## Topological Anosov maps of infra-nil-manifolds

By Naoya SUMI

(Received Apr. 12, 1994)

#### § 0. Introduction.

We shall discuss a part of a problem of whether the universal model of Anosov diffeomorphisms exists. Concerning with this problem Manning [Ma2] proved that every Anosov diffeomorphism of an infra-nil-manifold is topologically conjugate to a hyperbolic infra-nil-automorphism. From the remarkable proof of his result and the work of Franks [Fr], Aoki and Hiraide has been studied the dynamics of covering maps of a torus ([Ao-Hi]).

We shall show in this paper that some of the results stated in [Ao-Hi] become realistic for infra-nil-manifolds as follows.

THEOREM 1. Let  $f: N/\Gamma \to N/\Gamma$  be a covering map of an infra-nil-manifold and denote as  $A: N/\Gamma \to N/\Gamma$  the infra-nil-endomorphism homotopic to f.

If f is a TA-map, then A is hyperbolic and the inverse limit system of  $(N/\Gamma, f)$  is topologically conjugate to the inverse limit system of  $(N/\Gamma, A)$ .

THEOREM 2. Let f and A be as in Theorem 1. Then the following statements hold:

- (1) if f is a TA-homeomorphism, then A is a hyperbolic infra-nil-automorphism and f is topologically conjugate to A,
- (2) if f is a topological expanding map, then A is an expanding infra-nil-endomorphism and f is topologically conjugate to A.

In the statement of Theorem 2 it notices that (1) is a generalization of Manning [Ma2].

First we shall explain here the definitions and notations used above. Let X and Y be compact metric spaces and let  $f: X \to X$  and  $g: Y \to Y$  be continuous surjections. Then f is said to be *topologically conjugate* to g if there exists a homeomorphism  $\varphi: Y \to X$  such that  $f \circ \varphi = \varphi \circ g$ .

Let X be a compact metric space with metric d. For  $f: X \rightarrow X$  a continuous surjection, we let

$$X_f = \{(x_i) : x_i \in X \text{ and } f(x_i) = x_{i+1}, i \in \mathbf{Z}\},\$$
  
 $\sigma_f((x_i)) = (f(x_i)).$ 

The map  $\sigma_f: X_f \to X_f$  is called the *shift map* determined by f. We say that  $(X_f, \sigma_f)$  is the *inverse limit* of (X, f). A continuous surjection  $f: X \to X$  is called c-expansive if there is a constant e>0 (called an expansive constant) such that for  $(x_i)$ ,  $(y_i) \in X_f$  if  $d(x_i, y_i) \le e$  for all  $i \in \mathbb{Z}$  then  $(x_i) = (y_i)$ . In particular, if there is a constant e>0 such that for  $x, y \in X$  if  $d(f^n(x), f^n(y)) \le e$  for all  $i \in \mathbb{N}$  then x = y, we say that f is positively expansive. A sequence of points  $\{x_i: a < i < b\}$  of X is called a  $\delta$ -pseudo orbit of f if  $d(f(x_i), x_{i+1}) < \delta$  for  $i \in (a, b-1)$ . Given  $\varepsilon > 0$  a  $\delta$ -pseudo orbit of  $\{x_i\}$  is called to be  $\varepsilon$ -traced by a point  $x \in X$  if  $d(f^i(x), x_i) < \varepsilon$  for every  $i \in (a, b-1)$ . Here the symbols a and b are taken as  $-\infty \le a < b \le \infty$  if f is bijective and as  $-1 \le a < b \le \infty$  if f is not bijective. f has the pseudo orbit tracing property (abbrev. POTP) if for every  $\varepsilon > 0$  there is  $\delta > 0$  such that every  $\delta$ -pseudo orbit of f can be  $\varepsilon$ -traced by some point of X. We say that a continuous surjection  $f: X \to X$  is a topological Anosov map (abbrev. TA-map) if f is c-expansive and has POTP, and say that f is a topological expanding map if f is positively expansive and open. We can check that every topological expanding map is a TA-map (see [Ao-Hi] Remark 2.3.10).

Let N be a simply connected nilpotent Lie group. Let C be a compact group of automorphisms of N and let  $G=N\cdot C$  be the Lie group obtained by considering N as acting on itself by left translation and taking the semi-direct product of N and C in  $\mathrm{Diff}(N)$ . Let  $\Gamma$  be a torsion free uniform discrete subgroup of G. The space  $N/\Gamma$  (the quotient space of N under the action of  $\Gamma$ ) is called an infra-nil-manifold. Let  $\overline{A}: N \to N$  be an automorphism of N such that by conjugating  $\Gamma$  by  $\overline{A}$  in  $\mathrm{Diff}(N)$ ,  $\overline{A} \circ \Gamma \circ \overline{A}^{-1} \subset \Gamma$ . Then  $\overline{A}$  projects to a covering map A of  $N/\Gamma$ . The map A is called an infra-nil-endomorphism. If the derivative  $d\overline{A}_e$  at the identity e of N has no eigenvalues of modulas 1, we say A is hyperbolic. If A is hyperbolic, then A is a TA-covering map.

REMARK 0.1. A converse statement of Theorem 1 also holds: Let  $f: N/\Gamma \to N/\Gamma$  be a covering map of an infra-nil-manifold and denote as  $A: N/\Gamma \to N/\Gamma$  the infra-nil-endomorphism homotopic to f.

If A is hyperbolic and the inverse limit system of  $(N/\Gamma, f)$  is topologically conjugate to the inverse limit system of  $(N/\Gamma, A)$ , then f is an TA-map.

See [Ao-Hi] Theorems 2.2.29 and 2.3.9 for details.

Let M be a closed smooth manifold and let  $C^1(M, M)$  be the set of all  $C^1$  maps of M endowed with the  $C^1$  topology. A map  $f \in C^1(M, M)$  is called an Anosov differentiable map if f is a  $C^1$  regular map and if there exist C > 0 and  $0 < \lambda < 1$  such that for every  $\mathbf{x} = (x_i) \in M_f = \{(x_i) : x_i \in M \text{ and } f(x_i) = x_{i+1}, i \in \mathbf{Z}\}$  there is a splitting

$$T_x M = \bigcup_i T_{x_i} M = \bigcup_i (E_{x_i}^s \oplus E_{x_i}^u)$$

so that for all  $i \in \mathbb{Z}$ 

- (1)  $D_{x_i}f(E_{x_i}^{\sigma})=E_{x_{i+1}}^{\sigma}$  where  $\sigma=s$ , u,
- (2) for all  $n \ge 0$

$$\begin{split} \|D_{x_i}f^n(v)\| & \leq C \lambda^n \|v\| & \text{if } v \in E^s_{x_i}, \\ \|D_{x_i}f^n(v)\| & \geq C^{-1} \lambda^{-n} \|v\| & \text{if } v \in E^u_{x_i}. \end{split}$$

If, in particular,  $T_x M = \bigcup_i E_{x_i}^u$  for all  $x = (x_i) \in M_f$ , then f is said to be expanding, and if an Anosov differentiable map f is injective then f is called an Anosov diffeomorphism. We can check that every Anosov differentiable map is a TA-map, and that every expanding differentiable map is a topological expanding map (see [Ao-Hi] Theorem 1.2.1).

A map  $f \in C^1(M, M)$  is said to be  $C^1$ -structurally stable if there is an open neighborhood N(f) of f in  $C^1(M, M)$  such that  $g \in N(f)$  implies that f and g are topologically conjugate. Anosov  $[\mathbf{An}]$  proved that every Anosov diffeomorphism is  $C^1$ -structurally stable, and Shub  $[\mathbf{Sh}]$  showed the same result for expanding differentiable maps. However, Anosov differentiable maps which are not diffeomorphisms nor expanding do not be  $C^1$ -structurally stable ( $[\mathbf{Ma-Pu}]$ ,  $[\mathbf{Pr}]$ ). Then we have the following.

REMARK 0.2. Under the assumption of Theorem 1 it is not true in general that f is topologically conjugate to A.

A map  $f \in C^1(M, M)$  is said to be  $C^1$ -inverse limit stable if there is an open neighborhood N(f) of f in  $C^1(M, M)$  such that  $g \in N(f)$  implies that the inverse limit  $(M_f, \sigma_f)$  of (M, f) and the inverse limit  $(M_g, \sigma_g)$  of (M, g) are topologically conjugate. Mañé and Pugh [Ma-Pu] proved that every Anosov differentiable map is  $C^1$ -inverse limit stable. If the manifold M is an infra-nil-manifold, then this fact is a corollary of Theorem 1.

REMARK 0.3 ([Su]). Let  $f: \mathbf{T}^n \to \mathbf{T}^n$  be a covering map of an *n*-torus and denote  $A: \mathbf{T}^n \to \mathbf{T}^n$  the toral endomorphism homotopic to f.

If f is a special TA-map, then A is a hyperbolic toral endomorphism and f is topologically conjugate to A.

We define special TA-maps as follows. Let  $f: X \rightarrow X$  be a continuous surjection of a compact metric space. Define the stable and unstable sets

$$\begin{split} W^s(x) &= \{ y \in X : \lim_{n \to \infty} d(f^n(x), \ f^n(y)) = 0 \}, \\ W^u((x_i)) &= \{ y_0 \in X : \exists (y_i) \in X_f \text{s.t.} \lim_{i \to \infty} d(x_{-i}, \ y_{-i}) = 0 \} \end{split}$$

for  $x \in X$  and  $(x_i) \in X_f$ . A TA-map  $f: X \to X$  is special if f satisfies the property that  $W^u((x_i)) = W^u((y_i))$  for every  $(x_i)$ ,  $(y_i) \in X_f$  with  $x_0 = y_0$ . Every

hyperbolic infra-nil-endomorphism is a special TA-covering map (Remark 3.13). In [Gr] Gromov showed that every expanding map of an arbitrary closed

smooth manifold is topologically conjugate to an expanding infra-nil-endomorphism. After this Hiraide proved in [Hi1] a wider result for topological expanding maps as follows.

REMARK 0.4 ([Hi1]). If a continuous map of a compact connected locally connected semilocally 1-connected metric space is a topological expanding map, then the space must be homeomorphic to an infra-nil-manifold and the map is topologically conjugate to an expanding infra-nil-endomorphism.

A topological space X is said to be *semilocally* 1-connected if for  $x \in X$  there is a neighborhood U of x such that every loop contained in U with a base point x (i.e., continuous map  $u: [0, 1] \rightarrow U$  satisfying u(0) = u(1) = x) can be deformed continuously in X to one point.

A key point in the proof of the main theorem is in the properties of the inverse limit systems of self covering maps investigated in § 3.

The outline of the proof of the main theorem can be stated as follows. If  $f: N/\Gamma \to N/\Gamma$  is a TA-covering map, it is shown (see § 1) that the infra-nilendomorphism  $A: N/\Gamma \to N/\Gamma$  homotopic to f is hyperbolic. Then we shall prove in § 2 that there exists a semi-conjugacy map  $\bar{h}: N \to N$  such that  $\bar{h} \circ \bar{f} = \bar{A} \circ \bar{h}$  and  $\bar{h}$  is continuous and surjective. Here we denote as  $\bar{A}$  the automorphism of N which is a lift of A by  $\pi$ , and denote as  $\bar{f}$  a suitable lift map of f by  $\pi$ . We find in § 3 a homeomorphism  $\tilde{f}: (N/\Gamma)_A \to (N/\Gamma)_A$  which is topologically conjugate to the inverse limit system of  $(N/\Gamma, f)$  and in § 4 a semi-conjugacy map  $\tilde{h}$  between the systems  $((N/\Gamma)_A, \tilde{f})$  and  $((N/\Gamma)_A, \sigma_A)$ . In § 5 we shall show  $\Omega(f) = N/\Gamma$ . By this fact  $\tilde{h}$  is injective (see § 7), from which Theorem 1 will be concluded. The proof of Theorem 2(2) will be given in § 6 and Theorem 2(1) will be proved in § 7.

### § 1. Infra-nil-endomorphisms homotopic to TA-covering maps.

The aim of this section is to prepare two lemmas (Lemmas 1.3 and 1.5) that are used for the proof of Theorem 1.

Let N be a simply connected nilpotent Lie group. Let C be a compact group of automorphisms of N and let  $G=N\cdot C$  be the Lie group defined as above. If  $\Gamma$  is a torsion free uniform discrete subgroup of G, then  $N/\Gamma$  is an infra-nil-manifold. If in particular  $\Gamma$  is a uniform discrete subgroup of N, then  $N/\Gamma$  is called a nil-manifold (see [Sm]).

Let  $\bar{D}$  be a left invariant Riemannian distance for N and  $\rho$  be the restriction to  $\Gamma$  of the natural homomorphism mapping  $G=N\cdot C$  to C. Recall that  $\rho(\Gamma)$  is

a finite group of automorphisms on N (see [Au] Theorem 1). We define a metric D for N by

$$D(x, y) = \sum_{c \in \rho(\Gamma)} \overline{D}(c(x), c(y))$$

for  $x, y \in \mathbb{N}$ . Then D is a left-invariant,  $\Gamma$ -invariant Riemannian distance. Let  $\mathcal{L}(N)$  be the Lie algebra of N, and let  $\exp: \mathcal{L}(N) \to N$  denote the exponential map. Since N is simply connected and nilpotent, the exponential map is a diffeomorphism (see  $[\mathbf{Va}]$  Theorem 3.6.2). We claim that for any L>0 and  $x \in \mathbb{N}$ , the closed ball  $B_L(x) = \{y \in \mathbb{N} : D(x, y) \leq L\}$  of x with radius L is compact. Indeed, since the exponential map is a diffeomorphism, there exists r>0 such that  $B_r(e)$  is compact. Here e denotes the identity of N. Then  $B_{2r}(e) = B_r(e) \cdot B_r(e)$  is compact and thus  $B_{nr}(e)$  is compact for  $n \in \mathbb{N}$ , from which the claim is concluded.

Let  $\pi: N \to N/\Gamma$  be the natural projection and define a metric for  $N/\Gamma$  by

$$d(\pi(x), \pi(y)) = \inf \{D(\alpha(x), \beta(y)) : \alpha, \beta \in \Gamma\}.$$

Then d is compatible with the quotient topology on  $N/\Gamma$ . We can check that there exists  $\lambda>0$  such that  $\pi:U_\lambda(x)\to U_\lambda(\pi(x))$  is an isometry for  $x\in N$  where  $U_\lambda(x)=\{y\in N:D(x,\ y)<\lambda\}$  and  $U_\lambda(\pi(x))=\{y\in N/\Gamma:d(y,\ \pi(x))<\lambda\}$ . Indeed, since  $\Gamma$  is discrete, for  $x\in N$  there is  $\mu=\mu(x)>0$  such that the subset  $\{\alpha\in\Gamma:\alpha(U_\mu(x))\cap U_\mu(x)\neq\emptyset\}$  of  $\Gamma$  is finite ([Wo] Lemma 3.1.1). Then we can take  $\delta=\delta(x)>0$  such that  $\alpha(U_\delta(x))\cap U_\delta(x)=\emptyset$  for  $\alpha\in\Gamma\setminus\{id_N\}$ , because  $\Gamma$  acts freely on N. Thus,  $\pi:U_{\delta(x)/2}(x)\to U_{\delta(x)/2}(\pi(x))$  is an isometry. Since  $U=\{U_{\delta(x)/2}(\pi(x)):x\in N\}$  is an open cover of  $N/\Gamma$ , let  $\lambda>0$  be Lebesgue number of U. Then,  $\alpha(U_{\lambda/2}(x))\cap U_{\lambda/2}(x)=\emptyset$  for  $\alpha\in\Gamma\setminus\{id_N\}$  and therefore  $\pi:U_{\lambda/4}(x)\to U_{\lambda/4}(\pi(x))$  is an isometry.

By a result of L. Auslander  $[\mathbf{Au}]$ ,  $\Gamma \cap N$  is a uniform discrete subgroup of N and  $\Gamma \cap N$  has finite index in  $\Gamma$ . Then  $N/(\Gamma \cap N)$  is compact and orientable  $(N/(\Gamma \cap N))$  is a nil-manifold), and  $N/\Gamma$  is finitely covered by  $N/(\Gamma \cap N)$ . Denote as  $\pi_1: N \to N/(\Gamma \cap N)$  and  $\pi_2: N/(\Gamma \cap N) \to N/\Gamma$  the natural projections. Then we have



Let  $f: N/\Gamma \to N/\Gamma$  be a self-covering map and  $A: N/\Gamma \to N/\Gamma$  be the infra nil-endomorphism homotopic to f. We take a homotopy  $H: N/\Gamma \times [0, 1] \to N/\Gamma$  from A to f. Let  $\overline{H}: N \times [0, 1] \to N$  be the lift of H by  $\pi$  such that  $\overline{A}(x) = \overline{H}(x, 0)$  for  $x \in N$ , where  $\overline{A}: N \to N$  is the automorphism which is a lift of A by  $\pi$ . Define the lift map  $\overline{f}: N \to N$  of f by  $\pi$  by  $\overline{f}(x) = \overline{H}(x, 1)$  ( $x \in N$ ). Let  $\overline{f}_*, \overline{A}_*: \Gamma \to \Gamma$  be homomorphisms induced by  $\overline{f}$ ,  $\overline{A}$  respectively (cf. [Ao-Hi] § 6.3 (6.1)).

LEMMA 1.1. Let  $\overline{H}$  be as above. Then there exists a homomorphism  $\overline{H}_*: \Gamma \rightarrow \Gamma$  such that

$$\overline{H}(\alpha(x), t) = \overline{H}_{*}(\alpha) \circ \overline{H}(x, t)$$

for  $x \in \mathbb{N}$ ,  $t \in [0, 1]$  and  $\alpha \in \Gamma$ .

**PROOF.** For  $t \in [0, 1]$  there exists a homomorphism  $(\overline{H}_t)_* : \Gamma \to \Gamma$  such that

$$\overline{H}(\alpha(x), t) = (\overline{H}_t)_*(\alpha) \circ \overline{H}(x, t)$$

for  $x{\in}N$  and  $\alpha{\in}\Gamma$  (see [Ao-Hi] Lemma 6.3.10). To conclude the lemma, for  $\alpha{\in}\Gamma$  it suffices to see that  $(\overline{H}_t)_*(\alpha)$  is independent of  $t{\in}[0,1]$ . For  $\beta{\in}\Gamma$ , the set  $J_{\beta}{=}\{t{\in}[0,1]:(\overline{H}_t)_*(\alpha){=}\beta\}$  is open. Indeed, by the above claim there exists  $\lambda{>}0$  such that  $\gamma(U_{\lambda}(x)){\cap}U_{\lambda}(x){=}\emptyset$  for  $x{\in}N$  and  $\gamma{\in}\Gamma{\setminus}\{id_N\}$ . For  $t{\in}J_{\beta}$  take a neighborhood  $V_t$  of t in [0,1] such that  $\overline{H}(e,s){\in}U_{\lambda}(\overline{H}(e,t))$ , and  $\overline{H}(\alpha(e),s){\in}U_{\lambda}(\overline{H}(\alpha(e),t))$  for  $s{\in}V_t$ . Here e denotes the identity of N. Then we have that

$$\overline{H}(\alpha(e), s) = (\overline{H}_s)_*(\alpha) \circ \overline{H}(e, s) \in (\overline{H}_s)_*(\alpha)(U_\lambda(\overline{H}(e, t)))$$

and

$$\overline{H}(\alpha(e), s) \in U_{\lambda}(\overline{H}(\alpha(e), t)) = \beta(U_{\lambda}(\overline{H}(e, t))).$$

Thus,  $(\overline{H}_{\mathfrak{s}})_*(\alpha)(U_{\lambda}(\overline{H}(e, t))) \cap \beta(U_{\lambda}(\overline{H}(e, t))) \neq \emptyset$  and then  $(\overline{H}_{\mathfrak{s}})_*(\alpha) = \beta$ . Therefore  $t \in V_{\mathfrak{t}} \subset I_{\beta}$ . Since [0, 1] is connected, we have  $I_{\beta} = [0, 1]$  for some  $\beta \in \Gamma$ .  $\square$ 

Since  $\Gamma \cap N$  is the maximal normal nilpotent subgroup of  $\Gamma$  ([Au] Proposition 2), we have that  $\bar{f}_*(\Gamma \cap N) \subset \Gamma \cap N$ . Then we can take the lift map  $\hat{f}: N/(\Gamma \cap N) \to N/(\Gamma \cap N)$  of f by  $\pi_2$  satisfying  $\hat{f} \circ \pi_1 = \pi_1 \circ \bar{f}$ . Since  $\bar{f}_* = \bar{A}_*: \Gamma \to \Gamma$  by Lemma 1.1, we can define the lift map  $\hat{A}: N/(\Gamma \cap N) \to N/(\Gamma \cap N)$  of A by  $\pi_2$  satisfying  $\hat{A} \circ \pi_1 = \pi_1 \circ \bar{A}$ . Thus  $\hat{A}$  is the nil-endomorphism homotopic to  $\hat{f}$ .

LEMMA 1.2 ([Ma 1]). Let  $N/\Gamma$  be a nil-manifold and  $A: N/\Gamma \to N/\Gamma$  be a nil-endomorphism induced by an automorphism  $\overline{A}: N \to N$ , then  $L(A) = \prod_{i=1}^{n} (1-\lambda_i)$ , where  $\lambda_i$ 's are the eigenvalues of  $(d\overline{A})_e$ , is the Lefschetz number of A.

The following lemma will play an important role to show our Theorem 1.

LEMMA 1.3. Let  $f: N/\Gamma \to N/\Gamma$  be a self-covering map of an infra-nil-manifold and  $A: N/\Gamma \to N/\Gamma$  denote the infra-nil-endomorphism homotopic to f. If f is a TA-covering map, then A is hyperbolic.

PROOF. For the case when  $N/\Gamma$  is a nil-manifold, we shall show the lemma. We know that there is l>0 such that for each  $m \ge l$  all fixed points of  $f^m$  have the same fixed point index 1 or -1 ([Ao-Hi] Proposition 10.7.2, Theorem 10.8.1 and Theorem 10.9.1).

Choose a positive integer  $m_0$  with  $m_0 \ge l$  such that  $f^{m_0}$  is topologically mixing on each elementary set, and write  $g = f^{m_0}$ . Obviously  $g: N/I \to N/I$  is a

TA-covering map and g is homotopic to  $A^{m_0}$ . It is enough to show that  $A^{m_0}$  is hyperbolic. We have for  $m \ge 0$ 

$$N(g^{m}) = |\sum_{x \in Fix(g^{m})} I(g^{m}, x)| = |I(g^{m})|$$

where  $N(g^m)$  is the number of fixed points of  $g^m$ ,  $I(g^m, x)$  is the fixed point index of  $g^m$  at x; and  $I(g^m)$  is the fixed point index of  $g^m$ . Let  $\lambda_i$   $(1 \le i \le n)$  denote the eigenvalues of  $(d\overline{A}^{m_0})_e$ . Then by Lemma 1.2 it follows that

$$N(g^m) = \prod_{i=1}^n |1 - \lambda_i^m|.$$

Since g is expansive, we have that there is k>0 such that  $N(g^m) \leq N(g^{m+k})$  for  $m \geq 1$ . Indeed, if  $\eta$  is an expansive constant for g, then there is  $\varepsilon>0$  such that any  $\varepsilon$ -pseudo orbit of g,  $(x_i)$ , is  $\eta/3$ -traced by some point in  $(N/\Gamma)_g$ . Since g is topologically mixing on an elementary set B, there is k>0 such that  $g^k(K) \cap K \neq \emptyset$  for any K, K of a finite cover consisting of  $\varepsilon/2$ -balls in B. Let  $x \in B$  be a fixed point of  $g^m$  and choose  $y \in B$  such that  $d(x, y) < \varepsilon$  and  $d(x, g^k(y)) < \varepsilon$ . Then we construct a one side (m+k)-periodic  $\varepsilon$ -pseudo orbit

$$(x, g(x), \dots, g^{m-1}(x), y, g(y), \dots, g^{k-1}(y), x, g(x), \dots)$$

which coincides with the one sided sequence  $(z_i)_0^{\infty}$  of a two side (m+k)-periodic  $\varepsilon$ -pseudo orbit  $(z_i)$  in  $(N/\Gamma)^{\mathbb{Z}}$ . Hence there is  $(y_i) \in (N/\Gamma)_g$  such that  $d(y_i, z_i) < \eta/3$  for all  $i \in \mathbb{Z}$ . By c-expansivity we have  $g^{m+k}(y_0) = y_0$ .

Note that each  $\lambda_i$  is not a root of unity. Indeed, this follows from the fact that  $\operatorname{Per}(g) \neq \emptyset$  and  $N(g^m) = \prod_{i=1}^n |1 - \lambda_i^m|$ . To see  $|\lambda_i| \neq 1$  for  $1 \leq i \leq n$ , suppose  $|\lambda| = 1$   $(1 \leq i \leq s)$ ,  $|\lambda_i| < 1$   $(s+1 \leq i \leq t)$  and  $|\lambda_i| > 1$   $(t+1 \leq i \leq n)$ . Since  $N(g^m) \leq N(g^{m+k})$  for  $m \geq 1$ , we have

$$(1.1) \qquad \frac{\prod_{s+1}^{t}|1-\lambda_{i}^{m}|\cdot\prod_{t+1}^{n}|\lambda_{i}^{-m-k}-\lambda_{i}^{-k}|}{\prod_{s+1}^{t}|1-\lambda_{i}^{m+k}|\cdot\prod_{t+1}^{n}|\lambda_{i}^{-m-k}-1|} \leq \frac{\prod_{s}^{s}|1-\lambda_{i}^{m+k}|}{\prod_{s}^{s}|1-\lambda_{i}^{m}|}.$$

Then the left hand side of (1.1) tends to  $\prod_{t+1}^n |\lambda_t^{-k}|$  as  $m \to \infty$ . Since  $|\lambda_i| = 1$  and  $\lambda_i$  is not a root of unity  $(1 \le i \le s)$ , we can find a subsequence  $\{m_j\}$  such that  $\lambda_i^{m_j} \to \lambda_i^{-k}$  as  $j \to \infty$ . Therefore the right hand side of (1.1) tends to 0, thus contradicting.

For the case when  $N/\Gamma$  is an infra-nil-manifold, let  $\hat{f}$ ,  $\hat{A}$  be as above. If f is a TA-covering map, then so is  $\hat{f}$ . Hence we have that  $\hat{A}$  is hyperbolic and therefore so is A.

LEMMA 1.4. Let  $\overline{A}: N \to N$  be an automorphism and take a continuous map  $\psi: N \to N$  by  $\psi(x) = x^{-1} \cdot \overline{A}(x)$  for  $x \in N$ , If  $\overline{A}$  is hyperbolic, then  $\psi$  is a homeomorphism.

PROOF. Making use of the method of Franks [Fr] we have that  $\phi$  is a homeomorphism on N. Indeed, by the Baker-Campbell-Hausdorff formula (see [Va] Theorem 2.15.4),

$$\begin{split} d\phi_{e}(v) &= \lim_{t \to 0} \frac{1}{t} \exp^{-1} \left\{ \exp(tv)^{-1} \cdot \overline{A}(\exp(tv)) \right\} \\ &= \lim_{t \to 0} \frac{1}{t} \exp^{-1} \left\{ \exp(-tv) \cdot (\exp(td\overline{A}_{e}v)) \right\} \\ &= \lim_{t \to 0} \frac{1}{t} \left\{ -tv + td\overline{A}_{e}v + t^{2}(\text{higher order terms}) \right\} \\ &= (-I + d\overline{A}_{e})v \end{split}$$

for  $v \in \mathcal{L}(N)$ . Since A is hyperbolic, by the inverse function theorem we have that  $\phi$  is a local homeomorphism at  $0 \in \mathcal{L}(N)$ .

Let  $N=N^i\supset N^{i-1}\supset\cdots\supset N^0=\{e\}$  be the lower central series of N. Since each  $N^i$  is connected, a neighborhood of the identity e of  $N^i$  generates  $N^i$ . Assume that  $N^i\subset \mathrm{Im}(\phi)=\{\phi(x)\,|\,x\in N\}$  for  $i\geq 0$  and take  $\phi(x)$  and  $\phi(y)\in N^{i+1}\cap \mathrm{Im}(\phi)$ . Then

$$\begin{aligned} \psi(x) \cdot \psi(y) &= \psi(x) \cdot y^{-1} \cdot \overline{A}(y) \\ &= y^{-1} \cdot \psi(x) \cdot [\psi(x), \ y^{-1}] \cdot \overline{A}(y) \\ &= y^{-1} \cdot x^{-1} \cdot \overline{A}(x) \cdot [\psi(x), \ y^{-1}] \cdot \overline{A}(y). \end{aligned}$$

Since  $[\phi(x), y^{-1}] \in \mathbb{N}^i$  and  $\mathbb{N}^i$  is normal in  $\mathbb{N}$ , there exists  $w \in \mathbb{N}^i$  such that  $\overline{A}(x) \cdot [\phi(x), y^{-1}] = w \cdot \overline{A}(x)$ . Hence we can take  $z \in \mathbb{N}$  such that  $\phi(z) = w$ , because of  $w \in \mathbb{N}^i \subset \text{Im}(\phi)$ , and then

$$\begin{aligned} \psi(x) \cdot \psi(y) &= y^{-1} \cdot x^{-1} \cdot w \cdot \overline{A}(x) \cdot \overline{A}(y) \\ &= y^{-1} \cdot x^{-1} \cdot z^{-1} \cdot \overline{A}(z) \cdot \overline{A}(x) \cdot \overline{A}(y) \\ &= \psi(z \cdot x \cdot y) \\ &\in \operatorname{Im}(\phi), \end{aligned}$$

from which  $N^{i+1} \subset \text{Im}(\phi)$  and  $N = \text{Im}(\phi)$  by induction.

If  $\phi(x) = \phi(y)$   $(x, y \in N)$ , then  $\overline{A}(x \cdot y^{-1}) = x \cdot y^{-1}$ , and then

$$(d\overline{A})_{\epsilon}(\exp^{-1}(x\cdot y^{-1})) = \exp^{-1}(\overline{A}(x\cdot y^{-1})) = \exp^{-1}(x\cdot y^{-1}).$$

Since A is hyperbolic, we have  $\exp^{-1}(x \cdot y^{-1}) = 0$  from which  $x \cdot y^{-1} = e$ . Therefore  $\phi$  is injective. Brouwer Theorem ensures that  $\phi$  is a homeomorphism.

LEMMA 1.5. Let  $f: N/\Gamma \to N/\Gamma$  be a self-covering map and let  $\bar{g}: N \to N$  be a lift of f by the natural projection  $\pi: N \to N/\Gamma$ . If f is a TA-covering map, then  $\bar{g}$  has exactly one fixed point.

PROOF. For the proof we use that there exists l>0 such that for  $m \ge l$  each fixed point of  $f^m: N/\Gamma \to N/\Gamma$  has the same fixed point index 1 or -1. Let  $\bar{f}$ ,  $\bar{A}$ , and  $\bar{H}$  be as above. Then we can find  $\bar{\alpha} \in \Gamma$  such that  $\bar{g} = \bar{\alpha} \circ \bar{f}$ , and then  $\bar{\alpha} \circ \bar{H}: N \times [0, 1] \to N$  is a homotopy from  $\bar{\alpha} \circ \bar{A}$  to  $\bar{g} = \bar{\alpha} \circ \bar{f}$ .

Let  $\rho$  be the restriction to  $\Gamma$  of the natural projection mapping  $G=N\cdot C$  to C. Denote as  $\phi$  the automorphism on C defined by  $\phi(c)=\overline{A}\circ c\circ \overline{A}^{-1}$  for  $c\in C$ . Then the following diagram commutes:

$$\begin{array}{ccc}
\Gamma & \xrightarrow{\overline{A}_{*}} & \Gamma \\
\rho \downarrow & & \downarrow \rho \\
\rho(\Gamma) & \xrightarrow{\phi} & \rho(\Gamma)
\end{array}$$

Let  $\bar{\alpha} = (\bar{z}, \bar{c}) \in N \cdot C$ . Then we have

$$\begin{split} \bar{g}^{\,l} &= (\bar{\alpha} \circ \bar{f})^l \\ &= \bar{\alpha} \circ \bar{f}_*(\bar{\alpha}) \circ \cdots \circ \bar{f}_*^{\,l-1}(\bar{\alpha}) \circ \bar{f}^{\,l} \\ &= \bar{\alpha} \circ \bar{A}_*(\bar{\alpha}) \circ \cdots \circ \bar{A}_*^{\,l-1}(\bar{\alpha}) \circ \bar{f}^{\,l} \\ &= (\bar{z}, \; \bar{c}) \circ (\bar{A}(\bar{z}), \; \phi(\bar{c})) \circ \cdots \circ (\bar{A}^{\,l-1}(\bar{z}), \; \phi^{\,l-1}(\bar{c})) \circ \bar{f}^{\,l}, \\ \rho(\bar{\alpha} \circ \bar{A}_*(\bar{\alpha}) \circ \cdots \circ \bar{A}_*^{\,l-1}(\bar{\alpha})) &= \bar{c} \circ \phi(\bar{c}) \circ \cdots \circ \phi^{\,l-1}(\bar{c}) \; . \end{split}$$

Since  $\rho(\Gamma)$  is a finite group and  $\phi$  is a permutation of  $\rho(\Gamma)$ , we have

$$\rho(\bar{\alpha} \circ \bar{A}_{*}(\bar{\alpha}) \circ \cdots \circ \bar{A}_{*}^{l-1}(\bar{\alpha})) = id_{N}$$

for some  $l \in \mathbb{N}$ . Hence there exists  $l \in \mathbb{N}$  such that  $\bar{g}^l = \gamma \cdot \bar{f}^l$  for some  $\gamma \in \Gamma \cap N$ . We assume without loss of generality that  $\bar{g}^m = \gamma \cdot \bar{f}^m$ . Define a continuous map  $\psi : N \to N$  by  $\psi(x) = x^{-1} \cdot \bar{A}^m(x)$  for  $x \in N$ . Since  $\bar{A}^m : N \to N$  is hyperbolic by Lemma 1.3,  $\psi$  is a homeomorphism (Lemma 1.4), and there is  $\bar{\gamma} \in N$  such that  $\psi(\bar{\gamma}) = \gamma$ . Since  $\bar{\alpha} \circ \bar{A}^m(x) = \gamma \cdot \bar{A}^m(x) = \bar{\gamma}^{-1} \cdot \bar{A}^m(\bar{\gamma} \cdot x)$   $(x \in N)$ ,  $\bar{\alpha} \circ \bar{A}^m$  is hyperbolic. Thus  $\bar{\alpha} \circ \bar{A}^m$  has the single fixed point  $\bar{\gamma}^{-1}$  and the fixed point index,  $I(\bar{\alpha} \circ \bar{A}^m, \bar{\gamma}^{-1})$ , equals to  $\pm 1$ .

For  $\dot{\gamma} \in \Gamma \cap N$ , we have that for  $x \in N$ 

$$(\bar{f}^{m}(\dot{\gamma}\cdot x))^{-1}\cdot \bar{A}^{m}(\dot{\gamma}\cdot x) = (\bar{f}^{m}(x))^{-1}\cdot (\bar{A}^{m}(\dot{\gamma}))^{-1}\cdot \bar{A}^{m}(\dot{\gamma})\cdot \bar{A}^{m}(x)$$

$$= (\bar{f}^{m}(x))^{-1}\cdot \bar{A}^{m}(x)$$

$$\in (\bar{f}^{m}(\mathcal{D}))^{-1}\cdot \bar{A}^{m}(\mathcal{D})$$

where  $\mathcal{D}$  is a compact covering domain for the natural projection  $\pi_1: N \to N/(\Gamma \cap N)$ . Let  $x \in \operatorname{Fix}(\bar{g}^m)$ . Since

$$\begin{split} \psi(\overline{r} \cdot x) &= (\overline{r} \cdot \overline{g}^{\,m}(x))^{-1} \cdot \overline{A}^{\,m}(\overline{r} \cdot x) \\ &= (\overline{r} \cdot \gamma \cdot \overline{f}^{\,m}(x))^{-1} \cdot \overline{A}^{\,m}(\overline{r} \cdot x) \\ &= (\overline{r} \cdot \overline{r}^{\,-1} \cdot \overline{A}^{\,m}(\overline{r}) \cdot \overline{f}^{\,m}(x))^{-1} \cdot \overline{A}^{\,m}(\overline{r}) \cdot \overline{A}^{\,m}(x) \\ &= (\overline{f}^{\,m}(x))^{-1} \cdot (\overline{A}^{\,m}(\overline{r}))^{-1} \cdot \overline{A}^{\,m}(\overline{r}) \cdot \overline{A}^{\,m}(x) \\ &\in (\overline{f}^{\,m}(\mathcal{D}))^{-1} \cdot \overline{A}^{\,m}(\mathcal{D}), \end{split}$$

we have  $\operatorname{Fix}(\bar{g}^m)\subset\bar{7}^{-1}\cdot\{\phi^{-1}((\bar{f}^m(\mathcal{D}))^{-1}\cdot\bar{A}^m(\mathcal{D}))\}$  and therefore  $\operatorname{Fix}(\bar{g}^m)$  is compact. Since  $\bar{g}^m$  is expansive, the fixed points must be isolated, and then we have that  $\operatorname{Fix}(\bar{g}^m)$  is finite.

In the same fashion as above we can show that  $\bigcup_{t\in[0,1]} \operatorname{Fix}(\overline{H}^m(\cdot,t))$  is compact. Therefore,

$$I(\bar{\alpha} \circ \bar{A}^m) = I(\bar{g}^m) = \sum_{x \in \operatorname{Fix}(\bar{g}^m)} I(\bar{g}^m, x).$$

By the fact that  $f^m \cdot \pi = \pi \cdot \bar{g}^m$ , we have  $I(\bar{g}^m, x) = I(f^m, \pi(x))$   $(x \in \text{Fix}(\bar{g}^m))$ , from which each  $x \in \text{Fix}(\bar{g}^m)$  has the same index. Hence

$$\sharp \operatorname{Fix}(\bar{g}^m) = |\sum_{x \in \operatorname{Fix}(\bar{g}^m)} I(\bar{g}^m, x)| = |I(\bar{g}^m)| = |I(\bar{\alpha} \circ \bar{A}^m)| = 1.$$

Therefore,  $\tilde{g}^m: N \to N$  has exactly one fixed point and so does  $\tilde{g}$ .

# § 2. Construction of semi-conjugacy maps on the universal covering spaces.

The aim of this section is to show Lemma 2.3. As before let  $N/\Gamma$  be an infra-nil-manifold and let  $\pi: N \to N/\Gamma$  be the natural projection. For continuous maps f and g of N we define

$$D(f, g) = \sup \{D(f(x), g(x)) : x \in N\}$$

where D denotes a left invariant,  $\Gamma$ -invariant Riemannian distance for N. Notice that D(f, g) is not necessary finite.

Throughout this section we suppose that  $f: N/\Gamma \to N/\Gamma$  is a TA-covering map. Let  $A: N/\Gamma \to N/\Gamma$  be the infra-nil-endomorphism homotopic to f, and let  $\overline{A}: N \to N$  be the automorphism which is a lift of A by  $\pi$ . Since  $d\overline{A}_e$  is hyperbolic by Lemma 1.3, the Lie algebra  $\mathcal{L}(N)$  of N splits into the direct sum  $\mathcal{L}(N) = E_e^s \oplus E_e^u$  of subspaces  $E_e^s$  and  $E_e^u$  such that  $d\overline{A}_e(E_e^s) = E_e^s$ ,  $d\overline{A}_e(E_e^u) = E_e^u$  and there are c > 1,  $0 < \lambda < 1$  so that for all  $n \ge 0$ 

where  $\|\cdot\|$  is the Riemannian metric. Let  $\bar{L}^{\sigma}(e) = \exp(E_e^{\sigma})$   $(\sigma = s, u)$  and let  $\bar{L}^{\sigma}(x) = x \cdot \bar{L}^{\sigma}(e)$   $(\sigma = s, u)$  for  $x \in \mathbb{N}$ . Since left translations are isometries under the metric D, it follows that for all  $x \in \mathbb{N}$ 

$$\begin{split} & \bar{L}^s(x) = \{ y \in N : D(\bar{A}^i(x), \ \bar{A}^i(y)) \to 0 \ (i \to \infty) \}, \\ & \bar{L}^u(x) = \{ y \in N : D(\bar{A}^i(x), \ \bar{A}^i(y)) \to 0 \ (i \to -\infty) \}. \end{split}$$

LEMMA 2.1 ([**Hi2**]). For  $x, y \in \mathbb{N}$ ,  $\bar{L}^s(x) \cap \bar{L}^u(y)$  consists of exactly one point.

PROOF. The proof is similar to that in [**Hi2**] Lemma 3.2. For completeness we give here the proof.

Since  $\bar{L}^s(e)$  and  $\bar{L}^u(e)$  intersect transversally, we can find  $\delta > 0$  such that if x, y belong to a  $\delta$ -neighborhood  $U_\delta(e)$  then  $\bar{L}^s(x)$  intersects  $\bar{L}^u(y)$ . Let x belong to the  $\delta$ -neighborhood  $U_\delta(\bar{L}^u(e))$  of  $\bar{L}^u(e)$  then  $x \in a \cdot U_\delta(e)$  for some  $a \in \bar{L}^u(e)$ , and so  $\bar{L}^s(x)$  intersects  $\bar{L}^u(e)$ . In the same way,  $\bar{L}^s(x) \cap \bar{L}^u(e) \neq \emptyset$  for  $x \in U_\delta(U_\delta(\bar{L}^u(e))) = U_{2\delta}(\bar{L}^u(e))$ . By induction, we have the same result for  $x \in U_{n\delta}(\bar{L}^u(e))$  and n > 0. Since  $\bigcup_{n \geq 0} U_{n\delta}(\bar{L}^u(e)) = N$ , it follows that  $\bar{L}^s(x) \cap \bar{L}^u(e) \neq \emptyset$  for all  $x \in N$ , from which  $\bar{L}^s(x) \cap \bar{L}^u(y) \neq \emptyset$  for all x,  $y \in N$ .

For  $x, y \in \mathbb{N}$  denote as  $\beta(x, y)$  the point in  $\overline{L}^s(x) \cap \overline{L}^u(y)$ .

LEMMA 2.2 ([**Hi2**]). (1) For L>0 and  $\varepsilon>0$  there exists J>0 such that for  $x, y \in N$  if  $D(\overline{A}^i(x), \overline{A}^i(y)) \leq L$  for all i with  $|i| \leq J$ , then  $D(x, y) \leq \varepsilon$ .

(2) For given L>0, if  $D(\overline{A}^{i}(x), \overline{A}^{i}(y)) \leq L$  for all  $i \in \mathbb{Z}$ , then x=y  $(x, y \in N)$ .

PROOF. This is given in [Hi2] Lemma 3.2 as follows.

For L>0 there is  $\delta_L>0$  such that diam $\{x, y, \beta(x, y)\}<\delta_L$  if D(x, y)< L, and by (2.1) there exists  $c_L>0$  satisfying

$$\begin{split} &D(\overline{A}^{i}(x),\ \overline{A}^{i}(y)) \leqq c_{L}\lambda^{i}D(x,\ y) \qquad \text{for } y \in \overline{L}^{s}(x) \cap B_{\delta_{L}}(x), \\ &D(\overline{A}^{-i}(x),\ \overline{A}^{-i}(y)) \leqq c_{L}\lambda^{i}D(x,\ y) \quad \text{for } y \in \overline{L}^{u}(x) \cap B_{\delta_{L}}(x). \end{split}$$

For given  $\varepsilon > 0$  choose J > 0 such that  $\delta_L c_L \lambda^J < \varepsilon$ . Suppose  $D(\overline{A}^i(x), \overline{A}^i(y)) \le L$  for  $-J \le i \le J$  and let  $z_i = \beta(\overline{A}^i(x), \overline{A}^i(y))$ . Then  $D(z_J, \overline{A}^J(y)) < \delta_L$ . Since  $z_J \in \overline{L}^u(\overline{A}^J(y))$ , we have  $D(z_0, y) = D(\overline{A}^{-J}(z_J), \overline{A}^{-J} \circ \overline{A}^J(y)) \le \delta_L c_L \lambda^J < \varepsilon$ . Similarly,  $D(z_0, x) < \varepsilon$ . Therefore  $D(x, y) < 2\varepsilon$ . Since  $\varepsilon$  is arbitrary, (2) holds.  $\square$ 

If  $\bar{f}$  denote the lift of f by  $\pi$  satisfying  $\bar{f}_* = \bar{A}_* : \Gamma \to \Gamma$ , then it is checked that  $D(\bar{f}, \bar{A})$  is finite. Since there exists  $\bar{f}(b_0) = b_0$  for some  $b_0 \in N$  by Lemma 1.5, we can take a homeomorphism  $\bar{\phi}: N \to N$  such that  $\bar{\phi}(\alpha(x)) = \alpha \circ \bar{\phi}(x)$  for  $x \in N$  and  $\alpha \in \Gamma$ ,  $\bar{\phi}(b_0) = e$ . Thus,  $\bar{\phi} \circ \bar{f} \circ \bar{\phi}^{-1}(e) = e$ , from which we may assume that  $\bar{f}(e) = e$ .

Lemma 2.3. Under the assumptions and notations as above, there is a unique map  $\bar{h}: N \rightarrow N$  such that

- (1)  $\bar{A} \circ \bar{h} = \bar{h} \circ \bar{f}$ ,
- (2)  $D(\bar{h}, id_N)$  is finite,

where  $id_N: N \rightarrow N$  is the identity map of N.

Furthermore  $\bar{h}$  is surjective, uniformly continuous under D.

PROOF. For the proof we need the technique of Theorem 2.2 of Franks ( $[\mathbf{Fr}]$ ).

Let  $Q = \{h \in C^0(N) : D(h, e) < \infty, h(e) = e\}$ , where  $C^0(N)$  is the space of continuous maps of N and  $e: N \to N$  is the map defined by e(x) = e for any  $x \in N$ . We define a multiplication in Q by  $h_1h_2(x) = h_1(x) \cdot h_2(x)$ . Note that

$$D(h_1(x) \cdot h_2(x), e) \leq D(h_1(x) \cdot h_2(x), h_1(x)) + D(h_1(x), e)$$

$$= D(h_2(x), e) + D(h_1(x), e),$$

$$D((h(x))^{-1}, e) = D(e, h(x)) \quad (x \in N).$$

Then we can easily check that Q is a nilpotent group. Define a homomorphism  $F_0: Q \to Q$  by  $F_0(h) = \overline{A}^{-1} \circ h \circ \overline{f}$ . This map is a homeomorphism because  $\overline{A}$  is D-biuniformly continuous. Let  $T: Q \to Q$  be a map defined by  $T(h) = F_0(h)(h)^{-1}$ .

Let  $\Delta = \{k \in C^0(N, \mathcal{L}(N)) : \|k\| < \infty, \ k(e) = 0\}$ , where  $C^0(N, \mathcal{L}(N))$  is the space of continuous maps from N into the Lie algebra  $\mathcal{L}(N)$  of N. Since the exponential map is a diffeomorphism, we can define a homeomorphism  $\text{Log}: \mathcal{Q} \to \Delta$  by  $\text{Log}(k) = \exp^{-1} \cdot k$ . We write  $\text{Exp} = \text{Log}^{-1}$ . Define  $F: \Delta \to \Delta$  by  $F = \text{Log} \circ F_0 \circ \text{Log}^{-1}$ , then since  $\exp \circ d\overline{A}_e = \overline{A} \circ \exp$ , it follows that  $F(k) = d\overline{A}_e^{-1} \circ k \circ \overline{f}$ . Hence F is a linear map. Let  $T': \Delta \to \Delta$  be a map defined by  $T' = \text{Log} \circ T \circ \text{Log}^{-1}$ .

CLAIM 1. We have that T' is a  $C^{\infty}$ -map and that T' is a local homeomorphism at the constant map  $0: N \to \mathcal{L}(N)$  by  $0(x) = 0(x \in N)$ .

Indeed, since

$$\begin{split} T'(k) &= \mathsf{Log} \circ T \circ \mathsf{Log}^{-1}(k) \\ &= \mathsf{Log}(F_0(\exp \circ k)(\exp \circ k)^{-1}) \\ &= \mathsf{Log}((\overline{A}^{-1} \circ \exp \circ k \circ \overline{f})(\exp \circ (-k))) \\ &= \mathsf{Log}((\exp \circ F(k))(\exp \circ (-k))) \\ &= \mathsf{Log}(\mathsf{Exp}(F(k))\mathsf{Exp}(-k)) \;, \end{split}$$

T' is a  $C^{\infty}$ -map. We now compute the derivative of T' at 0. For  $k \in \Delta$  we have

$$\lim_{t\to 0} \frac{1}{t} T'(tk) = \lim_{t\to 0} \frac{1}{t} \operatorname{Log}(\operatorname{Exp}(F(tk))\operatorname{Exp}(-tk))$$

$$= \lim_{t\to 0} \frac{1}{t} \{F(tk) - tk + t^2(\text{higher order terms})\}$$
$$= F(k) - k.$$

Thus the derivative  $dT'_0 = F - I$  where  $I: \Delta \rightarrow \Delta$  is the identity.

We now show that F-I is an isomorphism. Let  $\Delta^s = \{k \in \Delta : k(N) \subset E^u_e\}$  and define  $\Delta^u$  similarly. Clearly  $\Delta^\sigma$  ( $\sigma = s$ , u) are invariant under F. It is easily seen that  $\Delta = \Delta^u \oplus \Delta^s$  and that  $\|F^i(k)\| \le c\lambda^i \|k\|$  for  $i \ge 0$  and  $k \in \Delta^s$ . Moreover F restricted to  $\Delta^u$  is invertible and  $\|F^{-i}(k)\| \le c\lambda^i \|k\|$  for  $i \ge 0$  and  $k \in \Delta^u$ . On  $\Delta^s$  we have  $(F-I)^{-1} = -\sum_{i=0}^\infty F^i$ . The right side converges because  $\|F^i\| \le c\lambda^i$  for  $i \ge 0$ . Similarly in  $\Delta^u$  we have  $(I-F^{-1})^{-1} = \sum_{i=0}^\infty F^{-i}$ , so  $(F-I)^{-1} = F^{-1}(I-F^{-1})^{-1}$  exists. Hence F-I is an isomorphism of  $\Delta$ . From this it follows by the inverse function theorem that T' is a local homeomorphism at e.

CLAIM 2. We can show that  $T: Q \rightarrow Q$  is a surjection.

Indeed, let  $Q=Q^l\supset Q^{l-1}\supset \cdots \supset Q^0=\{e\}$  be the lower central series of Q. Since  $\exp(t\exp^{-1}\circ h)$   $(t\in[0,1])$  is a path between  $h\in Q$  and e, Q is (path) connected. Then  $Q^{l-1}=[Q,Q^l]$  is connected. Inductively so is  $Q^i$   $(0\leq i\leq l)$ , and therefore a neighborhood of the identity e of  $Q^i$  generates  $Q^i$ . Assume that  $Q^i\subset \operatorname{Im}(T)$  for  $i\geq 0$  and take  $T(h_1)$  and  $T(h_2)\in Q^{i+1}\cap \operatorname{Im}(T)$ . Then

$$\begin{split} T(h_1)T(h_2) &= F_0(h_1)h_1^{-1}T(h_2) \\ &= F_0(h_1)[h_1, \ T(h_2)^{-1}]T(h_2)h_1^{-1} \\ &= F_0(h_1)[h_1, \ T(h_2)^{-1}]F_0(h_2)h_2^{-1}h_1^{-1} \,. \end{split}$$

Since  $[h_1, T(h_2)^{-1}] \in Q^i$  and  $Q^i$  is normal in Q, there exists  $h' \in Q^i$  such that  $[h_1, T(h_2)^{-1}] F_0(h_2) = F_0(h_2)h'$ . Hence we can take  $h_3 \in Q$  such that  $T(h_3) = h'$ , because of  $h' \in Q^i \subset \text{Im}(T)$ , and then

$$T(h_1)T(h_2) = F_0(h_1)F_0(h_2)h'h_2^{-1}h_1^{-1}$$

$$= F_0(h_1)F_0(h_2)F_0(h_3)h_3^{-1}h_2^{-1}h_1^{-1}$$

$$= T(h_1h_2h_3)$$

from which  $Q^{i+1} \subset Im(T)$  because we have that  $e \in int_{Q^{i+1}} \{Im(T)\}$  by Claim 1, and Q = Im(T) by induction.

CLAIM 3. We claim that T is a bijection.

Since F-I is an isomorphism, F fixes only  $0 \in \Delta$  and hence  $F_0$  has only the fixed point  $e \in Q$ . Thus if  $T(h_1) = T(h_2)$   $(h_1, h_2 \in Q)$ , then  $T(h_1h_2^{-1}) = e$  so  $h_1 = h_2$ . Therefore T is bijective from Claim 2.

Let  $\tilde{h} = F_0((id_N)^{-1})(id_N)$ . By the definition of  $\tilde{h}$ , we have

$$\sup \{D(\tilde{h}(x), e) : x \in N\} = \sup \{D((\bar{A}^{-1}(\bar{f}(x))^{-1}) \cdot x, e) : x \in N\}$$

$$= \sup \{D(x, \bar{A}^{-1} \circ \bar{f}(x)) : x \in N\}.$$

Since  $\overline{A}^{-1} \circ \overline{f} \circ \alpha(x) = \alpha \circ \overline{A}^{-1} \circ \overline{f}(x)$  for any  $\alpha \in \Gamma$ , we have  $D(\widetilde{h}, e) < \infty$ . Therefore  $h \in \Omega$ .

Let  $\hat{h} = T^{-1}(\tilde{h})$  and define  $\bar{h} = id_N \hat{h}$ . Thus we have

$$T(\bar{h}) = F_0(id_N\hat{h})\hat{h}^{-1}(id_N)^{-1} = F_0(id_N)\tilde{h}(id_N)^{-1}$$

$$= F_0(id_N)F_0((id_N)^{-1})(id_N)(id_N)^{-1} = e,$$

and so  $\bar{A}^{-1} \cdot \bar{h} \cdot \bar{f} = \bar{h}$ , from which (1) is obtained.

Since  $\hat{h} \in Q$  and  $\bar{h} = id_N \hat{h}$ , we have  $D(\bar{h}, id_N) = D(\hat{h}, e) < \infty$ . Hence (2) holds. The uniqueness of  $\bar{h}$  is easily checked as follows. If a map  $\bar{k}: N \to N$  satisfies (1) and (2), then for  $x \in N$  and  $i \in \mathbf{Z}$ 

$$D(\overline{A}^{i} \circ \overline{h}(x), \overline{A}^{i} \circ \overline{k}(x)) \leq \sup \{D(\overline{A}^{i} \circ \overline{h}(x), \overline{A}^{i} \circ \overline{k}(x)) : x \in N\}$$

$$= \sup \{D(\overline{h} \circ \overline{A}^{i}(x), \overline{k} \circ \overline{A}^{i}(x)) : x \in N\}$$

$$= \sup \{D(\overline{h}(x), \overline{k}(x)) : x \in N\} < \infty.$$

Thus  $\bar{h}(x) = \bar{k}(x)$  by Lemma 2.2(2).

By (2) the map  $\phi = \exp^{-1} \cdot \bar{h} \cdot \exp$  is extended to a continuous map  $\tilde{\phi}$  on  $S^n = \mathbb{R}^n \cup \{\infty\}$  by  $\tilde{\phi}(v) = \phi(v)$  for  $v \in \mathbb{R}^n$  and  $\tilde{\phi}(\infty) = \infty$ , and a homotopy  $h_t$  between  $\tilde{\phi}$  and the identity map is defined by

$$h_t(v) = t\phi(v) + (1-t)v \ (v \in \mathbf{R}^n)$$
 and  $h_t(\infty) = \infty$ .

Hence  $\tilde{\phi}: S^n \to S^n$  is surjective and so  $\bar{h}: N \to N$  is surjective.

To show uniform continuity of  $\bar{h}$ , we take K>0 such that  $D(\bar{h}, id_N) \leq K$ . For given  $\varepsilon>0$ , by Lemma 2.2(1) there is L>0 such that if  $D(\bar{A}^i(x), \bar{A}^i(y)) < 3K$  for i with  $|i| \leq L$ , then  $D(x, y) < \varepsilon$ . Since  $\bar{A}$  is uniformly continuous, we can take  $\gamma>0$  satisfying the property that  $D(\bar{A}^i(x), \bar{A}^i(y)) < K(-L \leq i \leq L)$  whenever  $D(x, y) < \gamma$ . If  $D(x, y) < \gamma$ , then we have for i with  $|i| \leq L$ 

$$\begin{split} D(\overline{A}^i \circ \overline{h}(x), \ \overline{A}^i \circ \overline{h}(y)) &= D(\overline{h} \circ \overline{A}^i(x), \ \overline{h} \circ \overline{A}^i(y)) \\ &< D(\overline{h} \circ \overline{A}^i(x), \ \overline{A}^i(x)) + D(\overline{A}^i(x), \ \overline{A}^i(y)) \\ &+ D(\overline{A}^i(y), \ h \circ \overline{A}^i(y)) \\ &< K + K + K = 3K, \end{split}$$

which implies  $D(\bar{h}(x), \bar{h}(y)) < \varepsilon$ .

Hereafter, let  $\bar{h}: N \to N$  be the semi-conjugacy map obtained in Lemma 2.3. In the remainder of this section we mention some properties of  $\bar{h}$  that suffice for our needs.

LEMMA 2.4. (1) There exists K>0 such that  $D(\bar{h} \circ \alpha(x), \alpha \circ \bar{h}(x)) < K$  for  $x \in \mathbb{N}$  and  $\alpha \in \Gamma$ .

- (2) For any  $\lambda > 0$ , there exists  $L \in \mathbb{N}$  such that  $D(\bar{h} \circ \alpha(x), \alpha \circ \bar{h}(x)) < \lambda$  for  $x \in \mathbb{N}$  and  $\alpha \in \bar{A}_{*}^{L}(\Gamma)$ .
  - (3) For  $x \in \mathbb{N}$  and  $\alpha \in \bigcap_{i=0}^{\infty} \overline{A}_{*}^{i}(\Gamma)$ , we have  $\overline{h} \cdot \alpha(x) = \alpha \cdot \overline{h}(x)$ .
  - (4) For  $x \in \mathbb{N}$  and  $\alpha \in \Gamma$ , we have  $\bar{h} \circ \alpha(x) \in \bar{L}^s(\alpha \circ \bar{h}(x))$ .

PROOF. (1): By Lemma 2.3(2), there is K'>0 such that  $D(\bar{h}(x), x) < K'$  for  $x \in \mathbb{N}$ . Then

$$D(\bar{h} \circ \alpha(x), \alpha \circ \bar{h}(x)) \leq D(\bar{h} \circ \alpha(x), \alpha(x)) + D(\alpha(x), \alpha \circ \bar{h}(x))$$
$$\leq 2K'$$

for  $\alpha \in \Gamma$ .

(2): Let K'>0 be as above. For given  $\lambda>0$ , by Lemma 2.2(1) we can find L>0 such that for  $x, y \in N$ 

$$(2.2) D(\overline{A}^{j}(x), \overline{A}^{j}(y)) \leq 2K' \ (|j| \leq L) \Rightarrow D(x, y) < \lambda.$$

For  $x \in N$  and  $\alpha \in \overline{A}_*^L(\Gamma)$ , we have

$$\begin{split} D(\overline{A}^{i} \circ \overline{h} \circ \alpha(x), \ \overline{A}^{i} \circ \alpha \circ \overline{h}(x)) &= D(\overline{h} \circ \overline{f}^{i} \circ \alpha(x), \ \overline{A}^{i}_{*}(\alpha) \circ \overline{A}^{i} \circ \overline{h}(x)) \\ & \leq D(\overline{h} \circ \overline{A}^{i}_{*}(\alpha) \circ \overline{f}^{i}(x), \ \overline{A}^{i}_{*}(\alpha) \circ \overline{f}^{i}(x)) \\ & + D(\overline{A}^{i}_{*}(\alpha) \circ \overline{f}^{i}(x), \ \overline{A}^{i}_{*}(\alpha) \circ \overline{h} \circ \overline{f}^{i}(x)) \\ & \leq 2K' \end{split}$$

for  $|j| \le L$ , and hence  $D(\bar{h} \circ \alpha(x), \alpha \circ \bar{h}(x)) < \lambda$  by (2.2). (2) was proved.

- (3): Noticing that  $\lambda$  is arbitrary, (3) is concluded.
- (4): By (2), we have

$$\begin{split} D(\overline{A}^i \circ \overline{h} \circ \alpha(x), \ \overline{A}^i \circ \alpha \circ \overline{h}(x)) &= D(\overline{h} \circ \overline{f}^i \circ \alpha(x), \ \overline{A}^i_{\bigstar}(\alpha) \circ \overline{A}^i \circ \overline{h}(x)) \\ &= D(\overline{h} \circ \overline{A}^i_{\bigstar}(\alpha) \circ \overline{f}^i(x), \ \overline{A}^i_{\bigstar}(\alpha) \circ \overline{h} \circ \overline{f}^i(x)) \\ &\to 0 \quad \text{as } i \to \infty \,. \end{split}$$

Therefore  $\bar{h} \circ \alpha(x) \in \bar{L}^s(\alpha \circ \bar{h}(x))$ .

## § 3. Inverse limit system of self-covering maps on infra-nil-manifolds.

In this section we prepare Lemma 3.10 that needs for the proof of Theorem 1. Let N be a simply connected nilpotent Lie group with left invariant,  $\Gamma$ -invariant Riemannian distance D and let  $N/\Gamma$  be an infra-nil-manifold with metric d induced by D. Remark that the natural projection  $\pi: N \to N/\Gamma$  is a local isometry.

Let  $f: N/\Gamma \to N/\Gamma$  be a continuous surjection of an infra-nil-manifold and  $\sigma: (N/\Gamma)_f \to (N/\Gamma)_f$  be the inverse limit system constructed by  $(N/\Gamma, f)$ . We denote as  $p_0: (N/\Gamma)_f \to N/\Gamma$  the natural projection to the zero-th coordinate. Define a metric  $\tilde{d}_f$  for  $(N/\Gamma)_f$  by

$$\tilde{d}_f((x_i), (y_i)) = \sum_{i \in \mathbb{Z}} \frac{1}{2^{|i|}} d(x_i, y_i)$$

for  $(x_i)$ ,  $(y_i) \in (N/\Gamma)_f$ . For simplicity we write  $\tilde{d}_f = \tilde{d}$  in subsequent.

LEMMA 3.1 ([Ao-Hi] Theorem 6.5.1). If  $f: N/\Gamma \rightarrow N/\Gamma$  is a self-covering map of an infra-nil-manifold and the covering degree is greater than one, then  $((N/\Gamma)_f, N/\Gamma, C, p_0)$  is a fiber bundle where C denotes the Cantor set.

Let  $f: N/\Gamma \to N/\Gamma$  be a self-covering map of an infra-nil-manifold. We denote as  $\Theta(f)$  the family of all lift of f by  $\pi$ .

LEMMA 3.2 ([Ao-Hi] Lemma 6.5.4). For  $\varepsilon > 0$  there is  $\delta > 0$  such that for all  $\bar{g} \in \Theta(f)$  and for all  $x, y \in N$  with  $D(x, y) < \delta$ 

$$\max \{D(\bar{g}(x), \bar{g}(y)), D(\bar{g}^{-1}(x), \bar{g}^{-1}(y))\} < \varepsilon.$$

Define a product set  $N^{\mathbf{Z}} = \{(u_i) : u_i \in \mathbb{N}, i \in \mathbf{Z}\}$  and a shift map  $\bar{\sigma} : N^{\mathbf{Z}} \to N^{\mathbf{Z}}$  as usual by  $\bar{\sigma}((u_i)) = (u_{i+1})$ . Then it is clear that  $\bar{\sigma}(N_f) = N_f$  where  $N_f = \{(x_i) \in N^{\mathbf{Z}} : f(\pi(x_i)) = \pi(x_{i+1}), i \in \mathbf{Z}\}$ . Let  $\mathbf{u} = (u_i) \in N_f$ . For each  $i \in \mathbf{Z}$  denote as  $\bar{f}_{u_i,u_{i+1}}$  the element  $\bar{f}$  in  $\Theta(f)$  such that  $\bar{f}(u_i) = u_{i+1}$  and define

$$\bar{f}_{u}^{i} = \begin{cases} \bar{f}_{u_{i-1}, u_{i}} \circ \cdots \circ \bar{f}_{u_{0}, u_{1}} & \text{if } i > 0 \\ (\bar{f}_{u_{i}, u_{i+1}})^{-1} \circ \cdots \circ (\bar{f}_{u_{-1}, u_{0}})^{-1} & \text{if } i < 0 \\ id_{N} & \text{if } i = 0. \end{cases}$$

We define a map  $\tau_u^f: N \to (N/\Gamma)_f$  by

$$\tau_{\mu}^{f}(x) = (\pi \circ \bar{f}_{\mu}^{i}(x))_{i=-\infty}^{\infty} \quad (x \in \mathbb{N}).$$

For simplicity we write  $\tau_u = \tau_u^f$  in subsequent.

LEMMA 3.3 ([Ao-Hi] Lemma 6.5.5). For  $u=(u_i)\in N_f$  the following hold:

- (1)  $\tau_u: N \to (N/\Gamma)_f$  is continuous,
- (2)  $\tau_{\mathbf{u}}(N)$  is dense in  $(N/\Gamma)_f$ ,
- (3)  $\tau_{\mathbf{u}}(N)$  is the path connected component of  $\tau_{\mathbf{u}}(u_0)$  in  $(N/\Gamma)_f$ .

LEMMA 3.4. For  $x \in (N/\Gamma)_f$  there is  $\mathbf{u} \in N_f$  such that  $x \in \tau_{\mathbf{u}}(N)$ .

PROOF. Since  $x \in (N/\Gamma)_f$ , we choose  $u_i \in N$  ( $i \in \mathbb{Z}$ ) such that  $x = (\pi(u_i))_{i \in \mathbb{Z}}$   $\in (N/\Gamma)_f$ . Clearly  $f(\pi(u_i)) = \pi(u_{i+1})$ . By the definition of  $N_f$ , we have that  $u = (\cdots, u_{-1}, u_0, u_1, \cdots) \in N_f$ , and by the definition of  $\bar{f}_u$ 

$$x = (\pi(u_i))_{i \in \mathbf{Z}} = (\pi \circ \bar{f}_{\mathbf{u}}^i(u_0))_{i \in \mathbf{Z}} = \tau_{\mathbf{u}}(u_0).$$

Suppose that the covering degree of f is greater than one. From Lemma 3.1 it follows that  $((N/\Gamma)_f, N/\Gamma, C, p_0)$  is a fiber bundle where C is the Cantor set. We note that a coordinate function  $\varphi: U \times C \to p_0^{-1}(U)$  for  $((N/\Gamma)_f, N/\Gamma, C, p_0)$  exists whenever U is a connected open set of N with small diameter.

Let  $u \in N_f$ . We define a family  $\mathcal{I}_u$  of subsets of  $\tau_u(N)$  as follows:  $V \in \mathcal{I}_u$  if and only if there is a connected open set U of X such that V is expressed as  $V = \varphi(U \times \{a\})$  by a coordinate function  $\varphi: U \times C \to p_0^{-1}(U)$  for  $((N/\Gamma)_f, N/\Gamma, C, p_0)$ , where a is a point in C. It is easily checked that

- (1) any point in  $\tau_{\mathbf{u}}(N)$  belongs to some  $V \in \mathcal{I}_{\mathbf{u}}$ ,
- (2) if  $V_1$ ,  $V_2 \in \mathcal{I}_u$  and  $x \in V_1 \cap V_2$ , then there is  $V_3 \in \mathcal{I}_u$  such that  $x \in V_3 \subset V_1 \cap V_2$ .

Hence the family  $\mathcal{T}_{\boldsymbol{u}}$  generates a topology of  $\tau_{\boldsymbol{u}}(N)$ , which is called the *intrinsic topology* of  $\tau_{\boldsymbol{u}}(N)$ . If  $f: N/\Gamma \to N/\Gamma$  is a homeomorphism, then we have  $\tau_{\boldsymbol{u}}(N) = (N/\Gamma)_A$  for  $\boldsymbol{u} \in N_A$ . For this case define the intrinsic topology of  $\tau_{\boldsymbol{u}}(N)$  by the topology of  $(N/\Gamma)_A$ .

LEMMA 3.5 ([Ao-Hi] Lemma 6.5.6). For  $u \in N_f$  the map  $\tau_u(N): N \to \tau_u(N)$  and the restriction  $p_0: \tau_u(N) \to N/\Gamma$  are both covering maps under the intrinsic topology of  $\tau_u(N)$ , and the following diagram commutes:

$$N \xrightarrow{\tau_{u}} \tau_{u}(N)$$

$$p \setminus \sqrt{p_{0}}$$

$$N/\Gamma .$$

LEMMA 3.6 ([Ao-Hi] Lemma 6.5.9). For  $\mathbf{u} \in N_f$ ,  $\sigma(\tau_{\mathbf{u}}(N)) = \tau_{\bar{\sigma}(\mathbf{u})}(N)$  and the restriction  $\sigma: \tau_{\mathbf{u}}(N) \to \tau_{\bar{\sigma}(\mathbf{u})}(N)$  is a homeomorphism under the intrinsic topologies. Furthermore the following diagram commutes:

$$\begin{array}{ccc}
N & \xrightarrow{\overline{f}_{u}} & N \\
\tau_{u} \downarrow & & \downarrow \tau_{\overline{\sigma}(u)} \\
\tau_{u}(N) & \longrightarrow & \tau_{\overline{\sigma}(u)}(N) \\
p_{0} \downarrow & & \downarrow p_{0} \\
N/\Gamma & \longrightarrow & N/\Gamma
\end{array}$$

LEMMA 3.7. (1) For  $\varepsilon > 0$  and  $L \in \mathbb{N}$ , there exists  $\delta = \delta(\varepsilon, L) > 0$  such that if  $\tilde{d}(\tau_{\mathbf{u}}(x), \tau_{\mathbf{u}}(y)) < \delta(x, y \in \mathbb{N})$ , then  $y \in \alpha(U_{\varepsilon}(x))$  for some  $\alpha \in (\bar{f}_{\overline{\sigma}}^L - L_{(u)})_*(\Gamma)$ .

(2) Conversely, for  $\varepsilon > 0$  there are  $L = L(\varepsilon) \in \mathbb{N}$  and  $\delta = \delta(\varepsilon) > 0$  such that if  $y \in \alpha(U_{\delta}(x))$   $(x, y \in \mathbb{N})$  for some  $\alpha \in (\bar{f}_{\sigma}^L - L_{(u)})_*(\Gamma)$ , then  $\tilde{d}(\tau_u(x), \tau_u(y)) < \varepsilon$ .

PROOF. As we saw in § 1, there is  $\lambda > 0$  such that  $\alpha(U_{\lambda}(x)) \cap U_{\lambda}(x) = \emptyset$  for  $\alpha \in \Gamma \setminus \{id_N\}$  and  $x \in N$ . For given  $\varepsilon > 0$  and  $L \in \mathbb{N}$ , by Lemma 3.2 we can find  $0 < \mu < \min{\{\lambda, \varepsilon\}}$  such that

$$(3.1) D(x, y) < \mu(x, y \in N) \Longrightarrow D(\bar{f}_{\bar{d}}^{L} - L(\mu)(x), \bar{f}_{\bar{d}}^{L} - L(\mu)(y)) < \lambda.$$

Let  $\delta < \mu/2^L$ . If  $\tilde{d}(\tau_u(x), \tau_u(y)) < \delta$ , by the definition of  $\tau_u$ 

$$\tilde{d}(\tau_{\mathbf{u}}(x), \tau_{\mathbf{u}}(y)) = \sum_{i \in \mathbf{Z}} \frac{1}{2^{|i|}} d(\pi \circ \tilde{f}_{\mathbf{u}}^{i}(x), \pi \circ \tilde{f}_{\mathbf{u}}^{i}(y)) < \delta,$$

from which  $d(\pi \circ \bar{f}_{\mathbf{u}}^{i}(x), \pi \circ \bar{f}_{\mathbf{u}}^{i}(y)) < \mu$  for  $|i| \leq L$ .

By the definition of d, we have  $\bar{f}_{\mathbf{u}}^{i}(y) \in \alpha_{i}(U_{\mu}(\bar{f}_{\mathbf{u}}^{i}(x)))$  for some  $\alpha_{i} \in \Gamma(|i| \leq L)$ , and in particular

$$\begin{split} y &\in \alpha_0(U_{\mu}(x)) \ (\subset \alpha_0(U_{\varepsilon}(x))), \\ y &\in (\bar{f}_{\mathbf{u}}^{-L})^{-1} \circ \alpha_{-L}(U_{\mu}(\bar{f}_{\mathbf{u}}^{-L}(x))) \\ &= (\bar{f}_{\bar{\sigma}}^{L} - L_{(\mathbf{u})})_* (\alpha_{-L}) \circ (\bar{f}_{\bar{\sigma}}^{L} - L_{(\mathbf{u})}) (U_{\mu}(\bar{f}_{\mathbf{u}}^{-L}(x))) \\ &\subset (\bar{f}_{\bar{\sigma}}^{L} - L_{(\mathbf{u})})_* (\alpha_{-L}) (U_{\lambda}(n_1)) \ \ \text{(by (3.1))}. \end{split}$$

Remark that  $(\bar{f}_{u}^{-L})^{-1} = \bar{f}_{\bar{g}}^{L} - L_{(u)}$ . Then

$$\alpha_0(U_{\lambda}(x)) \cap (\bar{f}_{\bar{\sigma}}^L - L_{(u)})_*(\alpha_{-L})(U_{\lambda}(x)) \neq \emptyset$$
,

and  $\alpha_0 = (\bar{f}_{\bar{\sigma}}^L - L_{(u)})_*(\alpha_{-L}) \in (\bar{f}_{\bar{\sigma}}^L - L_{(u)})_*(\Gamma)$ . Therefore the proof of (1) is completed. For  $\varepsilon > 0$ , we choose  $L \in \mathbb{N}$  such that

$$\sum_{|i|\geq L+1} \frac{1}{2^{|i|}} d(\pi \circ \bar{f}_{\mathbf{u}}^{i}(x), \ \pi \circ \bar{f}_{\mathbf{u}}^{i}(y)) < \frac{\varepsilon}{2} \quad (x, \ y \in N).$$

Let  $\lambda>0$  be as above and let  $\mu=\min\{\lambda, \, \varepsilon/6\}$ . By Lemma 3.2 there is  $\delta>0$  such that  $\sup_{|i|\leq L}\{D(\bar{f}^i_{\bar{\sigma}^{-i}(u)}(x), \, \bar{f}^i_{\bar{\sigma}^{-i}(u)}(y))\}<\mu$  whenever  $D(x, y)<\delta$  for  $x, y\in N$ . If  $y\in\alpha(U_{\delta}(x))$   $(\alpha\in(\bar{f}^i_{\bar{\sigma}^{-L}(u)})_*(\Gamma))$ , then we have

$$\begin{split} \bar{f}_{u}^{i}(y) &\in \bar{f}_{u}^{i}(\alpha(U_{\delta}(x))) \\ &= (\bar{f}_{u}^{i})_{*}(\alpha) \cdot \bar{f}_{u}^{i}(U_{\delta}(x)) \\ &\subset (\bar{f}_{u}^{i})_{*}(\alpha)(U_{\mu}(\bar{f}_{u}^{i}(x))) \end{split}$$

for  $|i| \le L$ . Since  $\pi: U_{\lambda}(\bar{f}_{u}^{i}(x)) \to U_{\lambda}(\pi \circ \bar{f}_{u}^{i}(x))$  is an isometry, we have

$$d(\pi \circ \bar{f}_{u}^{i}(x), \ \pi \circ \bar{f}_{u}^{i}(y)) < \frac{\varepsilon}{6} \quad \text{for } |i| \leq L,$$

and so

$$\begin{split} d(\tau_{\mathbf{u}}(x), \, \tau_{\mathbf{u}}(y)) &= \sum_{|i| \leq L} \frac{1}{2^{|i|}} d(\pi \circ \bar{f}_{\mathbf{u}}^{i}(x), \, \pi \circ \bar{f}_{\mathbf{u}}^{i}(y)) \\ &+ \sum_{|i| \geq L+1} \frac{1}{2^{|i|}} d(\pi \circ \bar{f}_{\mathbf{u}}^{i}(x), \, \pi \circ \bar{f}_{\mathbf{u}}^{i}(y)) \\ &< \sum_{|i| \leq L} \frac{1}{2^{|i|}} \cdot \frac{\varepsilon}{6} + \frac{\varepsilon}{2} \\ &< \varepsilon \,. \end{split}$$

(2) was proved.

The following result is easily checked by Lemma 3.7.

LEMMA 3.8. For  $x, y \in \mathbb{N}$ ,  $y = \alpha(x)$  for some  $\alpha \in \bigcap_{i=0}^{\infty} (\bar{f}_{\bar{\sigma}^{-i}(u)})_*(\Gamma)$  if and only if  $\tau_u(x) = \tau_u(y)$ .

Let  $f: N/\Gamma \to N/\Gamma$  be a self-covering map of an infra-nil-manifold, and let  $A: N/\Gamma \to N/\Gamma$  be an infra-nil-endomorphism homotopic to f. Let  $\overline{A}: N \to N$  be the automorphism which is a lift of A by  $\pi$ . Choose a lift map  $\overline{f}: N \to N$  of f by  $\pi$  satisfying  $\overline{f}_* = \overline{A}_*: \Gamma \to \Gamma$ .

For  $e=(\cdots, e, e, e, \cdots)\in N_A$ , we have that  $\overline{A}_e^i=\overline{A}^i$   $(i\in \mathbf{Z})$  and

$$\tau_{\epsilon}^{A}(x) = (\pi \circ \overline{A}^{i}(x))_{i=-\infty}^{\infty} \quad (x \in \mathbb{N}).$$

If  $\tau_{\epsilon}^{A}(x) = \tau_{\epsilon}^{A}(y)$ , by Lemma 3.8 we have that  $x = \alpha(y)$  for some  $\alpha \in \bigcap_{i=0}^{\infty} \bar{A}_{*}^{i}(\Gamma)$ . Since  $\bar{f}(x) = \bar{f}_{*}(\alpha) \circ \bar{f}(y) = \bar{A}_{*}(\alpha) \circ \bar{f}(y)$  ( $\bar{A}_{*}(\alpha) \in \bigcap_{i=0}^{\infty} \bar{A}_{*}^{i}(\Gamma)$ ), it follows that  $\tau_{\epsilon}^{A}(\bar{f}(x)) = \tau_{\epsilon}^{A}(\bar{f}(y))$ . Therefore we can define a map  $\tilde{f}: \tau_{\epsilon}^{A}(N) \to \tau_{\epsilon}^{A}(N)$  by

$$\tilde{f}(\tau_{\boldsymbol{e}}^{\boldsymbol{A}}(x)) = \tau_{\boldsymbol{e}}^{\boldsymbol{A}}(\bar{f}(x))$$

for  $x \in N$ .

LEMMA 3.9.  $\tilde{f}$  is  $\tilde{d}$ -biuniformly continuous.

PROOF. For given  $\varepsilon > 0$ , by Lemma 3.7(2) there exist  $L \in \mathbb{N}$  and  $\lambda > 0$  such that if  $y \in \alpha(U_{\lambda}(x))$  for some  $\alpha \in \overline{A}_{*}^{L}(\Gamma)$ , then  $\overline{d}(\tau_{e}^{A}(x), \tau_{e}^{A}(y)) < \varepsilon$ . Let  $\mu > 0$  be a number at satisfying

$$D(x, y) < \mu \ (x, y \in \mathbb{N}) \Longrightarrow D(\bar{f}(x), \bar{f}(y)) < \lambda.$$

Lemma 3.7(1) ensures the existence of  $\delta > 0$  satisfying

$$\tilde{d}(\tau_{\epsilon}^{A}(x), \tau_{\epsilon}^{A}(y)) < \delta \Longrightarrow y \in \alpha(U_{u}(x))$$
 for some  $\alpha \in \bar{f}_{\star}^{L}(\Gamma)$ .

Since  $\bar{f}(y) \in \bar{f}(\alpha(U_{\mu}(x))) = \bar{f}_{*}(\alpha)\bar{f}(U_{\mu}(x)) \subset \bar{f}_{*}(\alpha)U_{\lambda}(\bar{f}(x))$  and  $\bar{f}_{*}(\alpha) \in \bar{f}_{*}^{L}(\Gamma)$ , we have  $\tilde{d}(\tilde{f}(\tau_{\bullet}^{A}(x)), \tilde{f}(\tau_{\bullet}^{A}(y))) = \tilde{d}(\tau_{\bullet}^{A}(\bar{f}(x)), \tau_{\bullet}^{A}(\bar{f}(y))) < \varepsilon$ .

Similarly the  $\tilde{d}$ -uniform continuity of  $\tilde{f}^{-1}$  is proved.

Since  $\tau_e^A(N)$  is dense in  $(N/\Gamma)_A$  by Lemma 3.3(2), it follows from Lemma 3.9 that  $\tilde{f}$  is extended to a homeomorphism of  $(N/\Gamma)_A$ , which is denoted as the

same symbol. It is checked that  $f \circ p_0 = p_0 \circ \tilde{f}$  on  $(N/\Gamma)_A$ . Indeed, by the definition of  $\tilde{f}$  we have that

$$f \circ p_0 \circ \tau_e = f \circ \pi = \pi \circ \overline{f} = p_0 \circ \tau_e \circ \overline{f} = p_0 \circ \widetilde{f} \circ \tau_e$$
.

Since  $\tau_e(N)$  is dense in  $(N/\Gamma)_A$ , we obtain the assertion. Let  $\sigma_f: (N/\Gamma)_f \to (N/\Gamma)_f$  be a shift map constructed by f.

LEMMA 3.10.  $((N/\Gamma)_A, \tilde{f})$  is topologically conjugate to  $((N/\Gamma)_f, \sigma_f)$ .

PROOF. For  $\boldsymbol{u}=(\cdots,\,\bar{f}^{-1}(e),\,e,\,\bar{f}(e),\,\cdots)\in N_f$ , we have  $\bar{f}_{\boldsymbol{u}}^{i}=\bar{f}^{i}$   $(i\in\mathbf{Z})$  and  $\tau_{\boldsymbol{u}}^{f}(x)=(\pi\circ\bar{f}^{i}(x))_{i=-\infty}^{\infty}$   $(x\in N)$ . Lemma 3.8 ensures that

 $y = \alpha(x)$  for some  $\alpha \in \bigcap_{i=0}^{\infty} \overline{A}_{*}^{i}(\Gamma)$  if and only if  $\tau_{e}^{A}(x) = \tau_{e}^{A}(y)$ ,

$$y = \alpha(x)$$
 for some  $\alpha \in \bigcap_{i=0}^{\infty} \bar{f}_{*}^{i}(\Gamma)$  if and only if  $\tau_{u}^{f}(x) = \tau_{u}^{f}(y)$ .

Thus we have that  $\tau_e^A(x) = \tau_e^A(y)$  if and only if  $\tau_u^f(x) = \tau_u^f(y)$ . Therefore a bijection  $\varphi : \tau_e^A(N) \to \tau_u^f(N)$  is defined by

$$\varphi(\tau_e^A(x)) = \tau_u^f(x) \quad (x \in N),$$

and we have that  $\sigma_f \circ \varphi = \varphi \circ \tilde{f}$  on  $\tau_e^A(N)$ . This is easily checked as follows. By the definition of  $\tilde{f}$  and Lemma 3.6,  $\tilde{f} \circ \tau_e^A = \tau_e^A \circ \bar{f}$  and  $\sigma_f \circ \tau_u^f = \tau_u^f \circ \bar{f} = \tau_u^f \circ \bar{f}$  on N, from which

$$\sigma_f \circ \varphi \circ \tau_e^A = \sigma_f \circ \tau_u^f = \tau_u^f \circ \bar{f} = \varphi \circ \tau_e^A \circ \bar{f} = \varphi \circ \tilde{f} \circ \tau_e^A.$$

It is checked that  $\varphi$  is  $\tilde{d}$ -biuniformly continuous. Indeed, for given  $\varepsilon > 0$ , by Lemma 3.7(2) there are  $L = L(\varepsilon) \in \mathbb{N}$  and  $\lambda = \lambda(\varepsilon) > 0$  such that if  $y \in \alpha(U_{\lambda}(x))$   $(x, y \in N)$  for some  $\alpha \in \bar{f}_{*}^{L}(\Gamma)$ , then  $\tilde{d}_{f}(\tau_{u}^{f}(x), \tau_{u}^{f}(y)) < \varepsilon$ . By Lemma 3.7(1) we can take  $\delta > 0$  satisfying  $y \in \alpha(U_{\lambda}(x))$  for some  $\alpha \in \bar{A}_{*}^{L}(\Gamma) = \bar{f}_{*}^{L}(\Gamma)$  whenever  $\tilde{d}_{A}(\tau_{e}^{A}(x), \tau_{e}^{A}(y)) < \delta$ . This implies that  $\varphi$  is  $\tilde{d}$ -uniformly continuous. Analogously we can prove that  $\varphi^{-1}$  is  $\tilde{d}$ -uniformly continuous.

Since  $\tau_e^A(N)$  and  $\tau_u^f(N)$  are dense in  $(N/\Gamma)_A$  and  $(N/\Gamma)_f$  respectively by Lemma 3.3(2),  $\varphi$  is extended to a homeomorphism between  $(N/\Gamma)_A$  and  $(N/\Gamma)_f$ , which is denoted as the same symbol. Therefore,  $\sigma_f \circ \varphi = \varphi \circ \tilde{f}$  on  $(N/\Gamma)_A$ .  $\square$ 

REMARK 3.11. Suppose that  $N/\Gamma$  is a torus. Then for any covering transformation  $\alpha \in \Gamma$ , there exists a homeomorphism  $\tilde{\alpha}: (N/\Gamma)_A \to (N/\Gamma)_A$  satisfying  $\tilde{\alpha} \circ \tau_{\epsilon}^A = \tau_{\epsilon}^A \circ \alpha$  (see [Ao-Hi] Theorem 6.5.3). However if  $\Gamma$  is not abelian, then it is not true in general.

Indeed, we can find the following counter-example ([Sh]). Let N be the simply connected nilpotent Lie group defined by

$$N = \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbf{R} \right\},\,$$

and let  $\Gamma$  be the discrete uniform subgroup of N obtained by

$$arGamma = \left\{ egin{pmatrix} 1 & lpha & \gamma \ 0 & 1 & eta \ 0 & 0 & 1 \end{pmatrix} \colon lpha, \ eta, \ \gamma \in \mathbf{Z} 
ight\}.$$

Then  $N/\Gamma$  is a nil-manifold. Define the nil-endomorphism  $A: N/\Gamma \to N/\Gamma$  induced by the automorphism  $\overline{A}: N \to N$  represented as

$$\overline{A} \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2x & 6z \\ 0 & 1 & 3y \\ 0 & 0 & 1 \end{pmatrix}.$$

Let

$$lpha = egin{pmatrix} 1 & 5 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} \quad ext{and} \quad eta_i = egin{pmatrix} 1 & 2^i & 6^i \ 0 & 1 & 3^i \ 0 & 0 & 1 \end{pmatrix} \quad (i \geq 0) \in \varGamma.$$

Then

$$\overline{A}^i(\Gamma) = \left\{ \begin{pmatrix} 1 & 2^i \alpha & 6^i \gamma \\ 0 & 1 & 3^i \beta \\ 0 & 0 & 1 \end{pmatrix} : \alpha, \beta, \gamma \in \mathbf{Z} \right\}.$$

We can take the map  $\tilde{\alpha}$  of  $\tau_e^A(N)$  satisfying  $\tilde{\alpha} \circ \tau_e^A = \tau_e^A \circ \alpha$  because  $\tau_e^A$  is bijective. Then  $\tilde{d}(\tau_e^A(e), \tau_e^A(\beta_i(e))) \to 0$   $(i \to \infty)$  by Lemma 3.7. On the other hand, we have

$$\tilde{d}(\tilde{\alpha} \circ \tau_e^A(e), \ \tilde{\alpha} \circ \tau_e^A(\beta_i(e))) = \tilde{d}(\tau_e^A \circ \alpha(e), \ \tau_e^A \circ \alpha \circ \beta_i(e))$$

does not converge to 0 as  $i \rightarrow \infty$ . Indeed, for  $i \ge 0$ 

$$\alpha \circ \beta_i(e) = \alpha \circ \beta_i \circ \alpha^{-1}(\alpha(e)), \ \alpha \circ \beta_i \circ \alpha^{-1} \in \Gamma \setminus \overline{A}(\Gamma).$$

By Lemma 3.7,  $\tilde{\alpha}$  is not continuous under the metric  $\tilde{d}$  for  $(N/\Gamma)_A$ .

REMARK 3.12. Furthermore in the case when  $N/\Gamma$  is a torus, we can show that the inverse limit space  $(N/\Gamma)_A$  has a structure of compact connected finite dimensional abelian group, which is called the solenoidal group.

See [Ao-Hi] Theorem 7.2.4 for the proof.

REMARK 3.13. Every hyperbolic infra-nil-endomorphism  $A: N/\Gamma \rightarrow N/\Gamma$  is a special TA-covering map.

PROOF. Since A is an Anosov differentiable map, we have A is a TA-covering map ([Ao-Hi] Theorem 1.2.1).

Let  $u=(\cdots, u_{-1}, u_0, u_1, \cdots) \in N_A$ . By the definition of  $N_A$ , we can take  $\alpha_i \in \Gamma$  such that  $\overline{A}_{u_{-i}, u_{-i+1}} = \alpha_i \circ \overline{A}$   $(i \ge 0)$ . Let  $\alpha_i^{-1} = (z_i, c_i) \in N \cdot C$ , and let  $\rho$ ,  $\phi$  be as in Lemma 1.5. Then we have that

$$\begin{split} \overline{A}_{\pmb{u}}^{-i} &= (\overline{A}_{u_{-i},\,u_{-i+1}})^{-1} \circ (\overline{A}_{u_{-i+1},\,u_{-i+2}})^{-1} \circ \, \cdots \, \circ (\overline{A}_{u_{-1},\,u_0})^{-1} \\ &= (\alpha_i \circ \overline{A})^{-1} \circ (\alpha_{i-1} \circ \overline{A})^{-1} \circ \, \cdots \, \circ (\alpha_1 \circ \overline{A})^{-1} \\ &= \overline{A}^{-1} \circ (z_i,\,c_i) \circ \overline{A}^{-1} \circ (z_{i-1},\,c_{i-1}) \circ \, \cdots \, \circ \overline{A}^{-1} \circ (z_1,\,c_1) \\ &= (\overline{A}^{-1}(z_i),\,\phi^{-1}(c_i)) \circ (\overline{A}^{-2}(z_{i-1}),\,\phi^{-2}(c_{i-1})) \circ \, \cdots \, \circ (\overline{A}^{-i}(z_1),\,\phi^{-i}(c_1)) \circ \overline{A}^{-i} \,. \end{split}$$

Since D is left invariant and  $\Gamma$ -invariant, for  $x, y \in \mathbb{N}$  and  $i \ge 0$ ,

$$D(\overline{A}_{\mathbf{u}}^{-i}(x), \overline{A}_{\mathbf{u}}^{-i}(y)) = D(\overline{A}^{-i}(x), \overline{A}^{-i}(y)).$$

Therefore  $\bar{L}^u_{\mathbf{u}}(x) = \bar{L}^u(x)$  where  $\bar{L}^u_{\mathbf{u}}(x) = \{ y \in \mathbb{N} : D(\bar{A}^{-i}_{\mathbf{u}}(x), \bar{A}^{-i}_{\mathbf{u}}(y)) \to 0 \ (i \to \infty) \}$ . For  $\mathbf{u} \in \mathbb{N}_A$ , we have

$$L^{u}(\tau_{u}(x)) = \pi(\bar{L}^{u}(x)) = \pi(\bar{L}^{u}(x))$$

where  $L^u(\tau_u(x)) = \{y_0 \in N/\Gamma : \exists (y_i) \in (N/\Gamma)_A \text{ s.t. } \lim_{i \to \infty} d(\pi \circ \overline{A}_u^{-i}(x), y_{-i}) \to 0\}$  ([Ao-Hi] Lemma 6.6.8), and then A is a special TA-covering map.

#### $\S 4$ . Construction of semi-conjugacy maps on the inverse limit systems.

Suppose  $f: N/\Gamma \to N/\Gamma$  is a TA-covering map, and let  $A: N/\Gamma \to N/\Gamma$  be the infra-nil-endomorphism homotopic to f. Let  $\overline{A}: N \to N$  be the automorphism which is a lift of A by  $\pi$ . By Lemma 1.3, A is hyperbolic. Let  $\overline{f}: N \to N$  be a lift of f by  $\pi$  satisfying  $\overline{f}_* = \overline{A}_*: \Gamma \to \Gamma$ . We may assume that  $\overline{f}(e) = e$ , and let  $\overline{h}: N \to N$  denote the semi-conjugacy map obtained in Lemma 2.3.

Let  $\sigma_A: (N/\Gamma)_A \to (N/\Gamma)_A$  be the inverse limit system of  $(N/\Gamma, A)$ , and let  $\tau_e: N \to (N/\Gamma)_A$  be the continuous map defined by  $\tau_e(x) = (\pi \circ \overline{A}^i(x))_{i=-\infty}^{\infty}$  for  $x \in N$ . As saw in § 3 a homeomorphism  $\widetilde{f}: (N/\Gamma)_A \to (N/\Gamma)_A$  is constructed by f.

LEMMA 4.1. Under the assumptions and notations as above, there is a continuous surjection  $\tilde{\mathbf{h}}: (N/\Gamma)_A \to (N/\Gamma)_A$  such that

- (1)  $\tilde{h} \circ \tau_e = \tau_e \circ \bar{h}$  on N,
- (2)  $\sigma_A \circ \tilde{h} = \tilde{h} \circ \tilde{f}$  on  $(N/\Gamma)_A$ .

PROOF. By Lemma 3.8 and Lemma 2.4(3) we define a map  $\hat{h}: \tau_e(N) \to \tau_e(N)$  by

$$\tilde{h}(\tau_{e}(x)) = \tau_{e} \cdot \bar{h}(x) \quad (x \in N).$$

Then  $\sigma_A \circ \tilde{h} = \tilde{h} \circ \tilde{f}$  on  $\tau_e(N)$ . This follows from Lemma 3.6 and Lemma 2.3; i.e.,

$$\sigma_{A} \circ \hat{h} \circ \tau_{e} = \sigma_{A} \circ \tau_{e} \circ \bar{h} = \tau_{e} \circ \bar{A} \circ \bar{h} = \tau_{e} \circ \bar{h} \circ \bar{f} = \tilde{h} \circ \tau_{e} \circ \bar{f} = \tilde{h} \circ \tilde{f} \circ \tau_{e}.$$

To show that  $\tilde{h}$  is  $\tilde{d}$ -uniformly continuous, for  $\varepsilon>0$  there are  $L\in \mathbb{N}$  and  $\delta>0$  such that if  $y\in \alpha(U_{\delta}(x))$   $(x,\ y\in N)$  for some  $\alpha\in \overline{A}_{*}^{L}(\Gamma)$ , then  $\tilde{d}(\tau_{\epsilon}(x),\ \tau_{\epsilon}(y))<\varepsilon$ . Since  $\bar{h}$  is D-uniformly continuous by Lemma 2.3, we can take  $\lambda>0$  such that if  $D(x,\ y)<\lambda$   $(x,\ y\in N)$  then  $D(\bar{h}(x),\ \bar{h}(y))<\delta/2$ . By Lemma 2.4(2), there exists  $J\in \mathbb{N}$  with  $J\geq L$  such that  $D(\bar{h}\circ\alpha(x),\ \alpha\circ\bar{h}(x))<\delta/2$  for  $\alpha\in\bar{f}_{*}^{J}(\Gamma)$ , and by Lemma 3.7(1) we can take  $\mu>0$  satisfying  $y\in\alpha(U_{\lambda}(x))$  for some  $\alpha\in\bar{f}_{*}^{J}(\Gamma)$  whenever  $\tilde{d}(\tau_{\epsilon}(x),\ \tau_{\epsilon}(y))<\mu$ . Thus

$$\begin{split} \tilde{d}(\tau_{\mathbf{e}}(x),\,\tau_{\mathbf{e}}(y)) &< \mu \Longrightarrow y \in \alpha(U_{\lambda}(x)) \quad \text{for some } \alpha \in \overline{A}_{\mathbf{e}}^{J}(\Gamma) \\ &\Longrightarrow \bar{h}(y) \in \bar{h} \circ \alpha(U_{\lambda}(x)) = \bar{h}(U_{\lambda}(\alpha(x))) \\ &\subset U_{\delta/2}(\bar{h} \circ \alpha(x)) \subset U_{\delta}(\alpha(\bar{h}(x))) \\ &= \alpha(U_{\delta}(\bar{h}(x))) \quad \text{for some } \alpha \in \bar{A}_{\mathbf{e}}^{L}(\Gamma) \\ &\Longrightarrow \tilde{d}(\tilde{h}(\tau_{\mathbf{e}}(x)),\,\,\tilde{h}(\tau_{\mathbf{e}}(y))) = \tilde{d}(\tau_{\mathbf{e}} \circ \bar{h}(x),\,\tau_{\mathbf{e}} \circ \bar{h}(y)) \\ &< \varepsilon \,. \end{split}$$

This shows that  $\tilde{h}$  is  $\tilde{d}$ -uniformly continuous.

Since  $\tau_e(N)$  is dense in  $(N/\Gamma)_A$  by Lemma 3.3, it follows that  $\tilde{h}$  is extended to a continuous map on  $(N/\Gamma)_A$ , which is denoted as the same symbol. Therefore (2) holds.

Since  $\bar{h}$  is surjective, we have  $\tilde{h}(\tau_e(N)) = \tau_e(N)$ . Hence  $\tilde{h}((N/\Gamma)_A) \supset \tau_e(N)$ . Since  $\tau_e(N)$  is dense in  $(N/\Gamma)_A$ , we have  $\tilde{h}((N/\Gamma)_A) = (N/\Gamma)_A$ . Therefore  $\tilde{h}$  is surjective.

For 
$$\mathbf{u}=(\cdots, u_{-1}, u_0, u_1, \cdots) \in N_A$$
 define 
$$\mathbf{u}(j)=(\cdots, \overline{A}^{-3}(u_{-j}), \overline{A}^{-2}(u_{-j}), \overline{A}^{-1}(u_{-j}), u_{-j}, u_{-j+1}, \cdots, u_{-1}, u_0, u_1, \cdots) \in N_A$$

for  $j \in \mathbb{N}$ . By the definition of  $\overline{A}_{u(j)}$  we have

(4.1) 
$$\overline{A}_{u(j)}^{i} = \begin{cases} \overline{A}_{u}^{i} & \text{if } i \geq -j \\ \overline{A}^{i+j} \circ \overline{A}_{u}^{-j} & \text{if } i < -j. \end{cases}$$

For  $j \in \mathbb{N}$  we have  $(\overline{A}_{u}^{-j})^{-1} = \alpha_{u(j)}^{-1} \circ \overline{A}^{j}$  for some  $\alpha_{u(j)} \in \Gamma$  (see [Ao-Hi] Theorem 6.3.9). Then

$$\overline{A}^{j_{\circ}}\overline{A}_{u}^{-j} = \overline{A}^{j_{\circ}}\overline{A}^{-j_{\circ}}\alpha_{u(j)} = \alpha_{u(j)}.$$

We define  $\bar{h}_{u(j)}: N \rightarrow N$  by

$$\bar{h}_{u(i)} = \alpha_{u(i)}^{-1} \circ \bar{h} \circ \alpha_{u(i)}$$
 on  $N$ .

LEMMA 4.2. (1)  $\tilde{d}(\tau_u, \tau_{u(j)}) = \sup{\{\tilde{d}(\tau_u(x), \tau_{u(j)}(x)) : x \in N\} \to 0 \text{ as } j \to \infty.}$ 

- (2) For  $j \in \mathbb{N}$   $\tau_{u(j)} = \tau_e \circ \alpha_{u(j)}$  on N.
- (3) The following diagram commutes;

$$\begin{array}{ccc}
N & \xrightarrow{\overline{h}_{u(j)}} & N \\
\tau_{u(j)} \downarrow & & \downarrow \tau_{u(j)} \\
\tau_{u(j)}(N) & \xrightarrow{\widetilde{h}} & \tau_{u(j)}(N) .
\end{array}$$

PROOF. (1): Since  $N/\Gamma$  is compact, there exists M>0 such that  $d(x, y) \le M$   $(x, y \in N/\Gamma)$ . By the definition of  $\tau_u$  and  $\tau_{u(j)}$ , we have

$$\begin{split} \tilde{d}(\tau_{\boldsymbol{u}}(x), \, \tau_{\boldsymbol{u}(j)}(x)) &= \sum_{i \in \mathbf{Z}} \frac{1}{2^{|i|}} d(\pi \circ \overline{A}_{\boldsymbol{u}}^{i}(x), \, \pi \circ \overline{A}_{\boldsymbol{u}(j)}^{i}(x)) \\ &= \sum_{i < -j} \frac{1}{2^{|i|}} d(\pi \circ \overline{A}_{\boldsymbol{u}}^{i}(x), \, \pi \circ \overline{A}_{\boldsymbol{u}(j)}^{i}(x)) \quad \text{(by (4.1))} \\ &\leq \sum_{i < -j} \frac{M}{2^{|i|}} \leq \frac{M}{2^{j}} \end{split}$$

for  $x \in N$  and  $j \in \mathbb{N}$ . This shows (1).

(2): By (4.1) and (4.2), we have that if i < -j

$$\bar{A}_{u(j)}^{\imath} = \bar{A}^{\imath+\jmath} \circ \bar{A}_{u}^{-\jmath} = \bar{A}^{\imath+\jmath} \circ \bar{A}^{-\jmath} \circ \alpha_{u(j)} = \bar{A}^{\imath} \circ \alpha_{u(j)},$$

and that if  $i \ge -j$ 

$$\overline{A}_{\mathfrak{u}(\jmath)}^{\imath} = \overline{A}_{\mathfrak{u}}^{\imath} = \overline{A}_{\overline{\sigma}^{-\jmath}(\mathfrak{u})}^{\imath+\jmath} \circ \overline{A}_{\mathfrak{u}}^{-\jmath} = \beta_{\imath} \circ \overline{A}^{\imath+\jmath} \circ \overline{A}^{-\jmath} \circ \alpha_{\mathfrak{u}(\jmath)} = \beta_{\imath} \circ \overline{A}^{\imath} \circ \alpha_{\mathfrak{u}(\jmath)}$$

for some  $\beta_i \in \Gamma$  (see [Ao-Hi] Theorem 6.3.9). Hence

$$\tau_{u(j)}(x) = (\pi \circ \overline{A}_{u(j)}^{i}(x))_{i \in \mathbf{Z}} = (\pi \circ \overline{A}^{i} \circ \alpha_{u(j)}(x))_{i \in \mathbf{Z}} = \tau_{e} \circ \alpha_{u(j)}(x)$$

for  $x \in N$  and  $j \in \mathbb{N}$ .

(3): By (2), we have that for  $j \in \mathbf{N}$ 

$$\tilde{h} \circ \tau_{u(j)} = \tilde{h} \circ \tau_{e} \circ \alpha_{u(j)} = \tau_{e} \circ \bar{h} \circ \alpha_{u(j)} 
= \tau_{e} \circ \alpha_{u(j)} \circ \alpha_{u(j)}^{-1} \circ \bar{h} \circ \alpha_{u(j)} = \tau_{u(j)} \circ \bar{h}_{u(j)}$$

on N.

LEMMA 4.3. For  $u \in N_A$ , there exists a surjective map  $\bar{k}_u : N \to N$  such that

- $(1) \quad \tilde{h} \circ \tau_{\mathbf{u}} = \tau_{\mathbf{u}} \circ \bar{k}_{\mathbf{u}} \quad on \ N,$
- (2)  $D(\bar{k}_u, id_N) < \infty$ ,
- (3)  $\bar{k}_{u}$  is D-uniformly continuous,
- $(4) \quad (\bar{k}_{\boldsymbol{u}})_{*}: \bigcap_{i=0}^{\infty} (\overline{A}_{\bar{\sigma}^{-i}(\boldsymbol{u})}^{i})_{*}(\varGamma) \rightarrow \bigcap_{i=0}^{\infty} (\overline{A}_{\bar{\sigma}^{-i}(\boldsymbol{u})}^{i})_{*}(\varGamma) \ \ \textit{is the identity map.}$

PROOF. Let  $u(j) \in N_A$  and  $\alpha_{u(j)} \in \Gamma$  be as above. By Lemma 2.4(4) we have that for  $x \in N$  and  $j \in \mathbb{N}$ 

$$\begin{split} \bar{h}_{u(j)}(x) &= \alpha_{u(j)}^{-1} \circ \bar{h} \circ \alpha_{u(j)}(x) \\ &\in \bar{L}^s(\alpha_{u(j)}^{-1} \circ \alpha_{u(j)} \circ \bar{h}(x)) = \bar{L}^s(\bar{h}(x)), \end{split}$$

and by Lemma 2.4(1) there exists K>0 such that for  $x \in N$  and  $j \in \mathbb{N}$ 

$$(4.3) D(\bar{h}_{u(j)}(x), \ \bar{h}(x)) = D(\alpha_{u(j)}^{-1} \circ \bar{h} \circ \alpha_{u(j)}(x), \ \bar{h}(x))$$

$$= D(\bar{h} \circ \alpha_{u(j)}(x), \ \alpha_{u(j)} \circ \bar{h}(x))$$

$$< K.$$

Then we can take  $\bar{x} \in \bar{L}^s(\bar{h}(x))$  and a subsequence  $\{j(n)\}_{n \in \mathbb{N}} \subset \mathbb{N}$  with  $j(n) \nearrow \infty$   $(n \nearrow \infty)$  such that  $D(\bar{h}_{u(j(n))}(x), \bar{x}) \to 0$   $(j \to \infty)$ . Remark that the above sequence  $\{j(n)\}_{n \in \mathbb{N}} \subset \mathbb{N}$  depends on  $x \in \mathbb{N}$ . By Lemma 4.2(1), (3)

$$\begin{split} \vec{d}(\tau_{\boldsymbol{u}}(\bar{x}), \ \tilde{h} \circ \tau_{\boldsymbol{u}}(x)) & \leq \vec{d}(\tau_{\boldsymbol{u}}(\bar{x}), \ \tau_{\boldsymbol{u}} \circ \bar{h}_{\boldsymbol{u}(\jmath(n))}(x)) \\ & + \vec{d}(\tau_{\boldsymbol{u}} \circ \bar{h}_{\boldsymbol{u}(\jmath(n))}(x), \ \tau_{\boldsymbol{u}(\jmath(n))} \circ \bar{h}_{\boldsymbol{u}(\jmath(n))}(x)) \\ & + \vec{d}(\tau_{\boldsymbol{u}(\jmath(n))} \circ \bar{h}_{\boldsymbol{u}(\jmath(n))}(x), \ \tilde{h} \circ \tau_{\boldsymbol{u}}(x)) \\ & \leq \vec{d}(\tau_{\boldsymbol{u}}(\bar{x}), \ \tau_{\boldsymbol{u}} \circ \bar{h}_{\boldsymbol{u}(\jmath(n))}(x)) + \vec{d}(\tau_{\boldsymbol{u}}, \ \tau_{\boldsymbol{u}(\jmath(n))}) \\ & + \vec{d}(\tilde{h} \circ \tau_{\boldsymbol{u}(\jmath(n))}(x), \ \tilde{h} \circ \tau_{\boldsymbol{u}}(x)) \\ & \to 0 \quad (n \to \infty), \end{split}$$

from which

(4.4) 
$$\tau_{\mathbf{u}}(\bar{x}) = \tilde{h} \circ \tau_{\mathbf{u}}(x).$$

We claim that  $\{\bar{h}_{u(j)}(x)\}_{j\in\mathbb{N}}$  is a Cauchy sequence in  $\bar{L}^s(\bar{h}(x))$ . Indeed, assume that there exist  $\bar{x}^i\in\bar{L}^s(\bar{h}(x))$  (i=1,2) and subsequences  $\{j^i(n)\}_{n\in\mathbb{N}}$  (i=1,2) with  $j^i(n)\nearrow\infty$  ( $n\nearrow\infty$ ) such that  $D(\bar{h}_{u(j^i(n))}(x),\bar{x}^i)\to 0$  as  $n\to\infty$  (i=1,2). Then by (4.4)  $\tau_u(\bar{x}^1)=\tilde{h}\circ\tau_u(x)=\tau_u(\bar{x}^2)$ . Hence  $\bar{x}^2=\bar{\alpha}(\bar{x}^1)$  for some  $\bar{\alpha}\in\bigcap_{i=0}^\infty \bar{A}^i_*(\Gamma)$  (Lemma 3.8). Since  $\pi:\bar{L}^s(\bar{h}(x))\to\pi(\bar{L}^s(\bar{h}(x)))$  is bijective by [Ao-Hi] Lemma 6.6.8(2), we have  $\bar{\alpha}=id_N$ . This implies the claim.

If  $\bar{h}_{u(j)}(x) \to \bar{k}_u(x)$   $(j \to \infty)$  for  $x \in N$ , then  $\bar{k}_u : N \to N$  is a map. By (4.4) we have that  $\tau_u \circ \bar{k}_u = \tilde{h} \circ \tau_u$  on N. Since

$$D(\bar{h}_{u(j)}(x), x) \leq D(\bar{h}_{u(j)}(x), \bar{h}(x)) + D(\bar{h}(x), x) \quad (x \in N),$$

by (4.3) we have that  $D(\bar{h}_u, id_N) < \infty$ . By uniform continuity of  $\bar{h}$ , we can take  $\delta > 0$  such that  $D(\bar{h}(x), \bar{h}(y)) < \varepsilon$  whenever  $D(x, y) < \delta$ . If  $D(x, y) < \delta$ , then we have that for  $j \in \mathbb{N}$ 

$$\begin{split} D(\bar{h}_{u(j)}(x), \ \bar{h}_{u(j)}(y)) &= D(\alpha_{u(j)}^{-1} \circ \bar{h} \circ \alpha_{u(j)}(x), \ \alpha_{u(j)}^{-1} \circ \bar{h} \circ \alpha_{u(j)}(y)) \\ &= D(\bar{h} \circ \alpha_{u(j)}(x), \ \bar{h} \circ \alpha_{u(j)}(y)) \\ &< \varepsilon \,. \end{split}$$

Hence  $D(\bar{k}_{u}(x), \bar{k}_{u}(y)) \leq \varepsilon$  and so  $\bar{k}_{u}$  is uniformly continuous under D. By (2) we can prove that  $\bar{k}_{u}$  is surjective.

Since  $\bar{k}_{u}(x) \in \bar{L}^{s}(\bar{h}(x))$   $(x \in N)$ , we have that for  $\alpha \in \bigcap_{i=0}^{\infty} (\bar{A}_{\bar{a}^{-1}(n)}^{i})_{*}(\Gamma)$ 

$$(\bar{k}_{\mathbf{u}})_*(\alpha) \circ \bar{k}_{\mathbf{u}}(e) = \bar{k}_{\mathbf{u}}(\alpha(e)) \in \bar{L}^s(\bar{h}(\alpha(e))) = \bar{L}^s(\alpha \circ \bar{h}(e)) = \alpha \circ \bar{L}^s(e).$$

Hence  $\alpha^{-1} \circ (\bar{k}_u)_*(\alpha) \circ \bar{k}_u(e) \in \bar{L}^s(e)$ . Since  $\pi : \bar{L}^s(\bar{h}(x)) \to \pi(\bar{L}^s(\bar{h}(x)))$  is bijective, we have that

$$\alpha^{-1} \circ (\bar{k}_{\boldsymbol{u}})_*(\alpha) \circ \bar{k}_{\boldsymbol{u}}(e) = \bar{k}_{\boldsymbol{u}}(e) \in \bar{L}^s(e)$$
.

Therefore  $(\bar{k}_u)_*(\alpha) = \alpha$ .

LEMMA 4.4. Each path connected component in  $(N/\Gamma)_A$  is h-invariant.

PROOF. This is clear from Lemma 3.4 and Lemma 4.3(1).  $\Box$ 

#### § 5. Nonwandering set.

The purpose of this section is to show Lemma 5.4.

LEMMA 5.1. If  $x_0 \in \text{Per}(\sigma_A)$ , then  $\tilde{h}^{-1}(x_0)$  is the set of one point.

PROOF. Without loss of generality we may suppose that  $\sigma_A(x_0) = x_0$  is satisfied. Since  $\sigma_A \circ \tilde{h} = \tilde{h} \circ \tilde{f}$ , we have  $\tilde{f}(\tilde{h}^{-1}(x_0)) = \tilde{h}^{-1}(x_0)$ .

Since  $\tilde{f}|_{\tilde{h}^{-1}(x_0)}$  is expansive and has POTP,  $\tilde{h}^{-1}(x_0)$  contains a periodic point  $y_0$  of  $\tilde{f}$ . We can check POTP of  $\tilde{f}|_{\tilde{h}^{-1}(x_0)}$  as follows. Since  $f:N/\Gamma\to N/\Gamma$  has POTP, for  $\varepsilon>0$  there is  $\delta>0$  such that every  $\delta$ -pseudo orbit of  $\tilde{f}$  is  $\varepsilon$ -traced by some point of  $(N/\Gamma)_A$ . If  $\{v_i\}\subset \tilde{h}^{-1}(x_0)$  is a  $\delta$ -pseudo orbit of  $\tilde{f}$ , then an  $\varepsilon$ -tracing point v for  $\{v_i\}$  exists in  $(N/\Gamma)_A$ . Since  $\tilde{h}(v_i)=x_0$  for all i, each of  $\sigma_A\circ \tilde{h}(v)$  is near to  $x_0$  in  $(N/\Gamma)_A$ , and hence  $\tilde{h}(v)=x_0$  by expansivity of  $\sigma_A$ , i.e.,  $v\in \tilde{h}^{-1}(x_0)$ . Therefore  $\tilde{f}|_{\tilde{h}^{-1}(x_0)}$  has POTP. To avoid complication, suppose  $\tilde{f}(y_0)=y_0$ .

By  $\sigma_A(x_0) = x_0$ , there exists  $u_0 \in N$  such that  $x_0 = (\pi(u_0))_{\mathbf{i} \in \mathbf{Z}} \in (N/\Gamma)_A$ . By the definition of  $(N/\Gamma)_A$  we have that  $\bar{\alpha} \circ \bar{A}(u_0) = u_0$  for some  $\bar{\alpha} \in \Gamma$ . Let  $\hat{A} = \bar{\alpha} \circ \bar{A}$  and take  $\mathbf{u} = (\cdots, u_0, u_0, u_0, \cdots) \in N_A$ . By the definition of  $\tau_u$  we have  $x_0 = \tau_u(u_0) \in (N/\Gamma)_A$ . Since  $\tilde{h}$  preserves each path connected component of  $(N/\Gamma)_A$  (Lemma 4.4), by Lemma 3.3 there exists  $v_0 \in N$  such that  $y_0 = \tau_u(v_0) \in \tau_u(N)$ .

By Lemma 3.6,  $\sigma_A \circ \tau_u = \tau_u \circ \hat{A}$  on N. Since  $\tilde{f}(x_0) = x_0$ , we have  $\tilde{f}(\tau_u(N)) = \tau_u(N)$ . By Lemmas 3.6 and 3.10,  $\tilde{f}|_{\tau_u(N)} : \tau_u(N) \to \tau_u(N)$  is a homeomorphism under the intrinsic topology of  $\tau_u(N)$ . Therefore there is the lift map  $\hat{f}: N \to N$  of  $\tilde{f}|_{\tau_u(N)}$  such that  $\hat{f}(u_0) = u_0$  by Lemma 3.5. Since

$$\pi \circ \hat{f} = p_0 \circ \tau_u \circ \hat{f} = p_0 \circ \tilde{f} \circ \tau_u = f \circ p_0 \circ \tau_u = f \circ \pi$$

on N, we have that  $\hat{f}$  is the lift map of f by  $\pi$ , and then  $\hat{f}$  is expansive and has POTP.

By Lemmas 3.5 and 4.3,  $\tilde{h}|_{\tau_{\boldsymbol{u}}(N)}: \tau_{\boldsymbol{u}}(N) \to \tau_{\boldsymbol{u}}(N)$  is continuous surjection under the intrinsic topology of  $\tau_{\boldsymbol{u}}(N)$ . Take the lift map  $\hat{h}: N \to N$  of  $\tilde{h}|_{\tau_{\boldsymbol{u}}(N)}$  satisfying  $\hat{h}(v_0)=u_0$  by Lemma 3.5. Let  $\bar{k}_{\boldsymbol{u}}$  be the lift of  $\tilde{h}|_{\tau_{\boldsymbol{u}}(N)}$  obtained in Lemma 4.3. Then there exists  $\beta \in \bigcap_{i=0}^{\infty} \hat{A}_{\boldsymbol{x}}^i(\Gamma)$  such that

$$\hat{h} = \beta \circ \bar{k}_u$$
 on  $N$ .

Therefore we have that  $\hat{h}$  is proper (i.e., the inverse image by  $\hat{h}$  of any compact subset is compact) by Lemma 4.3(2).

By the definition of  $\hat{f}$  and  $\hat{h}$ , we have

$$egin{aligned} au_{m{u}} \circ \hat{A} \circ \hat{h} &= \sigma_{A} \circ au_{m{u}} \circ \hat{h} &= \sigma_{A} \circ \hat{h} \circ au_{m{u}} &= \hat{h} \circ \hat{f} \circ au_{m{u}} \ &= \tilde{h} \circ au_{m{u}} \circ \hat{f} &= au_{m{u}} \circ \hat{h} \circ \hat{f} \quad ext{on } N, \ \hat{A} \circ \hat{h}(v_{0}) &= \hat{A}(u_{0}) &= u_{0} &= \hat{h}(v_{0}) &= \hat{h} \circ \hat{f}(v_{0}), \end{aligned}$$

and then  $\hat{A} \circ \hat{h} = \hat{h} \circ \hat{f}$  on N. Therefore  $\hat{f}(\hat{h}^{-1}(u_0)) = \hat{h}^{-1}(u_0)$ . Since  $\hat{h}$  is proper,  $\hat{h}^{-1}(u_0)$  is compact. It is not difficult to see that  $\hat{f}: \hat{h}^{-1}(u_0) \to \hat{h}^{-1}(u_0)$  has POTP. Therefore  $\hat{f}|_{\hat{h}^{-1}(u_0)}$  is TA-homeomorphism of a compact metric space.

Denote as  $\Omega$  the nonwandering set of  $\hat{f}|_{\hat{h}^{-1}(u_0)}$ . Then the set of all periodic points of  $\hat{f}|_{\hat{h}^{-1}(u_0)}$  is dense in  $\Omega$ . Since  $\hat{f}:N\to N$  has exactly one fixed point by Lemma 1.5,  $\Omega$  consists of one point. This implies  $\hat{h}^{-1}(u_0)=\Omega$ . Therefore  $\hat{h}^{-1}(u_0)=v_0$ .

Since  $(\bar{k}_u)_*: \bigcap_{i=0}^{\infty} \hat{A}_*^i(\Gamma) \to \bigcap_{i=0}^{\infty} \hat{A}_*^i(\Gamma)$  is the identity map by Lemma 4.3(4), we have that for  $\alpha \in \bigcap_{i=0}^{\infty} \hat{A}_*^i(\Gamma)$ 

$$\hat{h} \circ \alpha = \beta \circ \bar{k}_{\mathbf{u}} \circ \alpha = \beta \circ \alpha \circ \bar{k}_{\mathbf{u}} = \beta \circ \alpha \circ \beta^{-1} \circ \beta \circ \bar{k}_{\mathbf{u}} = \beta \circ \alpha \circ \beta^{-1} \circ \hat{h}$$

on N. Hence  $\hat{h}_*(\alpha) = \beta \circ \alpha \circ \beta^{-1}$  for  $\alpha \in \bigcap_{i=0}^{\infty} \hat{A}_*^i(\Gamma)$  and  $\hat{h}_* : \bigcap_{i=0}^{\infty} \hat{A}_*^i(\Gamma) \to \bigcap_{i=0}^{\infty} \hat{A}_*^i(\Gamma)$  is bijective.

Let  $z \in \tilde{h}^{-1}(x_0)$ . Since  $\tilde{h}$  preserves each path connected component of  $(N/\Gamma)_A$  and  $x_0 \in \tau_u(N)$ , there exists  $w \in N$  such that  $z = \tau_u(w)$ . Hence

$$\tau_{\mathbf{u}} \cdot \hat{h}(w) = \tilde{h} \cdot \tau_{\mathbf{u}}(w) = \tilde{h}(\mathbf{z}) = x_0 = \tau_{\mathbf{u}}(u_0),$$

and then  $\hat{h}(w) = \alpha(u_0)$  for some  $\alpha \in \bigcap_{i=0}^{\infty} \hat{A}_{*}^{i}(\Gamma)$ . Since  $\hat{h}_{*}: \bigcap_{i=0}^{\infty} \hat{A}_{*}^{i}(\Gamma) \to \bigcap_{i=0}^{\infty} \hat{A}_{*}^{i}(\Gamma)$  is bijective, we have  $w = \hat{h}_{*}^{-1}(\alpha)(\hat{h}^{-1}(u_0)) = \hat{h}_{*}^{-1}(\alpha)(v_0)$  and so  $z = \tau_{u}(w) = \tau_{u}(v_0) = y_0$ . Therefore  $\tilde{h}^{-1}(x_0) = \{y_0\}$ .

Let  $N \supset N^1 \supset \cdots \supset N^k \supseteq N^{k+1} = e$  be the lower central series where  $N^{i+1} = [N, N^i]$ ,  $N^1 = [N, N]$ .  $N_e$ ,  $N_e^i$  will denote the tangent spaces of N,  $N^i$  at the identity.

LEMMA 5.2 ([Pa]). If  $d\bar{A}_e: N_e/N_e^1 \to N_e/N_e^1$  has no root of unity as eigenvalues, then  $A: N/\Gamma \to N/\Gamma$  is ergodic with respect to Haar measure.

PROOF. See [Pa] Corollary 2.

LEMMA 5.3.  $\sigma_A: (N/\Gamma)_A \to (N/\Gamma)_A$  is transitive.

PROOF. Let  $\hat{A}: N/(\Gamma \cap N) \to N/(\Gamma \cap N)$  be a nil-endomorphism induced by  $A: N \to N$  (§ 1). By Lemma 5.2 and the hyperbolicity of A,  $\hat{A}$  is ergodic with respect to Haar measure. Thus  $\hat{A}$  is transitive, from which A is transitive. Therefore  $\sigma_A: (N/\Gamma)_A \to (N/\Gamma)_A$  is transitive.

LEMMA 5.4. Let  $N/\Gamma$  be an infra-nil-manifold. If  $f: N/\Gamma \to N/\Gamma$  is a TA-covering map, then the nonwandering set  $\Omega(f)$  coincides with the entire space  $N/\Gamma$ .

PROOF. By Lemma 5.3 the periodic points of  $\sigma_A$  are dense in  $(N/\Gamma)_A$  and then we have that  $\tilde{h}(\Omega(\tilde{f})) = (N/\Gamma)_A$ . Indeed, if  $\tilde{h}(\Omega(\tilde{f})) \neq (N/\Gamma)_A$  then  $\tilde{h}(\Omega(\tilde{f}))$  is a proper compact subset of  $(N/\Gamma)_A$ . Hence we can find  $z \in (N/\Gamma)_A$  such that  $\sigma_A^r(z) = z$  for some r and  $z \notin \tilde{h}(\Omega(\tilde{f}))$ . Then  $\bigcup_{i=1}^r \tilde{h}^{-1}(\sigma_A^i(z))$  is a non-empty compact  $\tilde{f}$ -invariant subset of  $(N/\Gamma)_A$  that disjoints from  $\Omega(\tilde{f})$ , which is impossible.

Let z be a point in  $(N/\Gamma)_A$  such that the orbit  $\{\sigma_A^i(z): i \in \mathbb{Z}\}$  is dense in  $(N/\Gamma)_A$ . By the above fact there is  $x \in \Omega(\tilde{f})$  such that  $\tilde{h}(x) = z$ . If  $\Omega_1$  is the basic set in which x belongs, then we have that  $\tilde{h}(\Omega_1) = (N/\Gamma)_A$ .

By Lemma 5.1,  $\tilde{h}: \tilde{h}^{-1}(\operatorname{Per}(\sigma_A)) \to \operatorname{Per}(\sigma_A)$  is bijective and so  $\Omega(\tilde{f})$  itself a basic set. Thus  $\tilde{f}|_{\Omega(\tilde{f})}$  is topologically transitive, in which case we have  $\Omega(\tilde{f}) = (N/\Gamma)_A$  because  $\tilde{f}|_{\Omega(\tilde{f})}$  is a TA-homeomorphism.

#### § 6. Injectivity of semi-conjugacy maps 1.

The purpose of this section is to show Theorem 2(2). For the proof we need the following Lemmas.

LEMMA 6.1 ([Re]). If X is a compact metric space and  $f: X \to X$  is a positively expansive map, then there exist a compatible metric  $\rho$  and constants  $\delta' > 0$ ,  $\lambda > 1$  such that for  $x, y \in X$ , if  $\rho(x, y) \leq \delta'$  then  $\rho(f(x), f(y)) \geq \lambda \rho(x, y)$ .

PROOF. See [Ao-Hi] Theorem 2.2.10.

LEMMA 6.2. Let X be a compact metric space with metric  $\rho$  and let  $\overline{X}$  be a topological space. Let  $p: \overline{X} \to X$  be a covering map. If X is locally connected, then there are a compatible metric  $\overline{\rho}$  for  $\overline{X}$  and a constant  $\delta_0 > 0$  such that

(1) for  $0 < \delta \leq \delta_0$  and  $x \in \overline{X}$ 

$$p: U_{\delta}(x) \longrightarrow U_{\delta}(p(x))$$

is an isometry where  $U_{\delta}(x) = \{y \in \overline{X} : \overline{\rho}(x, y) < \delta\}$  and  $U_{\delta}(p(x)) = \{y \in X : \rho(p(x), y) < \delta\}$ ,

- (2) all covering transformations for p are isometries,
- (3)  $\bar{X}$  is a complete metric space with respect to  $\bar{\rho}$ .

PROOF. See [Ao-Hi] Theorem 6.4.1.

Let (N, D) and  $(N/\Gamma, d)$  be as in § 1. Suppose  $f: N/\Gamma \to N/\Gamma$  is an expanding map, and let  $A: N/\Gamma \to N/\Gamma$  be the infra-nil-endomorphism homotopic to f. Then A is hyperbolic by Lemma 1.3. As before we denote as  $\overline{A}: N \to N$  a lift of A by  $\pi$ , and as the lift map  $\overline{f}: N \to N$  of f by  $\pi$  satisfying that  $\overline{f}_* = \overline{A}_*: \Gamma \to \Gamma$ .

LEMMA 6.3 ([Co-Re]). If  $f: N/\Gamma \to N/\Gamma$  is topological expanding, then there exist a constant  $\lambda > 1$  and a compatible metric  $\overline{D}$  for N such that

- (1)  $\overline{D}$  is complete,
- (2) all covering transformations for  $\pi$  are isometries under  $\bar{D}$ ,
- (3)  $\bar{D}(\bar{f}(x), \bar{f}(y)) \ge \lambda \bar{D}(x, y)$  for  $x, y \in N$ .

PROOF. Since f is positively expansive, by Lemma 6.1 there exist a compatible metric  $\rho$  for  $N/\Gamma$  and constants  $\delta'>0$  and  $\lambda>1$  such that  $\rho(x,y) \leq \delta'$  implies  $\rho(f(x), f(y)) \geq \lambda \rho(x, y)$ . Since  $\pi: N \to N/\Gamma$  is a covering map, there exist a metric  $\bar{\rho}$  for N and a constant  $\delta_0>0$  satisfying the properties in Lemma 6.2. For  $\delta=\min\{\delta', \delta_0\}$ , Lemma 3.2 ensures the existence of  $0<\delta_1<\delta$  such that  $\bar{\rho}(\bar{f}(x), \bar{f}(y))<\delta_1$  implies  $\bar{\rho}(x, y)<\delta$ . Note that  $\bar{\rho}(x, y)=\rho(\pi(x), \pi(y))$  since  $\delta\leq\delta_0$ . From these facts we have that  $\bar{\rho}(x, y)<\delta_1/\lambda$  if  $\bar{\rho}(\bar{f}(x), \bar{f}(y))<\delta_1$ .

For  $x, y \in N$  let  $\{x_i : 0 \le i \le l+1\}$  be a  $\delta_1$ -chain from x to y (i.e.,  $\overline{\rho}(x_i, x_{i+1}) < \delta_1$  for  $0 \le i \le l$ ) and define  $\overline{D}$  by

$$\overline{D}(x, y) = \inf \left\{ \sum_{i=0}^{l} \overline{\rho}(x_i, x_{i+1}) \right\}$$

where the infimum is taken over all finite  $\delta_1$ -chains from x to y. By the triangle inequality of  $\overline{\rho}$  we have  $\overline{D}(x, y) \ge \overline{\rho}(x, y)$ , from  $\overline{D}$  is a metric for N. Clearly  $\overline{\rho}(x, y) = \overline{D}(x, y)$  if  $\overline{\rho}(x, y) \le \delta_1$ . Thus  $\overline{D}$  is compatible and by Lemma 6.2(3), (1) holds. (2) is clear from the construction of  $\overline{D}$  together with Lemma 6.2(2). It remains to show only (3).

Let  $\{x_i: 0 \le i \le l\}$  be a finite sequence from  $\bar{f}(x)$  to  $\bar{f}(y)$  with  $\bar{\rho}(x_i, x_{i+1}) < \delta_1$  for  $0 \le i \le l-1$ . Then  $\{\bar{f}^{-1}(x_0), \dots, \bar{f}^{-1}(x_l)\}$  is a finite sequence from x to y such that

$$\bar{\rho}(\bar{f}^{-1}(x_i), \bar{f}^{-1}(x_{i+1})) < \delta_1/\lambda$$

for  $0 \le i \le l-1$  and thus the sequence is a  $\delta_1$ -chain. Thus we have

$$\overline{\rho}(x_i, x_{i+1}) = \overline{\rho}(\overline{f} \circ \overline{f}^{-1}(x_i), \overline{f} \circ \overline{f}^{-1}(x_{i+1})) \ge \lambda \overline{\rho}(\overline{f}^{-1}(x_i), \overline{f}^{-1}(x_{i+1}))$$

and therefore  $\sum \bar{\rho}(x_i, x_{i+1}) \ge \lambda \bar{D}(x, y)$ , from which  $\bar{D}(\bar{f}(x), \bar{f}(y)) \ge \lambda \bar{D}(x, y)$ .

LEMMA 6.4. Under the assumptions and notations of Lemma 6.3, given K>0 there exists  $\delta_K>0$  such that for any K-pseudo orbit  $\{x_i: i\geq 0\}$  of  $\bar{f}$  there is a unique  $x\in N$  so that  $\bar{D}(\bar{f}^i(x), x_i)\leq \delta_K$  for  $i\geq 0$ .

PROOF. The proof is similar to that in [Ao-Hi] Lemma 8.2.6. For completeness we give here the proof.

Put  $x_i^0 = \bar{f}^{-i}(x_i)$  for  $i \ge 0$ . By Lemma 6.3(3) we have

$$\begin{split} \overline{D}(x_{i-1}^0,\ x_i^0) &= \overline{D}(\overline{f}^{-i} \circ \overline{f}(x_{i-1}),\ \overline{f}^{-i}(x_i)) \\ &\leq \frac{1}{\lambda^i} \overline{D}(\overline{f}(x_{i-1}),\ x_i) \leq \frac{K}{\lambda^i} \quad (i \geq 0). \end{split}$$

Thus  $\{x_i^0\}$  is a Cauchy sequence and so there is a point x in N such that  $x_i^0 \to x$  as  $i \to \infty$ . Fix i > 0 and let  $0 \le j < i$ , then we have

$$\begin{split} \bar{D}(x_{j}, \ \bar{f}^{j}(x_{i}^{0})) &= \bar{D}(x_{j}, \ \bar{f}^{j-i}(x_{i})) \\ &\leq \bar{D}(x_{j}, \ \bar{f}^{-1}(x_{j+1})) + \cdots + \bar{D}(\bar{f}^{j-i+1}(x_{i-1}), \ \bar{f}^{j-i}(x_{i})) \\ &\leq K(\lambda^{-1} + \cdots + \lambda^{-(i-j)}) < \delta_{K} \end{split}$$

where  $\delta_K = K/(\lambda - 1)$ . Therefore  $\overline{D}(x_j, \overline{f}^j(x)) < \delta_K$  for  $j \ge 0$ .

LEMMA 6.5. Under the assumptions and notations of Lemma 6.3, there exists a unique continuous surjection  $\bar{k}: N \rightarrow N$  such that

- (1)  $\bar{f} \circ \bar{k} = \bar{k} \circ \bar{A}$ ,
- (2)  $\sup \{ \overline{D}(\overline{k}(x), x) : x \in \mathbb{N} \}$  is finite,
- (3)  $\bar{k}$  is uniformly continuous under  $\bar{D}$ .

PROOF. Since  $\bar{f}_* = \bar{A}_*$ , we can take K > 0 such that  $\bar{D}(\bar{A}(x), \bar{f}(x)) < K$  for all  $x \in \mathbb{N}$ . Let  $\delta_K > 0$  be as in Lemma 6.4. For any  $x \in \mathbb{N}$  the sequence  $\{\bar{A}^j(x) : j \in \mathbb{Z}\}$  is a K-pseudo orbit of  $\bar{f}$ . Hence there is a unique  $y \in \mathbb{N}$  such that

$$\bar{D}(\bar{A}^j(x), \bar{f}^j(y)) \leq \delta_K \text{ for } j \in \mathbf{Z}.$$

We define a map  $\bar{k}: N \to N$  by  $\bar{k}(x) = y$ . Since  $\bar{D}(x, y) \leq \delta_K$ , obviously  $\sup\{\bar{D}(\bar{k}(x), x): x \in N\} \leq \delta_K$ . Hence (2) holds. Since  $\{\bar{A}^j(\bar{A}(x)): j \in \mathbf{Z}\}$  is  $\delta_K$ -traced by a point  $\bar{f}(y)$ , we have  $\bar{f}(\bar{k}(x)) = \bar{f}(y) = \bar{k}(\bar{A}(x))$ , from which (1) is obtained. The proof of (3) and the uniqueness of  $\bar{k}$  is similar to that of Lemma 2.3.  $\square$ 

LEMMA 6.6. Let  $f: N/\Gamma \to N/\Gamma$  be topological expanding and let  $\bar{h}: N \to N$  be the semi-conjugacy map obtained in Lemma 2.3. Then  $\bar{h}$  is a homeomorphism and satisfies  $\bar{h} \circ \alpha(x) = \alpha \circ \bar{h}(x)$  for  $x \in N$  and  $\alpha \in \Gamma$ .

PROOF. This is given in [Ao-Hi] Proposition 8.4.1 as follows. We already know that there exists a metric  $\bar{D}$  for N such that  $\bar{f}$  has the property of Lemma 6.5 and, further, a tracing property in Lemma 6.4. Let  $\bar{k}: N \to N$  be a

semi-conjugacy map as in Lemma 6.5. In the similar way as the proof of Lemma 2.4(3), we have  $\bar{k} \circ \alpha(x) = \alpha \circ \bar{k}(x)$  for  $x \in N$  and  $\alpha \in \Gamma$ . Thus,  $\sup \{D(\bar{k}(x), x) : x \in N\}$  is finite, i.e., there is K' > 0 such that  $D(\bar{k}(x), x) < K'$  for  $x \in N$ . From Lemma 2.3(1) and Lemma 6.5(1) it follows that

$$(\bar{h} \circ \bar{k}) \circ \bar{A} = \bar{A} \circ (\bar{h} \circ \bar{k}), \quad (\bar{k} \circ \bar{h}) \circ \bar{f} = \bar{f} \circ (\bar{k} \circ \bar{h}).$$

Since  $D(\bar{h}(x), x) < K$  for  $x \in N$ , we have for all  $x \in N$ 

$$D(\bar{h} \circ \bar{k}(x), x) < L$$
,  $D(\bar{k} \circ \bar{h}(x), x) < L$ 

where L=K'+K. Lemma 6.3 implies  $\bar{D}(\bar{f}^j \circ (\bar{k} \circ \bar{h})(x), \bar{f}^j(x)) \to \infty$  as  $j \to \infty$  when  $\bar{k} \circ \bar{h}(x) \neq x$ . But  $D(\bar{f}^j \circ (\bar{k} \circ \bar{h})(x), \bar{f}^j(x)) < L$  for  $j \ge 0$ . This is impossible since D and  $\bar{D}$  are uniformly equivalent. Therefore,  $\bar{k} \circ \bar{h}(x) = x$ , and so  $\bar{k} \circ \bar{h}$  is the identity map.

By Lemma 6.6  $\bar{h}$  induces a homeomorphism  $h: N/\Gamma \to N/\Gamma$  and  $A \circ h = h \circ f$  holds on  $N/\Gamma$ . Therefore, Theorem 2(2) was concluded.

### § 7. Injectivity of semi-conjugacy maps 2.

The purpose of this section is to show Theorems 1 and 2(1).

Let (N, D) and  $(N/\Gamma, d)$  be as in §1. Suppose  $f: N/\Gamma \to N/\Gamma$  is a TA-covering map, and let  $A: N/\Gamma \to N/\Gamma$  be the infra-nil-endomorphism homotopic to f. Then A is hyperbolic by Lemma 1.3. As before we denote as  $\overline{A}: N \to N$  a lift of A by  $\pi$ , and as the lift map  $\overline{f}: N \to N$  of f by  $\pi$  satisfying that  $\overline{f}_* = \overline{A}_*: \Gamma \to \Gamma$ . We may assume that  $\overline{f}(e) = e$ . Let  $\overline{h}: N \to N$  the semi-conjugacy map obtained in Lemma 2.3.

Fix  $u \in N_f = \{(x_i) \in N^{\mathbb{Z}} : f(\pi(x_i)) = \pi(x_{i+1}), i \in \mathbb{Z}\}$ . For  $x \in N$  we define a local stable and a local unstable sets by

$$\overline{W}^{s}_{\varepsilon}(x; \mathbf{u}) = \{ y \in \mathbb{N} : D(\overline{f}^{i}_{\mathbf{u}}(x), \overline{f}^{i}_{\mathbf{u}}(y)) \leq \varepsilon, i \geq 0 \},$$

$$\overline{W}_{\varepsilon}^{u}(x; \mathbf{u}) = \{ y \in \mathbb{N} : D(\overline{f}_{u}^{i}(x), \overline{f}_{u}^{i}(y)) \leq \varepsilon, i \leq 0 \}.$$

Hence  $D(\bar{f}_{u}^{i}(x), \bar{f}_{u}^{i}(y)) = D(\bar{f}^{i}(x), \bar{f}^{i}(y))$  for  $i \ge 0$ , from which the local stable set  $\overline{W}_{\varepsilon}^{s}(x; u)$  does not depend on the choice of u. For simplicity we write

$$\overline{W}_{\varepsilon}^{s}(x) = \overline{W}_{\varepsilon}^{s}(x; u) \quad (x \in N \text{ and } u \in N_{f}).$$

For  $x \in N$  define a stable and unstable sets as follows:

$$\overline{W}^{s}(x; \boldsymbol{u}) = \{ y \in N : D(\overline{f}_{u}^{i}(x), \overline{f}_{u}^{i}(y)) \rightarrow 0 \ (i \rightarrow \infty) \}.$$

$$\overline{W}^u(x; \boldsymbol{u}) = \{ y \in N : D(\bar{f}_{\boldsymbol{u}}^i(x), \bar{f}_{\boldsymbol{u}}^i(y)) \to 0 \ (i \to -\infty) \}.$$

Since  $\overline{W}^s(x; \boldsymbol{u})$  is independent of  $\boldsymbol{u}$ , we write  $\overline{W}^s(x) = \overline{W}^s(x; \boldsymbol{u})$ .

LEMMA 7.1. Let  $\varepsilon > 0$  be an enough small number and let  $\bar{\sigma}: N_f \to N_f$  be a shift map defined by  $\bar{\sigma}((x_i)) = (x_{i+1})$ . Then the following hold.

(1) For  $\gamma > 0$  there exists  $n_{\gamma} > 0$  such that for  $\mathbf{u} \in N_f$  and  $x \in N$ 

$$\begin{split} & \bar{f}_{\mathbf{u}}^{n}(\overline{W}_{\varepsilon}^{s}(x)) \subset \overline{W}_{\tau}^{s}(\bar{f}_{\mathbf{u}}^{n}(x)) \,, \\ & \bar{f}_{\mathbf{u}}^{-n}(\overline{W}_{\varepsilon}^{u}(x \; ; \; \boldsymbol{u})) \subset \overline{W}_{\tau}^{u}(\bar{f}_{\mathbf{u}}^{n}(x) \; ; \; \bar{\sigma}^{-n}(\boldsymbol{u})) \end{split}$$

for all  $n \ge n_{\gamma}$ .

(2)

$$\begin{split} \overline{W}^s(x) &= \bigcup_{i \geq 0} \bar{f}_{\bar{\sigma}^i(u)}^{-i}(\overline{W}^s_{\varepsilon}(\bar{f}^i_u(x))), \\ \overline{W}^u(x; \boldsymbol{u}) &= \bigcup_{i \geq 0} \bar{f}^i_{\bar{\sigma}^{-i}(u)}(\overline{W}^u_{\varepsilon}(\bar{f}^{-i}_u(x); \bar{\sigma}^{-i}(\boldsymbol{u}))). \end{split}$$

PROOF. See [Ao-Hi] Lemma 6.6.3 and 6.6.4.

Let  $f: N/\Gamma \to N/\Gamma$  be a TA-covering map which is not a topological expanding map, we have the following lemma.

LEMMA 7.2 (Lifting of local product structure). Let  $\mathbf{u} \in N_f$ ,  $\varepsilon > 0$  be an enough small number and  $x \in N$ . Then there are a connected open neighborhood  $\overline{N}(x;\mathbf{u})$  of x in N and a continuous map  $\overline{\alpha}_{\mathbf{u}}: \overline{N}(x;\mathbf{u}) \times \overline{N}(x;\mathbf{u}) \to \overline{N}(x;\mathbf{u})$  such that

- (1)  $\{\bar{\alpha}_{\mathbf{u}}(y, z)\} = \overline{W}_{\varepsilon}^{\mathbf{u}}(y; \mathbf{u}) \cap \overline{W}_{\varepsilon}^{\mathbf{s}}(z) \text{ for } y, z \in \overline{N}(x; \mathbf{u}),$
- (2) for y, z,  $w \in \overline{N}(x; \boldsymbol{u})$

$$\bar{\alpha}_{\mathbf{u}}(y, y) = y$$

$$\bar{\alpha}_{\mathbf{u}}(y, \bar{\alpha}_{\mathbf{u}}(z, w)) = \bar{\alpha}_{\mathbf{u}}(y, w) = \bar{\alpha}_{\mathbf{u}}(\bar{\alpha}_{\mathbf{u}}(y, z), w),$$

- (3) the restriction  $\bar{\alpha}_u: \bar{D}^s(x) \times \bar{D}^u(x; \boldsymbol{u}) \to \bar{N}(x; \boldsymbol{u})$  is a homeomorphism where  $\bar{D}^s(x) = \overline{W}^s_{\varepsilon}(x) \cap \bar{N}(x; \boldsymbol{u})$  and  $\bar{D}^u(x; \boldsymbol{u}) = \overline{W}^u_{\varepsilon}(x; \boldsymbol{u}) \times \bar{N}(x; \boldsymbol{u})$ ,
- (4) there is a constant  $\rho > 0$  independent of  $x \in N$  and  $u \in N_f$  such that  $\overline{N}(x; u) \supset \overline{B}_{\rho}(x)$  where  $\overline{B}_{\rho}(x) = \{y \in N : D(x, y) \leq \rho\}$ ,
  - (5)  $\bar{f}_u(\bar{D}^s(x)) \subset \bar{D}^s(\bar{f}_u(x))$  and  $\bar{f}_u(\bar{D}^u(x; u)) \supset \bar{D}^u(\bar{f}_u(x); \bar{\sigma}(u)),$
  - (6)  $\bar{D}^s(x) \supseteq \{x\}$  and  $\bar{D}^u(x; \boldsymbol{u}) \supseteq \{x\}$ .

PROOF. See [Ao-Hi] Theorem 6.6.5.

Let M be a connected topological manifold without boundary and let  $\mathcal{F}$  be a family of subsets of M. We say that  $\mathcal{F}$  is a generalized foliation on M if the following holds;

- (1)  $\mathcal{F}$  is a decomposition of M,
- (2) each  $L \in \mathcal{F}$ , called a *leaf*, is path connected,
- (3) if  $x \in M$  then there exist non-trivial connected subsets  $D_x$ ,  $K_x$  with  $\{x\} = D_x \cap K_x$ , a connected open neighborhood  $N_x$  of x, and a homeomorphism

 $\varphi_x: D_x \times K_x \rightarrow N_x$ , called a local coordinate at x, such that

- (a)  $\varphi_x(x, x) = x$ ,
- (b)  $\varphi_x(y, x) = y \ (y \in D_x)$  and  $\varphi_x(x, z) = z \ (z \in K_x)$ ,
- (c) for each  $L \in \mathcal{F}$  there is an at most countable set  $B \subset K_x$  such that  $N_x \cap L = \varphi_x(D_x \times B)$ .

LEMMA 7.3. Let  $\mathcal{F}$  be a generalized foliation on M and let U be an open subset of M. Denote by L(x) the leaf through x of  $\mathcal{F}$  and put

$$V = \{x \in M : L(x) \cap U \neq \emptyset\}.$$

Then V is open in M.

Let  $\mathcal{F}$  and  $\mathcal{F}'$  be generalized foliations on M. We say that  $\mathcal{F}$  is transverse to  $\mathcal{F}'$  if, for  $x \in M$ , there exist non-trivial connected subsets  $D_x$ ,  $D_x'$  with  $\{x\} = D_x \cap D_x'$ , a connected open neighborhood  $N_x$  of x in M (such a neighborhood  $N_x$  is called a coordinate domain at x), and a homeomorphism  $\psi_x : D_x \times D_x'$   $\to N_x$  (in particular called a canonical coordinate at x) such that

- (a)  $\psi_x(x, x) = x$ ,
- (b)  $\psi_x(y, x) = y \ (y \in D_x)$  and  $\psi_x(x, z) = z \ (z \in D'_x)$ ,
- (c) for any  $L \in \mathcal{F}$  there is an at most countable set  $B' \subset D'_x$  such that  $N_x \cap L = \psi_x(D_x \times B')$ ,
- (d) for any  $L' \in \mathcal{F}'$  there is an at most countable set  $B \subset D_x$  such that  $N_x \cap L' = \phi_x(B \times D'_x)$ .

It is clear that if  $\mathcal{F}$  is transverse to  $\mathcal{F}'$  then  $\mathcal{F}'$  is transverse to  $\mathcal{F}$ .

LEMMA 7.4. Let f be as above. For  $\mathbf{u} \in N_f$  the families  $\overline{\mathcal{F}}^s = \{\overline{W}^s(x) : x \in N\}$  and  $\overline{\mathcal{F}}^u_{\mathbf{u}} = \{\overline{W}^u(x; \mathbf{u}) : x \in N\}$  are transverse generalized foliations on N.

For  $e=(\cdots, e, e, e, \cdots) \in N_f$  we write

$$\overline{W}_{\epsilon}^{u}(x) = \overline{W}_{\epsilon}^{u}(x : e)$$
 and  $\overline{W}^{u}(x) = \overline{W}^{u}(x : e)$ .

Since  $\bar{A} \circ \bar{h} = \bar{h} \circ \bar{f}$  holds and  $\bar{h} : N \to N$  is a *D*-uniformly continuous surjection, we have

$$(7.1) \bar{h}(\overline{W}^s(x)) \subset \bar{L}^s(\bar{h}(x)), \quad \bar{h}(\overline{W}^u(x)) \subset \bar{L}^u(\bar{h}(x)) \quad \text{for all } x \in N.$$

Under the above assumption we can prove the following lemma.

LEMMA 7.5. Let f and  $\overline{W}^{\sigma}(x)$   $(x \in \mathbb{N}, \sigma = s, u)$  be as above. Then  $\overline{W}^{u}(x) \cap \overline{W}^{s}(y)$  is at most one point for  $x, y \in \mathbb{N}$ .

PROOF. The proof is similar to that in [Ao-Hi] Lemma 8.4.4. However, for completeness we give here the proof.

Let  $a, b \in \overline{W}^s(x) \cap \overline{W}^u(y)$  and suppose  $a \neq b$ . Then there is m > 0 such that  $D(\overline{f}^{-m}(a), \overline{f}^{-m}(b)) < \rho$  where  $\rho$  is as in Lemma 7.2(4). Put  $a' = \overline{f}^{-m}(a)$  and  $b' = \overline{f}^{-m}(b)$ , and let  $\epsilon > 0$  be as in Lemma 7.2. For sufficiently large m we have

$$(7.2) b' \notin \overline{W}_{\varepsilon}^{s}(a').$$

It is clear that  $b' \in \overline{W}^s(a')$  since  $a, b \in \overline{W}^s(x)$ , and that  $b' \in \overline{B}_{\rho}(a') \subset \overline{N}(a'; e)$  since  $D(a', b') < \rho$ . Hence there is  $(b_1, b_2) \in \overline{D}^s(a') \times \overline{D}^u(a'; e)$  such that  $b' = \overline{\alpha}_e(b_1, b_2) \in \overline{W}^s(b_2)$ . Then we obtain  $b_2 \neq a'$ . For, if  $b_2 = a'$  then  $\overline{W}^s(a') = \overline{W}^s(b_2) \ni b'$ , which is inconsistent with (7.2).

Let  $U_{a'}$  and  $U_{b_2}$  be open neighborhoods of a' and  $b_2$  in  $\overline{D}^u(a'; e)$ , respectively, such that  $U_{a'} \cap U_{b_2} = \emptyset$ , and put

$$N_{a'} = \bar{\alpha}_{e}(\bar{D}^{s}(a') \times U_{a'}), \quad N_{b'} = \bar{\alpha}_{e}(\bar{D}^{s}(a') \times U_{b_{e}}).$$

Obviously  $N_{a'}$  and  $N_{b_2}$  are open neighborhoods of a' and b' in N respectively. Since  $N_{a'} \cap N_{b'} = \emptyset$ , we have

$$\overline{W}_{\varepsilon}^{s}(v) \cap \overline{W}_{\varepsilon}^{s}(w) = \emptyset \quad \text{for } v \in N_{a'} \text{ and } w \in N_{b'}.$$

If  $V_s = \{z \in N : \overline{W}^s(z) \cap N_{b'} \neq \emptyset\}$ , then  $V_s$  is open in N since  $\overline{\mathcal{F}}^s$  is a generalized foliation on N, and  $a' \in V_s$  since  $b' \in \overline{W}^s(a')$ . Since  $\operatorname{Per}(f)$  is dense in  $N/\Gamma$  by Lemma 5.4, there is  $p \in V_s \cap N_{a'}$  such that  $\pi(p) \in \operatorname{Per}(f)$ . Let k be a period of  $\pi(p)$  and let  $\mathbf{u} = (u_i) \in N_f$  be a k-periodic sequence with  $p = u_0$ . Write  $\overline{g} = \overline{f}_u^k$  for simplicity. Then  $\overline{g}(p) = p$ . Since  $p \in V_s$ , we can choose  $w \in \overline{W}^s(p) \cap N_{b'}$ . Since  $p, w \in \overline{N}(a'; e)$ , we have  $\overline{W}_s^u(p; \mathbf{u}) \cap \overline{W}_s^s(w) = \{q\}$  for some  $q \in \overline{N}(a'; \mathbf{u})$ . Hence  $\lim_{i \to \infty} \overline{g}^i(q) = p$  since  $\overline{W}^s(w) = \overline{W}^s(p)$ , and  $\lim_{i \to \infty} \overline{g}^i(q) = p$ . Using (7.3), we have  $p \neq q$  because  $p \in N_{a'}$ ,  $q \in \overline{W}_s^s(w)$  and  $w \in N_{b'}$ . Let  $\mu = \min\{D(p, q), \epsilon'\}/4$  where  $\epsilon'$  is an expansive constant for  $\overline{g}$ . Then there is  $0 < \delta < 2\mu$  such that every  $\delta$ -pseudo orbit of  $\overline{g}$  is  $\mu$ -traced by some point of N. Choose l > 0 such that  $D(\overline{g}^{l+1}(q), p) < \delta/2$  and  $D(\overline{g}^{-l}(q), p) < \delta/2$ . Then the sequence

$$\{\cdots, \ \bar{g}^{-l}(q), \ \cdots, \ \bar{g}^{-1}(q), \ q, \ \bar{g}(q), \ \cdots, \ \bar{g}^{l}(q), \ \cdots\}$$

is a (2l+1)-periodic  $\delta$ -pseudo orbit of  $\bar{g}$ . By using POTP and expansivity we can find  $q_0 \in N$  such that  $\bar{g}^{2l+1}(q_0) = q_0$  and  $D(q, q_0) < \mu$ . It is checked that  $\bar{g}^{l+1}(q_0) \neq q_0$ . Indeed, if  $\bar{g}^{l+1}(q_0) = q_0$  then

$$D(p, \ \bar{g}^{l+1}(q_0)) \leq D(p, \ \bar{g}^{l+1}(q)) + D(\bar{g}^{l+1}(q), \ \bar{g}^{l+1}(q_0)) < \frac{\delta}{2} + \mu < 2\mu.$$

Thus we have  $D(p, q) < 3\mu$  which is impossible since  $4\mu \le D(p, q)$ . Therefore  $\bar{g}^{2l+1}$  has at least two distinct fixed points, which contradicts Lemma 1.5.

LEMMA 7.6 ([**Fr**]). Let f and  $\overline{W}^{\sigma}(x)$  ( $x \in \mathbb{N}$ ,  $\sigma = s$ , u) be as in Lemma 7.5. Then  $\overline{W}^{u}(x) \cap \overline{W}^{s}(y)$  is the set of one point for  $x, y \in \mathbb{N}$ .

PROOF. The proof is described in [Ao-Hi] Lemma 8.4.5. But we give here the proof for completeness.

Let  $y_0 \in \mathbb{N}$  and put  $s = \overline{W}^s(y_0)$ . It is enough to show that  $\overline{W}^u(x) \cap s \neq \emptyset$  for all  $x \in \mathbb{N}$ . Let us put

$$Q = \{x \in N : \overline{W}^u(x) \cap s \neq \emptyset\},$$

then we have

$$Q = \{x \in N : \overline{W}^u(x) \cap U(s) \neq \emptyset\}$$

where  $U(s) = \bigcup_{z \in s} \overline{N}(z; e)$ . Indeed, choose x from the right hand set of the above equality. Then  $z \in \overline{W}^u(x) \cap U(s)$  and hence  $z \in \overline{W}^u(x) \cap \overline{N}(z'; e)$  for some  $z' \in s$ . Since  $\overline{N}(z'; e) = \overline{\alpha}_e(\overline{D}^s(z') \times \overline{D}^u(z'; e)$ , there is  $(y_1, y_2) \in \overline{D}^s(z') \times \overline{D}^u(z'; e)$  such that  $z = \overline{\alpha}_e(y_1, y_2) \in \overline{W}^u(y_1; e)$ . Hence  $y_1 \in \overline{W}^u(z; e) \subset \overline{W}^u(z; e)$  and on the other hand,  $y_1 \in \overline{D}^s(z') \subset s$ . Therefore,  $\overline{W}^u_s(z; e) \cap s \neq \emptyset$  which implies  $x \in Q$ .

Hence Q is open in N. If Q=N then the Lemma holds. Thus we suppose  $Q \subseteq N$  and then derive a contradiction. Let  $w \in Q$ . If  $\overline{N}(w; e) \not\subset Q$ , then Q does not contain  $\overline{D}^s(w)$ . For  $x \in \overline{N}(w; e)$ , then there is

$$(x', x'') \in \overline{D}^s(w) \times \overline{D}^u(w; e)$$

such that  $x = \overline{\alpha}_e(x', x'') \in \overline{W}_e^u(x'; e)$ . If  $\overline{D}^s(w) \subset Q$  then  $\overline{W}^u(x'; e) \cap s \neq \emptyset$  since  $x' \in \overline{D}^s(w) \subset Q$ . Since  $\overline{W}^u(x; e) = \overline{W}^u(x'; e)$ , we have  $\overline{W}^u(x; e) \cap s \neq \emptyset$  and therefore  $x \in Q$ , i.e.,  $\overline{N}(w; e) \subset Q$ , thus contradicting.

Choose and fix  $a \in \overline{D}^s(w) \setminus Q$ . Let  $\gamma : [0, 1] \to \overline{D}^s(w)$  be a path such that  $\gamma(0) = w$  and  $\gamma(1) = a$ , and  $\rho : [0, 1] \to \overline{W}^u(w; e)$  be a path such that  $\rho(0) = w$  and  $\rho(1) \in \overline{W}^u(w; e) \cap s$ . We set

$$R = \{(r, t) \in [0, 1] \times [0, 1] : \overline{W}^u(\gamma(r); e) \cap \overline{W}^s(\rho(t)) \neq \emptyset\},$$

then R is not empty since ([0, 1]  $\times$  {0}) $\cup$  ({0}  $\times$  [0, 1]) $\subset R$  and by transversality of  $\overline{\mathcal{F}}^s$  and  $\overline{\mathcal{F}}^u_{\epsilon}$ , R is open in [0, 1]  $\times$  [0, 1]. Note that  $R \subseteq$  [0, 1]  $\times$  [0, 1]. Since  $\overline{W}^u(\gamma(r); e) \cap \overline{W}^s(\rho(t))$  is a single point for  $(r, t) \in R$  (Lemma 7.5), we can define a map  $\theta: R \to N$  by

$$\theta(r, t) = \overline{W}^u(\gamma(r); e) \cap \overline{W}^s(\rho(t)) \quad ((r, t) \in R).$$

Then  $\theta$  is continuous. By (7.1) we have

$$\bar{h}(\overline{W}^u(\gamma(r); e)) \subset \bar{L}^u(\bar{h} \circ \gamma(r))$$
 and  $\bar{h}(\overline{W}^s(\rho(t))) \subset \bar{L}^s(\bar{h} \circ \rho(t))$ .

Then it follows that

$$\begin{split} \bar{h}(\theta(R)) &= \bar{h} \left\{ \overline{W}^u(\gamma(r); \boldsymbol{e}) \cap \overline{W}^s(\rho(t)) : (r, t) \in R \right\} \\ &\subset \left\{ \bar{h}(\overline{W}^u(\gamma(r); \boldsymbol{e})) \cap \bar{h}(\overline{W}^s(\rho(t))) : (r, t) \in R \right\} \\ &\subset \left\{ \bar{L}^u(\bar{h} \circ \gamma(r)) \cap \bar{L}^s(\bar{h} \circ \rho(t)) : (r, t) \in R \right\} \\ &\subset \left\{ \bar{L}^u(\bar{h} \circ \gamma(r)) \cap \bar{L}^s(\bar{h} \circ \rho(t)) : (r, t) \in [0, 1] \times [0, 1] \right\}. \end{split}$$

Notice that the last part of the above relation is compact. Since  $\bar{h}$  is proper by Lemma 2.3, we obtain that  $\theta(R)$  is bounded.

Let us put

$$t_0 = \sup\{\hat{t}: \overline{W}^u(\gamma(r); e) \cap \overline{W}^s(\rho(t)) \neq \emptyset, \ 0 \leq r \leq 1 \text{ and } 0 \leq t \leq \hat{t}\},$$

$$r_0 = \sup\{\hat{r}: \overline{W}^u(\gamma(r); e) \cap \overline{W}^s(\rho(t_0)) \neq \emptyset, \ 0 \leq r \leq \hat{r}\}.$$

Then  $(r_0, t_0) \notin R$ . Since  $\theta(R)$  is bounded, we can choose a sequence

$$\{(r_n, t_n): r_n < r_{n+1}, t_n < t_{n+1}\} \subset R$$

converging to  $(r_0, t_0)$ , such that  $\theta(r_n, t_n)$  converges in N. Let  $\lim \theta(r_n, t_n) = v$ . Take a compact neighborhoods  $C^s$  and  $C^u$  of v in  $\overline{D}^s(v)$  and  $\overline{D}^u(v; e)$  respectively, and let  $C = \overline{\alpha}_e(C^s \times C^u)$ . Then C is a compact neighborhood of v in N. Since  $\lim_{t \to \infty} \theta(r_n, t_n) = v$ , we may assume  $\theta(r_n, t_n) \in C$  for  $n \ge 1$ . Then for  $n \ge 1$  there is  $(u_n, v_n) \in C^s \times C^u$  such that

$$\theta(r_n, t_n) = \bar{\alpha}_e(u_n, v_n)$$

and hence

$$\overline{W}^{u}(\gamma(r_{n}); \mathbf{e}) \cap \overline{W}^{s}(\rho(t_{n})) = \{\theta(r_{n}, t_{n})\} = \{\overline{\alpha}_{\mathbf{e}}(u_{n}, v_{n})\}$$

$$\subset \overline{W}^{u}(u_{n}; \mathbf{e}) \cap \overline{W}^{s}(v_{n}),$$

from which

$$\overline{W}^u(\gamma(r_n); e) = \overline{W}^u(u_n; e), \quad \overline{W}^s(\rho(t_n)) = \overline{W}^s(v_n).$$

Thus we have

$$\{m{ heta}(r_1, t_n)\} = \overline{W}^u(\gamma(r_1); \mathbf{e}) \cap \overline{W}^s(\mathbf{p}(t_n))$$

$$= \overline{W}^u(u_1; \mathbf{e}) \cap \overline{W}^s(v_n)$$

$$\equiv \bar{\alpha}_{\mathbf{e}}(u_1, v_n),$$

and so  $\theta(r_1, t_n) = \bar{\alpha}_e(u_1, v_n) \in C$ . In the similar way,  $\theta(r_n, t_1) = \bar{\alpha}_e(u_n, v_1) \in C$ . Since  $\theta$  is continuous on R and  $(r_1, t_n)$ ,  $(r_0, t_1) \in R$ , we have  $\theta(r_1, t_n) \to \theta(r_1, t_0)$  and  $\theta(r_n, t_1) \to \theta(r_0, t_1)$   $(n \to \infty)$ . Thus  $\theta(r_1, t_0)$ ,  $\theta(r_0, t_1) \in C$ , from which there are (w, z),  $(w, z) \in C^s \times C^u$  such that

$$\theta(r_1, t_0) = \bar{\alpha}_e(w, z), \ \theta(r_0, t_1) = \bar{\alpha}_e(\dot{w}, \dot{z}).$$

In the same fashion we have

$$\overline{W}^s(
ho(t_0)) = \overline{W}^s(z), \quad \overline{W}^u(\gamma(r_0); e) = \overline{W}^u(\dot{w}; e)$$

and hence

$$\overline{W}^u(\gamma(r_0); e) \cap \overline{W}^s(\rho(t_0)) = \overline{W}^u(\dot{w}; e) \cap \overline{W}^s(z) \ni \bar{\alpha}_e(\dot{w}, z).$$

Therefore  $(r_0, t_0) \in R$ , thus contradicting.

By using Lemma 7.6, define  $\overline{i}: N \times N \to N$  by

$$\{\overline{i}(x, y)\} = \overline{W}^u(x) \cap \overline{W}^s(y) \text{ for } (x, y) \in N \times N,$$

then  $\bar{i}$  satisfies the following properties; for x, y,  $z \in N$ 

(7.4) 
$$\bar{i}(x, x) = x,$$

$$\bar{i}(x, \bar{i}(y, z)) = \bar{i}(x, z),$$

$$\bar{i}(\bar{i}(x, y), z) = \bar{i}(x, z).$$

Define for  $y \in \bar{h}^{-1}(x)$ 

$$I_{x,y}^s = \overline{h}^{-1}(x) \cap \overline{W}^s(y), \quad I_{x,y}^u = \overline{h}^{-1}(x) \cap \overline{W}^u(y).$$

LEMMA 7.7.  $\bar{i}(I_{x,y}^s \times I_{x,y}^u) = \bar{h}^{-1}(x)$ .

PROOF. For  $v, w \in \bar{h}^{-1}(x)$ 

$$ar{h} \circ \overline{i}(v, w) = \overline{h}(\overline{W}^u(v; e) \cap \overline{W}^s(w))$$

$$\subset \overline{L}^u(\overline{h}(v)) \cap \overline{L}^s(\overline{h}(w)) \quad \text{(by (7.1))}$$

$$= \{x\}$$

and so  $\bar{i}(v, w) \in \bar{h}^{-1}(x)$ . Since  $I_{x, y}^{\sigma} \subset \bar{h}^{-1}(x)$  for  $\sigma = s$ , u, we have  $\bar{i}(I_{x, y}^{s} \times I_{x, y}^{u}) \subset \bar{h}^{-1}(x)$ . Conversely, let  $y \in \bar{h}^{-1}(x)$ . Then for any  $z \in \bar{h}^{-1}(x)$ 

$$\vec{i}(z, y) \in \overline{h}^{-1}(x), \quad \vec{i}(z, y) \in \overline{W}^{s}(y)$$

from which  $\bar{i}(z, y) \in I_{x, y}^s$ . Similarly  $\bar{i}(y, z) \in I_{x, y}^u$ . Therefore

$$z = \overline{i}(\overline{i}(z, y), \overline{i}(y, z)) \in \overline{i}(I_{x, y}^s \times I_{x, y}^u).$$

By Lemma 2.3, we have  $D(\bar{h}(x), x) < K$   $(x \in N)$  for some K > 0 and so  $\operatorname{diam}(\bar{h}^{-1}(x)) \le 2K$ , i.e.,  $\bar{h}^{-1}(x) \subset \bar{B}_{2K}(y)$  for  $y \in \bar{h}^{-1}(x)$  where  $\bar{B}_K(y) = \{z \in N : D(z, y) \le K\}$ .

LEMMA 7.8.  $I_{x,y}^{s} \subset \overline{i}(\overline{B}_{2K}(y), y), I_{x,y}^{u} \subset \overline{i}(y, \overline{B}_{2K}(y)).$ 

PROOF. By Lemma 7.7 we have

$$I_{x,y}^{s} = \overline{i}(I_{x,y}^{s}, y) = \overline{i}(\overline{i}(I_{x,y}^{s} \times I_{x,y}^{u}), y)$$
  
=  $\overline{i}(\overline{h}^{-1}(x), y) \subset \overline{i}(\overline{B}_{2K}(y), y).$ 

Also we obtain the same result for  $\sigma = u$ .

Let us put  $R_L(x) = i(\bar{B}_L(x) \times \bar{B}_L(x))$  for  $x \in \mathbb{N}$  and L > 0.

LEMMA 7.9. For L>0 there is  $L_0>0$  such that  $R_L(x)\subset \bar{B}_{L_0}(x)$  for all  $x\in N$ .

PROOF. Since  $\overline{W}^s(x) \subset \overline{h}^{-1}(\overline{L}^s(\overline{h}(x)))$ , and  $\overline{W}^u(x) \subset \overline{h}^{-1}(\overline{L}^u(\overline{h}(x)))$  by (7.1), we have

$$R_{L}(x) = \overline{i}(\overline{B}_{L}(x) \times \overline{B}_{L}(x))$$

$$= \bigcup_{v, w \in \overline{B}_{L}(x)} \overline{W}^{u}(v) \cap \overline{W}^{s}(w)$$

$$\subset \bigcup_{v, w \in \overline{B}_{L}(x)} \overline{h}^{-1}(\overline{L}^{u}(\overline{h}(v))) \cap \overline{h}^{-1}(\overline{L}^{s}(\overline{h}(w)))$$

$$= \overline{h}^{-1} \{ \bigcup_{v, w \in \overline{B}_{L}(x)} \overline{L}^{u}(\overline{h}(v)) \cap \overline{L}^{s}(\overline{h}(w)) \}$$

$$\subset \overline{h}^{-1} \{ \bigcup_{v, w \in \overline{B}_{L+K}(x)} \overline{L}^{u}(v) \cap \overline{L}^{s}(w) \}$$

$$= \overline{h}^{-1} \{ \bigcup_{v, w \in \overline{B}_{L+K}(e)} \overline{L}^{u}(x \cdot v) \cap \overline{L}^{s}(x \cdot w) \}$$

$$= \overline{h}^{-1} \{ x \cdot (\bigcup_{v, w \in \overline{B}_{L+K}(e)} \overline{L}^{u}(v) \cap \overline{L}^{s}(w) \}.$$

Since  $\bigcup_{v, w \in \bar{B}_{L+K}(e)} \bar{L}^u(v) \cap \bar{L}^s(w)$  is compact, there exists L' > 0 such that

$$R_L(x) \subset \bar{h}^{-1}(x \cdot \bar{B}_{L'}(e)) = \bar{h}^{-1}(B_{L'}(x)) \subset \bar{B}_{L'+K}(x)$$

Therefore  $L_0 = L' + K$  satisfies the above condition.

Let  $\varepsilon > 0$  be an enough small number and let  $x \in \mathbb{N}$ . We define for  $y \in \overline{W}^s(x)$ 

$$D(x, y; \overline{W}^s(x)) = \min\{m \ge 0 : \overline{f}^m(y) \in \overline{W}^s_s(\overline{f}^m(x))\},$$

and for  $y \in \overline{W}^u(x)$ 

$$D(x, y; \overline{W}^u(x)) = \min \{ m \ge 0 : \overline{f}^{-m}(y) \in \overline{W}^u_{\varepsilon}(\overline{f}^{-m}(x)) \}.$$

Note that these are well defined by Lemma 7.1(2).

LEMMA 7.10. For L>0 there exists  $K_0 \in \mathbb{N}$  such that for  $x \in N$ 

- (1) if  $v \in R_L(x)$  and  $w \in R_L(w) \cap \overline{W}^s(v)$ , then  $D(v, w; \overline{W}^s(v)) \leq K_0$ ,
- (2) if  $v \in R_L(x)$  and  $w \in R_L(x) \cap \overline{W}^u(v)$ , then  $D(v, w; \overline{W}^u(v)) \leq K_0$ .

PROOF. The proof is given by the technique described in § 8.4 Claim 4 of  $\lceil \mathbf{Ao-Hi} \rceil$ .

Let  $\rho$  be as in Lemma 7.2(4) and  $L_0$  be as in Lemma 7.9. Then there are l>0 and a sequence  $\{x_1, \dots, x_l\} \subset N$  such that  $\bar{B}_{L_0}(x) \subset \bigcup_1^l \bar{B}_{\rho}(x_i)$ . Hence  $R_L(x) \subset \bigcup_1^l \bar{N}(x_i; e)$  by Lemma 7.9. Let  $v \in R_L(x)$  and define

$$D = R_L(x) \cap \overline{W}^s(v)$$
.

Then we have  $D=\overline{i}(\overline{B}_L(x), v)$  and hence D is connected. Indeed, if

$$z \in \overline{i}(\overline{B}_L(x), v) \subset \overline{W}^s(v)$$

then  $z=\bar{i}(x_1, v)$  for some  $x_1\in \bar{B}_L(x)$ . Since  $v\in R_L(x)$ , there is  $(v_1, v_2)\in \bar{B}_L(x)\times \bar{B}_L(x)$  such that  $v=\bar{i}(v_1, v_2)$ . Hence

$$z = \bar{i}(x_1, \ \bar{i}(v_1, \ v_2)) = \bar{i}(x_1, \ v_2) \in \bar{i}(\bar{B}_L(x) \times \bar{B}_L(x)) = R_L(x)$$

and so  $z \in D$ . Conversely, let  $z \in D$ . Then  $z = \overline{i}(w_1, w_2)$  for some  $(w_1, w_2) \in \overline{B}_L(x) \times \overline{B}_L(x)$ . Since  $z = \overline{i}(z, v)$ , we have

$$z = \overline{i}(\overline{i}(w_1, w_2), v) \in \overline{i}(\overline{B}_L(x), v)$$

and therefore  $D \subset \bar{i}(\bar{B}_L(x), v)$ .

Since  $R_L(x) \subset \bigcup_1^l \overline{N}(x_i; e)$ , we have  $D = \bigcup_1^l \overline{N}(x_i; e) \cap D$ . To avoid complication, we may suppose that each  $\overline{N}(x_i; e) \cap D$  is non-empty. Choose  $y_i \in D \cap \overline{N}(x_i; e)$  for  $1 \leq i \leq l$ .

$$D \cap \overline{N}(x_1 : e) \subset \overline{W}_{2s}^s(y_1) \quad (1 \le i \le l).$$

This is checked as follows. Since  $y_i \in \overline{N}(x_i; e)$ , there is  $z_i \in \overline{D}^u(x_i; e)$  such that  $y_i \in \overline{W}^s(z_i)$ . If  $y' \in D \cap \overline{N}(x_i; e)$  then we have also  $y' \in \overline{W}^s(z)$  for some  $z \in \overline{D}^u(x_i; e)$ . Since  $y_i, y' \in D \subset \overline{W}^s(v)$ , clearly  $z_i, z \in \overline{W}^s(v)$  and so

$$z_i, z \in \overline{D}^u(x_i; \mathbf{e}) \cap \overline{W}^s(v) \subset \overline{W}^u(x_i; \mathbf{e}) \cap \overline{W}^s(v)$$

which shows  $z=z_i$ . Therefore  $y' \in \overline{W}_{2\varepsilon}^s(y_i)$ , from which

$$D \subset \bigcup_{1}^{l} \overline{W}_{2\epsilon}^{s}(y_{1}).$$

By Lemma 7.1 there is  $K_0 > 0$  such that

$$\bar{f}^{K_0}(\overline{W}_{2s}^s(z)) \subset \overline{W}_{s/Al}^s(\bar{f}^{K_0}(z))$$

for  $z \in N$ . Hence we have

$$\bar{f}^{K_0}(D) \subset \bigcup_1^l \bar{f}^{K_0}(\overline{W}_{2\varepsilon}^s(y_{\imath})) \subset \bigcup_1^l \overline{W}_{\varepsilon/4l}^s(\bar{f}^{K_0}(y_{\imath}))\,.$$

Since D is connected, for  $i_1$ ,  $i_2$  with  $1 \le i_1$ ,  $i_2 \le l$  we can find a sequence  $j_1 = i_1$ ,  $j_2$ ,  $\cdots$ ,  $j_m = i_2$  such that

$$\overline{W}_{2\varepsilon}^{s}(y_{j_{1}}) \cap \overline{W}_{2\varepsilon}^{s}(y_{j_{1+1}}) \neq \emptyset \quad (1 \leq i \leq m-1).$$

By using this fact we have

$$\bar{f}^{K_0}(D) \subset \overline{W}^{\mathfrak{s}}_{\mathfrak{s}/2}(\bar{f}^{K_0}(\gamma_1))$$

and therefore  $D(v, w; \overline{W}^s(v)) \leq K_0$  for any  $w \in D$ . The analogous result holds for  $\overline{W}^u(v; e)$ .

LEMMA 7.11. Let  $\bar{h}: N \to N$  be as above. Then  $\bar{h}$  is bijective.

PROOF. Let  $v, w \in I_{x,y}^s$ . If  $v \neq w$  then there is  $n_0 > 0$  such that  $\bar{f}^{-n}(v) \notin \overline{W}_{\varepsilon}^s(\bar{f}^{-n}(w))$  for  $n \geq n_0$  (since  $\bar{f}$  is expansive) and hence

$$D(\bar{f}^{-n}(v), \bar{f}^{-n}(w); \bar{W}^{s}(\bar{f}^{-n}(v))) \ge n - n_0.$$

Let  $K_0$  be as in Lemma 7.10 for L=2K, and write

$$n_1 = n_0 + K_0 + 1$$
,  $v' = \bar{f}^{-n_1}(v)$  and  $w' = \bar{f}^{-n_1}(w)$ .

Then we have  $D(v', w'; \overline{W}^{s}(v')) \ge K_0 + 1$ . Since  $\overline{A} \cdot \overline{h} = \overline{h} \cdot \overline{f}$  on N, it follows that

$$\bar{f}^{-n_1}(I_{x,y}^s) = \bar{f}^{-n_1}(\bar{h}^{-1}(x) \cap \overline{W}^s(y)) 
= \bar{h}^{-1} \cdot \bar{A}^{-n_1}(x) \cap \overline{W}^s(\bar{f}^{-n_1}(y)) 
= I_{x',y'}^s$$

where  $x'=\overline{A}^{-n_1}(x)$  and  $y'=\overline{f}^{-n_1}(y)$ . Therefore, v',  $w'\in I^s_{x',y'}\subset \overline{i}(\overline{B}_{2K}(y'),y')\subset R_{2K}(y')\cap \overline{W}^s(y')$  (Lemma 7.8). Using Lemma 7.10, we have  $D(v',w';\overline{W}^s(v'))\leq K_0$ , thus contradicting. This shows that  $I^s_{x,y}$  is a set consisting of one point. In the same fashion we have that  $I^u_{x,y}$  is a single point set. Since  $\overline{i}(I^s_{x,y}\times I^u_{x,y})=\overline{h}^{-1}(x)$  by Lemma 7.7, we obtain that  $\overline{h}^{-1}(x)$  is a one point set.

LEMMA 7.12. Let  $\bar{f}$  be as above, and let K>0 be the number satisfying that  $D(\bar{h}, id_N) < K$ . Then for  $\lambda > 0$  there is L>0 such that if

$$D(\bar{f}^{-L}(x), \bar{f}^{-L}(y)) \leq 3K$$

and

$$D(\bar{f}^L(x), \bar{f}^L(y)) \leq 3K,$$

then  $D(x, y) < \lambda$ .

PROOF. By Lemma 7.10 we have that there exists  $K_0>0$  such that for all  $x\in N$ 

$$D(v, w; \overline{W}^{s}(v)) \leq K_{0} \text{ if } v \in R_{3K}(x) \text{ and } w \in R_{3K}(x) \cap \overline{W}^{s}(v),$$

$$D(v, w; \overline{W}^u(v)) \leq K_0 \text{ if } v \in R_{3K}(x) \text{ and } w \in R_{3K}(x) \cap \overline{W}^u(v).$$

By Lemma 7.1(1) it follows that for  $\lambda > 0$  there exists m > 0 such that

$$\bar{f}^m(\overline{W}_{\varepsilon}^s(z)) \subset \overline{W}_{1/3}^s(\bar{f}^m(z)),$$

$$\bar{f}^{-m}(\overline{W}^u_{\epsilon}(z)) \subset \overline{W}^u_{l/3}(\bar{f}^{-m}(z))$$
.

To see that  $L=m+K_0$  is our requirement, suppose  $D(\bar{f}^j(x), \bar{f}^j(y)) \leq 3K$  for j=L and j=-L. For the case j=-L we have

$$\overline{i}(\overline{f}^{-L}(x), \ \overline{f}^{-L}(y)) \in R_{3K}(\overline{f}^{-L}(x)) \cap \overline{W}^{s}(\overline{f}^{-L}(y))$$

and thus

$$D(\bar{f}^{-L}(y), \ \bar{i}(\bar{f}^{-L}(x), \ \bar{f}^{-L}(y)); \overline{W}^{s}(\bar{f}^{-L}(y))) \leq K_{0}.$$

This implies that

$$\bar{i}(\bar{f}^{-m}(x), \bar{f}^{-m}(y)) = \bar{f}^{K_0}(\bar{i}(\bar{f}^{-L}(x), \bar{f}^{-L}(y))) \in \overline{W}_{\varepsilon}^{s}(\bar{f}^{-l}(y)),$$

from which

$$\bar{i}(x, y) = \bar{f}^m(\bar{i}(\bar{f}^{-m}(x), \bar{f}^{-m}(y))) \in \overline{W}_{\lambda/3}^{\epsilon}(x).$$

Therefore  $D(\bar{i}(x, y), x) < \lambda/2$ . For the case j=L we have  $D(\bar{i}(x, y), y) < \lambda/2$  in the same argument.

LEMMA 7.13. Let  $\bar{h}$  be as in Lemma 7.11. Then  $\bar{h}^{-1}$  is D-uniformly continuous.

PROOF. For given  $\lambda > 0$ , we have L > 0 as in Lemma 7.12. Then by uniform continuity of  $\overline{A}$ , we can find  $\delta > 0$  such that  $D(x, y) < \delta$  implies  $D(\overline{A}^j(x), \overline{A}^j(y)) < K$  for j = L and j = -L. Since  $\overline{h}^{-1}: N \to N$  is bijective by Lemma 7.11, using the fact that  $\overline{h}^{-1} \circ \overline{A} = \overline{f} \circ \overline{h}^{-1}$  and  $D(\overline{h}^{-1}(x), x) < K$   $(x \in N)$ , we have that for j = L and j = -L

$$D(\bar{f}^{j} \circ \bar{h}^{-1}(x), \ \bar{f}^{j} \circ \bar{h}^{-1}(y))$$

$$\leq D(\bar{h}^{-1} \circ \bar{A}^{j}(x), \ \bar{A}^{j}(x)) + D(\bar{A}^{j}(x), \ \bar{A}^{j}(y)) + D(\bar{A}^{j}(y), \ \bar{h}^{-1} \circ \bar{A}^{j}(y))$$

$$\leq 3K$$

and so  $D(\bar{h}^{-1}(x), \bar{h}^{-1}(y)) < \lambda$ . Therefore  $\bar{h}^{-1}$  is D-uniformly continuous.

By Lemma 7.13,  $\bar{h}^{-1}$  satisfies all condition of Lemma 2.4(1)(2)(3). Thus we can define a map  $\tilde{h}^{-1}: \tau_{e}(N) \to \tau_{e}(N)$  by

$$\tilde{h}^{-1}(\tau_{\epsilon}(x)) = \tau_{\epsilon} \cdot \bar{h}^{-1}(x) \quad (x \in N).$$

Then  $\tilde{h}^{-1}$  is surjective (by Lemma 4.1) and it is an inverse map of  $\tilde{h}$ . Thus  $\tilde{h}$  is a conjugacy map from  $((N/\Gamma)_A, \tilde{f})$  to  $((N/\Gamma)_A, \sigma_A)$ . Therefore Theorem 1 is obtained by Lemma 3.10.

For the case when f is a TA-homeomorphism, we have that

$$\bar{h}(\alpha(x)) = \alpha \circ \bar{h}(x)$$

for  $\alpha \in \Gamma$  by Lemma 2.4, which shows that  $\bar{h}$  induces a homeomorphism  $h: N/\Gamma \to N/\Gamma$ . Since  $\bar{A} \circ \bar{h} = \bar{h} \circ \bar{f}$  on N, we have  $A \circ h = h \circ f$  on  $N/\Gamma$ . Theorem 2(1) was proved.

#### References

[An] D.V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math., 90 (1967), 1-235.

- [Ao-Hi] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, Mathematical Library, North Holland, 1994.
- [Au] L. Auslander, Bieberbach's theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math., 71 (1960), 579-590.
- [Co-Re] E. Coven and W. Reddy, Positively expansive maps of compact manifolds, Lecture Notes in Math., 819. Springer-Verlag, 1980, pp. 96-110.
- [Fr] J. Franks, Anosov diffeomorphisms, Global Analysis, Proc. Sympos. Pure Math., 14 (1970), 61-93.
- [Gr] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. IHES, 53 (1981), 53-78.
- [Hi 1] K. Hiraide, Positively expansive open maps of Peano spaces, Topology Appl.. 37 (1990), 213-220.
- [Hi 2] K. Hiraide, On an ordering of dynamics of homeomorphisms, preprint.
- [Ma-Pu] R. Mañé and C. Pugh, Stability of endomorphisms, Lecture Notes in Math., 468, Springer-Verlag, 1975, pp. 175-184.
- [Ma 1] A. Manning, Anosov diffeomorphisms on nilmanifolds, Proc. Amer. Math. Soc., 38 (1973), 423-426.
- [Ma 2] A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96 (1974), 422-429.
- [Pa] W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math., 91 (1969), 757-771.
- [Pr] F. Przytycki, Anosov endomorphisms, Studia Math., 58 (1976), 249-285.
- [Re] W. Reddy, Expanding maps on compact metric spaces, Topology Appl., 13 (1982), 327-334.
- [Sh] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math., 91 (1969), 175-199.
- [Sm] S. Smale, Differential dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
- [Su] N. Sumi, Linearization of expansive maps of tori, Proc. of International Conference on Dynamical Systems and Chaos, 1 (1994), 243-248.
- [Va] V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, GTM. 102, Springer-Verlag, New York, 1984.
- [Wo] J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, 1967.

Naoya Sumi

Department of Mathematics Tokyo Metropolitan University 1-1 Minamiosawa Hachioji, Tokyo Japan