\iota_{n}}))$ .
Let $-D_{l_{1}+\cdots+l_{n}}$ denote $D_{l_{1}+\cdots+l_{n}}$ with the opposite orientation. Note that the
orientation reversing map $D_{l_{1}+\cdots+l_{n}}arrow-D_{l_{1}+\cdots+l_{n}}$ induces an isomorphism

$*:S(D_{l_{1}+l_{2}+\cdots+l_{n}})arrow S(D_{\iota_{n^{+\cdots+l_{2}+l_{1}}}})$

which takes complex conjugate for coefficients and mirror images for diagrams.
Since $f_{m}$ is an $R$-linear sum of diagrams without crossings [Ll, Section 2], we
see $f_{m}^{*}=f_{m}$ . So, $*$ restricts to a map

$*:\mathcal{H}_{l_{1}+l_{2}+\cdots+l_{n}}-\mathcal{H}_{\iota_{n^{+\cdots+l_{2}+l_{1}}}}$ .

For $u,$ $v\in \mathcal{H}_{l_{1}+\cdots+l_{n}}$ , we obtain an element of $S(S^{2})$ by glueing $u$ and $v^{*}$ at their
boundary, which identified with some complex number through Kauffman’s
bracket. Let $\theta(u, v)\in C$ be this complex number multiplied by $\sqrt{-1}^{\iota}$ , which
defines a Hermitian form

$\theta$ : $\mathcal{H}_{l_{1}+\cdots+l_{n}}\cross \mathcal{H}_{l_{1}+\cdots+l_{n}}arrow C$ .

From now onward, we choose $A$ so that $(-1)^{m}\Delta_{m}>0$ for each $m$ up to the
half of $l$ . This assumption is satisfied if
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(3.3) $A=e^{i\psi}$ , $| \psi|<\frac{\pi}{l+2}$ .

In what follows, for admissible $(a, b, c)$ , we use an abbreviation shown in Figure
3.2 to describe a vector of $\mathcal{H}_{a+b+C}$ , and note that $\sqrt{-1}a+b+c\Delta_{a.b.\iota}$ is positive real
if $a+b+c\leqq l$ . For an $(n-3)$-tupple of integers $j=(]_{1}, \cdots j_{n-3}),$ $\text{\^{u}}_{l_{1}+\cdots+l_{n}}^{j}$ denotes
a vector of $\mathcal{H}_{l_{1}+\cdots+\iota_{n}}$ depicted in Figure 3.3, where $(l_{1},1_{2}, j_{1}),$ $(j_{1}, ]_{2},$ $l_{3})$ , ,
$(j_{n-s}, l_{n-1}, l_{n})$ are admissible.

$j_{1}$
$]_{2}$

$j_{n-3}$

Figure 3.3.

Then, by using the identity [L2, Figure 2.7], we obtain the following:

(3.4) $\theta(ai_{1^{+\cdots+l_{\mathcal{R}}}}, \text{\^{u}} l_{1^{+\cdots+l_{n}}})=\sqrt{-1}^{\iota_{\frac{\Delta\Delta\cdot.\cdot\cdot\Delta_{jll}}{\Delta_{j_{1}}\Delta_{j_{2}}\cdot\Delta_{j_{n-a}}}}}$ ,

which is positive real in our setting. Let $\ovalbox{\tt\small REJECT}_{\iota_{1^{+\cdots+}}\iota_{n}}$ denote the set of vectors

(3.5) $u_{l_{1}+\cdots+l_{n}}^{j}= \frac{\text{\^{u}} f_{1^{+\cdots+l}n}}{\sqrt{\theta(\text{\^{u}} f_{1^{++l}},\text{\^{u}} t_{1^{++l}})},nn}$ ,

where $j$ varies so that $(l_{1}, l_{2}, j_{1}),$ $(j_{1}, j_{2}, l_{3}),$ $\cdots$ , $(j_{n-3}, \ell_{n-1}, l_{n})$ are admissible.
Then we have

LEMMA 3.6 [Yo2, Proposition 3.2]. $B_{l_{I}+\cdots+l_{\mathcal{R}}}$ is an orthonormal basis of
$\mathcal{H}_{\iota_{1^{+\cdots+}}\iota_{n}}$ . In particular, $\theta$ is pOsrtive definite.

For each element $\xi$ of the braid group $B_{n}$ on $n$ strings, we can define a
natural isomorphism $\xi:\mathcal{H}_{\iota_{1^{+\cdots+l}n}}arrow \mathcal{H}_{t_{\xi(1)}+\cdots+l_{\text{\’{e}}(n)}}$ . (See Figure 3.4, where the iso-
morphism corresponding to a generator $\sigma^{\pm 1}$ is illustrated.) Then we obtain the
following:

LEMMA 3.7 [Yo2, Proposition 3.1]. $\xi$ is unitary with respect to $\theta$ , that is,

$\theta(\xi(u), \xi(v))=\theta(u, v)$

for any $u,$ $v\in \mathcal{H}_{\iota_{1^{+\cdots+}}\iota_{n}}$ .

PROOF OF THEOREM 3.2. Suppose $G$ has a 3-bridge decomposition as shown
in Figure 3.5, where $\xi$ denotes some element of the braid group on 6 strings.
By Lemma 3.6, $\xi$ determines a unitary operator

$\xi:\mathcal{H}_{b+c+b+c+c+C^{-}}\mathcal{H}_{b+b+c+c+c+c}$ .
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$\sigma\swarrow$ $\backslash ^{\sigma_{i}^{-1}}$

Figure 3.4.

$a$

Figure 3.5.

It should be noted that condition (3.3) corresponds to the condition that $A=e^{t\psi}$ ,
$|\psi|<\pi/2(b+2c+1)$ in this case; and under this condition, $B_{b+C+b+C+C+C}$ and
$\ovalbox{\tt\small REJECT}_{b+b+c+c+c+c}$ exist. From the definition of the invariant $Y$ , we have

$Y_{G,a,b.c}(e^{i\psi})=\theta(\xi(a_{b+c\dotplus b+c+c+c}^{(a,c0)}), \text{\^{u}}_{b}^{(0_{b}c0)}\dotplus\dotplus_{C+c+c+c})$ .
On the other hand, by (3.4),

$\theta(\text{\^{u}}_{b+\dot{c}\dotplus b+c+c+c}^{taco)}, \text{\^{u}}_{b+\dot{c}\dotplus_{b+c+c+c}}^{(ac0)})=\sqrt{-}1^{\iota}\frac{\Delta_{a,b.c}^{2}\Delta_{c,c.0}^{2}}{\Delta_{a}\Delta_{c}\Delta_{0}}=\sqrt{-1}$ i $\frac{\Delta_{a,b.C}^{2}\Delta_{c}}{\Delta_{a}}$

where $1=2(b+2c)$ . So, by (3.5),

$\text{\^{u}}_{b+\dot{c}\dotplus_{b+c+c+c}}^{(ac0)}=\mapsto’-1^{l}\frac{\Delta_{abC}^{2}\Delta_{c}}{\Delta_{a}}u_{b+\dot{c}\dotplus_{b+c+c+c}}^{(ac0)}$ .

Similarly,
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$\text{\^{u}}_{b}^{(0c0)}\dotplus b\dotplus c+c+C+C=\sqrt{\sqrt{-1}^{\iota}\Delta_{b}\Delta_{c}^{2}}u_{0\dotplus\dotplus c+c+c+c}^{(0_{b}c0)}$ .
Hence, we have

$Y_{G.a,b,c}(e^{t\psi})= \sqrt{\frac{\Delta_{abc}^{2}\Delta_{b}\Delta_{c}^{3}}{\Delta_{a}}}\theta(\xi(u\oint_{+c\dotplus_{b+c+c+c}}^{a,c0)}), ub^{0c,0)}\dotplus_{b+c+c+c+c})$ .

Since $\xi$ is unitary,

$1= \sum_{j}|\theta(\xi uf_{+c+b+c+C+C}),$
$uf\dotplus_{b}\dotplus_{C+c+c+c})|^{2}$

$\geqq\sum_{a}|\theta(\xi(u_{b+\dot{c}\dotplus_{b+c+c+c}}^{(ac0)}), \mathcal{U}_{b}(\dotplus_{b}\dotplus_{C+c+c+C})|^{2}$

$= \sum_{a}\frac{\Delta_{a}}{\Delta_{a,b,c}^{2}\Delta_{b}\Delta_{c}^{3}}|Y_{G,a.b,c}(e^{i\psi})|^{2}$ .

This proves Theorem 3.1 (1).

Next, we prove Theorem 3.2 (2). Suppose $G$ has a 2-bridge decomposition
as shown in Figure 3.6, where $\xi$ denotes some element of the braid group on 5
strings.

Figure 3.6.

By Lemma 3.6, $\xi$ determines a unitary operator

$\xi:\mathcal{H}_{a+b+c+c+c}arrow \mathcal{H}_{a+b+c+c+c}$ .

It should be noted that condition (3.3) corresponds to the condition that $A=e^{i\psi}$ ,
$|\psi|<\pi/(a+b+3c+2)$ . From the definition together with (3.4) and (3.5), we
have

$Y_{G.a.b,c}(e^{t\psi})=\theta(\xi(\text{\^{u}}_{a\dotplus_{b+c+c+c}}^{(c0)}), \text{\^{u}}_{a\dotplus_{b+c+c+c}}^{(t0)})$

$=\Delta_{a,b.c}\Delta_{c}\theta(\xi(u_{a\dotplus_{b+c+c+c})}^{(c0)}, u_{a\dotplus_{b+c+c+c}}^{(c0)})$ .
Since $\xi$ is unitary,

$1= \sum_{j}|\theta(\xi(u_{a+b+c+c+c}^{j}), u_{a\dotplus_{b+c+c+c}}^{(c0)})|^{2}$

$\geqq|\theta u_{a}^{(C0)}),$ $u_{a+b+c+c+c}^{(C_{1}0)})|^{2}$

$= \frac{1}{\Delta_{a.bc}^{2}\Delta_{c}^{2}}|Y_{G,a,b.c}(e^{t\psi})|^{2}$ .
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Tbis proves Theorem 3.2 (2).

Figure 3.7.

EXAMPLE 3.8. Let $G=\alpha\cup\beta\cup\gamma$ be the $\theta$ -curve as illustrated in Figure 3.7.
This does not has a 3-bridge decomposition where $\alpha\cup\beta$ has a one-bridge
decomposition. To show this, put $b=3$ and $c=1$ in Theorem 3.2 (1). If $G$

admits such a decomposition, then we have

$y( \psi):=\frac{\Delta_{4}}{\Delta_{4.3,1}^{2}\Delta_{3}\Delta_{1}^{3}}|Y_{G.4,S,1}(e^{i\psi})|^{2}+\frac{\Delta_{2}}{\Delta_{2.3.1}^{2}\Delta\Delta_{1}^{3}}|Y_{G,2.3.1}(e^{t\psi})|^{2}\leqq 1$

for $|\psi|<\pi/12$ . To calculate this, we use the identity [Ya, p. 452] shown in
Figure 3.8 and quantum $6j$-symbols $\{\begin{array}{ll}a bic jd\end{array}\}\in C$ defined by Figure 3.9 which can
be computed from the definition of magic knittings. Then, for example, we can
compute $Y_{G.4,’.1}$ as shown in Figure 3.10, where the last ingredient can be
computed by using [L2, Figure 27].

$y+z$

Figure 3.8.
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$b$
$c$

$b$
$c$

$= \sum_{i}\{\begin{array}{ll}a bic dj\end{array}\}$

Figure 3.9.

$\downarrow$

$arrow$

$\{$

$arrow$

Figure 3.10.
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Thus we have

$Y_{G,}(A)=-A^{-26}-A^{-22}-A^{-18}-A^{-14}-A^{-10}-A^{-6}+A^{-2}$

$+A^{2}+A^{10}+A^{14}-2A"+A^{26}-2A^{30}+A^{84}+A^{38}-A^{42}$ ,

$Y_{G,4,’.1}(A)=-A^{-72}+A^{-48}+A^{-44}-A^{-36}-A^{-24}-A^{-20}+A^{-16}+2A^{-12}$

$+1+A^{4}+A^{16}+A^{zo}$ .

The practical graph of $v(\psi)$ is given by Figure 3.11, which contradicts the
above inequality.

$y$

Figure 3.11.

Hence $G$ does not have such a decomposition. This, together with the arguments
in Section 2, proves that the Montesinos knot $M(O;(5,1),$ $(5,1),$ $(3, -1))$ does not
have tunnel number one. Thus the condition in Theorem 2.2 is not sufficient.

4. Relation with reflection groups.

If a knot has tunnel number one, then its knot group is generated by two
elements. On the other hand, the knot group of a Montesinos knot has a natural
epimorphism to a reflection group (cf. $[BuZ$ , Chapter 12]). Thus, Theorem 2.3
enables us to Pnd two generator reflection groups.

PROPOSITION 4.1. Consi er the reflection grouP

$\Gamma(\alpha_{1}, \alpha_{2}, \alpha_{3})=\langle x, y, z|x^{2}=y^{2}=z^{2}=(xy)^{a_{1}}=(yz)^{\alpha_{2}}=(zx)^{a_{\theta}}=1\rangle$ .
Then it is generated by two elements if one of the following conditions are satisfied
up to permutation of the indices:

(1) $\alpha_{1}=2$ and $\alpha_{2}\equiv 1(mod 2)$ . In this case, $\{y, (yz)^{p}x\}$ , where $p=(\alpha_{2} 1)/2$ ,

forms a generator system.
(2) $\alpha_{2}-\alpha_{3}=3$ and $\alpha_{1}\not\equiv 0(mod 3)$ . In this case, { $y$ , yxyz} forms a generator

system.
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PROOF. This follows from the latter half of Theorem 2.2 except the case
where $\alpha_{3}\equiv 0(mod 2)$ in (1). In this case, $M(b;(\alpha_{1}, \beta_{1}),$ $(\alpha_{2}, \beta_{2}),$ $(\alpha_{3}, \beta_{3}))$ is a
2-component link; but, we can also see that the core $\tau_{3}$ of the rational tangle
$|\overline{\beta_{3}/\alpha_{3}}|$ forms its “unknotting tunnel”, and we obtain the desired result. The
generator systems are obtained from Figures 2.2(a) and 2.3(a).

REMARK 4.2. (1) If $\alpha_{1}=2$ and $\alpha_{2}\equiv\alpha_{3}\equiv 1(mod 2)$ , then the corresponding
Montesinos knot has two unknotting tunnels $\tau_{2}$ and $\tau_{3}$ . We can see that the
generator systems of the reflection group coming from these tunnels are Nielsen
equivalent if and only if $a_{2}=a_{3}=3$ by using the commutator invariant (cf. [Mo]).

Thus it follows that these two tunnels are isotopic only if $a_{2}=a_{3}=3$ .
(2) The two unknotting tunnels $\tau$ and $\tau’$ for $M(O;(3,1),$ $(3,1),$ $(3n+2$ ,

$-2n-1))$ in Figure 2.3(a) determine the same generator system of the reflection
group.

After having done this work, the authors knew the work of Klimenko [K1],

which determines a certain class of 2-generator discrete subgroups of $PSL(2, C)$ ,

through discussion with A. Mednykh. From this article, the authors learned that
the results and methods of Matelski [Ma] are useful for our problem. In fact,

we can see that if a reflection group is generated by a reflection and another
element, then it belongs to the list given by Proposition 4.1. Thus, together
with Theorem 2.2, this implies that a Montesinos knot admits a $(1, 1)$-decompo-
sition if and only if it satisfies the condition (1), (2) or (3) of Theorem 2.2. We
hope to discuss this approach in another paper.

ACKNOWLEDGEMENT. We would like to thank W. B. R. Lickorish and A.
Mednykh for their valuable comments.
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Added in Proof.
E. Klimenko and the second author proved that the converse of Proposition

4.1 also holds. Thus it follows that a Montesinos knot has tunnel number 1 if
and only if one of the conditions (1), (2), and (3) in Theorem 2.2 holds. Fur-
thermore, Y. Nakagawa determined the two-component Montesinos links with
tunnel number 1.
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