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§0. Introduction.

We shall discuss a part of a problem of whether the universal model of
Anosov diffeomorphisms exists. Concerning with this problem Manning [Ma2]
proved that every Anosov diffeomorphism of an infra-nil-manifold is topologically
conjugate to a hyperbolic infra-nil-automorphism. From the remarkable proof of
his result and the work of Franks [Fr], Aoki and Hiraide has been studied the
dynamics of covering maps of a torus ([Ae-Hi]).

We shall show in this paper that some of the results stated in
become realistic for infra-nil-manifolds as follows.

THEOREM 1. Let f: N/I'-N/I" be a covering map of an infra-nil-manifold
and denote as A: N/I'—N/I" the infra-nil-endomorphism homotopic to f.

If f is a TA-map, then A is hyperbolic and the inverse limit system of
(N/T, f) is topologically conjugate to the inverse limit system of (N/I', A).

THEOREM 2. Let f and A be as in Theorem 1. Then the following statements
hold :

(1) if fisa T A-homeomorphism, then A is a hyperbolic infra-nil-automorphism
and f is topologically conjugate to A,

(2) if f is a topological expanding map, then A is an expanding infra-nil-
endomorphism and f is topologically conjugate to A.

In the statement of it notices that (1) is a generalization of
Manning [Ma2].

First we shall explain here the definitions and notations used above. Let
X and Y be compact metric spaces and let f: X— X and g: Y—Y be continuous
surjections. Then f is said to be topologically conjugate to g if there exists a
homeomorphism ¢ : Y—X such that fep=¢-g.

Let X be a compact metric space with metric d. For f: X— X a continuous
surjection, we let

Xy={(x1): x; e X and f(x;) = X441, 1 E L},
0 (%) = (f(x4)).
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The map o,: X;— X, is called the shift map determined by f. We say that
(Xy, 04) is the fnverse limit of (X, f). A continuous surjection f: X—X is
called c-expansive if there is a constant ¢>0 (called an expansive constant) such
that for (x;), (yo)eX, if d(x;, y;)<e for all i€ Z then (x;)=(y;). In particular,
if there is a constant ¢>0 such that for x, yeX if d(f*(x), f*(y))<e for all
ieN then x=y, we say that f is positively expansive. A sequence of points
{x;:a<i<b} of X is called a d-pseudo orbit of f if d(f(x:), x:.1)<8 for
i=(a, b—1). Given ¢>0 a J-pseudo orbit of {x;} is called to be e-traced by a
point xX if d(f%(x), x;)<e¢ for every i=(a, b—1). Here the symbols a and b
are taken as —oo<a<b<co if f is bijective and as —1<a<b<Loo if f is not
bijective. f has the pseudo orbit tracing property (abbrev. POTP) if for every
¢>0 there is >0 such that every d-pseudo orbit of f/ can be ¢-traced by some
point of X. We say that a continuous surjection f:X—X is a topological
Anosov map (abbrev. TA-map) if f is c-expansive and has POTP, and say that
f is a topological expanding map if f is positively expansive and open. We can
check that every topological expanding map is a TA-map (see Remark
2.3.10).

Let N be a simply connected nilpotent Lie group. Let C be a compact
group of automorphisms of N and let G=N-C be the Lie group obtained by
considering N as acting on itself by left translation and taking the semi-direct
product of N and C in Diff(N). Let I' be a torsion free uniform discrete
subgroup of G. The space N/I" (the quotient space of N under the action of
I') is called an infra-nil-manifold. Let A:N—N be an automorphism of N
such that by conjugating I by A in Diff(N), A-I"*A'cCI. Then A projects
to a covering map A of N/I'. The map A is called an infra-nil-endomorphism.
If the derivative d A, at the identity ¢ of N has no eigenvalues of modulas I,
we say A is hyperbolic. If A is hyperbolic, then A is a T A-covering map.

REMARK 0.1. A converse statement of also holds: Let f:N/I"
—N/I'" be a covering map of an infra-nil-manifold and denote as A: N/["—=N/I"
the infra-nil-endomorphism homotopic to f.

If A is hyperbolic and the inverse limit system of (N/I", f) is topologically
conjugate to the inverse limit system of (N/I', A), then f is an TA-map.

See Theorems 2.2.29 and 2.3.9 for details.

Let M be a closed smooth manifold and let C'(M, M) be the set of all C!
maps of M endowed with the C! topology. A map f=C'(M, M) is called an
Anosov differentiable map if f is a C*' regular map and if there exist C >0 and
0<A<1 such that for every x=(x,)€M;={(x;): x;,&M and f(x))=x;,,, iSZ}
there is a splitting

TM= U T: M= Lj (Ez,DEZ)
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so that for all ;€Z
(1) D.,f(E%)=E%,,, where g=s, u,

(2) for all n=0
Dz, fr I < CA™v]] if ve E3,,

IDa, ") = C'a ™| if v € EY,.

If, in particular, T . M=\_; E%, for all x=(x;)&€Mj,, then f is said to be expand-
ing, and if an Anosov differentiable map f is injective then f is called an
Anosov diffeomorphism. We can check that every Anosov differentiable map is a
TA-map, and that every expanding differentiable map is a topological expanding
map (see Theorem 1.2.1).

A map feC'(M, M) is said to be C'-structurally stable if there is an open
neighborhood N(f) of f in C*M, M) such that g&N(f) implies that f and g are
topologically conjugate. Anosov proved that every Anosov diffeomorphism
is C'-structurally stable, and Shub [Sh] showed the same result for expanding
differentiable maps. However, Anosov differentiable maps which are not diffeo-

morphisms nor expanding do not be C'-structurally stable ((Ma-Pu], [Pr]). Then
we have the following.

REMARK 0.2. Under the assumption of it is not true in general
that f is topologically conjugate to A.

A map feCY(M, M) is said to be C'-inverse limit stable if there is an open
neighborhood N(f) of f in C'(M, M) such that g=N(f) implies that the inverse
limit (M, o;) of (M, f)and the inverse limit (M,, a,) of (M, g) are topologically
conjugate. Mafié and Pugh proved that every Anosov differentiable
map is C'-inverse limit stable. If the manifold M is an infra-nil-manifold, then
this fact is a corollary of [Theorem 1.

REMARK 0.3 ([Sul). Let f:T"—T" be a covering map of an n-torus and
denote A:T"—T" the toral endomorphism homotopic to f.

If fis a special TA-map, then A is a hyperbolic toral endomorphism and f
is topologically conjugate to A.

We define special TA-maps as follows. Let f:X—X be a continuous
surjection of a compact metric space. Define the stable and unstable sets

Wi(x) = {y € X: lim d(f*(x), f*(¥)) =0},
WH(x)) = {0 € X : 3(ys) € Xys.t. lim d(x_s, y-0) = 0}

for x€X and (xy)=X;. A TA-map f:X—X is special if f satisfies the
property that W¥*((x,)=W¥((y;) for every (x;), (ys)€X, with x,=y,. Every
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hyperbolic infra-nil-endomorphism is a special TA-covering map (Remark 3.13).

In [Gr] Gromov showed that every expanding map of an arbitrary closed
smooth manifold is topologically conjugate to an expanding infra-nil-endomor-
phism. After this Hiraide proved in [Hil] a wider result for topological
expanding maps as follows.

REMARK 0.4 ([Hil]). If a continuous map of a compact connected locally
connected semilocally 1-connected metric space is a topological expanding map,
then the space must be homeomorphic to an infra-nil-manifold and the map is
topologically conjugate to an expanding infra-nil-endomorphism.

A topological space X is said to be semilocally 1-connected if for x =X there
is a neighborhood U of x such that every loop contained in U with a base point
x (i.e., continuous map u: [0, 1]— U satisfying #(0)=u(1)=x) can be deformed
continuously in X to one point.

A key point in the proof of the main theorem is in the properties of the
inverse limit systems of self covering maps investigated in § 3.

The outline of the proof of the main theorem can be stated as follows. If
f:N/I'-N/I' is a TA-covering map, it is shown (see §1) that the infra-nil-
endomorphism A : N/I'—N/I" homotopic to f is hyperbolic. Then we shall prove
in §2 that there exists a semi-conjugacy map i : N—N such that A f=ZA-h and
h is continuous and surjective. Here we denote as A the automorphism of N
which is a lift of A by =, and denote as f a suitable lift map of f by =. We
find in § 3 a homeomorphism £ : (N/I")4— (N/I")4 which is topologically conjugate
to the inverse limit system of (N/I°, f) and in §4 a semi-conjugacy map h
between the systems ((N/I"4 f) and (N/I)4 04). In §5 we shall show
Q(f)=N/I". By this fact & is injective (see §7), from which will
be concluded. The proof of [Theorem %2) will be given in § 6 and [Theorem (1)
will be proved in §7.

§ 1. Infra-nil-endomorphisms homotopic to TA-covering maps.

The aim of this section is to prepare two lemmas (Lemmas [.3and [[.5) that
are used for the proof of [Theorem 1.

Let N be a simply connected nilpotent Lie group. Let C be a compact
group of automorphisms of N and let G=N-C be the Lie group defined as
above. If [" is a torsion free uniform discrete subgroup of G, then N/I" is an
infra-nil-manifold. If in particular I is a uniform discrete subgroup of N, then
N/I' is called a nil-manifold (see [Sm]).

Let D be a left invariant Riemannian distance for N and p be the restriction
to I" of the natural homomorphism mapping G=N-C to C. Recall that p(I") is
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a finite group of automorphisms on N (see [Au][Theorem 1). We define a metric
D for N by

D(x, ) =2, D(c(x), c(3))

for x, yeN. Then D is a left-invariant, I-invariant Riemannian distance. Let
L(N) be the Lie algebra of N, and let exp: .L(IN)— N denote the exponential
map. Since N is simply connected and nilpotent, the exponential map is a
diffeomorphism (see Theorem 3.6.2). We claim that for any L>0 and
x €N, the closed ball By(x)={yeN:D(x, y)<L} of x with radius L is compact.
Indeed, since the exponential map is a diffeomorphism, there exists >0 such
that B.(e) is compact. Here e denotesthe identity of N. Then B,.(e)=B.(e)- B.(e)
is compact and thus B,.(e) is compact for neN, from which the claim is
concluded.

Let #: N—N/I" be the natural projection and define a metric for N/I" by

d(n(x), n(y)) = inf {D(a(x), By :a, BE I'}.

Then d is compatible with the quotient topology on N/I'. We can check that
there exists 4>0 such that = : U;(x)—U;(x(x)) is an isometry for x&N where
U,x)={yveN:D(x, y)<A and U (n(x))={yeN/I": d(y, n(x))<4}. Indeed, since
I is discrete, for x&N there is p=p(x)>0 such that the subset {acI": a(U .(x))
NU(x)#=@} of I' is finite ((Wo] Lemma 3.1.1). Then we can take §=6(x)>0
such that a(Us(x))NUs(x)=@ for ac='\ {idy}, because I" acts freely on N.
Thus, 7: Uscey2(x)—Usz o(m(x)) is an isometry. Since U= {Uj(7(x)) : x =N}
is an open cover of N/I’, let A>0 be Lebesgue number of ¢J. Then, a(U,,(x))
NU 15(x)=@ for as '\ {id y} and therefore & : U ,;.(x)— U ;;/(x(x)) is an isometry.

By a result of L. Auslander [Au], I'"\N is a uniform discrete subgroup of
N and I'\N has finite index in I". Then N/(I'"\N) is compact and orientable
(N/(I'\N) is a nil-manifold), and N/I" is finitely covered by N/(I'"\N). Denote
as w,: N—=N/(I'"\N) and n,: N/(I'"\N)—N/I" the natural projections. Then we
have

N
m l T commutes.
N/ (’'N\N)y—>N/T"

T2

Let f: N/['->N/I" be a self-covering map and A: N//'—N/I" be the infra.
nil-endomorphism homotopic to f. We take a homotopy H: N/I'X[0, 11-N/I’
from A to f. Let H: Nx[0, 1]—N be the lift of H by = such that A(x)=H(x, 0)
for xeN, where A : N— N is the automorphism which is a lift of A by =. Define
the lift map f: N—N of f by = by f(x)=H(x, 1) (x&N). Let fy, As: =T
be homomorphisms induced by f, A respectively (cf. §6.3 (6.1)).
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LEMMA 1.1. Let H be as above. Then there exists a homomorphism Hy: I'— 1T
such that
H(a(x), t) = Hyla)e H(x, t)

for x&eN, t<[0, 1] and a<T'.
PrOOF. For t<[0, 1] there exists a homomorphism (H,)s: I'—1I" such that
H(a(x), t) = (H)s(@)° H(x, t)

for xeN and as’ (see Lemma 6.3.10). To conclude the lemma, for
acI it suffices to see that (H,)«(a) is independent of ¢=[0, 1]. For I, the
set Jp={t<[0, 1]: (H)s(a)= B} is open. Indeed, by the above claim there exists
A>0 such that y(U(x))NU(x)=@ for x&N and yel'\{idy}. For t& ]y take
a neighborhood V, of ¢ in [0, 1] such that H(e, s)eU ;(H(e, 1)), and H(a(e), s)&
U,(H(a(e), 1)) for s€V,. Here e denotes the identity of N. Then we have that

H(a(e), s) = (Hyw(@)He, s) € (Hy)x(a)U(H(e, 1))
and
H(a(e), s) € Ui(H(a(e), 1)) = BU (H(e, 1))).

Thus, (Hy)x(@)U:(Hle, ))NBWU :(H(e, 1))+ @ and then (H)«(a)=pB. Therefore
teV,cJp. Since [0, 1] is connected, we have Jz=[0, 1] for some B&/’. [

Since I'\N is the maximal normal nilpotent subgroup of I" ([Au] Prop-
osition 2), we have that f«(I'"N)CI'\N. Then we can take the lift map
F:N/(I'NN)—N/(I'N\N) of f by =, satisfying fem,=m,of. Since fa=Ay: =1
by Lemma 1.1, we can define the lift map A : N/(I'\N)—N/(I'"\N) of A by =,
satisfying Aem,=m,oA. Thus A is the nil-endomorphism homotopic to 7.

LEMMA 1.2 ((Ma 1]). Let N/I" be a nil-manifold and A: N/I'—N/I" be a
nil-endomorphism induced by an automorphism A:N—N, then L(A)=T1%.(1—2,),
where A;'s are the eigenvalues of (dA),, is the Lefschetz number of A.

The following lemma will play an important role to show our [Theorem 1.

LEMMA 1.3. Let f:N/I'-N/I' be a self-covering map of an infra-nil-
manifold and A:N/I'-N/I" denote the infra-nil-endomorphism homotopic to f.
If f is a TA-covering map, then A is hyperbolic.

PROOF. For the case when N/I' is a nil-manifold, we shall show the
lemma. We know that there is />0 such that for each m=>=/ all fixed points of
J™ have the same fixed point index 1 or —1 ([Aoe-Hi] Proposition 10.7.2, Theo-
rem 10.8.1 and Theorem 10.9.1).

Choose a positive integer m, with m,={ such that f™o is topologically mixing
on each elementary set, and write g=f™. Obviously g:N/['-N/[" is a
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TA-covering map and g is homotopic to A™. It is enough to show that A™e
is hyperbolic. We have for m=(
Nigm=1 X g™ x)|=1Igm]i

zeFix(g™)

where N(g™) is the number of fixed points of g™, I(g™, x) is the fixed point
index of g™ at x; and I(g™) is the fixed point index of g™. Let A; (1=<i<n)
denote the eigenvalues of (dA™),. Then by it follows that

N(gm =IT |1—aF].

Since g is expansive, we have that there is £>0 such that N(g™)<N(g™**)
for m=1. Indeed, if 7 is an expansive constant for g, then there is ¢>0 such
that any e-pseudo orbit of g, (x;), is n/3-traced by some point in (N/I"),. Since
g is topologically mixing on an elementary set B, there is >0 such that
g"(K)f\I%i@ for any K, If of a finite cover consisting of &/2-balls in B. Let
xeB be a fixed point of g™ and choose y<B such that d(x, y)<e and
d(x, g¥(y))<e. Then we construct a one side (m- k)-periodic e-pseudo orbit

(xr g(x)) Tty gm_.l(x)) Yy, g(y)) H) gk-l(y)’ X, g(x)7 )

which coincides with the one sided sequence (z;)7 of a two side (m+ k)-periodic
e-pseudo orbit (z;) in (N/I")2. Hence there is (v,)(N/I"), such that d(y; z;)
<n/3 for all icZ. By c-expansivity we have g™ *(y,)=y,.

Note that each A; is not a root of unity. Indeed, this follows from the fact
that Per(g)+ @ and N(g™)=I17%,|1—A"|. To see |4;]#1 for 1<i<n, suppose
fAl=1 (1<i<s), [A:1<l (s+1<i<t) and |4;|>1 (¢+1<i<n). Since N{(g™=<
N(g™**) for m=1, we have
(LD B LY Rt § Y i s R U SR S i}

* t m+k n -m-k = $ m ¢
[ R EV AR | KRV E ¥ IT311—27|
Then the left hand side of tends to I17..|A7%| as m—oo. Since [4;]=1
and 4; is not a root of unity (1=<7/<s), we can find a subsequence {m;} such
that A/—A7* as j— . Therefore the right hand side of tends to 0, thus
contradicting.

For the case when N/I" is an infra-nil-manifold, let 7, A be as above. If
f is a TA-covering map, then so is /. Hence we have that A is hyperbolic
and therefore so is A. 0

LEMMA 1.4, Let A: N—N be an automorphism and take a continuous map
¢:N—N by ¢(x)=x""-A(x) for x&N, If A is hyperbolic, then ¢ is a homeo-
movrphism.
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PrROOF. Making use of the method of Franks [Fr] we have that ¢ is a
homeomorphism on N. Indeed, by the Baker-Campbell-Hausdorff formula (see

Theorem 2.15.4),

dulv) = lim, o exp™ fexpito)™- Alexp(r))
— lim t_,.,%exp“ {exp(—tv)- (exp(td Ap))}

= lim,_,o—i-{—tv+td71ev+t2(higher order terms)}
= (—1+dAw

for ve.L(N). Since A is hyperbolic, by the inverse function theorem we have
that ¢ is a local homeomorphism at 0=_L(N).

Let N=N!'DN!1D ... DN°={e} be the lower central series of N. Since
each N' is connected, a neighborhood of the identity e of N* generates N°.
Assume that N'CIm(¢)= {¢(x)|xN} for =0 and take ¢(x) and ¢(y)EN*'N
Im(¢). Then

G(x)- () = P(x)-y7- A(Y)
= y7t(x)-[P(x), y7]-A)
=y tx L A(x)-[¢(x), y7'1-A(y).

Since [¢(x), y"*]JN* and N* is normal in N, there exists we&N* such that
A(x)-[¢(x), y"'J=w-A(x). Hence we can take z&N such that ¢(z)=w, because
of weN'Clm(¢), and then
Px)-Ply) =y Lzt w-Ax)-Ay)

=y tx"l -z AR)- A(x)- A(Y)

— sb(z.x .y)

e Im(¢),
from which N**'CIm(¢) and N=Im(¢) by induction.

If ¢(x)=¢(y) (x, yEN), then A(x-y )=x-y7!, and then
(dA)(exp ™ (x-y7h)) = exp {(A(x-y71) = exp (x-y 7).

Since 4 is hyperbolic, we have exp™*(x-y~*)=0 from which x-y~*=e. Therefore

¢ is injective. Brouwer Theorem ensures that ¢ is a homeomorphism. O

LEMMA 1.5. Let f: N/I'-N/I" be a self-covering map and let 3: N—N be
a lift of f by the natural projection =:N—N/I'. If f is a TA-covering map,
then g has exactly one fixed point.
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PrOOF. For the proof we use that there exists />0 such that for m=!
each fixed point of f™:N/I'-N/I' has the same fixed point index 1 or —1.
Let 7, A, and H be as above. Then we can find @< such that g=@&-f, and
then @-H: NX[0, 1]—N is a homotopy from @A to g=a-f.

Let p be the restriction to /" of the natural projection mapping G=N-C to
C. Denote as ¢ the automorphism on C defined by ¢(C)=Z°C°Z"1 for c=C.
Then the following diagram commutes :

Ax
I — I’
L

o(l") *¢—> o(l")

Let a=(z, ¢)eN-C. Then we have
a@-f)
@ fa(@)e -+ o FN@)e f!
@o Asx(@)o -+ o AL @) [
= (2, £)=(A@@), (@) - «(AI(Z), ¢' (&)=Y,
(@ As(@e - < AKH@) = CoB(C)e -+ < ¢H7HE).

Since p([") is a finite group and ¢ is a permutation of p(/"), we have

~~

g =

i

i

P(&°Z*(&)° e ALH@®) = id

for some /eN. Hence there exists /&N such that g'=y-f' for some y=I'NN.

We assume without loss of generality that gm=y-7™. Define a continuous
map ¢: N—N by gb(x)zx“‘-?lm(x) for x&N. Since A™:N—N is hyperbolic
by ¢ is a homeomorphism (Lemma 1.4), and there is F&N such
that ¢(F)=y. Since @-A™(x)=y - A™x)=7"'-A™F -x) (x&N), @A™ is hyperbolic.
Thus @-A™ has the single fixed point 7! and the fixed point index, I(@-A™, 7Y,
equals to *1.

For yel’"N, we have that for x&N

(FmGx) - A™Fex) = (Fx)) - (A™F) ™ A™()- A™(x)
= (fm(x) A™(x)
e (f™@) - A™9D)

where @ is a compact covering domain for the natural projection n,: N—N/(I"
NN). Let x<Fix(g™). Since
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-g™(x) - A™(F - x)
Foy-Frx) - AmF-x)

= (F-7F 1 A™F) F™(x) - A™(F)- A™(x)
= (F™(x)) - (A™F) - A™F)- A™(x)

e (f™(9)*-A™9),

O(F-x) = (
= (

we have Fix(g™)C7 ' ¢~ ((f™(D)) - A™(D))} and therefore Fix(g™) is compact.
Since g™ is expansive, the fixed points must be isolated, and then we have that
Fix(g™) is finite.

In the same fashion as above we can show that \ e, 13 Fix(H™(:, 1)) is
compact. Therefore,

[@-A™)=1Igm= = Igm x).
reFix (™)

By the fact that f™-z=7+g", we have (g™, x)=I(f", =(x)) (x&Fix(g")),

from which each x&Fix(g™) has the same index. Hence
gFix(gm =1 2  I@™ x)| = I(g™)| = |I(aA™)| =1.

rEFiX(EM)

Therefore, g™ : N—N has exactly one fixed point and so does 3. O

§2. Construction of semi-conjugacy maps on the universal covering
spaces.

The aim of this section is to show Lemma 2.3. As before let N/I" be an
infra-nil-manifold and let #: N—N/I" be the natural projection. For continuous
maps f and g of N we define

D(f, g) = sup{D(f(x), g(x)): x € N}

where D denotes a left invariant, /-invariant Riemannian distance for N. Notice
that D(f, g) is not necessary finite.

Throughout this section we suppose that f: N/['—=N/I" is a TA-covering
map. Let A: N/I'-N/I" be the infra-nil-endomorphism homotopic to f, and
let A: N—N be the automorphism which is a lift of A by x. Since d4, is
hyperbolic by the Lie algebra .£(N) of N splits into the direct sum
L(N)=E:PE? of subspaces E! and EY such that dA(ES)=E:, dA(EY=E!
and there are ¢>1, 0<A<1 so that for all n=0

ldA2w)] < cA™v] (v e EY),

(2.1) -
laAz"W)l = ea*vll (v € EY)
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where [|-]| is the Riemannian metric. Let L’(e)=exp(E%) (o=s, u) and let
Li(x)=x-Le) (¢=s, u) for x=N. Since left translations are isometries under
the metric D, it follows that for all x&N

Li(x)= {y € N: D(Ax), A{(y)—0 (i — o)},
LYx)= {y € N: D(AY(x), A¥(3)) =0 (i — —oo)}.
LEMMA 2.1 ([Hi2]). For x, yeN, L{(x)NL*(y) consists of exactly one point.

PrRoOOF. The proof is similar to that in [Hi2] For completeness
we give here the proof.

Since L*(e) and L*(e) intersect transversally, we can find 6 >0 such that if
x, y belong to a d-neighborhood Uj(e) then L*(x) intersects L*(y). Let x belong
to the d-neighborhood Us(L*(e)) of L*(e) then x<a-Use) for some a<L(e),
and so L%x) intersects L*(e). In the same way, L*x)NL*(e)=@ for
xeUUs(L*(e)))=Us(L%e)). By induction, we have the same result for
x&Us(L%e)) and n>0. Since \UnzoUns(L¥(e))=N, it follows that L*(x)\L*(e)
+¢@ for all x&N, from which L¥x)N\L*(v)# @ for all x, y=N. O

For x, yEN denote as S(x, y) the point in L*(x)N\L*(y).

LEMMA 2.2 ([Hi2]). (1) For L>0 and >0 there exists [ >0 such that for
x, yeN if D(A«x), AXy)<SL for all i with |i|<], then D(x, y)<e.
(2) For given L>0, if D(Ax), Ai(y)<L for all icZ, then x=v (x, yN).

PrOOF. This is given in [Hi2] as follows.
For L>0 there is d,>0 such that diam{x, y, f(x, y)} <d, if D(x, y)<L,
and by (2.1) there exists ¢;>0 satisfying

D(AH(x), A¥) < ex2D(x, ¥)  for y & L(x)NByy(x),
D(A™i(x), A7) £ i&D(x, ¥) for y &€ L*x)NBsy(x).

For given ¢>0 choose />0 such that d,c.4’ <e. Suppose D(Ai(x), A yN<L
for —J<i<] and let z;=B(A%x), AYy)). Then D(z;, A’(y)<d,. Since
zyeL*(A(y)), we have D(z, y)=D(A(z;), A7-A7(y))<drc.2’ <e. Similarly,
D(z,, x)<e. Therefore D(x, y)<2¢. Since ¢ is arbitrary, (2) holds. O

If 7 denote the lift of f by = satisfying Fs=Ax: I'— I, then it is checked
that D(f, A) is finite. Since there exists 7(b,)=b, for some b,=N by
1.5, we can take a homeomorphism ¢:N—N such that ¢(a(x))=a-¢(x) for
x€N and a<l’, ¢(b)=e. Thus, ¢ofed (e)=e, from which we may assume
that f(e)=e.
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LEMMA 2.3. Under the assumptions and notations as above, there is a unique
map h: N—N such that

(1) Aeh=h-f,

(2) D(h, idy) is finite,
where idy: N—N is the identity map of N.

Furthermore h is surjective, uniformly continuous under D.

PROOF. For the proof we need the technique of Theorem 2.2 of Franks
([Fr]).

Let Q={hsC*N): D(h, e)<<o, h(e)=e}, where C°N) is the space of con-
tinuous maps of N and e: N—N is the map defined by e(x)=e¢ for any x&N.
We define a multiplication in Q by h,h.(x)=h,(x)-h(x). Note that

D(hy(x)ho(x), e) = D(hy(x)-ho(x), hi(x))+D(hi(x), €)
= D(hy(x), e)+D(hix), e),
D((h(x))7!, e) = D(e, h(x)) (x € N).
Then we can easily check that Q is a nilpotent group. Define a homomorphism
F,:0—Q by F,(h)=A"'h-f. This map is a homeomorphism because A is
D-biuniformly continuous. Let T :Q—(Q be a map defined by T(h)=F,(h)(h)™".
Let A={k=C*N, L(N)): | k| <o, k(e)=0}, where C°(N, L(N)) is the space
of continuous maps from N into the Lie algebra L(N) of N. Since the expo-
nential map is a diffeomorphism, we can define a homeomorphism Log: 0—A
by Log(k)=exp~'-k. We write Exp=Log™. Define F:A—A by F=Log-F,°

Log™*, then since exp-d A,=A-exp, it follows that F(k)=dA;'-k-f. Hence F
is a linear map. Let 7’:A—A be a map defined by 7'=Log-7T-Log™.

CLAaiM 1. We have that T’ is a C*-map and that T’ is a local homeomor-
phism at the constant map 0: N—.L(N) by 0(x)=0(x&N).
Indeed, since

T'(k)=Log-T-Log (k)
.= Log(Fy(expek)expek)™*)
= Log((A™*exp- ke f)(exp-(—k)))
= Log((exp- F(k))(expe(—£)))
= Log(Exp(F(£))Exp(—£)),

T’ is a C*-map. We now compute the derivative of 7' at 0. For k€A we have

lliI?%_T/(tk) = lzinol%Log(Exp(F(tk))Exp( —tk))
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= ltim%{F(tk)——tkﬁ—tz(higher order terms)}
-0
= F(k)—k.

Thus the derivative dT¢{=F—1I where I: A—A is the identity.

We now show that F—I is an isomorphism. Let A’={k<A: k(N)CE¥} and
define A* similarly. Clearly A’ (¢6=s, u) are invariant under F. It is easily
seen that A=A"PA* and that |Fi(k)|<cA*|k| for =0 and k=A®. Moreover F
restricted to A" is invertible and |F7i(k)|<cAi k| for i=0 and k=A*. On A®
we have (F—I)'=—3,F The right side converges because ||F*|<cA* for
:=0. Similarly in A* we have (/—F ) '=X>%,F"% so (F—I)'=F(I—F)!
exists. Hence F—1I is an isomorphism of A. From this it follows by the inverse
function theorem that T’ is a local homeomorphism at 0. By Claim 1, T is a
local homeomorphism at e.

CLAIM 2. We can show that T:Q—Q is a surjection.

Indeed, let Q=0Q'DQ' D --- DQ°= {e} be the lower central series of Q. Since
exp(t exptoh) (t<[0, 1]) is a path between h<=Q and e, Q is (path) connected.
Then Q'"'=[Q, Q'] is connected. Inductively so is Q' (0<:<(), and therefore a
neighborhood of the identity e of Q' generates Q. Assume that Q‘CIm(T) for
=0 and take T(h,) and T(h,)€Q*"'N\Im(T). Then

T(h)T(hy) = Fy(h)hi'T(hy)
= Fy(h)Lhy, T(hy) 1T (ha)h!
= Fo(h1)Lhy, T(he) ™ 1Fy(ho)hz hT".
Since [hy, T(hy)*]€Q! and Qf is normal in Q, there exists A’e(Q? such that
Lhy T(hy) Y1Fy(hy)=Fy(hs)h'. Hence we can take h;=Q such that T(h,)=h’,
because of h’eQ'cIm(T), and then
T(h)T(hs) = Fy(hy)Fo(he)h'h3thT!
= Fy(h)Fy(ho)Fy(hy)h3thsthit
= T(hlhzhs)

from which Q**'CIm(T) because we have that e=intgi+1 {Im(T)} by Claim 1, and
Q=Im(T") by induction.

CLAIM 3. We claim that T is a bijection.

Since F—1I is an isomorphism, F fixes only 0A and hence F, has only the
fixed point e=Q. Thus if T(h,)=T(h,) (h,, h,EQ), then T(hh;\)=e so0 h,=h,.
Therefore T is bijective from Claim 2.

Let A=F,((idy) )(idy). By the definition of &, we have
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sup{D(ﬁ(x), e): x&N} = sup{D(AY(F(x)™)-x, e): x €N}
— sup{D(x, A% F(x)): x  N}.
Since At fea(x)=a-A'of(x) for any acI', we have D(k, e)<co. Therefore
heQ.
Let hA=T-'(k) and define h=idyh. Thus we have
T(h) = Fyid vh)h™'(id x)™ = Fy(id »)AGd x)™
= Fd M )F((idn) )Ed y)Gdy) ™" = e,
and so A~lehof=Hh, from which (1) is obtained.
Since A= and Ai=idyh, we have D(h, id y)=D(h, e)<c. Hence (2) holds.
The uniqueness of # is easily checked as follows. If a map 2: N— N satisfies
(1) and (2), then for x&N and ;=Z
D(Atoh(x), Atek(x)) < sup{D(Ai-h(x), Atk(x)): x € N}
= sup{D(h-Ai(x), k- A¥(x)): x & N}
= sup{D(h(x), B(x)): x € N} < o0,
Thus A(x)=Fk(x) by Lemma 2.2(2).
By (2) the map ¢=exp"oﬁ cexp is extended to a continuous map ¢ on

S»=R" {c0} by ¢(v)=6¢(v) for vER" and @(co)=o0, and a homotopy h, between
$ and the identity map is defined by

he() =td(w)+A—t)y w € R™) and hy(co) = .

Hence ¢:S»—S” is surjective and so h: N—N is surjective.

To show uniform continuity of 4, we take K>0 such that D(A, idy)<K.
For given ¢>0, by Lemma 2.2(1) there is L>0 such that if D(A%x), A(y))<3K
for i with |#|<L, then D(x, y)<e. Since A is uniformly continuous, we can
take y>0 satisfying the property that D(A%(x), AYy))<K (—L<i<L) whenever
D(x, y)<y. If D(x, )<y, then we have for i with |/|<L

D(Ateh(x), Atoh(y)) = D(heA¥(x), hoA¥())
< D(h-A¥(x), A x))+D(A(x), A (»))
+D(AYy), h-A'»))
< K+K+K = 3K,

which implies D(h(x), A(y))<e. 0

Hereafter, let i: N—N be the semi-conjugacy map obtained in Lemma 2.3.
In the remainder of this section we mention some properties of % that suffice
for our needs.
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LEMMA 2.4. (1) There exists K>0 such that D(he-a(x), a-h(x)<K for
xEN and a<T'.

(2) For any 1>0, there exists LEN such that D(hea(x), a-h(x))<A for
xeN and acALD).

(3) For x&N and ac N3 AL), we have hoa(x)=ash(x).

(4) For x=N and ac<I’, we have hoa(x)s L¥(a-h(x)).

Proor. (1): By[Lemma 2.32), there is K’>0 such that D(h(x), x)<K’ for
x&N. Then

D(hea(x), ach(x)) < D(hoa(x), a(x))+D(a(x), ash(x))

< 2K’
for ac/l.

(2): Let K’>0 be as above. For given 1>0, by Lemma 2.2(1) we can find
L>0 such that for x, yeN

(2.2) D(A!(x), A(y)) < 2K’ (|j1<£L)= D(x, y) < 4.
For x&N and acA%"), we have

D(Atehea(x), Ateash(x)) = D(ho fioa(x), Akla)>Atoh(x))
< D(hoA4(a) fi(x), Akla)e fi(x))
+D(Aa)> Fi(x), Ala)ohofi(x))
< 2K’
for |7|<L, and hence D(h-a(x), ash(x))<2A by [2.2). (2) was proved.
(3): Noticing that 4 is arbitrary, (3) is concluded.
(4): By (2), we have
D(Atchea(x), Aleach(x)) = D(heflea(x), Alla) At-h(x))
= D(hoAla) fi(x), Akla)-hofi(x))
—0 as 7-— oo,

Therefore hea(x)e L a-h(x)). 0

§3. Inverse limit system of self-covering maps on infra-nil-manifolds.

In this section we prepare that needs for the proof of [Theorem 1.

Let N be a simply connected nilpotent Lie group with left invariant,
[-invariant Riemannian distance D and let N/I” be an infra-nil-manifold with
metric d induced by D. Remark that the natural projection #: N—N/I" is a
local isometry.
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Let f:N/I'—=N/I" be a continuous surjection of an infra-nil-manifold and
6:(N/I");—(N/I'"); be the inverse limit system constructed by (N/I’, f). We
denote as p,:(N/I');—N/I' the natural projection to the zero-th coordinate.
Define a metric d, for (N/I"); by

3z, G = 2 i

5 21“ d(xi) yi)

for (x.), (y)&(N/I");. For simplicity we write d,=d in subsequent.

LeMmA 3.1 ([Ao-Hi] Theorem 6.5.1). If f:N/I'-N/I" is a self-covering
map of an infra-nil-manifold and the covering degree is greater than one, then
((N/T);, N/T', C, po) is a fiber bundle where C denotes the Cantor set.

Let f: N/I'-N/I be a self-covering map of an infra-nil-manifold. We denote
as O(f) the family of all lift of f by =.

LEMMA 3.2 ([Ao-Hi] Lemma 6.5.4). For >0 there is 6>0 such that for all
Z2€6(f) and for all x, yeN with D(x, y)<d

max {D(g(x), g(y)), D(g~'(x), g7'(y)} < e.

Define a product set N2={(u;): u;€N, i€Z} and a shift map &: NZ—NZ
as usual by &((w¢))=(u:;1). Then it is clear that 6(N;)=N,; where N,=
{(x5)eNZ: f(rn(x))=n(x:s1), t€Z}. Let u=(u;)eN,;. For each /i€Z denote as
fugugy, the element 7 in O(f) such that f(u;)=u,,, and define

.fui_l,u,;° o °_f-uo,u! if z>0
Fo=1 Fupug) ™ - o(Fupu)™ <0
idy if i=0.

We define a map tf: N—(N/I"); by
ti(x) = (me fl(x)ew (x EN).
For simplicity we write 7,=t] in subsequent.

LEMMA 3.3 ([Ao-Hi] Lemma 6.5.5). For u=(u,)€N; the following hold :
(1) z,:N—(N/I'); is continuous,

(2) 7u(N) is dense in (N/I')y,

(3) 7u(N) is the path connected component of ,(u,) in (N/I');.

LEMMA 3.4. For x&(N/I"); there is ucN, such that x<t,(N).

PrROOF. Since x&(N/I");, we choose u;€N ((€Z) such that x=(7(u;))iez
&(N/I');. Clearly f(m(u;)=n(u:,,). By the definition of N;, we have that
u=(-, U_y, Uy, Uy, --)EN;, and by the definition of 7,
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x = (#(u))icz = (”"fi(uO))iEZ = 7y(Up). O

Suppose that the covering degree of f is greater than one. From
3.1 it follows that (N/I");, N/I', C, p,) is a fiber bundle where C is the Cantor
set. We note that a coordinate function ¢:UXC— pg'(U) for (N/I")s, N/T,
C, po) exists whenever U is a connected open set of N with small diameter.

Let usN,. We define a family g, of subsets of 7,(N) as follows: Veg,
if and only if there is a connected open set UU of X such that V is expressed
as V=¢(U X {a}) by a coordinate function ¢: UXC— ps*(U) for (N/I");, N/T,
C, pe), where a is a point in C. It is easily checked that

(1) any point in 7,(N) belongs to some V&g,

(2) if V, V,eg, and xeV,N\V,, then there is V,=a, such that xeV,c
VinV,.

Hence the family g, generates a topology of z,(N), which is called the
intrinsic topology of z,(N). If f: N/['-N/I" is a homeomorphism, then we have
T (N)=(N/I")4 for usN,. For this case define the intrinsic topology of z,(V)
by the topology of (N/I")4.

LEMMA 3.5 ([Ao-Hi] Lemma 6.5.6). For ucN; the map 7,(N): N—7,(N)
and the restriction py:7,(N)—N/I" are both covering maps under the intrinsic
topology of t.,(N), and the following diagram commutes:

Tu
N — 7,(N)

P\ /b

N/T
LEMMA 3.6 ([Ao-Hi] Lemma 6.5.9). For ueN,, 0(z,(N))=75w(N) and the

restriction ¢ : 7,(N)—7zwy(N) is a homeomorphism under the intrinsic topologies.
Furthermore the following diagram commutes:
fu
N — N

Tu l \L Ta(u)

g

Tus(N) —> 75 (N)

Wl n

LEMMA 3.7. (1) For ¢>0 and LN, there exists 6=0(e, L)>0 such that if
d(ru(x), Tu(y))<8 (x, YEN), then yeaUdLx)) for some aS(fi-Law)xl).

(2) Conversely, for ¢>0 there are L=L(e)&N and d=0(¢)>0 such that if
veaUs(x)) (x, yEN) for some a&(Fi-ruw)(I"), then d(r,(x), T.(y))<e.
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PROOF. As we saw in §1, there is 4>0 such that a(U;(x)N\U(x)=@ for
acsl'\{idy} and x&N. For given ¢>0 and LN, by we can find
0<p<min{4, ¢ such that '

(3.1) D(x, y) < g (x, ¥y € N) == D(fi-rL (), fiLuw(¥) <A.

Let d<p/2". If d(r.(x), T,(¥))<d, by the definition of r,

Ja(x), Tua(3) = 3 oo d(me Fix), mo FL(¥)) < 3,

i€z A

from which d(z-fi(x), meofi(y)<p for |i|<L.
By the definition of d, we have fi(y)Eai(U,(fi(x))) for some a;I" (|i|< L),
and in particular

¥ € aoUu(x)) (C ao(Ue(x))),
y € (FaB) ea (U (F5(x)))
= (F-Law)s(@_r)*(F5-L XU ((Fa¥(x)))
C (Fi-raw)(a-)U(ny)) (by [3.1).
Remark that (f;%)'=f%r,. Then
afU (NN oL )sla-)Uax(x) + @,

and a,=(FL-ra)x(a_)E(FsLw))«(I"). Therefore the proof of (1) is completed.
For ¢>0, we choose L&N such that

S sird(eefi), mfiON <5 (v vy N).

jitzL+1 2' I

Let >0 be as above and let p=min{4, ¢/6}. By there is >0 such
that supisisz {D(Fé-iq(x), '%—i(,,)(y))}<,u whenever D(x, y)<é for x, yeN. If
yea(Uxx)) (@E(FE-Lw)«(I")), then we have

i) € FilaUs(x)))
= (Fs(a)e FLUs(x))
C (FOx(@)U L (Filx))
for |{|<L. Since 7:U;(fi(x))—Ui(mefi(x)) is an isometry, we have
d(mefi(x), = Fi) < 5 for li| < L,

and so
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dru0), T = 3 pird(mefin), -7i)
1

+ 3 gdmefilx), mefu(y)

1itzL+1
& e

1
< Z2unEty

< e.
(2) was proved. O

The following result is easily checked by

LEMMA 3.8. For x, yEN, y=a(x) for some acN\o(fi-iw)«(I") if and
only if T,(x)=1t.(y).

Let f: N/'—=N/I" be a self-covering map of an infra-nil-manifold, and let
A:N/I'-N/I be an infra-nil-endomorphism homotopic to f. Let A: N—N be
the automorphism which is a lift of A by x. Choose a lift map f: N—N of f
by = satisfying fx=Ax:I—1T.

For e=(---, ¢, ¢, ¢, ---)EN,, we have that Ai=A¢ (;Z) and

té(x) = (e A x))Peee (x € N).

If 74(x)=74(v), by we have that x=a(y) for some ac/\3, AL().
Since F(x)=Ffxla)e F(¥)=Ax(a)*F(y) (Axla)EN= ALT)), it follows that t4(f(x))
=r4(f(y)). Therefore we can define a map F 1 T4 N)—tAN) by

Flzd(x)) = t&(F(x))

for xN.
LEMMA 3.9. [ is d-biuniformly continuous.

ProOOF. For given ¢>0, by Lemma 3.7(2) there exist L&N and A>0 such
that if yca(U;(x)) for some acALI"), then d(ri(x), &(y))<e. Let x>0 be a
number at satisfying

D(x, y) < p (x, y € N)== D(f(x), F()) < Z.
[Lemma 3.7(1) ensures the existence of 6>0 satisfying
dt&(x), t4(¥) <6 ==y € a(U,(x)) for some a = FLI").

Since f(3)€ fla(Uu(x))=Fx(@)f U (NC Fula)lUa(f(x) and Ful@)eTUT), we
have d(f(zd(x)), f(zd(y))=d(zd(F(x)), c&(FyM<e.

Similarly the d-uniform continuity of f~! is proved. O

Since 74(N) is dense in (N/I")4 by Lemma 3.3(2), it follows from Lemma 3.9
that 7 is extended to a homeomorphism of (N/I'),, which is denoted as the
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same symbol. It is checked that fep,=poef on (N/I")4. Indeed, by the defini-
tion of f we have that

fopoofe:foﬂ: = n'o]? = j)oofeo]? — poofofe.

Since 7.(N) is dense in (N/I')4, we obtain the assertion. Let a,:(N/I");—
(N/I'); be a shift map constructed by f.

LEMMA 3.10. ((N/I')4 f) is topologically conjugate to (N/I");, a).

PrROOF. For u=(---, fXe), ¢, f(e), - )EN,;, we have fi=f' (i€Z) and
ti(x)=(me (%)) (XEN). ensures that

y = a(x) for some acN\ AL(I") if and only if 74(x) = t4(y),
= a(x) for some ac= N\, fi(I") if and only if 74{(x)=7L{(y).

Thus we have that t4(x)=74(y) if and only if z{(x)=7{(y). Therefore a bijec-
tion ¢ : t&(N)—L(N) is defined by

pré(x)) =tl(x) (x €N),

and we have that g,°.p=¢- 7 on tA(N). This is easily checked as follows. By
the definition of 7 and ford=tieF and o, oti=1f f=7if on N,
from which

o‘chDo'z'g — g'foz-£ — f{of — Sooz-gof_ — goofoff.

It is checked that ¢ is d-biuniformly continuous. Indeed, for given ¢>0, by
Lemma 3.7(2) there are L=L(e)&N and 2=4(¢)>0 such that if ycalU ;(x))
(x, yEN) for some acfL(I"), then d (ti(x), ti(y))<e. By Lemma 3.7(1) we
can take 6>0 satisfying yca(U;(x)) for some acAL")=fLI") whenever
d4(td(x), &(y))<d. This implies that ¢ is d-uniformly continuous. Analogously
we can prove that ¢! is d-uniformly continuous.

Since 7d(N) and tf(N) are dense in (N/I'), and (N/I"); respectively by
Lemma 3.3(2), ¢ is extended to a homeomorphism between (N/I"), and (N/I"),,
which is denoted as the same symbol. Therefore, ¢,cp=¢-f on (N/I"),. [

REMARK 3.11. Suppose that N/I' is a torus. Then for any covering trans-
formation a<I’, there exists a homeomorphism &:(N/I')4—(N/I")4 satisfying
a-ti=tdoa (see Theorem 6.5.3). However if I" is not abelian, then it
is not true in general.

Indeed, we can find the following counter-example ([Sh]). Let-N be the
simply connected nilpotent Lie group defined by
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1 » =z
01 y):x,y,zER},

0 01

N=

and let [ be the discrete uniform subgroup of N obtained by

Il a7y
01 Blia, By EZ;.
0 01

I =

Then N/I’ is a nil-manifold. Define the nil-endomorphism A : N/I'—N/I" induced
by the automorphism A : N—N represented as

1 x z 1 2x 6z
A0 1 y):(o 1 Sy).
0 0 1 0 0 1
Let
150 1 2¢ 6
a=<0 1 0) and ,Bi:(O 1 3i> Gz=z0el.
0 0 1 001
Then
1 2'a 6'
A =40 1 3”/3): a, B 7EZ}.
0 0 1

We can take the map & of t4(N) satisfying a-td=rt4-a because 72 is bijective.
Then d(r4(e), t4(Bi(e))—0 (i—oo) by On the other hand, we have

d(@-té(e), @a-t&(Bi(e) = d(rd-ale), té-a-pi(e))
does not converge to 0 as i—oo. Indeed, for :=0
asBie) = a-Bica a(e)), a-Bica™t € 'NA(I).
By @ is not continuous under the metric d for (N/I")4.

REMARK 3.12. Furthermore in the case when N/I" is a torus, we can show
that the inverse limit space (N/I')4 has a structure of compact connected finite
dimensional abelian group, which is called the solenoidal group.

See [Ao-Hi] Theorem 7.2.4 for the proof.

REMARK 3.13. FEvery hyperbolic infra-nil-endomorphism A: N/I'—N/I" is a
special T A-covering map.

PROOF. Since A is an Anosov differentiable map, we have A is a TA-

covering map ([Ao-Hi] Theorem 1.2.1).
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Let u=(--+, u_y, o, uy, ---)€N4. By the definition of N4, we can take a;I’
such that A,_, u_,,,=a@;°A (i=0). Let ai'=(z;, ¢;)N-C, and let p, ¢ be as in
Then we have that

At =(Au_pu_i) o (Au_gpugee) e o (Auyug) ™
= (aze A) Yo(a; 1o A) o o o(@ 0 A)7!
= A™Yo(z;, ¢i)o A7 e(24y, Cing)o o+ oA e(2, €1)
= (A™z1), 7 c)) (A Hzim), 7(Cemn))o -+ o(A™H(20), §7Hc))oATE.
Since D is left invariant and [ -invariant, for x, y&N and 7=0,
D(Az¥(x), Az'(y) = D(A™¥(x), A™(y)).

Therefore L%(x)=L*(x) where L% x)={yeN:DA7{(x), A7} (y))—0 (G—co)}.
For usN,, we have
L¥(t (%)) = m(L¥(x)) = a(L*(x))

where L*(z,(x)={y.€N/I": 3y )N/ )4 s.t.lim; e d(m-A7(x), v_;)—0}
([Ao-Hi] Lemma 6.6.8), and then A is a special TA-covering map. O

§4. Construction of semi-conjugacy maps on the inverse limit systems.

Suppose f: N/I'-N/I" is a TA-covering map, and let A: N/I'—-N/I" be the
infra-nil-endomorphism homotopic to f. Let A: N—N be the automorphism
which is a lift of A by #. By A is hyperbolic. Let f: N—N be
a lift of f by = satisfying fs=A4:I'—I. We may assume that f(e)=e, and
let 71 : N—N denote the semi-conjugacy map obtained in Cemma 2.3

Let g4:(N/I")4—(N/I")4 be the inverse limit system of (N/I", A), and let
7e: N—(N/I')4 be the continuous map defined by z.(x)=(m°A*(x))%_. for x&N.
As saw in §3 a homeomorphism 7 :(N/I")4—(N/I")4 is constructed by f.

LEMMA 4.1. Under the assumptions and notations as above, there is a contin-
uous surjection h: (N/I')a—(N/I'")4 such that

(1) Aote=rt4oh on N,

(2) guch="hef on (N/I')a.

PROOF. By and Lemma 2.4(3) we define a map & : r.(N)-—1.(N}
by
A(to(x)) = teoh(x) (x € N).

Then vol;:f{of on 7(N). This follows from [Lemma 3.6 and Lemma 2.3;
i.e.,

‘Lof— = ﬁoz'eef = }‘;ofoz'e_

e~

O ohoTy = 0 40T N = TeoAoh = T¢o
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To show that A is d-uniformly continuous, for >0 there are L&N and >0
such that if yea(Us;x)) (x, yeN) for some acALI"), then d(z.(x), T{y))<e.
Since i is D-uniformly continuous by we can take A>0 such that if
D(x, )<2Z (x, yEN) then D(h(x), h(y))<d6/2. By [Lemma 2.4(2), there exists
JEN with /=L such that D(h-a(x), ash(x))<d/2 for acf{I"), and by
3.7(1) we can take p>0 satisfying y=a(U;(x)) for some ac fi(I") whenever
d(te(x), 7o(y)<gr. Thus

d(rx), T(3) < g =2y € a(U(x)) for some a € ALI")
== (y) € hea(U;(x)) = h(U i(a(x)))
C Usip(hoa(x)) C Us(a(h(x)))
= a(Us(h(x))) for some a € AL[")
= d(h(ro(x)), A(re(y) = d(zeoh(x), Teoh(y))
< €.

This shows that # is d-uniformly continuous.

Since 7.(N) is dense in (N/I")4 by Cemma 3.3, it follows that A is extended
to a continuous map on (N/[I")4, which is denoted as the same symbol. There-
fore (2) holds.

Since h is surjective, we have A(r (N))=t.(N). Hence A((N/I")4)Dr«N).
Since 7.(N) is dense in (N/I')4, we have A(N/I))=(N/I').. Therefore h is
surjective. O

For u=(--, u_y, uy, u,, )N, define
u(]) - (, E—S(u—j): 71_2(”—]')’ 71"1(”—]‘); U.j u—j+b
vy Uiy, Uy Uy "') ENA
for /&N. By the definition of A,;, we have
_ A if i = —j
(4.1) Avp =9 - )
AP A if i< —.
For j&N we have (A7) '=a;l;,°A’ for some a, ;<1 (see Theorem
6.3.9). Then
4.2) Z"“/—ilj = /—1j°Z—j°au(ﬁ = Ay -
We define /1,¢,: N—N by

hupy = autpohea,g on N.

LEMMA 4.2. (1) J(Tu, r,,(j))zsup{(z(ru(x), T,,(j)(X)): XEN}'—’O as ]'—*00.
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(2) For jeN 7,y =Teca,» on N.
(3) The following diagram commutes;

hup
—

N N
Tu(p) l lru(])

Tun(N) - Tun(N).
h

Proor. (1): Since N/I" is compact, there exists M>0 such that d(x, y)
<M (x, yeN/I"). By the definition of 7z, and 7,(;, we have

1 - _
J(Tu(-x): Tu(])(x» :zgz 2‘” d(7T°A;(X), 7r°Alu(])(x))
1 - —.
= Kz_jzl,, d(meAl(x), T AL p(x)) (by
M M
s Zgesy

for x&N and j&N. This shows (1).
(2): By and we have that if i<—j

Al oy = A Ay = Ao Ao, g = Ateauyy s
and that if ;1=—7

Az(.,) = A’,’, - A"_t]

@77 (u)

°Z;J = ﬁz°zz+]°z_]°au(]) = ‘81,‘7:41"6!“(])
for some B,=1I" (see Theorem 6.3.9). Hence
Tun(x) = (7o AL () (x))ez = (o Aro@t, () (X)iez = Teo @y (p(X)
for x&N and jEN.
(3): By (2), we have that for jeN
}'Z"Tu(]) - ]’,Z"Te“a’,,(]) = Te°;£°au(])
= Te"au(;)"aﬁ])"ﬁ"au(;) =T, (])Q}-lu(j)
on N. O

LEMMA 4.3. For ucN,, there exists a surjective map b, : N—N such that
1 fz'oz',,:z',,ok-ru on N,

(2) Dk, idy)<oo,

(3) ky is D-uniformly continuous,

(@) (Budi: (oAb ()= (Veo(Ab s o(I7) s the identity map.
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PROOF. Let u(j)eN4 and a, I be as above. By Lemma 2.4(4) we have
that for x&N and ;N
Eu(])(x) = a;§;>°ﬁ°au<;)(x)
€ L¥azipoaupmoh(x) = L (h(x)),
and by Cemma 2.4(1) there exists K>0 such that for x&N and jEN

(4.3) D(hy (%), h(x)) = D(aztyehoay (%), h(x))
= D(hoaty (%), aupeh(x))
< K.
Then we can take = L3(h(x)) and a subsequence {j(n)},enCN with j(n) oo
(n,"e) such that D(h,my(x), £)—0 (j—). Remark that the above sequence
{7(n)} nenCN depends on xeN. By Lemma 4.2(1), (3)
d(7,(%), hotu(x) £ d(2u(E), Taluin(x))
+d(TuohuGan(X), Tugmn Rugan (X))
+dTw o Bu o (x), Aot (x))
< d(tu(®), tuohuGan (X)) Fd(Tu Tugm)
+(Z(ﬁ°z-u(](n))(x)r hot,(x))
—0 (n— c0),

from which

(4.4) 7a(%) = hotu(x).

We claim that {%,,(x)} ,ex is a Cauchy sequence in L*(h(x)). Indeed, assume
that there exist ¥*eL*(h(x)) ((=1, 2) and subsequences {7*(n)} ,ex ((=1, 2) with
jUn) oo (n"o0) such that D(A, (%), £)—0 as n—oco (=1, 2). Then by
T (E)=hot,(x)=1,(%?). Hence F*=a(x") for some @\, ALI") (Cemmad
3.8). Since m: L¥(h(x))— m(L*(h(x))) is bijective by Lemma 6.6.8(2), we
have @=idy. This implies the claim.

If 7yo(x)—Eu(x) (j—oo) for x&N, then k,: N—N is a map. By we
have that r,-k,=her, on N. Since

D(hyip(x), %) £ D(hyp(x), R(x)+D(h(x), x) (x € N),

by we have that D(k,, id y)<<co. By uniform continuity of %, we can take
6>0 such that D(h(x), A())<e whenever D(x, y)<d. If D(x, v)<8, then we
have that for j&N
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D(huep(x), Run(¥) = Diaztpohoauin(x), autpyehoa,p(¥)
= D(ﬁoaum(x), ﬁ°au(1)(y))
< g.

Hence D(k.(x), £.(y))<¢ and so %, is uniformly continuous under D. By (2) we
can prove that 2, is surjective.
Since k,(x)e L*(h(x)) (x&N), we have that for ac/N\y(AL-. %)

(Bu)s(@)oku(e) = ku(a(e)) € Li(h(ale))) = Li(a-h(e)) = a-L¥e).

Hence a™to(E,)x(a)ok,(e)e L*(e). Since m: L(h(x))—=(L*(h(x))) is bijective, we
have that
a to(R)x(a)ok,(e) = k,(e) € L(e).

Therefore (£,)x(a)=a. O
LEMMA 4.4. FEach path connected component in (N/I")4 is h-invariant.

Proor. This is clear from Lemma 3.4 and Lemma 4.3(1). i

§5. Nonwandering set.

The purpose of this section is to show
LEMMA 5.1. If x.=Per(c,), then ﬁ“(xo) is the set of one point.

PROOF. Without loss of generality we may suppose that ag,(x,)=x, is
satisfied. Since g4A=Hh-F, we have F(A ' (x,)=Hh '(x,).

Since flﬁ—uxo) is expansive and has POTP, h~'(x,) contains a periodic point
¥, of /. We can check POTP of f|;-1¢;, as follows. Since f: N/I'-N/I" has
POTP, for ¢>0 there is >0 such that every d-pseudo orbit of 7 is s-traced by
some point of (N/I")4. If {v.) CA™Y(x,) is a d-pseudo orbit of 7, then an e-tracing
point v for {v,} exists in (N/I"),. Since h(v,)=x, for all 7, each of c.oh() is
near to x, in (N/I"),, and hence A(v)=x, by expansivity of a,, i.e., v&Eh(x,).
Therefore f|s-1, has POTP. To avoid complication, suppose f(ys)=y,.

By o4(x,)==x,, there exists u,&N such that x,=(7(u,)),ezEWN/1")4. By the
definition of (N/I")4 we have that @-A(u,)=u, for some acl". Let A=@-A and
take u=C_--, Uy, Uy Uy, --)&N4 By the definition of 7, we have x,=1,(u,) &
(N/I'"),. Since i preserves each path connected component of (N/I")4
4.4), by there exists v,&N such that y,=z,(v,)E7.(N).

By 04Ty =Ts°A on N. Since f(x,)=x, we have f(r,(N)=
7.(N). By Lemmas and fleyon : TuN)—7,(N) is a homeomorphism
under the intrinsic topology of 7,(N). Therefore there is the lift map /: N—N
of flr v such that f(u,)=u, by Since
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e f = poetucf = poofotu = fopoeta = for
on N, we have that f is the lift map of f by =, and then f is expansive and
has POTP.

By Lemmas 3.5 and h [z, 2 Tu(N)—7.(N) is continuous surjection under
the intrinsic topology of 7,(N). Take the lift map h:N—Nof i |+, vy satisfying
h(vo)=1u, by Let %, be the lift of |, v, obtained in Lemma 4.3.
Then there exists &M\, A4(") such that

h = Bk, on N.
Therefore we have that £ is proper (i.e., the inverse image by h of any compact

subset is compact) by Lemma 4.3(2).
By the definition of f and h, we have

fquoﬁ pomnd o’Aa‘['uol:i - ngl:Zo‘[u fuwond ’;ofofu
= ﬁoruof: r,,oﬁof on N,
Ahwe) = A(ue) = uo = h(ve) = hef(vy),
and then A-A=h-f on N. Therefore f(A~'(uo))=h'(u,). Since h is proper,
ﬁ"(uo) is compact. It is not difficult to see that f: h™*(uy)— h~Yu,) has POTP.
Therefore f |i-1y is TA-homeomorphism of a compact metric space.

Denote as 2 the nonwandering set of f |s-1wp. Then the set of all periodic
points of f|s-1u, is dense in 2. Since f:N—N has exactly one fixed point
by Q consists of one point. This implies A (u,)=&. Therefore
A~ ug)=v,.

Since (Bu)x: Nz AL — N0 AYT) is the identity map by Lemma 4.3(4),
we have that for ac N7, AL(")

ﬁoa — ‘Boléuoa = ﬁoaok—u = ‘Boaoﬁ—loﬂoﬁu = ﬁoaoﬁ_lo/:l\
on N. Hence hx(a)=B-a-87* for ac iy AL(I") and hy: NG ALU)— N7 AL
is bijective.
Let z&h Y (x,). Since A preserves each path connected component of (N/1")4
and x,=7,(N), there exists weN such that z=7,(w). Hence

Tyoh(w) = Rot,(w) = A(2) = %, = 7,(u0),

and then A(w)=a(u,) for some ac\,ALI"). Since hAx: NFALl)—
M=o AL(I") is bijective, we have w=~hz"(a@)(h™(uo))=hz'(@),) and so z=rt,(w)
=7,(s)=9,. Therefore A (x,)={yo}. 0

Let NON!'D - DN¥2N**'=¢ be the lower central series where Ni*'=
[N, N¥], N*=[N, N]. N, N will denote the tangent spaces of N, N* at the
identity.
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LEMMA 5.2 ([Pa]). If dA,:N.,/Ni—N./N} has no root of unity as eigen-
values, then A: N/I'-N/I" is ergodic with respect to Haar measure.

PROOF. See Corollary 2. 0
LEMMA 5.3. a4:(N/T")4—(N/I")4 is transitive.

Proor. Let A:N/(I'N)—N/(I'MN) be a nil-endomorphism induced by
A:N—-N (§1). By and the hyperbolicity of A, A is ergodic with
respect to Haar measure. Thus A is transitive, from which A is transitive.
Therefore o4: (N/I")4—(N/I")4 is transitive. O

LEMMA 5.4. Let N/I' be an infra-nil-manifold. If f:N/T—N/I" is a
T A-covering map, then the nonwandering set 2(f) coincides with the entire space
N/T'.

PROOF. By the periodic points of ¢, are dense in (N/I')4 and
then we have that A(Q(f)=(N/I")4 Indeed, if A(Q(F)=(N/I"4 then AQ(F)
is a proper compact subset of (N//"),. Hence we can find z&(N/[I")4 such that
c3(z2)=z for some r and z& A(R(f)). Then Ui, i Y(c(2) is a non-empty compact
F-invariant subset of (N/I")4 that disjoints from 2(7), which is impossible.

Let z be a point in (N/I")4 such that the orbit {¢%(z): i=Z} is dense in
(N/T")4. By the above fact there is xQ(f) such that A(x)=z. If 2, is the
basic set in which x belongs, then we have that A(2)=(N/I")4.

By Cemma 5.1, 4: A '(Per(o4))— Per(a,) is bijective and so R(f) itself a
basic set. Thus f|o(-, is topologically transitive, in which case we have Q(7)
=(N/I")4 because f|o; is a TA-homeomorphism. O

§6. Injectivity of semi-conjugacy maps 1.

The purpose of this section is to show [Theorem %2). For the proof we
need the following Lemmas.

LEMmA 6.1 ([Rel). If X is a compact metric space and f: X—X is a posi-
tively expansive map, then there exist a compatible metric p and constants 6’ >0,
A>1 such that for x, yeX, if p(x, y)<8" then p(f(x), f(y)=Ao(x, y).

PROOF. See Theorem 2.2.10. O

LEMMA 6.2. Let X be a compact metric space with metric p and let X be a
topological space. Let p: X—X be a covering map. If X is locally connected,
then there are a compatible metric 5 for X and a constant §,>0 such that

(1) for 0<0<0, and x=X

P Us(x) —> Us(p(x))
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is an isometry where Us(x)={veX: p(x, y)<d} and Us(p(x)={veX: p(p(x), »)
<d},

(2) all covering transformations for p are isomelries,

(3) X is a complete metric space with respect to p.

PROOF. See Theorem 6.4.1. O

Let (N, D)and (N/I", d)be as in §1. Suppose f: N/['—N/I" is an expanding
map, and let A: N/I"—N/I" be the infra-nil-endomorphism homotopic to f. Then
A is hyperbolic by As before we denote as A: N—N a lift of A
by 7, and as the lift map 7: N—N of f by = satisfying that fa=As: -1

LEMMA 6.3 ([Co-Re]). If f:N/I'--N/I" is topological expanding, then there
exist a constant 2>1 and a compatible metric D for N such that

(1) D is complete,

(2) all covering transformations for m are isometries under D,

3) D(f(x), F(y)=aD(x, y) for x, yEN.

PROOF. Since f is positively expansive, by there exist a com-
patible metric p for N/I" and constants 6’>0 and 4A>1 such that p(x, y)<0’
implies p(f(x), f(y)=2p(x, y). Since m:N—N/I" is a covering map, there
exist a metric p for N and a constant J,>0 satisfying the properties in [Lemmal
6.2. For d=min {’, d,}, ensures the existence of 0<3,<d such that
p(f(x), f(y)<d, implies p(x, y)<d. Note that 5(x, y)=p(x(x), n(y)) since
0<0d,. From these facts we have that p(x, y)<8,/4 if 5(f(x), f(¥))<é,.

For x, yeN let {x;: 0=<i/<[+1} be a d,-chain from x to vy (i.e., 5(x;, x:41)<0:
for 0<i</) and define D by

D(x, ) = inf{ 2 p(xs ¥}

where the infimum is taken over all finite d,-chains from x to y. By the triangle
inequality of p we have D(x, ¥)=p(x, y), from D is a metric for N. Clearly
o(x, y)=D(x, v) if p(x, y)<d;. Thus D is compatible and by [Lemma 6.23),
(1) holds. (2) is clear from the construction of D together with Lemma 6.2(2).
It remains to show only (3).

Let {x;:0<i<!} be a finite sequence from f(x) to f(vy) with 5(x; %x4.1)<0:
for 0<:i<I—1. Then {f *(x,), -, f Yx,)} is a finite sequence from x to y such
that

P(FH(xD), FH(%40)) < 81/4
for 0<7/<!—1 and thus the sequence is a 0;-chain. Thus we have
B(%sy Xiw1) = p(Fof7(x0), Fof M(%ea)) Z AB(F (%), F7(%441))
and therefore S35(xs 10)=AD(x, ¥), from which D(7(x), 7(y)=aD(x, y). O
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LEMMA 6.4. Under the assumptions and notations of Lemma 6.3, given K>0
there exists 8x>0 such that for any K-pseudo orbit {x;: i=0} of f there is a
unique x&N so that D(fi(x), x;)<0x for i=0.

PrROOF. The proof is similar to that in [Ae-Hi] Lemma 8.2.6. For complete-
ness we give here the proof.
Put x¢=7"%x;) for ;=0. By Lemma 6.33) we have

D(x%-y, x3) = D(F % f(x4ea), FH(x0)

< 2 DFe, 20 s 5 (20,

Thus {x? is a Cauchy sequence and so there is a point x in N such that x?—x
as ;—oo, Fix />0 and let 0<7<i, then we have

D(x;, Fi(x9) = D(xj; F/7(xy))
= ﬁ(xj: i)+ - +ﬁ(fj—i+l(xt-1), FI7i(xa)
S KA ' s+ < 0

where dx=K/(A—1). Therefore D(x, f(x))<dx for j=0. O

LEMMA 6.5. Under the assumptions and notations of Lemma 6.3, there exists
a unique continuous surjection k: N—N such that

(1) Fok=k-A,

2) sup{D(k(x), x): x&N} is finite,

(3) & is uniformly continuous under D.

PROOF. Since fx=A4Ax we can take K>0 such that D(A(x), F(x))<K for all
xEN. Let 6x>0 be as in[Lemma 6.4 For any x&N the sequence {4’(x): j&Z}
is a K-pseudo orbit of 7. Hence there is a unique yEN such that

D(A’(x), fi(y)) < 8x for j=Z.

We define a map E:N—N by Ex)=y. Since D(x, y)<dx, obviously
sup{D(k(x), x): x&N} <dx. Hence (2) holds. Since {A/(A(x)): j€Z} is dx-traced
by a point f(y), we have f(k(x))=7(y)=k(A(x)), from which (1) is obtained.
The proof of (3) and the uniqueness of £ is similar to that of O

LEMMA 6.6. Let f:N/I'—N/I" be topological expanding and let h: N—N
be the semi-conjugacy map obtained in Lemma 2.3. Then h is a homeomorphism
and satisfies hoa(x)=a-h(x) for x€N and acl .

Proor. This is given in Proposition 8.4.1 as follows. We already
know that there exists a metric D for N such that f has the property of
and, further, a tracing property in Lemma 6.4 Let 2: N—N be a
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semi-conjugacy map as in In the similar way as the proof of
Lemma 2.4(3), we have k-a(x)=a-k(x) for x&N and a=I". Thus, sup{D(k(x), x):
x€N} is finite, i.e., there is K’'>0 such that D(k(x), x)<K’ for x&N. From
Lemma 2.3(1) and Lemma 6.5(1) it follows that

(hok)eA = Ae(hok), (Boh)of = fo(koh).
Since D(h(x), x)<K for x=N, we have for all xN

D(hok(x), x) < L, D(k-h(x), x)< L

where L=K'+K. implies D(f7e(koh)(x), f/(x))— oo as j—oo when
Boh(x)#x. But D(f7s(keh)(x), f/(x))<L for j=0. This is impossible since D
and D are uniformly equivalent. Therefore, k-i(x)=x, and so k-h is the
identity map. Similarly, - is the identity map. O

By h induces a homeomorphism 4 : N/I'-N/I" and Ach=h-f
holds on N/I". Therefore, [Theorem 22) was concluded.

§7. Injectivity of semi-conjugacy maps 2.

The purpose of this section is to show Theorems 1 and 2(1).

Let (N, D) and (N/I, d) be as in §1. Suppose f:N/I'-N/I" is a TA-
covering map, and let A: N/'-N/I" be the infra-nil-endomorphism homotopic
to f. Then A is hyperbolic by Lemma 1.3. As before we denote as A: N—N
a lift of A by =, and as the lift map f: N—N of f by = satisfying that
Fs=As: '-I. We may assume that f(e)=e. Let h:N—N the semi-conjugacy
map obtained in Lemma 2.3. ‘

Fix ueN;={(x)ENZ: f(n(x:))=nr(x:,1), i€ZL}. For x&N we define a local
stable and a local unstable sets by

Wix;uw) = {y € N: D(fi(x), fi(y) < e, i =0},
We(x;u)= {y € N: D(fi(x), fL(y) <, i <0}.

Hence D(fi(x), fi(y)=D(f(x), f(y)) for i=0, from which the local stable set
We(x ; u) does not depend on the choice of u. For simplicity we write

Wi(x)=W¥x;u) (x €N and u € N,).

For x&N define a stable and unstable sets as follows:
We(x; w)= {y € N: D(fi(x), Fi(»)— 0 G — o)},
W (x;uw) = {y € N: D(Fi(x), FL(») =0 (i — —co)}.

Since W*(x; u) is independent of u, we write W*(x)=W*(x ; u).
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LEMMA 7.1. Let ¢>0 be an enough small number and let 5:N;—N; be a
shift map defined by G((x:))=(x.,1). Then the following hold.
(1) For y>0 there exists n;>0 such that for ucN,; and x&N

FeWi(x) C Wi Fax)),
FarWe(x; w) C WH(Fi(x) 5 67"(w))

for all n=n,.

) _ ) o
We(x) = gﬂ T W L(x)),
Wi s w) = \J Fom o, WEFD () 5 67 @)
PROOF. See Lemma 6.6.3 and 6.6.4. 0

Let f: N/['-N/I'be a TA-covering map which is not a topological expand-
ing map, we have the following lemma.

LeMMA 7.2 (Lifting of local product structure). Let uesN;, e>0 be an
enough small number and x&N. Then there are a connected open neighborhood
N(x:u) of x in N and a continuous map &, : N(x ; uyX N(x ; u)—N(x ; w) such
that

Q) @y, R =Wy ; Wiz for y, zeN(x ; u),

(2) for v, z, weN(x; u)

a,(y, y)=1y,
a,(y, au(z, w)) = a,(y, w) = &,(@.(y, 2), w),

(3) the restriction @, : D*(x)xD*(x; u)—N(x; u) is a homeomorphism where
D (x)=Wix)N\N(x ; w) and D*(x; u)=W*(x ; u)xN(x ; u),

(4) there is a constant >0 independent of x&N and usN; such that
N(x; wyDB,(x) where B,(x)={yeN: D(x, y)<p},

5 J_’__u(ﬁs(x))CD"(f,.(_x)) and f.(D*(x ; w))DD“(fu(x); 6(w)),

6) D*(x)2{x} and D“(x; u)2{x}.

PROOF. See Theorem 6.6.5. O

Let M be a connected topological manifold without boundary and let & be
a family of subsets of M. We say that F is a generalized foliation on M if the
following holds ;

(1) & is a decomposition of M,

(2) each L%, called a leaf, is path connected,

(3) if xeM then there exist non-trivial connected subsets D, K, with
{x}=D,NK,, a connected open neighborhood N, of x, and a homeomorphism
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¢z D XK;—N,, called a local coordinate at x, such that

(@) @iz, x)=x,

(b) Sox(y: x)=y (y€D,) and ©z(x, z)=z (z€K,),

(¢) for each L&% there is an at most countable set BC K, such that
N.N\L=¢.(D.XB).

LEMMA 7.3. Let F be a generalized foliation on M and let U be an open
subset of M. Denote by L(x) the leaf through x of F and put

V={xeM: L)N\U + @}.
Then V is open in M.

PROOF. See Remark 6.7.2. 0

Let & and g’ be generalized foliations on M. We say that F is transverse
to g’ if, for x=M, there exist non-trivial connected subsets D,, D’ with
{x} =D,ND%, a connected open neighborhood N, of x in M (such a neighbor-
hood N, is called a coordinate domain at x), and a homeomorphism ¢, : D, X D,
>N, (in particular called a canonical coordinate at x) such that

@) ¢a(x, x)=x,

() ¢:(y, x)=y (yED,) and ¢.(x, 2)=z (z€ DY),

(¢) for any L9 there is an at most countable set B’C D’ such that
N:NL=¢(D.XB’),

(d) for any L’'&9J’ there is an at most countable set BC D, such that
N.NL'=¢(BXD).

It is clear that if & is transverse to ¥’ then &’ is transverse to .

LEMMA 7.4. Let f be as above. For ucN; the families F*= {W*(x): xN}
and Fi={W*(x;u): x&N} are transverse generalized foliations on N.

PROOF. See Theorem 6.7.4. 0
For e=(--, ¢, ¢, ¢, ---)EN, we write
We(x) =W¥x;e) and W4(x)=W“(x:e).
Since Ash=Hho-f holds and & : N—N is a D-uniformly continuous surjection,
we have

(7.1) AW (x)) © L*(h(x)), AW*(x))c L*(h(x)) for all x € N.
Under the above assumption we can prove the following lemma.

LEMMA 7.5. Let f and W?(x) (x&N, a=s, u) be as above. Then W*(x)N
W*(y) is at most one point for x, yEN.
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PrROOF. The proof is similar to that in Lemma 8.4.4. However,
for completeness we give here the proof.
Let a, beW*(x)NW*(y) and suppose a#b. Then there is m>0 such that

D(f~™(a), f~™(b))<p where p is as in Lemma 7.244). Put a’=f"™(a) and b'=
F~™b), and let ¢>0 be as in Lemma 7.2l For sufficiently large m we have

(7.2) b’ & Wia').

It is clear that b’eW*(a’) since a, b W*(x), and that b’ =B ,(a’)CN(a’; e) since
D(a’, b")<p. Hence there is (b, b)yeD*(a’)xD*(a’ ; e) such that b’'=a.(b, by
Wi(b,). Then we obtain by#a’. For, if b,=a’ then Wi(a")=W:(b,)>b’, which
is inconsistent with [7.2).

Let U, and U,, be open neighborhoods of a’ and b, in D*(a’; e), respec-
tively, such that U, N\U,,=@, and put

Na’ = ae(Ds(a')XUG’)y Nb' - &Q(Ds(al)XUbg)-

Obviously N,. and N,, are open neighborhoods of a’ and b’ in N respectively.
Since N, \N, =@, we have

(7.3) Ws)NWiw) = @ for v & N, and w & N, .

If V,={zeN:Wz)N, #@}, then V, is open in N since ZF* is a general-
ized foliation on N, and a’€V, since b’W?*(a’). Since Per(f) is dense in N/I"
by there is pV,\N,+ such that n(p)Per(f). Let k£ be a period
of n(p) and let u=(u;,)EN; be a k-periodic sequence with p=u, Write g=7F%
for simplicity. Then g(p)=p. Since p=V, we can choose weW(p)\N,.
Since p, weN(a’;e), we have Wi(p; ) \Wiw)=1{q} for some g=N(a’;u).
Hence lim,... 3'(q)=p since W*(w)=W?*(p), and lim,._..g(g)=p. Using (7.3}, we
have p+q because p&N,., gcWiw) and weN,. Let p=min{D(p, ¢), ¢'} /4
where ¢’ is an expansive constant for g. Then there is 0<d<2p such that
every J-pseudo orbit of g is p-traced by some point of N. Choose />0 such
that D(g'*'(¢), p)<d/2 and D(g~“(g), p)<6/2. 'Then the sequence

{"'y g_l(Q)’ ) g—l((l), q, g(Q)’ Ty gl(Q)’ }

is a (2/4-1)-periodic d-pseudo orbit of g. By using POTP and expansivity we
can find ¢ &N such that g**'(g))=¢, and D(g, ¢o)<g. It is checked that
8% q0)#qo. Indeed, if 3'*'(g,)=q, then

D(p, g'*%(q0)) = D(p, " H)+D(E' N q), 8'7(qa) < %+ﬂ<2gz.

Thus we have D(p, q)<3p which is impossible since 4p<D(p, ¢). Therefore
Z%*! has at least two distinct fixed points, which contradicts Lemma ].5. O
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LEMMA 7.6 ([Fr]). Let f and Wo(x) (x&N, o=s, u) be as in Lemma 7.5.
Then W*(x)N\W?*(y) is the set of one point for x, y=N.

PrROOF. The proof is described in Lemma 8.4.5. But we give
here the proof for completeness.

Let y,eN and put s=W3(y,). It is enough to show that W*(x)N\s# @ for
all xeN. Let us put

Q= {xeN: W« x)Ns + @},
then we have
Q = {x e N: W*(x)N\U(s) + @}

where U(s)=\U,es N(z; e). Indeed, choose x from the right hand set of the
above equality. Then zeW*(x)N\U(s) and hence zeW*(x)"\N(z’;e) for some
Zes. Since N(z'; e)=a.(D*(z’)x D%z’ ; e)), there is (v, y.)€D*z")xD*(z"; e)
such that z=&@,(y,, y)W4(y,;e). Hence y,cW%(z:e)“W*"(z;e) and on the
other hand, y,eD*z)Cs. Therefore, W¥(z; e)"\s# @ which implies x=Q.

Hence @ is open in N. If Q=N then the Lemma holds. Thus we suppose
Q<N and then derive a contradiction. Let weQ. If N(w;e)ZQ, then Q does
not contain D*w). For x=N(w : e), then there is

(x’, x”) € D*(w)x D*(w ;e)

such that x=a.(x’, x")eWi(x’';e). If D (w)cQ then W*(x’;e)N\s#g since
x'eD*(w)c Q. Since W*(x ; e)=W*(x’; e), we have W*(x;: e)"\s# @ and there-
fore x=Q, i.e., N(w;e)CQ, thus contradicting.

Choose and fix acD*w)\Q. Let y:[0, 11— D*w) be a path such that
7(0)=w and y(1)=a, and p: [0, 1]-W*(w ; e) be a path such that p(0)=w and
o(eW™(w ; e)Ns. We set

R={(r, ) € [0, 11X[0, 11: W*((r) ; N (o(t)) # B},

then R is not empty since ([0, 1]X {0})\({0} X[0, 1])CR and by transversality
of ¥* and ¥, R is open in [0, 1JX[0, 1]. Note that RE[0, 1]x[0, 1]. Since
We(y(r) ; @ \W*(p(®) is a single point for (r, )R (Lemma 7.5), we can define
a map : R—N by

0(r, t) = W*(y(r); "W (o®) ((r, 1) € R).
Then @ is continuous. By we have
AW (y(r); €) C L*(hey(r)) and AW (@) C L*(h-p@)).

Then it follows that
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h(O(R)) = h{W (y(r) ; @NW*(p®)): (r, t) & R}
C ARG (1) )NRW (o)) : (r, 1) € R}
C AL¥hoy(r)NL(hep®): (r, t) € R}
C AL heyM)NLhep®) : (r, 1) € [0, 11x[0, 1]}.
Notice that the last part of the above relation is compact. Since # is proper

by we obtain that @(R) is bounded.
Let us put

to = sup{f : W(y(r) ; XN\W*p@®) + @, 0<r<1and 0 <t < i},
ro = sup{?: W*(y() ; @enW*(ot,) = @, 0 < r < 7}.
Then (r,, )¢ R. Since #(R) is bounded, we can choose a sequence
{(ra, ta) i 70 <Tasyy ta <tap} C R

converging to (r,, f,), such that 8(r,, ¢{,) converges in N. Let lim8(r,, t,)=v.
Take a compact neighborhoods C*and C* of v in D*(v) and D*(v; e) respectively,
and let C=a,(C*xXC*. Then C is a compact neighborhood of v in N. Since
lim,.. 8(rs, t,)=v, we may assume 0(r,, t,)C for n=1. Then for n=1 there
iS (U, v2)EC*X C* such that
0(rn; tn) = @(Un, Un)
and hence
We(3(ra) ; @MW) = {07, ta)} = {@(ttn, v2)}
C Wu, ; N\Wi,),
from which
We(r(ra); € = We(un; €), Wo(tn) = We@a).
Thus we have
{0(ry, ta)} = Wh(p(ry) ; e N\W¥(p(t,))
= W*(u,; "\W*(vy)
> ae(ula vn);
and so 0(r,, t,)=&(u, v,)=C. In the similar way, 0(r,, t,)=a.u., v,)eC.
Since 6 is continuous on R and (7, t,), (o, t)ER, we have 0(r, t,)—0(ry, t,)
and 0(r,, t,)—0(r, t;) (n—0). Thus @(ry, t,), 8(r,, t.)=C, from which there
are (w, z), (W, 2)€C*X C* such that

O(ry, to) = a.(w, 2), O(ry, t,) = @(w, 2).

In the same fashion we have
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We(o(ty) = Wz), W'z(ry); e) = W*(i ; e)
and hence

We(r(ro) ; NW(p(ty)) = Wi ; )N\W*(2) D @.(u, 2).
Therefore (r,, t,) R, thus contradicting. O
By using define 1: NXN—N by

{ix, y)} = W @x)NW*(y) for (x, y) € NXN,

then 1 satisfies the following properties; for x, y, z&N
i(x, x)=x,

(7.4 i(x, iy, 2)) = ix, 2),

1i(x, v), 2) = i(%, 2).
Define for yeh '(x)

13, = R ONW), 12, = @NWH).
LEMMA 7.7. i(I§ ,XIX ) =h"'(x).
Proor. For v, weh™'(x)
hei(v, w) = h(W*(v; ey "W*(w))
c Luh)N L hw)) (by
= {x}

and so i(v, w)&h '(x). Since I ,Ch '(x) for a=s, u, we have i(I$ ,xI* )
h~'(x). Conversely, let yeh~'(x). Then for any zeh~'(x)

iz, ¥) € h™i(x), iz y) € W)
from which i(z, y)eI§ ,. Similarly i(y, z)l*,. Therefore
z=1z, y), 1y, 2) € iI5 ,X}I}¥,). O

By we have D(hi(x), x)<K (xN) for some K>0 and so

diam(Z *(x))<2K, i.e., A~ (x)C B.x(y) for yeh~'(x) where Bx(y)={z&N: D(z, v)
<K}.

LEMMA 7.8. I$,Ci(Bax(y), ), 1£,C1(y, Box(y)).
PrROOF. By we have

15, =5, v) =G0 X1, 9)
= i(h ' (x), ¥) C UBox(y), ).



644 N. Sumi

Also we obtain the same result for o=u. O
Let us put Ry(x)=1(Br(x)XB.(x)) for x&N and L>0.
LEMMA 7.9. For L>0 there is L,>0 such that RL(x)CELo(x) for all x&N.

PROOF. Since W(x)Ch Y(L*(h(x))), and W*(x)Ch ' (L*(h(x))) by [7.1), we
have B
Ry(x) = i(B(x)X Br(x))

= \Un, wesp Wrw)NW*(w)

C Us, wegea A (L R@)NRH(L (R(w)))
= b7 H{Us, wesgce L*(R@NN LA (R (w))}

C A H{Us, wesgs g L*@NLHw))

v, weBgigco L*(x-v)NL(x-w)}
“Hx (v, wedgs g o L*@NLAW))}

i
SOoS S

Il

Since Uy, wesy s g L*@)NL%w) is compact, there exists L’>0 such that

Ri(x) C h™(x-Br(e) = h"(Br(x)) C Br (%)

Therefore L,=L’+K satisfies the above condition. d
Let ¢>0 be an enough small number and let x&N. We define for yeW(x)
D(x, y ; Wx)) = min{m = 0: f™(y) € Wi(/™(x))},
and for yeW*(x)
D(x, y; W*(x)) = min{m 2 0: F~™(y) € W7 ™(x))}.
Note that these are well defined by Lemma 7.1(2).

LEMMA 7.10. For L>0 there exists K,=N such that for x&N
1) if veR(x) and we R (w)NW* (), then D@, w; W) <K,,
() if veR(x) and we R (x)NW (W), then D@, w; W*@)<K,.

Proor. The proof is given by the technique described in § 8.4 Claim 4 of
[Ao-Hi].

Let o be as in Lemma 7.2(4) and L, be as in Lemma 719. Then there are
>0 and a sequence {x,, --, x,} CN such that By (x)C\U!B,(x,). Hence R;(x)
C\UtN(x, ; e) by Let vER(x) and define

D = R.(x)NW:@w).

Then we have D=i(B.(x), v) and hence D is connected. Indeed, if
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z € (B.(x), v) C W)

then z=i(x,, v) for some x,=B.(x). Since vER(x), there is (v;, v.)EBL(x)X
B.(x) such that v=i(v,, v,). Hence

z = i(x;, iy, v2)) = 1(xy, 12) € (Br(x)X Br(x)) = Ry(x)

and so zeD. Conversely, let zeD. Then z=i(w,, w,;) for some (w; w,)E
Bi(x)X By(x). Since z=i(z, v), we have

z = 1wy, wy), v) € (Br(x), v)

and therefore DCi(B(x), v).

Since R (x)C\J!N(x,;e), we have D=\J!N(x,:e)"\D. To avoid com-
plication, we may suppose that each N(x,;e)"\D is non-empty. Choose y,&
DNN(x,; e) for 1<i<l.

DNN(x,;e) C Wi(y.) (1<i<D.

This is checked as follows. Since y,=N(x,;e), there is z,&D*(x,; e) such that
y.€W(z,). If y’eDN\N(x, ; e) then we have also y’' W?(z) for some zeD*(x, ; €).
Since y,, v'eDCW*(), clearly z, z&W?*(v) and so

z, z€ D¥x,; W) C Wi(x,; eeNW@)
which shows z=z,. Therefore y’eWj.(y,), from which
D \UtWi(y.).
By there is K,>0 such that
FEAWse(2)) © Wi (F¥o(2)
for z&N. Hence we have
FRD)y C UL FRoW3u(y.)) C UL WS (FRo(3.)) .

Since D is connected, for 7, 7, with 1<7, </ we can find a sequence j,=
il; ]‘27 Uty jm:iz Such that

W, ) Wiy, # @ (L <i<m—1).
By using this fact we have
FE(D) © Wero(FXo(3.)

and therefore D(v, w; W*@)<K, for any weD. The analogous result holds
for W*(v; e). O

LEMMA 7.11. Let h: N—N be as above. Then h is bijective,
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PrOOF. Let v, wel$,. If v#w then there is n,>>0 such that f "(v)&
Wi(7-™(w)) for n=n, (since f is expansive) and hence

D(F @), F(w); W(F"@) = n—n,.

Let K, be as in for L=2K, and write

n, = ne+Ky-+1, v/ =f"™@) and w’' = f"1(w).
Then we have D', w’; W*@'))=K,+1. Since A-hi=h-f on N, it follows that
Fms, ) = Fmh (x)N ()
= h e A M(x)NWH(F ()
= I:I.yl

where x'=A""1(x) and y’=f""1(y). Therefore, v, w'el} ,Ci(B:x(y"), ¥")C
Rox(y)NW(y") (Lemma 7.8). Using we have D@, w’; W ()< K,,
thus contradicting. This shows that I} , is a set consisting of one point. In
the same fashion we have that I*, is a single point set. Since i(J§ , X1 ,)=
h~(x) by we obtain that 2 '(x) is a one point set. O

LEMMA 7.12. Let f be as above, and let K>0 be the number satisfying that
D(h, idy)<K. Then for 2>0 there is L>0 such that if

D(fX(x), f X)) = 3K
and

D(Fi(x), X)) = 3K,
then D(x, v)<A.

PrROOF. By we have that there exists K,>0 such that for all
xeN

D, w; W) £ K, if v € Ryx(x) and w € Ryx(x)NW(),
D, w; W*@)) £ K, if v € Rix(x) and w &€ Ryx(x)NW*().

By Lemma 711(1) it follows that for A>0 there exists m>0 such that
FrWi(z)) C Wys(F™(2),
f—m(Wg(Z)) - W}{/s(f—m(z)) .

To see that L=m-+K, is our requirement, suppose D(f’(x), f7(y))<3K for
j=L and j=—L. For the case j7=—L we have

(F2(x), FE) € Rax(FLNNW(FE(y))
and thus
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D(FE(y), {(F2(x), 7720 ; W2 £ K.
This implies that
(F™(x), Fm(9) = FRG(F (), FL) € W7 (),
from which _
i(x, ¥) = FmQAF ™), ™)) € Wiis(x).
Therefore D@(x, y), x)<1/2. For the case ;=L we have D(i(x, y), y)<4/2 in

the same argument. O

LEMMA 7.13. Let h be as in Lemma 7.11. Then h~'is D-uniformly contin-
uous.

ProoF. For given 4>0, we have L >0 as in[Lemma 7.12. Then by uniform
continuity of A, we can find 6>>0 such that D(x, y)<d implies D(A’(x), A/(v))< K
for j=L and j=—L. Since A~': N—N is bijective by Lemma 7.11, using the
fact that A 'eA=7-A 'and DA (x), x)<K (x&N), we have that for j=L and
Jj==L

D(fieh~Y(x), foh™'(3))
< D(h~'eA¥(x), A(x))+D(A’(x), AX(y))+D(A(y), h™'=A(y))
< 3K

and so D(h~'(x), h-'(y))<A. Therefore A~! is D-uniformly continuous. O

By k! satisfies all condition of Cemma 2.4(1)(2)(3). Thus we
can define a map A™': 7. (N)—1.(N) by

h='(rx)) = 7.oh"'(x) (x € N).

Then A~ is surjective (by and it is an inverse map of 4. Thus A
is a conjugacy map from (N/I")4 f) to (N/I)4 o4). Therefore is
obtained by

For the case when f is a TA-homeomorphism, we have that

h(a(x)) = a-h(x)

for acI” by [Lemma 2.4, which shows that 4 induces a homeomorphism h: N/I
—N/I'. Since A:h=h-f on N, we have Ash=~h-f on N/I'. [Theorem (1) was

proved.
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